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Abstract

This study considers the quasi-two-dimensional flow of an elec-
trically conducting fluid subjected to a strong out-of-plane mag-
netic field in a rectangular duct. The effect of Hartmann number
on flow features such as the length of the downstream recir-
culation bubbles and the threshold Reynolds numbers between
steady-state and unsteady flow regimes for values of the ratio
between the throat of the bend and the duct height, β = 1 are
identified. The simulations reveal that the primary recircula-
tion bubble length decreases with increasing Hartmann number,
and simultaneously the secondary recirculation bubble is signif-
icantly damped compared to the corresponding non-MHD case.
The critical Reynolds number where the transitions from steady
to unsteady flow occurs was found to increase with increasing
of Hartman number. This study provides information that will
be useful for refining the design of heat exchanger ducting in
MHD systems to maximise the useful mass transport adjacent
to the duct walls where heating is applied.

Introduction

The flow of liquid metal in ducts in the presence of a trans-
verse magnetic field has received attention because of its im-
portance in applications such as metallurgical processing, flow
pumps and blood flow meters. Magnetic confinement fusion
reactors are the primary application motivating this study. In
these reactors, liquid metal flowing through ducts within blan-
kets surrounding the reactor in the presence of strong magnetic
fields is used as a coolant and as a breeder. The motion of liquid
metal in a strong magnetic field induces eddy current, which in
turn interacts with the magnetic field producing a Lorentz force.
This force has a substantial impact on the turbulence character-
istics, and employs an inhibiting force on fluctuations parallel
to the magnetic field. Further, under conditions where the mag-
netic field is strong, uniform and acting perpendicular to the
plane of the duct bend, the flow is expected to become highly
two-dimensional in the core of the duct, and therefore it may
be efficiently modelled using the quasi-two-dimensional model
proposed by Sommeria and Moreau [6].

The 180-degree sharp bend geometry is an integral feature of
the ducting within prototype fusion reactor blankets. The abrupt
change of the sharp bend causes flow separation which has
the potential to enhance the heat transfer process, but work is
needed to understand the effect of Hartmann braking on the flow
under the magnetic field. Most studies up to now have focused
only on non-MHD problems such as the effect of sharp bend on
the dynamics of the flow [7], heat transfer in a sharp bend [1]
and the effect turn region on the pressure loss distribution [5],
and this is the first to tackle the MHD problem.

This problem is computed using a two-dimensional spectral-
element incompressible flow solver augmented with the lin-
ear Hartmann friction term to satisfy the quasi-two-dimensional
model. The two-dimensional steady flow structure in the down-

stream duct is found to have similarities with the flow over back-
ward facing step: the flow first passes over a large recirculation
bubble attached to the downstream side of the inner corner of
the bend, and subsequently a secondary recirculation bubble de-
velops on the outer wall a little further downstream.

Numerical Methodology

Viscous fluid is considered to be in motion in a duct with a sharp
180-degree bend with the middle of the inner wall of the turning
part located at the origin. We take the flow direction to be such
that fluid past around the sharp bend, with the upstream and
downstream ducts parallel to each other. The flow is assumed
to have constant density ρ and constant kinematic viscosity ν.

Figure 1 illustrates the computational domain under considera-
tion including the geometric parameters for the problem. The
channel widths in the inlet and at the bend are represented by a
and b, respectively. The height of the inlet and outlet are iden-
tical. The divider thickness is represented by c with d and e de-
noting the lengths of bottom and top boundaries. The ratio c/a
is set to 0.04, while the lengths of the bottom and top bound-
aries determined by (d −b)/a = 15 and e/d = 3. The opening
ratio of the bend is represented by β = b/a. Fluid enters from
the inlet and flows downstream past the sharp bend towards the
outlet channel.

There are three non-dimensional numbers which are used to
characterize MHD flows. First, the Reynolds number,

Re =Uoa/ν, (1)

where a is a characteristic length scale of the motion, which
in this study is the inlet height, Uo is the maximum inlet ve-
locity, and ν is the kinematic viscosity of the fluid. Second is
Hartmann number (square root of the ratio of Lorenz forces to
viscous forces),

Ha = LzB
√

σe

ρν
, (2)

and third is the interaction parameter (the ratio of Lorentz forces
to inertia),

N =
σeB2Lz

ρUo
, (3)
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Figure 1. Flow geometry for the 180-degree sharp bend.



Figure 2. Normalized base flow velocity profile at H as indi-
cated.

where B, ρ, σe and Lz are the magnetic field strength, mass den-
sity, electrical conductivity and the domain length in magnetic
field direction, respectively. The interaction parameter can also
be interpreted in terms of Ha and Re as N = Ha2/Re. Due
to large Ha and N values in magnetic confinement fusion ap-
plications, the flow is quasi-2D with a core region where the
velocity is constant along the magnetic field direction, and thin
Hartmann layers at the walls perpendicular to the magnetic field
direction. Under these assumptions, Sommeria and Moreau [6]
have derived a 2-D flow model by averaging the flow equations
along the direction of the magnetic field.

∂u
∂t

=−(u ·∇)u−∇p+
1

Re
∇2u− H

Re
u, (4)

∇ ·u = 0, (5)

where u is the velocity averaged across the duct along the mag-
netic field and p is the static pressure The parameter H =
n(a2/L2

z )LzB
√

σe/(ρν) is a measure of the friction term rep-
resenting the Lorentz force effect on the flow, n represents the
number of Hartmann layers, which is in this case n = 4 [4].

Boundary conditions are imposed on the flows as follows. At
the inflow boundary (x = b− d,−1.02 ≤ y ≤ −0.02), we im-
pose Hartmann velocity profile [4] as shown in figure 2. As
H approaches zero (non-MHD), this velocity profile reverts to
two-dimensional Poiseuille velocity profile, while high values
of H give an almost flat profile except at the vicinity of the wall
which is in the Shercliff boundary layer with the thickness of
δSh = Ha−1/2.

Due to viscosity, velocity is zero at the interface between the
wall and the fluid, hence the boundary conditions are the no-slip
condition (u = 0) at the wall. At the outflow boundary (x = b−
e,0.02 ≤ y ≤ 1.02), we impose a standard boundary condition
for pressure: p = 0.

Computational Methods

Code Validation

The length of the outflow domain was tested to ensure it was
sufficiently long to confirm that the results are independent of
outflow effects. A convergence study determined acceptable
outflow lengths between 20a ≤ e− b ≤ 100a by using the pri-
mary recirculation bubble as the convergence criteria. Hence,
outflow length e− b = 47a is used as it yields only 0.0002%

error compared to the longest outflow length studied. From ob-
servations, the streamlines break away from the boundary when
a boundary layer develops near the surface of an abrupt geome-
try change. Typical velocity profile near the point of separation
demonstrates that it is possible to determine the point of separa-
tion and reattachment with points where the streamwise velocity
is constant with respect to transverse direction:

∂u
∂y

∣∣∣∣
x
= 0. (6)

The distance between separation and reattachment points repre-
sents the length of recirculation bubble. The code is validated
by comparing the primary recirculation bubble length LR/a ob-
tained in non-MHD flow with 100 ≤ Re ≤ 700 in this study
with the results acquired by Zhang and Pothérat [7] and Chung
et al.[1], which have discrepancies as small as 2.2% and 0.2%,
respectively.

Mesh Resolution

Flow past a 180-degree sharp bend is a deceptively difficult
problem to fully resolve, especially at large Re number. This
section describes the tests used to validate the numerical al-
gorithm, and to select appropriate meshes and element order.
The spatial resolution study varied the order of interpolation
within each macro-element of a mesh based on domain length
parameters from the mesh domain. For consistency with the do-
main size, the mesh employed in this study models a 180-degree
sharp bend with opening ratio β = 1.

The mesh is structured and is refined in the vicinity of the in-
ner wall of the sharp bend and in the downstream duct in order
to capture the unique structure of the flow downstream of the
bend. Computations have been performed using spectral ele-
ments with polynomial degrees varying from N = 4 to 8.

Figure 3. Sketch of separation and re-attachment points defin-
ing the locations of all recirculations. Reproduced from Zhang
& Pothérat [7].

To demonstrate the accuracy of computing recirculation length
in the base flow, we present table 1 as a function of polynomial
order and base flow. The recirculation length was computed at
Re = 500 with β = 1 which is steady-state and has two recircu-
lation bubbles at the downstream end of the duct illustrated in
figure 3. From the relative error, it was decided that the polyno-
mial order N = 5 would be used hereafter.

Results

Recirculation Bubbles

Simulations were conducted at Hartmann ranging from H = 0
to H = 500 at increment of 100, and at a range of Reynolds
numbers for each H. Figure 4 shows the effect of the strong
spanwise magnetic field on the structure of the liquid metal flow
around the bend, especially on the recirculation bubbles. As the
strength of the magnetic field increases, the length of both the
primary and secondary recirculation bubbles decrease. It is fur-
ther apparent that beyond a critical Hartmann number, the sec-
ondary bubble disappears because the extra dissipation delays



N A B C D LR1/a LR2/a %diff LR1/a % diff LR2/a
4 0 -4.80573 -3.70773 -9.77262 4.805727 6.064888 0.03071 0.07967
5 0 -4.80716 -3.7069 -9.77645 4.807159 6.069547 0.00092 0.00292
6 0 -4.8073 -3.70705 -9.77667 4.807295 6.069618 0.00192 0.00175
7 0 -4.80725 -3.70701 -9.77667 4.807248 6.069661 0.00094 0.00104
8 0 -4.8072 -3.70697 -9.77669 4.807203 6.069724 - -

Table 1: Dependence of recirculation length on polynomial order. Parameter N indicates the independent polynomial order of the base
flow. Two separation points (A and C) and two reattachment points (B and D) as indicated in figure 3 computed on the mesh at Re = 500
and β = 1 are given. LR1/a and LR2/a represent the recirculation length of primary and secondary recirculation bubbles, respectively.

the appearance of the secondary recirculation significantly that
it reaches a point where the first recirculation becomes unsta-
ble without the second having formed yet. Increasing Re acts
to increase the recirculation bubble length. The recirculation
length is calculated by finding the distance between the separa-
tion and reattachment points using equation (6). The length of
recirculation bubble was recorded at a large number of points in
the Re-H parameter space (Figure 5). LR1/a increases linearly
with increasing Re for a constant H, and decreases with H for
a constant Re. For the non-MHD case, the LR1/a increases sig-
nificantly slower when the secondary recirculation bubble starts
to appear, but the effect of the secondary recirculation bubble is
not noticeable in the MHD flows because the secondary recir-
culation bubble is damped significantly under the presence of
high magnetic field.

A non-linear optimization was performed to find exponents A
and B to maximize the square of the correlation coefficient
(R2) of a linear least-squares fit to the LR1/a data when plotted
against ReAHB. To two decimal places, the optimal exponents
were determined to be A = 1 and B =−2/3 with R2 = 0.9976.
This implies that decreasing H has a similar effect to increasing
Re in primary bubble formation which may affect the tendency
of the flow to destabilise. Dousset and Pothérat [2], in their
study in flow around a cylinder under a strong axial magnetic
field with blockage ratio B = 0.25, found that the recirculation
bubble length behind the cylinder LR/d data collapsed when
plotted against Re/H4/5, meanwhile Hussam et al.[3] proposed
a more general relationship incorporating the blockage ratio
against scaling Re0.844H−0.711B0.166. Here, the universal re-
lationship between the primary recirculation bubble length, Re
and H is approximated by

LR1/a = 0.1361ReH−2/3 −0.124, (7)

and the agreeable collapse of the data obtained is shown in fig-
ure 6.

Equation (7) can be used to approximate at what value of Re and
H the primary recirculation bubble is expected to appear (i.e. by
solving for LR1/a = 0). This gives

Re = 0.911H2/3. (8)

(a) H = 0

(b) H = 100

(c) H = 500

Figure 4. Streamlines of steady flow for Re= 700, 0≤H ≤ 500.

Figure 5. Primary recirculation bubble length in the function of
Re.

Critical Reynolds Number

Figure 7 shows the effect of H on contours of vorticity at
Re = 1500. It is apparent that the flow at higher H is more
stable, as an example, the stronger magnetic field in H = 200
(Figure 7(b)) sustains the flow steadiness, whereas the flow at
H = 100 (Figure 7(a)) is unsteady.

Figure 8 shows the critical Reynolds number, Rec as a function
of H. For β = 1, Rec is found to increase with increasing H.
This is due to the effect of H which delays the transition from
steady to unsteady regimes, causing the greater stability of
the flow. Higher H acts to diminish the recirculation bubbles,
which delays the transition, resulting in a higher Re being re-
quired to invoke transition. Other than that, a higher value of Re
also must be reached to trigger the appearance of the primary
and secondary recirculation bubbles when H increased. The
Reynolds number to trigger the primary recirculation bubble
ReR1 is not significantly affected by H, as presented in the ap-
proximated equation (8) and long-dashed black line in figure 8.
However, the appearance of the secondary recirculation bubble
is significantly delayed as H increased. As H increased, the
secondary recirculation bubble length is damped and appeared
shortly before the flow becomes unsteady. The secondary
recirculation bubble does not appear at all for H ≥ 316.

According to Zhang and Pothérat [7], both bubbles play
important role in the transition of the non-MHD flow due to
the instability generated by the shear layer in the main stream



Figure 6. Collapse of recirculation bubble length over ranges of
100 ≤ H ≤ 500 and 50 ≤ Re ≤ 2500.

between both bubbles. As for the MHD flow, increasing H
inhibits the formation of the secondary recirculation bub-
ble, hence the instability for H ≥ 317 is due to a different
mechanism which occurs in the primary recirculation bubble
vicinity as suggested in figure 9 by the shedding of vorticity
immediately behind the bend. Here the primary bubble is
obliterated.

(a) H = 100

(b) H = 200

Figure 7. Vorticity contours for Re = 1500, (a) H = 100 and
(b) H = 200. Note that at Re = 1500, 0 ≤ H ≤ 100 is unsteady,
H ≥ 200 is steady.

Conclusions

We have studied the flow of a liquid metal around a 180-degree
sharp bend under a strong homogeneous magnetic field aligned
with the spanwise direction of the flow. The flow can be
assumed to be quasi-2D using SM82 [6] due to the high values
of N and H. The recirculation bubbles along the downstream
duct are damped as H increased, especially the secondary recir-
culation bubble. Beyond H ≈ 317, the secondary recirculation
bubble fails to form making the flow directly become unsteady
without its presence. This suggest a different mechanism of
instability to that observed in non-MHD flow. The critical
Reynolds number for the transition from steady to unsteady
flow at different H and β = 1 was determined and it was found
that Rec increases with increasing H.
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