
Wake transition of two-dimensional cylinders and axisymmetric
bluff bodies

M. C. Thompson∗

Abstract

This article presents an overview of the instability modes occurring in wakes of two-dimensional cylinders and
(axisymmetric) tori. The instabilities are compared and contrasted, especially with reference to the base case
of the circular cylinder wake. The latter has been the subject of intense interest and scrutiny for well over a
century, and has implicitly assumed the role of providing the generic transition scenario to turbulent wake flow.
In particular, it is observed that for elongated cylinders with streamlined leading edges, the analogues of the
instability modes for a circular cylinder become unstable in the reverse order, which may have implications for
the route to wake turbulence for such bodies. As well, the analogue of mode B has a significantly increased
relative spanwise wavelength and appears to have a different structure in the near wake. At the other extreme,
for a normal flat plate, the wake first becomes unstable to a non-periodic mode that appears distinct from
either of the dominant circular cylinder wake modes. For tori, which have a local geometry approaching a two-
dimensional circular cylinder for high aspect ratios, the first occurring wake instability mode is a subharmonic
mode for intermediate aspect ratios.

Possible underlying physical mechanisms leading to some of these instabilities are also examined. In
particular, support is provided for the role of idealised physical instability mechanisms in controlling wavelength
selection and amplification for the dominant cylinder wake modes. The results presented in this article focus on
relevant research undertaken by the Monash group but draws in results from many other international groups.

Introduction

Considerable experimental and computational effort has gone into documenting the three-dimensional wake
transitions of a nominally two-dimensional circular cylinder. A non-exhaustive sample of articles include
Williamson (1988b, 1996b,a); Wu et al. (1996); Thompson et al. (1994, 1996); Barkley & Henderson (1996);
Henderson (1997); Mittal & Balachandar (1995); Karniadakis & Trintafyllou (1992); Brede et al. (1996); Bays-
Muchmore & Ahmed (1993); Gerrard (1978) . Stability analysis (Barkley & Henderson (1996)) indicates that
the two-dimensional wake becomes linearly unstable to mode A at Re � 190, and the base flow undergoes a
further bifurcation to mode B at Re � 260. Experiments (Williamson (1988b); Miller & Williamson (1994)) and
DNS (Thompson et al. (1996); Henderson (1997)) simulations show that this mode becomes unstable at lower
Reynolds number because the saturation of mode A significantly modifies the wake structure. There is a strong
interaction between the modes and the wake undergoes a rapid transition to spatio-temporal chaos (Hender-
son (1997)), so that it is effectively turbulent for a Reynolds number of just a few hundred. The saturation of the
modes in the wake have also been modelled in detail using the Landau equation (Henderson (1997)). Finally
the physical mechanism driving the instability modes has been explored by various authors including Barkley &
Henderson (1996); Henderson (1997); Leweke & Willimson (1998); Thompson et al. (2001b). Figure 1 shows
a side-by-side comparison of experimental and numerical tracer visualisations of the mode A and B shedding
modes. So it appears that this wake has been well documented and is well understood; however, an obvious
question is whether this transition scenario is generic or universal for a variety of other two-dimensional and
axisymmetric body shapes. This question is addressed by the current paper.

The FLAIR (Fluids Laboratory for Aeronautical and Industrial Research) group at Monash University has
spent considerable effort investigating the effect of body shape on wake transition. Two broadly representative
sequences of body geometry have been examined. The first set consists of the normal flat plate, a circu-
lar cylinder, and elongated cylinders with elliptical-leading edges to prevent vortex shedding except from the
trailling edge. The second set focusses on axisymmetric bodies, in particular a ring or torus placed with its axis
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Figure 1: Numerical visualisations of the two shedding modes using passive tracer particles (top) compared
with experimental dye visualisations obtained by Charles Williamson. Mode B is shown at the left and mode A
at the right.

aligned with the flow direction. By adjusting the aspect ratio, it can be transformed continuously from a sphere
to a very large ring where curvature effects are negligible, so that a section of the geometry is representative
of a circular cylinder. These sequences of body shapes are depicted in figure 2a and b.

Wake transition of two-dimensional bodies

Circular and square cylinders

As mentioned above, the three-dimensional transitions in a wake of a circular cylinder have been extensively
studied experimentally, numerically and theoretically. The wake becomes unstable to three-dimensional per-
turbations through a subcritical (i.e., hysteretic) transition (Henderson (1997)) to an instability mode, dubbed
mode A by Williamson (1988a) (also see Williamson (1996b,a)), at Re � 190. The wavelength of this mode
is approximately 4D, where D is the cylinder diameter. Experimentally it is found that the saturated mode is
not periodic, at least for Reynolds number not too far in excess of transition. DNS simulations at Re = 210,
have confirmed this behaviour (Sheard, private communication; also see Henderson (1997)). Floquet stability
analysis (Barkley & Henderson (1996)) of the two-dimensional base flow indicates that a second mode, known
as mode B, becomes unstable at Re � 260. This has a much shorter wavelength of λ/D � 0.8. In experi-
ments and DNS simulations this mode is seen at much lower Reynolds numbers, Re � 230, presumably due
to the modification of the previously two-dimensional wake by the saturated mode A state. The wake becomes
chaotic rapidly with increasing Reynolds number through spatio-temporal chaos (Henderson (1997)), and is
effectively turbulent at Re � 300. Importantly, the wake continues to show strong evidence of the mode B
wavelength at much higher Reynolds numbers (Wu et al. (1996)) and presumably it contributes significantly to
lateral mixing.

Robichaux et al. (1999) performed a Floquet stability analysis of the wake of a square cylinder. The transi-
tion scenario appears to be similar to the circular cylinder. Again, mode A and B occur in the same sequence
with transition Reynolds numbers of about 160 and 190, respectively. The maximally amplified wavelengths
are also similar at 1.2 and 5.5 times the cylinder height. Interestingly, if the scale length is taken as the length
of the diagonal, the preferred wavelengths are the same as for the circular cylinder to within a few percent.
These authors also found a further instability mode, which they called mode S (for subharmonic). This oc-
curred at a higher critical Reynolds number of Re = 200, and had a wavelength in between the mode A and B
wavelengths. Blackburn & Lopez (2003) subsequently showed that, in fact, this mode was not a subharmonic,
but was a mode with a complex Floquet multiplier with a period of approximately twice the base flow period. A
theoretical analysis based on symmetry groups (Blackburn et al. (2005)) of the possible modes for geometries
with this set of flow symmetries, indicated the only modes with the time-space symmetries of mode A and B
could occur. The occurrence of a true subharmonic mode would be extremely unlikely.
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Figure 2: Top: Sequence of two-dimensional cylinders used to study two-dimensional wake evolution. Bottom:
Axisymmetric bodies examined.

Figure 3: Two-dimensional coloured vorticity contours showing the shedding pattern for flow past a normal flat
plate. Flow is from left to right. Left to right: Re = 40, 80 and 130, respectively.

Normal flat plate

As for the circular cylinder there is only a single separation point on each side of the wake, although it is fixed
in position. At low Reynolds numbers the wake resembles the typical Karman wake of a circular cylinder. As
the Reynolds number is increased the wake rapidly evolves spatially downstream to two sets of positive and
negative vortices distributed on either side of the wake centerline. The two-dimensional wake as depicted by
coloured vorticity contours is shown in figure 3 for Reynolds numbers of 40, 80 and 130. Relevant previous
research includes Najjar & Balachandar (1997), who performed a three-dimensional numerical study of the
three-dimensional wake at Re = 250, and Julien et al. (2004, 2003) who examined the stability modes for a
idealised wake based on the wake from a normal flat plate.

Figure 4 shows dominant Floquet multipliers against wavelength for a number of Reynolds numbers. There
are two dominant modes, the longer wavelength mode is the first to go unstable at Re � 115, and has a
preferred wavelength of approximately 5–6H , where H is the height of the plate. In this case, the dominant
mode has a complex multiplier (indicated by the dashed line). The shorter wavelength mode has a dominant
wavelength of λ/H � 2 becoming unstable at Re � 125.

Given the quite different structure of the vortex street, it is perhaps not surprising that the mode shapes
are quite different from those of a circular cylinder. Figure 5 shows perturbation spanwise vorticity contours
for the shorter and longer wavelength modes. The position of the spanwise vortex structures are indicated
as well. The shorter mode has the same spatio-temporal symmetry as mode A of the circular cylinder. In
addition, there is strong evidence of elliptical instability in the vortex cores, consistent with mode A. The longer
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Figure 4: Dominant Floquet multipliers for the wake of a normal flat plate.

Figure 5: Spanwise perturbation vorticity structure of the first two instability modes for the normal flat plate. The
left and right images corresponds to a wavelengths of λ/H = 2 and 5.5, respectively. The Reynolds number is
130.

spanwise wavelength mode is strong close to the rear of the plate but decays rapidly with downstream distance.
As mentioned, the Floquet multiplier is complex before and after transition, and the period of the mode is not
commensurate with the base flow period. Indeed, the period is highly variable with wavelength, which may
indicate the rapid development of a very chaotic wake with increasing Reynolds number.

Elongated cylinders

Results for this body geometry have been presented in Ryan et al. (2005). A summary of the key findings are
presented here.

In this case there are three unstable modes denoted mode A, B′ and S′, in line with the modes observed for
square and circular cylinders. The critical wavelengths of these modes are approximately 4, 2.2 and 1 cylinder
widths. Mode A is topologically similar to mode A for a circular cylinder as can be seen by a comparison
of perturbation spanwise vorticity contours in figure 7. Mode B′ has the same spatio-temporal symmetry as
mode B of a circular cylinder; however, there are some other significant differences (hence the dash). The
preferred wavelength is considerably longer (2.2 compared with 0.82) and the perturbation field in the near
wake is markedly different. Nonetheless, the downstream development is very similar. Mode S′ is in some
senses similar to the almost subharmonic mode observed by Robichaux et al. (1999). Again, the mode has a
complex Floquet multiplier, although it is not close to having a subharmonic period. The real part of the Floquet
multiplier only becomes greater than unity for large aspect ratio cylinders. Isosurface visualisations depicting
streamwise vorticity are given in figure 6.

Figure 8 shows the variation of critical Reynolds number as a function of aspect ratio for modes A and B′.
The most striking feature is that mode B′ becomes unstable at a lower Reynolds number for cylinders with
length to height ratios greater than approximately 7. Indeed for a cylinder with length to height ratio is 17.5,
the difference in the critical Reynolds numbers is close to 300. Given that Karniadakis & Trintafyllou (1992)



Figure 6: Isosurfaces of the streamwise vorticity field for the three identified instability modes (A, B′ & S′) for
an elliptical leading-edge cylinder. Isosurfaces of spanwise vorticity show the positions of the Karman vortices.
The span length is 12H .
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(a)
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Figure 7: Comparison of the wake spanwise vorticity field of the Floquet mode for a circular cylinder (Re =

190, λ = 4D) and short plate (AR = 2.5, Re = 240, λ = 4H) showing the longer wavelength instability for
the short plate is analogous to the Mode A instability of the circular cylinder. The spatial structure of the
perturbation field relative to the position of the Karman vortices is highlighted by the contours of spanwise
vorticity with ωz = ±0.2. Both images are at approximately the same phase in the shedding cycle.

found that mode B underwent period-doubling when the existence of mode A was suppressed by by artificially
restricting the spanwise domain, it is not clear that the transition to turbulence will occur through the same
route for elongated cylinders as for short cylinders.

Wake transition of axisymmetric bodies

Sphere

This case has been studied extensively by many research groups over the years. The wake transitions are quite
distinct from those for a circular cylinder wake. The wake undergoes a regular (i.e., time-steady) transition
at Re = 212 to the beautiful two-threaded wake (Margarvey & Bishop (1961a,b); Johnson & Patel (1999);
Tomboulides et al. (1993, 2000); Thompson et al. (2001a); Ghidsera & Dusek (2000); Ormières & Provansal
(1999)). This wake then becomes unstable at (Re = 270) through a Hopf (steady to periodic) bifurcation. At
Re � 350 the orientation of the shed vortical structures loses coherence (Mittal (1999)). The overall wake
structure is similar at considerably higher Reynolds numbers, although much more chaotic.

Tori

Sheard has undertaken an extensive numerical study of aspects of flows past spheres, including three-
dimensional transitions (Sheard et al. (2003)), DNS simulations and Landau modelling examining the satu-
ration of the instability modes (Sheard et al. (2004)), and examining wake transition to a subharmonic mode
for a torus of a specific aspect ratio (Sheard et al. (2005)).

As the aspect ratio (ring diameter to cylinder cross-section diameter) becomes large so that curvature
effects become small, then locally the body geometry approaches the geometry of a two-dimensional circular
cylinder. Indeed, this was part of the motivation for the experimental study of Leweke & Provansal (1995).
The other motivating factor was the elimination of end effects, which complicate the experimental study of
circular cylinder wakes. For large aspect ratios the analogues of modes A and B also occur for this geometry,
with similar preferred wavelengths. Even for large aspect ratio tori, the ring curvature leads to a loss of the
symmetry in the plane defined by the flow direction and cylinder axis for a two-dimensional cylinder. This
change to symmetry group properties allows a true subharmonic mode to develop (mode C), which is in
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Figure 8: Critical Reynolds number for the different mode transitions as a function of plate aspect ratio. Here,
� indicates a Mode B′ transition and ◦ indicates a Mode A transition. The curves represent an approximate fit
to the data.

fact the first occurring instability mode for tori of aspect ratios 4 � Ar � 8. DNS simulations supported by
experimental visualisations have confirmed the occurrence of this mode shown in figure 9.

Physical mechanisms of transition

There has been debate over the physical mechanisms responsible for the development of these instabilities.
There have been suggestions that mode A is due to a Benjamin-Feir instability (Leweke & Provansal (1995)), a
centrifugal instability of the braid region between the main vortex rollers (Brede et al. (1996)), and an elliptical
instability of the vortex cores (Leweke & Willimson (1998); Thompson et al. (2001b)). Speculation has also
occurred for mode B, certainly in terms of a three-dimensional shear layer instability of the separating shear
layers (Brede et al. (1996)), a centrifugal instability (Ryan et al. (2005)) and a hyperbolic instability of the braid
region (Leweke & Willimson (1998)). Naturally, the flow field is complex and hence it is not clear that the
development of an instability can be entirely attributed to a unique physical instability mechanism that governs
a very simple flow topology. Nevertheless, it is appealing to do this to provide some physical insight into the
evolution of the flow as the Reynolds number is increased.

For mode A, it appears elliptical instability strongly contributes to the development of the instability. Williamson
(1996b,a) suggested that for a circular cylinder mode, the instability modes scale with the wake vortex cores
(mode A) and the width of the braids between the cores (mode B). Leweke & Willimson (1998) explored the pos-
sibility that mode A was primarily elliptic in origin by analytically calculating the growth rate of the strained vortex
cores to an elliptic instability. The growth over a cycle was found to be substantial and it was speculated that this
would provide sufficient feedback from one shedding cycle to the next to sustain the instability. In addition, the
analytically-predicted spanwise wavelength for elliptic instability closely matched the experimentally-observed
and numerically-predicted wavelength. Thompson et al. (2001b) examined the growth of the mode through
DNS simulations. These showed that as each pair of wake vortices form and begin to shed, the perturbation
fields within the cores are locally consistent with the signature of elliptic instability. Effectively, a cooperative
elliptic instability (Leweke & Williamson (1998)) develops between the shedding vortices. However, the pertur-
bation then grows rapidly between the cores, where the flow is undergoing rapid straining. DNS simulations
established that the mode A field would recover more quickly if the perturbation field was artificially zeroed
in the parts of the domain where the flow was hyperbolic rather than elliptic. It appears that the instability is
slaved to the elliptic core instability. Julien et al. (2004) found similar behaviour occurring between vortex cores
for Bickley flow as an idealised model of the wake from a normal flat plate. Again, the core instability controls
the wavelength and overall growth rate although the perturbation field appears strong between the cores.

Mode B shows strong growth in the braids and between the forming Karman vortices. The development of
the perturbation field within the vortex cores is much reduced and does not show the signature of an elliptic
instability. Indeed, the preferred wavelength is probably too small for amplification through an elliptic mecha-
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Figure 9: Perspective view of mode C shedding from a torus of aspect ratio 5 at Re = 190, from DNS. The flow
is from the top right to bottom left. Only a section of the torus is shown to more clearly show the subharmonic
nature of the mode. Greyscale streamwise perturbation isosurfaces are used to visualise the mode.

nism. In Ryan et al. (2005) an attempt is made to associate the instability with a centrifugal instability. The
spatio-temporal topology of the mode is consistent with a centrifugal instability, in that the streamwise vortices
identified with the development of the perturbation extend downstream as unbroken tubes along the braids.
This provides a feedback mechanism from one cycle to the next, sustaining the perturbation. A idealised sta-
bility analysis based on isolating part of the near wake region where the growth rate is large, shows that the
predicted instability wavelength is within 25% of the preferred wavelength of mode B. In addition, the predicted
growth rate applicable to the time taken for fluid parcels to travel through this region on circular streamlines is
also within 30% of the total growth measured directly from DNS for the corresponding time.
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