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Electrical Power Generation from Vortex-Induced Vibrations of a Circular Cylinder
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Abstract

Renewable energy sources are likely to become essential due to
continuously increasing energy demands and depletion of the
natural resources that are used for power generation, such as
coal and gas. They are also advantageous for their reduced en-
vironmental impact. We present a numerical study on the pos-
sibility of generating electrical power from vortex-induced vi-
bration (VIV) of a cylinder. The cylinder is free to oscillate
in the direction transverse to the incoming flow. The cylin-
der is attached to a magnet that can move along the axis of a
coil made from a conducting wire. The magnet and the coil to-
gether make a linear electrical generator. For the simulations
reported here, the Reynolds number is kept at 150 so that the
flow is laminar and two-dimensional (2D). The incompressible
2D Navier-Stokes equations are solved using an extensively val-
idated spectral-element based solver. We study the effect of the
electromagnetic (EM) damping constant ξm0 and coil dimen-
sions (radius a and length L) on the electrical power extracted.
We find there is an optimal value of ξm0 (ξm0,opt ) at which max-
imum electrical power is generated. As we increase either the
radius or the length of the coil, the value of ξm0,opt is observed
to increase. Although the maximum average power remains the
same, a larger coil radius or length results in a more favourable
system which can extract a relatively large amount of power
when ξm0 is far from ξm0,opt .

Introduction

A bluff body kept in free-stream flow gives rise to a well known
phenomenon called “vortex shedding”. Vortices are shed pe-
riodicly from the bluff body, which results in a fluctuating lift
force on the body. If the body is free to move along transverse
direction then the fluctuations in lift force can cause the body
to oscillate. This is referred to as “Vortex-Induced Vibration
(VIV)”. A lot of work has been done in the past on VIV of
circular cylinders, for example, refer to the reviews [1, 8, 10].
The transverse displacement of the body varies almost, but not
exactly, in a sinusoidal fashion with time [11], and the ampli-
tude of the response is divided into three categories: initial, up-
per and lower branch [5]. The amplitude depends on the mass-
damping parameter (mξ) and the Reynolds number.

The oscillation of a bluff body due to fluid flow is an opportunity
to harness flow energy. It can be done by mounting the body on
a piezoelectric transducer so that the motion of the body results
in deformation of the piezoelectric material and thereby pro-
duces some electrical charge [3]. In reference [2] a new device
called VIVACE converter was proposed to convert flow energy
into electricity using VIV of a cylinder. In the present work, we
focus on another method for harnessing flow energy by using
a linear electromagnetic alternator attached to the body. The
linear alternator comprises a magnet and conducting coil. The

Figure 1: Problem sketch and boundary conditions.

magnet or the coil can be attached to the body. When the body
undergoes VIV, the relative motion between the magnet and coil
creates a voltage across the coil that is connected to a resistive
load. By Lenz’s law, induced current in the coil applies a retard-
ing force to the magnet. Effectively, the linear generator applies
a damping force on the body with a spatially varying damp-
ing coefficient. In the present work, we find out the maximum
power that can be extracted by such a system. We also study
the effects of length and radius of the coil on the performance
of the system.

Problem definition and methodology

We consider a vertical elastically mounted circular cylinder of
diameter D kept in free-stream flow with velocity U . The cylin-
der is free to move only in transverse (y) direction, with the
cylinder displacement denoted by y. The cylinder is attached
to a magnet with dipole moment µ. The mass-ratio of cylinder-
magnet assembly is m. The magnet can move inside a conduct-
ing coil of radius a and length L. The coil is connected to a
load resistance R. The computational domain is shown in figure
1. The Reynolds number Re =UD/ν, where ν is the kinematic
viscosity, is taken as 150, which enables us to make the assump-
tion of two-dimensional (2D) flow. The fluid flow is governed
by the following non-dimensional Navier-Stokes equation
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where aF represents the acceleration of the reference frame,
which is chosen to be the frame of the cylinder in the present
case. Here, u and p denotes the fluid velocity vector and pres-
sure, respectively. The size of the computational domain is
taken as Lh = 25D and Lv = 40D. The x-component of flow
velocity is prescribed as U at the inlet, top and bottom bound-
aries (2) and the y-component is prescribed as the transverse



velocity of the cylinder. The cylinder surface (1) is considered
to be a no-slip boundary and Neumann boundary condition is
applied at the outlet (3).

As the cylinder undergoes VIV, the attached magnet can gen-
erate a voltage across the coil due to Faraday’s law of electro-
magnetic induction. If the coil is connected to a load resistance
R then it can oppose the motion of the magnet by applying a
retarding force which is proportional to the velocity of the mag-
net relative to the coil. Hence, the electromagnetic (EM) gen-
erator can be modelled as a damper with the following non-
dimensional expression for the force applied to the cylinder

Fm = 2π
2mξm0g2 fnẏ, (2)

where ẏ and fn represents the velocity and natural frequency
of the cylinder, respectively. The parameter ξm0 = cm0/cc is an
EM damping constant which controls the amount of damping in
the system where cm0 = µ2/(RD4), and cc is the critical damp-
ing of the system. The function g = g(y(t)) dictates the spatial
variation of the damping ratio and is given by the following ex-
pression [4]
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where ycm is the distance between the magnet and the centre
of the coil. The number of turns in the coil are N. Finally,
the motion of the cylinder is governed by the following non-
dimensional equation

ÿ+4π(ξ+ξm) fnẏ+4π
2 f 2

n y =
2
π

CL

m
, (4)

where y, ẏ and ÿ denote the cylinder displacement, velocity and
acceleration in the transverse direction, CL is the lift coefficient.
ξ represents the structural damping ratio and ξm = ξm0g2 is the
EM damping ratio. The non-dimensional reduced velocity is
defined as Ur = U/( fND) where fN is the natural frequency
of the cylinder-magnet assembly in the fluid. The added-mass
coefficient for finding fN is assumed 1 for the present study.
The electrical power P can be calculated by multiplying the EM
damping force (Fm) with the cylinder velocity.

Ur

A
y

3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

Figure 2: Maximum oscillation amplitude versus non-
dimensional reduced velocity for m = 1 and Re = 150.

We use a Galerkin-based spectral element solver to simulate the
process of energy extraction from VIV of the circular cylinder.
Please refer to [6, 9] for details of the numerical method. The
details of the mesh used for the simulations and grid indepen-
dence study are provided in [6, 7].

Figure 3: Vorticity contours for m = 1, Re = 150, ξm0 = 4.0×
10−5, a = 0.6, L = 0.6 and Ur = 5.3. The scale is from -2 to 2.

Results and Discussion

To demonstrate that electrical energy can be harnessed from
VIV of a circular cylinder, we take a cylinder-magnet system
with mass ratio m = 1. The Reynolds number is kept at 150.
The non-dimensional coil dimensions are taken as a = 0.6 and
L = 0.6. In later sections, we will study the effects of these
parameters. In figure 2 we have plotted the maximum ampli-
tude of the cylinder at zero damping for various values of Ur.
We can see the initial and lower branches in the response curve.
The largest amplitude is achieved for the values of Ur between
4.5-5.

Energy Extraction

In figure 3 we show the vorticity contours for a typical case.
The parameters for this case corresponds to maximum power
extraction situation, as discussed later in this section. Two vor-
tices are shed periodically during a cycle of oscillation of the
cylinder. This is referred to as 2S vortex shedding mode in lit-
erature.
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Figure 4: Time variation of cylinder displacement, velocity and
power for m = 1, Re = 150, ξm0 = 4.0×10−5, a = 0.6, L = 0.6
and Ur = 5.3.

In figure 4 we plot the temporal variation of power, transverse
displacement and velocity of the cylinder. The displacement
and velocity curves are not sinusoidal due to the spatially vary-
ing nature of the EM damping. Also, the instant of maximum
velocity does not coincide with the instant when the displace-
ment is zero. The power curve has two types of local maxi-
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Figure 5: Variation of average power (left) and displacement
and velocity amplitudes (right) with ξm0 for a = 0.6,L = 0.6
and Ur = 5.3.

mum. The first and second maximum occur when the cylin-
der is moving away and towards its mean position, respectively.
This happens because the function g has two maximum at equal
distance from mean position (y = 0). Notice that the magni-
tude of first maximum (0.31) is greater than that of the second
one (0.22). The reason is the fact that the cylinder displace-
ment and velocity are not sinusoidal. Both the maximum occur
when y = ±0.23 but the cylinder velocities at the instance of
first and second maximum are 0.39 and 0.33, respectively. The
frequency of power is twice that of oscillation of the cylinder.
The variation of average power calculated over a cycle of os-
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Figure 6: Variation of maximum average power with Ur ar Re
= 150 for a = 0.6, L = 0.6 and m = 1.

cillation with the EM damping constant is shown in figure 5.
We also show the variation of displacement and velocity ampli-
tudes of the cylinder. As expected, the displacement and hence
the velocity amplitude of the cylinder decreases monotonically
with ξm0. Since the power is the product of EM damping force
and the cylinder velocity, there should be an optimal value of
ξm0 at which maximum electrical power is produced. This is
what we see in figure 5 where ξm0,opt = 4.0×10−5. The max-
imum average power is P̄max = 0.126. The corresponding opti-
mal amplitudes of displacement and velocity are 0.37 and 0.48,
respectively. In figure 6 we show the variation of maximum av-
erage power (P̄max) with reduced velocity. The peak value of
Pma is obtained at Ur = 5.3.

ξm0 × 103

P

0 0.2 0.4 0.6 0.8 10.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16
a

|

ξm0 × 103

A
y

0 0.2 0.4 0.6 0.8 10.0

0.2

0.4

0.6

0.8

1.0
L = 0.1
L = 0.6
L = 1.0

b

Figure 7: Variation of (a) average power and (b) displacement
amplitude with ξm0 for m = 1, a = 0.6, and Ur = 5.3.

Effect of Length of the Coil

In this section we describe the effect of length of the coil on the
amount of power extracted. For this, we vary the value of L to
0.1 and 1.0, in addition to the value of 0.6 already investigated.
Other parameters are kept same. The variation of average power
(P̄) and displacement amplitude (Ay) with ξm0 for three values
of L is shown in figure 7. The maximum average power is al-
most unaffected by the coil length. As the value of L increases,
we see a decrease in the rate at which the average power decays
with ξm0. The same is true for the displacement amplitude of
the cylinder. The optimal displacement amplitudes for L = 0.1,
0.6 and 1.0 are 0.38, 0.37 and 0.39, respectively. If we plot P̄
against Ay (not shown here) then all three cases approximately
collapse to a single curve which suggests that maximum power
is strongly dependent on the oscillation amplitude and it is not
directly dependent on the nature of damping. On the other hand,
a larger value of L provides a more advantageous system in the
sense that the system can provide a significant amount of power
even when it is not close to its optimal operating condition.

Effect of Radius of the Coil

Now we discuss the effect of the radius of the coil on average
harnessed power. This time, we vary the value of a to 0.4 and
0.8, in addition to the value of 0.6 already considered. We plot
the average power and displacement amplitude of the cylinder
for three values of a in figure 8. The effect of a is similar to
that of L. The maximum average power is unaffected by a but
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Figure 8: Variation of (a) average power and (b) displacement
amplitude with ξm0 for m = 1, L = 0.6, and Ur = 5.3.

the rate of change of P̄ with ξm0 decreases with increase in a.
The same is seen for the displacement amplitude. The optimal
displacement amplitudes for a = 0.4, 0.6 and 0.8 are 0.38, 0.37
and 0.38, respectively. This supports our point about average
power being directly depending on the oscillation amplitude and
not the nature of damping.

Conclusions

We demonstrated that some part of flow energy can be converted
to electrical energy using vortex-induced vibrations of a circu-
lar cylinder. A spectral-element based solver was utilized to
simulate the fluid-solid interaction between flow and the cylin-
der. A linear alternator consisting of a magnet and a coil was
used to convert the kinetic energy of the oscillating cylinder into
electrical energy. We found that there is an optimal value of
electromagnetic damping constant and corresponding oscilla-
tion amplitude at which maximum power is extracted. At Re
= 150, the non-dimensional optimal displacement amplitude is
close to 0.37 and is not equal to its maximum possible value at
zero damping. The non-dimensional value of maximum aver-
age power is 0.13.
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