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Abstract

The effect of rotation on the three-dimensional instability of a
horizontal convection flow in a free-surface cylindrical enclo-
sure driven by a radially increasing temperature over the base is
numerically investigated using a linear stability analysis. The
results demonstrate that higher rotation rates serve to inhibit
the onset of non-axisymmetric instability. Two distinct insta-
bility modes are found. A low-wavenumber mode with az-
imuthal wavenumber 5 is found exhibiting spiral structures ex-
tending out from the axis and deep into the enclosure consistent
with baroclinic instability, a high-wavenumber mode is also ob-
served, which is localised near the buoyant end of the base. That
disturbance exhibits features consistent with a Rayleigh-Bénard
type azimuthal roll instability in the radial horizontal convection
boundary layer.

Introduction

The flows driven by a temperature difference imposed along a
horizontal boundary is known as horizontal convection [3]. This
is in contrast to Rayleigh–Bénard convection in which the tem-
perature difference is in the vertical direction [6]. Uneven heat-
ing applied across a horizontal boundary occurs in myriad geo-
physical and industrial systems, motivating further study into
horizontal convection. In addition, the effect of rotation on con-
vection flows is important in many industrial applications as
well as in astrophysical and geophysical flows, including cir-
culations of atmospheres, and the interiors of planets and stars
[8]. In fact, for rapidly rotating, stratified fluids that are sub-
jected to horizontal temperature gradients, baroclinic instability
may originate as unstable wave-like disturbances [7]. The com-
bination of a radially forced horizontal convection and rotation
in a cylindrical enclosure idealizes features of geophysical flows
such as polar vortices in which solar heating of the surface has
a latitudinal dependence, and this forms the basis of the system
considered in the present study.

For non-rotating horizontal convection at high Rayleigh num-
ber, [11] demonstrated that the horizontal thermal layer has a
thickness proportional to Ra−1/5. However, in a rapidly rotating
system, the thinnest horizontal boundary layer is Ekman layer.
Therefore, the ratio of thw thickness of these layers will be im-
portant in describing the flow.

The effects of rotation on horizontal convection have been in-
vestigated by [2, 1, 4]. The dynamics of a horizontal convection
in a rotating annuls have been investigated experimentally by
Hignett etal [2]. The enclosure was rotated around its central
axis in which a radial temperature gradient is maintained along
the lower boundary in all directions from the axis. The dynam-
ics of the flow is described in terms of a non-dimensional pa-
rameter Q, which is defined as the square of the ratio of non-
rotating thermal layer scale to Ekman layer scale. Their exper-
iments focused on the rotating regime with Q ∼ O(1). For a
large Rayleigh number, six flow regimes were determined de-
pending on the magnitude of parameter Q. They found that for
small Q, the flow is only weakly modified by rotation, and the

scaling law for heat flux and thermal boundary layer is simi-
lar to the non-rotating case (i.e. Rossby scaling for horizontal
convection). Also, a critical value of Qc ≈ 3.4 was determined
beyond which baroclinic instability and waves were predicted.

Experiments on thermal convection in annular geometry
showed that when the rotation rate exceeds a certain critical
value Qc, Coriolis forces inhibit overturning motion in merid-
ian plane and promote a sloping convection or baroclinic waves
flow. In such flow, although the temperature difference is im-
posed primarily along a horizontal boundary, at equilibrium the
resulting temperature surfaces will be inclined. This implies
that for potential energy to release, which has the possibility to
amplify a perturbation by converting potential energy to kinetic
energy, there must be a slope between the isothermal surfaces
and the horizontal [7]. The linear stability analysis on analytical
solution performed by Barkan etal [1] showed that the sloping
isopycnals of rapidly rotating horizontal convection flow results
in greatly enhanced available potential energy and hence the
flow is expected to be baroclinically unstable.

A key question relating to rotating horizontal convection (RHC)
flow is its stability to axisymmetric and non-axisymmetric dis-
turbances. To address this question, this study performs a global
linear stability analysis by obtaining the eigenvalue solution
arising from the linearization of the governing incompressible
Navier–Stokes equations coupled to a buoyancy transport equa-
tion through the Boussinesq approximation.

Numerical Model and Methodology

The system under consideration consists of a free surface cylin-
drical enclosure rotating with an angular velocity Ω. It is filled
with fluid, and a radially increasing linear temperature profile is
imposed on the base. The tank radius R and height H com-
bine to define an aspect ratio which in this study is fixed at
H/R = 0.4. The system is depicted in figure 1.

Figure 1. Schematic representation of the system, showing key
symbols. Representative contours of temperature are plotted on
the computational domain spanning the meridional semi-plane.

The azimuthal velocity imposed on the impermeable base and



side wall is uθ = rΩ, where r is the radial coordinate. To model
a free surface, a stress-free condition is imposed on the top
boundary (uz = ∂ur/∂z = ∂uθ/∂z = 0). The side wall is ther-
mally insulated by imposition of a zero normal temperature gra-
dient, and to simplify the computational model, no heat loss is
permitted through the stress-free top surface, which is also ap-
proximated as being thermally insulated. The linear tempera-
ture profile increases by δT from r = 0 to r = R along the base
to drive horizontal convection in the z–r plane.

A Boussinesq approximation for fluid buoyancy is employed,
in which density differences in the fluid are neglected except
through the gravity term in the momentum equation. Un-
der this approximation the energy equation reduces to a scalar
advection-diffusion equation for temperature which is evolved
in conjunction with the velocity field. The fluid temperature is
related linearly to the density via a thermal expansion coeffi-
cient α.

The dimensionless Navier–Stokes and energy equations govern-
ing a Boussinesq fluid may be written as

∇ ·u = 0, (1)

∂u
∂t

= N1 −∇p+
QRa2/5

2
∇2u+gT

4Ra1/5

PrQ2 , (2)

∂T
∂t

= N2 +
2

PrQRa2/5
∇2T, (3)

where N1 = −(u ·∇)u, N2 = −(u ·∇)T . u, p, t, Q, Pr, g and
T are the velocity vector, kinematic static pressure, time, rota-
tion rate, Prandtl number, a unit vector in the direction of grav-
ity, and temperature, respectively. In equations (1)-(3), lengths
have been scaled by R, velocities by RΩ, time by Ω−1, and tem-
perature by δT ( the imposed temperature difference across the
bottom wall).

A horizontal Rayleigh number characterizing the thermal forc-
ing is given by

Ra =
gαδT R3

νκT
, (4)

where g is the gravitational acceleration and κT is the thermal
diffusivity of the fluid.

The rotation rate is characterised as the square of the thermal
boundary layer thickness and Ekman layer thickness [2],

Q =
1

ERa2/5
, (5)

where E is the Ekman number characterizing the ratio of vis-
cous to Coriolis forces [2],E = ν/2ΩR2. This ratio accounts
for the importance of rotation in horizontal convection. When
Q > O(1), a thermal boundary layer is thicker, and rotation
is important. When Q < O(1), the Ekman boundary layer is
thicker than a thermal boundary layer, and frictional dissipation
is important within the thermal boundary layer.

The Prandtl number of the fluid is given as

Pr =
ν

κT
, (6)

and throughout this study Pr = 6.14, which approximates water
at laboratory conditions.

The governing flow and energy equations (2)-(3) are solved in
cylindrical coordinates using a nodal spectral-element method
in space, and a third-order scheme based on backwards differ-
entiation is employed for time integration [5]. The cylindrical

formulation of the solver employed here has been validated and
used recently to study a rotating horizontal convection system
by Hussam etal [4]. A grid independence study determined that
integrated Nusselt numbers [4] were independent of resolution
with a polynomial order of 7, which is used hereafter.

To consider different types of instability, a Rayleigh number
(O(109)) and rotation rates (1 ≤ Q ≤ 30) are considered in this
study.

Linear Stability Analysis Technique

The potential for non-axisymmetric three-dimensional instabil-
ity developing and significantly altering its characteristics on an
axisymmetric base flow motivies an application of linear sta-
bility analysis. In this analysis, the velocity, pressure and tem-
perature are decomposed into the sum of an axisymmetric field
(ū, P̄, T̄ ) and a small non-axisymmetric perturbation field (u′

,
P′

, T
′
). The perturbation field is constructed as a single com-

plex Fourier mode of an azimuthal expansion of the flow field
and the wavenumber of the perturbation is a parameter in the
stability analysis. Substituting these onto equations (1)-(3) and
eliminating terms satisfying equations (1)-(3) for axisymmet-
ric flow as well as products of perturbation quantities yield the
linearized Navier–Stokes and energy equations. A linear stabil-
ity analysis is performed to calculate the Floquet multipliers of
the system. The Floquet multipliers correspond to the dominant
eigenvalues of an evolution operator associated with time inte-
gration of the linearized equations, and are related to the expo-
nential growth rate of individual wavenumbers through µ= eσT ,
where σ represents the growth rate and T is the time interval
over which the equations are integrated within the eigenmode
solver. The growth rate is evaluated from σ = log(µ)/T . In
the case of steady-state base flows, such as are produced in the
present study, T may be arbitrarily chosen. The stability of the
base flow is then determined from dominant eigenvalues with
the largest modulus. If | µ |> 1, then the flow is unstable, and if
| µ |< 1, the flow is stable. Neutral stability occurs when | µ |= 1,
which represents a system in which the perturbation will neither
grow nor decay.

Results and Discussion

Flow Structure in the Weak and Strong Rotation Regimes

In order to illustrate the effects of rotation, figure 2(a,b,c) plots
the axisymmetric temperature field at different rotation rates. If
the rotation rate is not too high, i.e. Q ∼ O(1), then a little
change from the non-rotating case is expected. For Q = 1, fig-
ure 2(a), the temperature field is similar to the non-rotating field,
in agreement with experimental results of Hignett etal [2] and
numerical results of Barkan etal [1] and Hussam etal [4]. How-
ever, for Q = 25, there is a significant difference with no ap-
parent thermal boundary layer. Away from the side wall, there
is an extensive region in which the temperature isolines touch
both top and bottom boundaries as shown in figure 2(c). For
Q= 5 (figure 2(b)), more of the thermal isolines no longer inter-
sect with the bottom boundary, inconstant to the that of Q = 25.
Also, it can be noted that for Q ∼ O(1) the forcing boundary
follows Rossby scaling [11] (dashed line) while it follows Stern
scaling [12] (dash-dot-dot) for high rotation rates.

Global Instability Modes

The growth rates over a wide range of wavenumbers for Ra =
109 and different rotations rate is depicted in figure 3. For 5 ≤
Q ≤ 15, two mode peaks comprising low and high wavenum-
bers which are referred to as Modes I and II, respectively,
can be seen in the σ− k plane. Local maxima typically rep-



(a)

(b)

(c)

Figure 2. Contour plots of temperature at (a) Q = 1, (b) Q = 5,
and (c) Q = 25 for Rayleigh numbers Ra = 109, plotted on a
meridional cross-section through the centre of the tank. Dashed,
dot-dashed and dash-dot-dot lines represent thermal boundary
layer depth provided by Rossby [11], Park & Whitehead [9]
and Stern [12], respectively.

resent distinct instability modes. Asymptotically the growth
rate decreases monotonically for wavenumbers beyond these
peaks. However, for Q = 25, only a single peak comprising low
wavenumbers is found. Also, for this Q− range, the profiles
do not change significantly with varying Q, though the range
of wavenumbers over which the maximum growth are detected
changes. For example, the mode branches cover 2 ≤ k ≤ 25 for
Q = 5, while a larger range of 5 ≤ k ≤ 50 is seen for Q = 10.

To elucidate the variation of maximum growth rate with rota-
tion rate, figure 4 displays data extracted from figure 3. It can be
seen that both the low and high wavenumber instability growth
rates first increase then decrease with increasing Q. A maxi-
mum peak can be seen at Q ≈ 5 and 10 with the most unstable
wavenumber predicted as kpeak ≈ 5 and 25 for the low and high
wavenumbers, respectively.

In figure 5 we plot the marginal stability curve for rotation rates
up to 30. Everywhere inside the curve the growth rate is pos-
itive and hence the flow is linearly unstable. Points along the
curve were obtained by locating the zero crossings of growth
rate branches as a function of k for rotation rate between 1
and 30. The flow is unstable for rotation rates Q & 1. It can
be noted that with increasing rotation rate, the envelope of un-
stable wavenumbers initially increases very rapidly as both the
baroclinic and horizontal convection modes develop. Beyond
Q ≈ 15 the envelope shrinks to lower wavenumbers. Evidently
the horizontal convection mode is suppressed at high rotation
rates.
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Figure 3. Growth rate σ as a function of azimuthal wavenumber
k for varies rotation rate Q. Two mode peaks of σ are present at
low and high wavenumbers, respectively. The dashed line rep-
resents the zero line where points above and below symbolize
stable and unstable modes, respectively.
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Figure 4. Maximum growth rate σmax as a function of rotation
rate Q for mode I and mode II as per figure 3.

An illustration of three-dimensional instability structures of
modes I and II are shown in figure 6(a,b), respectively for
Q = 10. It can be noted that mode I exhibits disturbances span-
ning vertically between the horizontal boundaries and located
away from the lateral sides while mode II displays localized
disturbances near the hot end of the base. Further elucidation of
the azimuthal mode structures is shown in figure 6 by superim-
posing this perturbation field onto the axisymmrtric base flow.
figure 6(a) demonstrates that mode I exhibits spiral structures
extending out from the axis and deep into the enclosure (consis-
tent with baroclinic instability [7]). For mode II figure 6(b), the
disturbance exhibits features consistent with Rayleigh-Bénard
type azimuthal instability in the radial horizontal convection
boundary layer where mode manifests as azimuthal rolls within
the forcing boundary layer.
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Figure 5. Marginal stability plot of rotational rate Q against
azimuthal wavenumbers k for Ra = 109. Dashed and dash-dot
lines show the locus of maximum growth rate as a function of
k and the threshold between eigenvalues associated with low-k
and high-k, respectively.

(a) k = 5
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Figure 6. Contours of z vorticity of three-dimensional pertur-
bation field for most unstable azimuthal wavenumbers as indi-
cated (vertical plane), depicted on r − z plane for Q = 10 and
Ra = 109. Temperature contours are plotted on the top surface
and θ-vorticity field on the base. The non-axisymmetric flow is
constructed by superposition of the base flow and linear stability
mode as per figure 3.

Conclusion

We have investigated the effect of rotation parameter at high
Rayleigh number on the three-dimensional instability in hor-
izontal convection in a cylindrical enclosure, with horizon-
tal convection forcing imposed radially. A spectral-element

method was used both to obtain the axisymmetric base flow so-
lutions and to evolve the linearized perturbation fields over a
range of 1 ≤ Q ≤ 30 and Rayleigh number 109. Two distinct
instability modes are found. A short-wavenumber mode (mode
I), with azimuthal wavenumbers 5, is found exhibiting spiral
structures extending out from the axis and deep into the enclo-
sure. A high-wavenumber mode (mode II) is also observed,
which is localised near the buoyant end of the base. That dis-
turbance exhibits features consistent with a Rayleigh-Bénard
type azimuthal roll instability in the radial horizontal convec-
tion boundary layer.
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