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Synopsis

A vortex close to a no-slip wall gives rise to the creation of new vorticity at the wall, which
may organize itself into vortices that erupt from the separated boundary layer. We study how
the eruption process in terms of the streamline topology is initiated and varies in dependence of
the Reynolds number Re. We show that vortex structures are created in the boundary layer for
Re around 600, but that these disappear again without eruption unless Re > 1000. The eruption
process is unaltered for Re up to 5000. Using bifurcation theory, we obtain a topological phase space
for the eruption process, which can account for all observed changes in the Reynolds number range
we consider. The bifurcation diagram complements previously analyzes such that the classification
of topological bifurcations of flows close to no-slip walls with up to three parameters is now complete.

PACS numbers: 47.10.Fg, 47.20.Ky, 47.20.Ib, 47.15.Cb
Keywords: Boundary layer eruption, bifurcation, normal form, streamline topology, un-
steady separation

I. INTRODUCTION

A vortex convected close to a no-slip wall induces a viscous response from the wall boundary
layer. For a su�ciently high Reynolds number vorticity from the boundary layer is ejected into
the surrounding fluid resulting in secondary vortex structures. This phenomenon has been denoted
eruption of the boundary layer,1,2 unsteady separation

3,4 or bursting,5, and it occurs for a wide range
of Reynolds numbers6,7. The interaction between concentrated vorticity in a fluid and the vorticity
created at a no-slip wall occurs in many important settings. In dynamic stall of an unsteady airfoil,
the vortex created at the leading edge plays a key role in generating the transition to separated
flow.8,9 A vortex wake created by the flow around a blu↵ body may interact with a wall or a free
surface and give rise to secondary vortices.10–13 This is also the case when vortices, solid bodies or
jets impinge directly on a wall.14–17
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Here we are concerned with a precise and formal description of the qualitative changes in the flow
structure that occur during the eruption process and how the sequence of these transitions depend
on the Reynolds number. Our starting point is the analysis by Kudela & Malecha1,2 who showed
numerically how the streamline pattern changes through several stages as a vortex erupts from the
boundary layer. We will provide further numerical simulations to understand the process in more
detail, and also provide a theoretical framework to establish the possible topological changes in the
streamline pattern as time and Reynolds number varies.
No generally accepted or generally applicable definition of spatial structures in fluid flows is avail-

able, and even for a fundamental object such as a vortex many definitions have been suggested.18–20

Possibly the most elementary approach to identification of structures in flows is to consider the
topology of the streamlines, that is, the trajectories of the system of ordinary di↵erential equations
in dimensions two or three,

ẋ = v(x), (1)

where v is the instantaneous velocity field. From the qualitative theory of di↵erential equations it is
known that the phase portrait of an autonomous system like (1) is primarily organized by the criti-

cal points defined by where v = 0 and the stable and unstable manifolds of these points which form
dividing streamlines and streamsurfaces. The analysis of streamline topology has a long history in
fluid mechanics with pioneering work by Dean21 and Legendre22–24 followed by many others.25–28

If parameters such as the Reynolds number or geometric properties are varied, bifurcation theory
can be applied to characterize the changes in the streamline pattern that may arise. For unsteady
flows time can also be considered a parameter in the system (1). A general bifurcation theory
for streamline patterns has been developed by several authors28–33 and many applications to spe-
cific flow problems such as vortex breakdown,34,35 driven cavities,36–38 the cylinder wake39,40 and
peristaltic flows41 are available.
The analysis of topological bifurcations consists in identifying degenerate streamline patterns

and their unfoldings, that is, parametrized families of velocity fields which can represent all possible
perturbations of the given degenerate pattern. By a series of coordinate transformations one tries
to obtain a special unfolding, denoted a normal form, which contains as few free parameters as
possible. The number of parameters is the codimension of the degeneracy. The parameter space
is a bifurcation diagram which is partitioned by bifurcation curves and surfaces into regions of
di↵erent flow topologies. Such a bifurcation diagram constitutes a topological phase space for a
class of flow problems.
We organize our analysis as follows: In § II we report detailed numerical simulations of the

vortex-driven flow for Re up to 5000 and establish all the topological bifurcations that are relevant.
In § III we first note that none of the topological phase spaces which are available can account
for all the observed bifurcations in the eruption process, and thereafter proceed to establish and
analyze the relevant normal form which has codimension three. In § IV we verify that the normal
form does in fact cover all the observed bifurcations, and in § V we draw conclusions and provide
an outlook.

II. TOPOLOGICAL BIFURCATIONS IN BOUNDARY LAYER ERUPTION

From numerical computations Kudela & Malecha1,2 have identified various changes in the topol-
ogy of the streamlines during the eruption process, when described in a coordinate system fixed
to the wall. The configuration is shown in Fig. 1. At t = 0 a Gaussian vortex with core radius a

and negative circulation �� is placed a distance d from a flat wall, and an image vortex is placed
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FIG. 1. Initial configuration of the eruption process. A Gaussian vortex with core radius a and negative

circulation �� is placed at (0, d).
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FIG. 2. Numerically obtained streamlines for the vortex-induced flow for Re = 200. In each panel the

dimensionless time and the topological classification according to the bifurcation diagram in Fig. 11 is

shown.

below the wall. This is then evolved for a short relaxation time with a free-slip wall boundary to
smooth out transient oscillations – allowing the flow to adjust.42 When the initial oscillations are
reduced, the wall boundary condition is instantaneously switched to a no-slip wall and the com-
putation is continued. The equations were solved in a coordinate system where the vortices were
initially at rest. The equations are non-dimensionalized by the length scale L = d and the time
scale T = 2⇡ad/�. The Reynolds number is defined by Re = L

2
/T⌫. The flow equations are solved

by a well-established finite-element code using GLL quadrature and Lagrange polynomials.43–45

Standard domain and resolution studies were performed to ensure the reliability of predictions, and
very good agreement with the results by Kudela & Malecha2 is obtained. For more details on the
computational aspects, see Ref. 46.
In Figs. 2–6 we show representative sequences of streamline patterns for increasing values of Re.

Shortly after the initiation of the flow the main vortex appears as closed streamlines encircling a
critical point (not displayed) located at (0, 1) at t = 0. At later times the pictures focus on structures
close to the wall such that the main vortex is outside the plotting window. Each streamline pattern
is classified according to its topology following the theory we develop in § III.
For Re = 200, Fig. 2, a separation zone occurs at the wall which grows and then shrinks and

disappears again. Not further changes in topology occur, and there is consequently no eruption.
For Re = 600, Fig. 3, a separation zone is again created, but rather than shrinking while attached
to the wall it pinches o↵, creating a saddle point in the fluid. The dividing streamlines of the
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FIG. 3. As Fig. 2, but for Re = 600.
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FIG. 4. As Fig. 2, but for Re = 800.

saddle enclose a region with closed streamlines around a critical point of center type. This can be
considered a vortex structure which is not yet erupted. However, soon after the creation the vortex
structure shrinks and disappears as the saddle and the center merge in a saddle-center bifurcation
before it has left the boundary layer.
For Re = 800, Fig. 4, a saddle-center bifurcation occurs inside the attached separation zone.

This creates a figure-eight structure visible at t = 10.3125. Shorty thereafter, another saddle-center
bifurcation occurs where the lower center and the saddle disappear, leaving only a single center
inside the separation zone. The rest of the process is identical to that at Re = 600.
For Re = 1000 and up to 5000 eruption takes place following the same sequence of events which

we show in Fig. 5. As for Re = 800 a figure-eight is created inside the separation zone (t = 13.3225),
but now the top center and the saddle pinch o↵ in a global bifurcation, leaving a separation zone
attached to the wall and an erupted vortex structure (t = 13.89750). The separation zone shrinks
and disappears, while the erupted vortex leaves the boundary layer as it rotates around the main
vortex, much like two point vortices of opposite sign in an ideal fluid would do.
At later stages further topological changes may occur if Re is su�ciently high. We illustrate this
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FIG. 5. As Fig. 2, but for Re = 5000, early stages.
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FIG. 6. As Fig. 2, but for Re = 5000, later stages.

for Re = 5000 in Fig. 6. Here an attached separation zone is again created, and a little later a
vortex structure is appear above it in a saddle-center bifurcation. It does not erupt but merges with
the separation zone which subsequently disappears in a few bifurcations. For higher values of Re

these secondary topological changes may lead to eruption2 and more complex streamline patterns
which are outside the scope of the present study.
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III. TOPOLOGICAL ANALYSIS

A. The setting of the analysis

We consider two-dimensional incompressible flow close to a flat no-slip wall. The local structure
of the streamlines close to a point which we take to be the origin, can be found from a Taylor
expansion of the stream function

 = y

2
1X

n,m=0

an,m+2x
n
y

m
. (2)

Here the wall is given by y = 0, and the factor y2 appears as a consequence of the no-slip boundary
condition. The velocity components are given by

u =
@ 

@y

, v = �@ 
@x

, (3)

but rather than considering the di↵erential equations (1), a time-scaled version where a common
factor y is eliminated is normally used,

ẋ = û =
u

y

= 2a0,2 + 2a1,2x+ 3a0,3y + · · · , ẏ = v̂ =
v

y

= �a1,2y + · · · . (4)

This system has a critical point at the origin if a0,2 = 0, and the type of the point is given by the
eigenvalues of the Jacobian matrix

J =

✓
2a1,2 3a0,3
0 �a1,2

◆
. (5)

If a1,2 6= 0 the eigenvalues are real and non-zero, such that the critical point is a regular point of
separation or attachment. If, however, a1,2 = 0 the critical point is degenerate, and a small variation
of the coe�cients an,m may result in a qualitative change of the local streamline pattern, that is, a
bifurcation. A bifurcation analysis is e�ciently approached by obtaining a normal form, where as
many higher-order terms as possible in (4) are removed by non-linear coordinate transformations.
The number of bifurcation parameters which remain in the normal form is the co-dimension of
the degenerate critical point. Under the non-degeneracy condition a0,3 6= 0 normal forms and
bifurcation diagrams of co-dimension up to three has been obtained in Refs. 28, 31, and 32. This
is known as the simple case, while the case a0,3 = 0 is non-simple. The most basic non-simple
situation has co-dimension two under the non-degeneracy conditions

a2,2 6= 0, ã0,4 = a0,4 � a1,3
2

4a2,2
6= 0, (6)

see Refs. 28 and 31. Two di↵erent bifurcation diagrams result from this normal form, depending
on the sign � of ã0,4/a2,2. See e.g. Fig. 11 in Ref. 31. For � > 0 the pinching o↵ of a vortex from
the wall as it occurs in Figs. 3 and 4 is possible. When � < 0 the pinching o↵ of a vortex from a
figure-eight inside a separation zone attached to the wall is possible. This is the main bifurcation
leading to eruption as shown in Fig. 5, so to get a complete description of all the bifurcations in
the vortex-driven flow, a single normal form allowing di↵erent signs of � is needed. Hence, the
non-degeneracy conditions (6) must be broken.
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The case where the first condition is violated, together with other non-degeneracy conditions,

a0,2 = a1,2 = a0,3 = a2,2 = 0, a1,3 6= 0, a3,2 6= 0, (7)

has co-dimension three.37,40 However, it cannot account for the bifurcations we consider here.
The other case

a0,2 = a1,2 = a0,3 = ã0,4 = 0, a2,2 6= 0. (8)

has to our knowledge not been analyzed before. In the rest of this Section we will obtain the normal
form and the bifurcation diagram associated with this degeneracy under a further non-degeneracy
condition of the form ã0,5 6= 0, where ã0,5, given in (10c), is a parameter which appears in the
course of the analysis. In § IV we will show that the bifurcation diagram is the relevant one for
the vortex-driven flow. With this analysis, all topological bifurcation diagrams for flows close to a
no-slip wall with co-dimension up to three have been obtained.

B. Normal form for the degenerate case

In this section we perform a series of coordinate transformations in an attempt to simplify the
stream function (2) assuming the conditions (8).
Following Hartnack31 we introduce the new variable ⇠ = x+ a1,3

2a2,2
y to eliminate the term a1,3xy

3.

As a consequence of the assumption ã0,4 = 0, the streamfunction then reads

 = y

2
�
a2,2⇠

2 + a3,2⇠
3 + ã2,3⇠

2
y + ã1,4⇠y

2 + ã0,5y
3 +O(|⇠, y|4)� , (9)

where

ã2,3 = a2,3 � 3a3,2a1,3
2a2,2

, (10a)

ã1,4 = a1,4 � a2,3a1,3

a2,2
+

3a3,2a1,32

4a2,2
2 , (10b)

ã0,5 = a0,5 � a1,4a1,3

2a2,2
+

a2,3a1,3
2

4a2,2
2 � a3,2a1,3

3

8a2,2
3 . (10c)

Further simplifications can be obtained from non-linear coordinate transformations. We define a
near-identity transformation such that the wall y = 0 is mapped to ⌘ = 0 by

⇠ = �+ r2,0�
2 + r1,1�⌘ + r0,2⌘

2
, y = ⌘ + s1,1�⌘ + s0,2⌘

2
. (11)

This transforms the stream function into

 = ⌘

2
�
a2,2�

2 + (2a2,2r2,0 + 2s1,1a2,2 + a3,2)�
3

+ (2a2,2r1,1 + 2s0,2a2,2 + ã2,3)�
2
⌘ + (2a2,2r0,2 + ã1,4)�⌘

2 + ã0,5⌘
3 +O(|�, ⌘|4)�. (12)

The terms �3
⌘

2, �2
⌘

3 and �⌘

4 can be eliminated by choosing r2,0 = 0, r1,1 = 0, r0,2 = � ã1,4

2a2,2
,

s1,1 = � a3,2

2a2,2
and s0,2 = � ã2,3

2a2,2
and we get

 = ⌘

2
�
a2,2�

2 + ã0,5⌘
3 +O(|�, ⌘|4)�. (13)
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(a) (b)

FIG. 7. Streamline patterns close to the degenerate critical point for the normal form (14). (a): � = 1,

(b): � = �1.

Finally, we scale time by dividing the stream function by ã0,5 and scale � by substituting � =q
| ã0,5

a2,2
|x and obtain

 = ⌘

2
�
�x

2 + ⌘

3 +O(|x, ⌘|4)�. (14)

where

� =
a2,2

ã0,5

����
ã0,5

a2,2

���� =
⇢

+1 for a2,2/ã0,5 > 0
�1 for a2,2/ã0,5 < 0

(15)

and we have assumed ã0,5 6= 0. To analyse the topology of the flow close to the critical point (0, 0)
of (14), we look for possible separatrices (dividing streamlines) by solving  = 0. Disregarding the
O-term, the solutions are

⌘ = 0, ⌘ = (��x2)1/3, (16)

where the first solution corresponds to the wall and the latter forms a cusp which is in the fluid
domain ⌘ > 0 only if � = �1. The two possible streamline patterns are shown in Fig. 7.
It is interesting to note that the stream function (9) cannot occur in a steady flow. From the

steady Navier-Stokes equations further conditions on the coe�cients appear which ensure31 that
ã0,4 < 0. Hence, the analysis of this paper is relevant only for unsteady flows.

C. Unfolding of the degenerate case

The degenerate case is structurally unstable. Small perturbations of the parameters away from
the degenerate value may result in di↵erent streamline patterns. Following the approach from the
previous section, we will now derive a normal form to simplify the bifurcation analysis. We define
again the new variable ⇠ = x+ a1,3

2a2,2
y and substituting this into (2) we get

 = y

2(✏1 + ✏2⇠ + ✏3y + ✏4y
2 + a2,2⇠

2 + a3,2⇠
3 + ã2,3⇠

2
y + ã1,4⇠y

2 + ã0,5y
3 +O(|⇠, y|4)), (17)

where

✏1 = a0,2, ✏2 = a1,2, ✏3 = a0,3 � a1,3a1,2

2a2,2
, ✏4 = ã4 = a0,4 � a1,3

2

4a2,2
(18)

are small (bifurcation) parameters and ã2,3, ã1,4, ã0,5 are given in (10).
To further simplify the stream function, we apply the near-identity transformation

⇠ = �+ r0,2⌘
2
, y = ⌘ + s1,1�⌘ + s0,2⌘

2
. (19)
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As in the degenerate case, we aim at removing the �3
y

2, �2
y

3 and �y4-terms. The coe�cients for
these terms in the transformed stream function are

f(✏2, s1,1) = s1,1
2
✏2 + a3,2 + 2s1,1a2,2, (20a)

g(✏2, ✏3, s0,2) = 2s0,2a2,2 + 2s1,1s0,2✏2 + ã2,3 + 3s1,1
2
✏3, (20b)

h(✏2, ✏3, ✏4, r0,2) = 6s1,1✏3s0,2 + 4s1,1r0,2✏2 + 4✏4s1,1 + ã1,4 + 2a2,2r0,2 + s0,2
2
✏2, (20c)

respectively. Since

f

✓
0,� a3,2

2a2,2

◆
= 0,

@f

@s1,1

✓
0,� a3,2

2a2,2

◆
= 2a2,2 6= 0, (21)

it follows from the implicit function theorem that there exists a function s1,1(✏2) with s1,1(0) =
� a3,2

2a2,2
such that f(✏2, s1,1(✏2)) = 0, for ✏2 su�ciently small. Similarly, we find functions s0,2(✏2, ✏3)

and r0,2(✏2, ✏3, ✏4) which solve g = 0 and h = 0, respectively. Again, we only use the assumption
a2,2 6= 0 and the implicit function theorem. This yields the stream function

 = ⌘

2
�
✏1 + ✏̂2�+ ✏̂3⌘ + â2,2�

2 + ✏̂4�⌘ + ✏̂5⌘
2 + â0,5⌘

3
�
, (22)

where the ✏̂ are transformed small parameters and â2,2 = ã2,2 +O(✏̂), â0,5 = ã0,5 +O(✏̂). Further,
by a scaling of the time by dividing the stream function by â0,5, we obtain

 = ⌘

2

✓
✏̃1 + ✏̃2�+ ✏̃3⌘ +

â2,2

â0,5
�

2 + ✏̃4�⌘ + ✏̃5⌘
2 + ⌘

3 +O(|�, ⌘|4)
◆
, (23)

and, finally, to eliminate the �⌘2 and �⌘3-terms, we use a transformation

� = a+ bx1 + cy1, ⌘ = y1. (24)

Choosing the coe�cients as

a = � ✏̃2â0,5
2â2,2

, b =

����
â0,5

â2,2

����
1/2

, c = � ✏̃4â0,5
2â2,2

, (25)

the stream function becomes

 = y

2
1(c0,0 + c0,1y1 + c0,2y

2
1 + y

3
1 + �x

2
1 +O(|x1, y1|4)) (26)

where

c0,0 = ✏1 � ✏̃

2
2â0,5

4â2,2
, c0,1 = ✏̃3 � ✏̃2✏̃4â0,5

2â2,2
c0,2 = ✏̃5 � ✏̃

2
4â0,5

4â2,2
, � =

â2,2

â0,5

����
â0,5

â2,2

���� (27)

Note that the definition of � agrees with that of (15) for the degenerate case. When the bifurcation
parameters are su�ciently small a2,2 and â2,2 are of the same sign, as is the case for ã0,5 and â0,5.
We summarize our findings in

Theorem 1 Let a0,2, a1,2, a0,3 and ã0,4 be small parameters. Assuming the non-degeneracy con-

ditions a2,2 6= 0 and ã0,5 6= 0 a normal form for the stream function (17) is

 = y

2
�
c0,0 + c0,1y + c0,2y

2 + y

3 + �x

2 +O(|x, y|4)� , (28)

where

� =

⇢
+1 for a2,2/ã0,5 > 0
�1 for a2,2/ã0,5 < 0

, (29)

and c0,0, c0,1, c0,2 are transformed small parameters.
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c0,2

c0,0

(a) (b)

c0,2

c0,0

FIG. 8. Bifurcation diagrams for the normal form (14) for � < 0. (a): � = 1, (b): � = �1.

c0,2

c0,0 c0,0c0,0

c0,2

(a) (b)

FIG. 9. Bifurcation diagrams for the normal form (14) for � = 0. (a): � = 1, (b): � = �1.

D. Bifurcation Analysis of the normal form

In this section, we analyze the bifurcations in the dynamical system defined by the normal form
(28). The result is displayed in form of the bifurcation diagrams in Figs. 8–10. The parameter
space is three-dimensional, and it turns out to be convenient to use the parameter

� = 16c20,2 � 45c0,1 (30)

rather than c0,1. Here we only outline the analysis which is quite involved.
Truncating the O-term in (28) the di↵erential equations for the streamlines are, after a scaling

of the time by y,

ẋ = 2 c0,0 + 3 c0,1y + 4 c0,2y
2 + 5 y3 + 2�x2

, (31a)

ẏ = �2�yx, (31b)

with the determinant of the Jacobian

|J | = 6�c0,1y + 16�c0,2y
2 � 8x2 + 30�y3. (32)
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c0,2 c0,2
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D

FIG. 10. Bifurcation diagrams for the normal form (14) for � > 0. (a): � = 1, (b): � = �1. The full

lines are local bifurcation curves c0,0 = 0 and �

±
, the dotted lines are the global bifurcation curves �±

, and

the dash-dotted line is the global bifurcation curve ⇣+. The points A–E mark where di↵erent bifurcation

curves meet.

Several types of bifurcation can occur in this system: local bifurcations of on-wall and o↵-wall
critical points; global bifurcations associated with o↵-wall critical points and global bifurcations
associated with on-wall and o↵-wall critical points. A global bifurcation appears when the value of
 at di↵erent critical points of saddle type coincide. This allows a global (heteroclinic) connection
by a dividing streamline from one saddle point to the other. To find local bifurcations of on-wall
critical points, we insert y = 0 into (31a),

ẋ = 2c0,0 + 2�x2 = 0. (33)

From this, one finds that ± �p��c0,0, 0
�
are critical points. There are two on-wall critical points

when �c0,0 < 0, and no critical points when �c0,0 > 0. Hence, a local bifurcation occurs when
c0,0 = 0.
To find local bifurcation of o↵-wall critical points, we substitute x = 0 into (31a) and (32).

Eliminating y from ẋ = 0 and |J | = 0, one finds

128c0,0c
3
0,2 � 36c20,1c

2
0,2 � 540c0,0c0,1c0,2 + 135c30,1 + 675c20,0 = 0 (34)

where we have removed a factor c0,0 which is zero for on-wall bifurcation only. This equation is
quadratic in c0,0, the discriminant is �3, and we find the solution of (34) to be the surfaces in the
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(c0,0, c0,2,�) parameter space given by

�± : c0,0 =
32

675
c0,2

3 � 2

225
�c0,2 ± 1

675

p
�3

, (35)

which are defined only in the half-space � � 0. Furthermore, only part of these surfaces correspond
to bifurcations at points in the fluid domain y > 0. It can be shown that the bifurcations at �+

takes place below the wall for c0,2 >

p
�/4 and similarly for �� for c0,2 > �p

�/4, and hence
these parts do not correspond to a physical bifurcation. The end-points of the bifurcation curves
are marked by A and B in Fig. 10.
Proceeding to global bifurcations involving critical points on and o↵ the wall, the condition is

that  = 0 at an o↵-wall critical point fulfilling ẋ = 0 and x = 0 from (31b). Eliminating y from
these equations yields

4c0,0c0,2
3 � c0,1

2
c0,2

2 � 18c0,0c0,1c0,2 + 4c0,1
3 + 27c0,0

2 = 0, (36)

which again can be solved for c0,0,

�

± : c0,0 =
1

27
c0,2

3 � 1

9
Ec0,2 ± 2

27

p
E

3
, (37)

where

E = c

2
0,2 � 3c0,1 =

�� c

2
0,2

15
. (38)

It follows that the �± are defined only when �p
� < c0,2 <

p
�, and since critical points at the

wall must be present �c0,0 < 0 is also required. Furthermore, the o↵-wall critical point must be a
saddle and hence |J | < 0. It follows from these inequalities that for � = 1 only the part BD of �+

and for � = �1 the part AE of ��, as shown in Fig. 10, are of significance.
Finally, we consider possible heteroclinic connections among the o↵-wall critical points. Such

connections occur when the stream function attains the same values at two saddle critical points
(0, y1) and (0, y2). The following three conditions must be fulfilled,

ẋ(0, y1) = 5y1
3 + 4c0,2y1

2 + 3c0,1y1 + 2c0,0 = 0, (39a)

ẋ(0, y2) = 5y2
3 + 4c0,2y2

2 + 3c0,1y2 + 2c0,0 = 0, (39b)

 (0, y1)�  (0, y2) = (�y2 + y1)⇥
(c0,2y1

3 + c0,2y1
2
y2 + c0,2y1y2

2 + c0,2y2
3 + y1

4 + y1
3
y2 + y1

2
y2

2

+ y1y2
3 + y2

4 + c0,1y1
2 + c0,1y1y2 + c0,1y2

2 + c0,0y1 + c0,0y2) = 0, (39c)

where y1 6= y2. Eliminating y1 and y2 from these equations gives

128c0,0c0,2
3 � 36c0,1

2
c0,2

2 � 540c0,0c0,1c0,2 + 135c0,1
3 + 675c0,0

2 = 0, (40)

where we again have removed factors which correspond to bifurcations studied above. Solving for
c0,0 yields

⇣

± : c0,0 =
94

225
c0,2

3 � 7

225
�c0,2 ± 2

675

q
15625c0,26 � 1875�c0,2

4 + 75�2
c0,2

2 ��3
. (41)

Again, only parts of these surfaces correspond to physical bifurcations. In fact, only the branch of
⇣

� shown in Fig. 10(b) for � > 0 and � = �1 is relevant.
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Re= 5000, late

II

II0
III

IV

V

I

Re= 600 (800)
Re= 200

FIG. 11. The bifurcation diagram for the normal form (28) for � > 0. A slice with � > 0 is shown. The

thin lines are time traces for the eruption flow shown in Figs. 2–6. The dashed part represent parts where

the path goes through the region with � < 0. The trace for Re = 800 is identical to that for Re = 600

except that the dashed part is a full line such that the path goes through region III.

IV. THE TOPOLOGICAL PHASE SPACE OF ERUPTION

The bifurcation diagrams obtained in the previous section for � > 0 contains all the bifurcations
we have observed in the eruption flow. In Fig. 11 we show a slice in the (c0,0, c0,2,�) parameter
space for � > 0. The roman numeral in each of the regions are the ones used in Figs. 2–6 to classify
the flow topology. Note that the regions II and II0 are really one region as they are connected
through the part where � < 0, cf. Fig. 8(a).
Time traces corresponding to the temporal developments observed numerically for the eruption

flow are shown in the figure. There are other ways of arranging the paths in accordance with the
observations but the one shown is the simplest which implies a smooth transition from one path to
the next as Re is varied.
Hence, we have obtained a topological phase space for the eruption flow. It accounts for how the

streamline patterns are transformed into each other, and it does so in a minimal way: All topologies
in the diagram are realized in the flow, and all three dimensions in the parameter space are needed.
Thus, it will not be possible to describe the eruption process completely in a simpler topological
phase space.
To summarize, the road to primary eruption goes through three stages. The first stage is Re < 600

where only a separation zone on the wall exists. The intermediate stage is 600 < Re < 1000 where
a small vortex structure is created above the recirculation zone but disappears quickly again. There
are di↵erent sequences of streamline topologies in this stage, depending on Re, and we have not
resolved it completely. The final stage is Re > 1000 where eruption takes place. While we have
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only performed simulations for Re up to 5000 the results by Kudela and Malecha2 indicate that
the sequence of topology variations during eruption is unchanged for Re = 10000.

V. CONCLUSIONS

Creation and destruction of structures in the streamline pattern of a fluid flow can be classified
with a dynamical systems approach. The starting point is a degenerate critical point of the velocity
field, and by constructing a bifurcation diagram from an unfolding of the degenerate configuration,
a series of possible topological transitions of the flow can be found. The more degenerate the critical
point is, the more bifurcation parameters occur in the unfolding, and the more complex patterns can
be accounted for. In this paper we have obtained such bifurcation diagrams for the two-dimensional
flow close to a no-slip wall for a degeneracy with co-dimension three. This completes the set of
bifurcation diagrams with up to three parameters obtained previously.28,31,32,37,40

We have shown that the bifurcation diagram thus obtained in the case � = 1 describes the basic
changes of streamline topology in the eruption process from a boundary layer. The creation of
a secondary vortex erupting from the boundary layer is associated with the “pinching o↵” of a
saddle/center pair of the streamlines in a global bifurcation. The bifurcation diagram associated
with the singularity we study here is the simplest which can account for both the creation of the
recirculation zone on the wall and the pinching o↵, as no other bifurcation diagram with three
parameters or less allows both these transitions. The bifurcation diagrams we have obtained here
have at most one secondary erupted vortex. For higher Re several vortices may erupt, and a
topological description would require higher-order normal forms for the stream function, occurring
as unfoldings of more degenerate critical points. Nevertheless, the transition I ! II0 ! III ! IV,
shown in Fig. 11 for Re = 5000, appears to be the fundamental process for the generation of a
vortex in the eruption process, and it will occur locally also at much higher Re. As the analysis
is topological, and hence of a qualitative nature, it will be valid for a large range of flows, not
being critically dependent of the specific physical setting of the eruption process. Thus, the basic
degeneracy, given by the conditions (8), can be understood as an organizing center for the eruption
process.

The other non-simple co-dimension three case (7) plays the same role for vortex shedding behind
blu↵ bodies. In Ref. 40 it is shown how the bifurcation diagram plays a similar role as a topological
phase space in the periodic regime where, as in the present paper, distinct dynamical stages in
dependence of Re are present.

An alternative approach to study the eruption process is to focus on the topology of the vorticity
rather than the stream function.47 Simulations2,46 clearly indicate that there is a close connection
between the flow structures defined by these two fields in the eruption process. A more detailed
study of this is in preparation.

Establishing a topological phase space will be of interest in any situation where structures in the
flow change as parameters or time vary. The vortex-generated flow studied in the present paper
is only an example; In addition to the cases mentioned in the Introduction another fundamental
problem where the method we present would be applicable is the recently studied impulsively
started rotation of two cylinders.48 Here topological changes occur in a flow quite di↵erent from
the one considered here, and, in particular, at much lower Reynolds numbers.
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37F. Gürcan, A. Deliceoğlu, and P. G. Bakker, “Streamline topologies near a non-simple degenerate critical point
close to a stationary wall using normal forms,” Journal of Fluid Mechanics 539, 299–311 (2005).
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