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Numerical investigation of the stability of model polar vortices in a split-disk system
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Abstract

The stability of a rotating system differentially forced atthe lid
and base of a cylindrical enclosure is numerically investigated.
The shear layer arising from the angular velocity discrepancy
at the disk-tank interface becomes unstable beyond a threshold
of two governing parameters known as the Rossby numberRo,
and Ekman numberEk. Beyond the threshold of instability, the
shear layer deforms into a chain of vortices configured into a
polygonal pattern which precesses around the central axis.The
number of vortices depends onRoandEk.

The incompressible Navier–Stokes equations are solved on a
two-dimensional meridional semi-plane. A linear stability anal-
ysis of the steady-state axisymmetric flow solutions is per-
formed to determine the most unstable azimuthal modes, which
are mapped onto anRo-Ek regime diagram. In contrast to lab-
oratory observations in a similar system, it is found thatEk and
the sign ofRohave a strong influence on the preferential mode.

Introduction

Rotating flows are renowned for the interesting structures that
they exhibit and are widely observed in practical applications
and geophysical phenomena. The extensive range of structure
scales are exploited by reproducing strikingly similar config-
urations to large-scale atmospheric structures at a laboratory
scale. Of particular interest are the types of instabilities acting
on the shear layers in these rotating flows which develop coher-
ent vortices that rearrange themselves into polygonal shapes.
These structures are representative of the massive polar vortices
on planets, such as Saturn’s hexagonal North Polar vortex and
Venus’ dipolar South polar vortex. Barotropic instability, which
is related to the horizonal shear, has been of interest in produc-
ing these visually aesthetic structures and may be the causeof
existing polar vortices [1, 9].

A rotating cylinder coupled with differentially rotating disks in-
duces Stewartson layers to form across regions of discontinuous
azimuthal forcing. This shear layer serves to smooth out thedis-
continuity in angular velocity across the layer and becomesun-
stable under certain and reproducible conditions. Three dimen-
sionless governing parameters characterizing these flows are the
Rossby number, Ekman number and the Reynolds number. The
Rossby number (Ro) represents the ratio between inertial and
Coriolis forces, the Ekman number (Ek) as the ratio between
viscous and Coriolis forces and the Reynolds number (Re) is
the ratio between inertial and viscous forces in a flow. Large-
scale atmospheric and oceanic flows typically have magnitudes
of Rossby and Ekman numbers much less than unity, indicating
a high importance of rotation on the dynamics of the system.

At the onset of instability, the initially circular shear layer be-
gins to roll up and form a ring of multiple vortices. Experimen-
tal studies [1, 5, 6] have all exhibited a decrease in the number
of vortices with an increase in the parameter values beyond the
stability threshold, despite geometric and forcing differences.

Figure 1: Meridional plane of the system under investigation.
The grey shaded regions represent the disks which rotate at a
rate ofΩ+ω while the black shaded regions represents the tank
which rotates atΩ. The right semi-plane illustrates the spatially
discretized mesh used for the numerical simulations. The di-
mensions shown here are not to scale.

This trend is consistently observed in shear layer experiments
and has also been observed in simple numerical models [4, 8].
This is in contrast with linear stability results from [10] which
found an increase in the number of vortices with increasingRe.
Differences are also seen between positive and negativeRo in
relation to the flow states available. In [6], only an off-axis el-
lipse is observed for negativeRo and wavenumbers 2 to 6 for
positiveRo. However, a study by [5] managed mode transitions
to lower modes with increasingRomagnitude for both negative
and positiveRo.

This paper considers a differential rotating system closely fol-
lowing [1] and [5]. The system is comprised of a rotating cylin-
drical tank with disks located at the base and lid which rotate
at a different angular velocity. This system differs from the
experimental set-up through the absence of a central rod used
to drive the rotation of the disks. Thus, this set-up produces
flows which eliminates any external disturbances which may
otherwise be introduced into the system. A three-dimensional
model of this configuration is used to investigate the linearsta-
bility of the flow for both positive and negativeRo. This in-
vestigation differs from previous numerical studies whichhave
mainly considered two-dimensional quasi-geostrophic models
where quantitative discrepancies and flow state limitations may
be present. As a consequence, details of the vertical flow struc-
ture are scarce.

Methodology

Problem definition

The system comprises of a closed cylindrical tank of radiusRt
and heightH. Two disks of radiusRd are located at the base
and lid of the tank which rotate at a different rate to that of
the tank. The tank rotates at a rate ofΩ while a differential
rate ofω are imposed on the disks. Thus, negative and positive



ω indicates the disks rotating slower and faster than the tank,
respectively. A schematic diagram of the investigated model is
shown in figure 1. The tank is filled with an incompressible
Newtonian fluid.

Governing Equations

The lengths, velocities, time and pressure are normalized by Rd,
RdΩ, 1/Ω andRdΩ2ρ, respectively, whereρ is the fluid density.
The flow in this system is governed by the unsteady incompress-
ible Navier–Stokes equations given in non-dimensional form as

∂u
∂t +(u ·∇)u =−∇P+ EkA2

1−ARo∇2û,
∇ ·u = 0,

(1)

whereu = (uz,ur ,uθ) is the velocity vector,P is the kinematic
pressure,A = H/R as the aspect ratio,Ro the Rossby number
andEk as the Ekman number. The Rossby and Ekman number
are defined as

Ro=
Rω

2ΩH
, Ek=

ν
ΩH2

, (2)

whereΩ = Ω+ω/2 is the mean fluid rotation following [5]. A
negative and positiveRo signifies the disk rotating slower and
faster than the tank rotation, respectively. The choice of ref-
erence scales affects the governing equations as seen in equa-
tion (1) where the diffusion coefficient contains a singularity.
The dependence ofRo in the denominator of this diffusion co-
efficient term dictates the availability of computableRospace in
this paradigm as the term can neither be zero or negative. Thus
for A= 2/3, onlyRo< 3/2 can be analysed which is sufficient
for this study. Alternative paradigms can be generated withdif-
ferent reference scales, allowing higherRoto be investigated.

Numerical Treatment

The base flow is assumed to be axisymmetric and is computed
on a meridional semi-plane. The spatially discretized meshis
shown in figure 1. Three distinct boundary conditions are im-
plemented on the mesh. Boundaries shaded grey rotate atΩ+ω
while the black boundaries rotate atΩ. The dashed line repre-
sents the axis of symmetry and rotation which is treated witha
symmetry boundary condition similarly to [3].

Each macro element has an imposed polynomial degree of or-
der Np. The orderNp determines the spatial resolution of the
domain. The governing equations are solved in cylindrical co-
ordinates through a spectral-element discretization in space and
a third-order time-integration scheme based on backward differ-
entiation [7]. Optimization between computational resources
and solution accuracy has been achieved withNp = 11. This
was measured through convergence tests of three global param-
eters which demonstrated an error of less than 0.1% at the nom-
inatedNp. Thus,Np = 11 has been implemented in all simula-
tions reported herein.

Non-axisymmetric three-dimensional instability modes are
computed via a linear stability analysis. The technique used
follows [2, 11] where the axisymmetric base flow and the three-
dimensional perturbation fields are decoupled. Each perturba-
tion field of a specific wavenumber in the azimuthal directionis
not influenced by other wavenumbers. The steady-state base
flow solution is supplied to the evolving perturbation fields,
which are governed by the linearized Navier–Stokes equations.
The leading eigenmodes of the flow are determined; the eigen-
values relate to the Floquet multipliers of the system and the
eigenvectors characterize the mode shape of the perturbation

(a) PositiveRo

(b) NegativeRo

Figure 2: Contour plots of axial vorticity for flows of
Ek = 5 × 10−4 for (a) Ro= 0.01 (top) andRo= 0.5 (bot-
tom) and (b) Ro= −1.0. Blue to red contours show arbitrary
low and high values, respectively.

field. The Floquet multiplierµf is related to the growth rateσ
via µf = eσT whereT is an arbitrary time interval over which
the equations are integrated within the eigenmode solver. Thus,
|µf |< 1 represents a stable flow and|µf |> 1 an unstable flow,
where growth rates are negative and positive, respectively.

Results and Discussion

Axisymmetric flow

The Rossby and Ekman numbers investigated here range be-
tween−1.5 < Ro< 0.5 and 5× 10−5 < Ek< 4.5× 10−3. A
pairing of these two parameters is used to define the flow.

For small Rossby numbers, the flow exhibits highly two-
dimensional features in the vertical where motions are sup-
pressed along the axis of rotation. This is illustrated in the top
panel of figure 2(a) through the vertical contour lines of axial
vorticity. The azimuthal velocity contours (not shown here) also
depict depth-independent contours representative of solid-body
rotation. As positiveRo is increased, the differences between
the azimuthal forcing velocities become large and the symme-
try of the flow is broken as depicted in the bottom panel of
figure 2(a). Evidently the contour lines are distorted. An ini-
tial patch of negative vorticity arising at the disk-tank interface
grows into strands which extend into the flow interior. Further
increases causes the negative vorticity strands to elongate and
lose their vertical symmetry. The vorticity is positive every-
where else.

The flow behaviour differs between negative and positive
Rossby number. For the range of negativeRo investigated here,
the motions exhibited reflective symmetry about the horizontal
mid-plane. A flow withRo=−1.0 is shown in figure 2(b). The
negative vorticity patch present in positiveRo is not observed
at negativeRo. Also, Ekman pumping and suction is evident in
positive and negativeRoflows, respectively. As the disks rotate
faster than the tank, fluid is drawn radially towards the disk-tank
interface which is then expelled axially into the flow interior.



Figure 3: The regime diagram of the most unstable linear modes
as a function ofEk and positiveRo. The dashed lines repre-
sents the transition between one mode to another, denoted by
the wavenumber of the instability shown. The solid boundary
lines represents the range of triangulation.

Linear Stability Analysis

The growth rates for a range of azimuthal wavenumbers defined
by k = 2π/λ are obtained which expresses the stability of the
modes and reveals the fastest-growing instability mode. Here,
angleλ denotes the azimuthal wavelength. The wavenumbers
range between 1< k < 20 and the eigenvalues are consistently
quasi-periodic. A selected wavenumber perturbation field is
evolved on a steady-state base flow characterized byRoandEk.

Unstable modes ranging primarily from wavenumbers 3 to 9
are observed for positiveRo. The preferential unstable modes
have a tendency to decrease with increasingRo and also with
increasingEk. An Ro-Ek regime diagram of the most unsta-
ble wavenumber is shown in figure 3. The experimental studies
from [1, 5] also observe these trends and obtained wavenumers
2 to 8. However the experimental trends depict a stronger de-
pendence onRo compared toEk. In contrast, the numerical
results demonstrate a strong dependence onEk below a partic-
ular Ro and beyond that, the dependence of the most unstable
mode is shifted toRo.

For low Ro or high Ek, the growth rate against wavenumber
profile is depicted by a single mode peak as seen in figure 4
for Ek= 3.16×10−3. However, a second mode peak at higher
wavenumbers begins to emerge asRo is increased orEk is de-
creased beyond a certain threshold. This eventually causesthe
higher wavenumbers of the second peak to exhibit the largest
growth rates. This suggests that short-wavelength structures
will emerge in the flow. The growing of the second mode
peak structure with decreasingEk is demonstrated figure 4. For
3.16×10−3 ≤ Ek ≤ 7.36×10−4, the unstable wavenumber
of the flow is k = 3. As the Ekman number is decreased to
Ek= 5.26×10−4, the leading unstable wavenumber increases
suddenly fromk= 3 tok=29. It is unclear whether these higher
modes are observed in the experiment. The emergence of this
high-wavenumber mode may promote the ”chaotic” regime ob-
served in the laboratory [1]. These higher wavenumbers are not
included in figure 3 and will be described in a forthcoming pa-
per.

Differences are seen between positive and negativeRo. For
negativeRothe range of unstable wavenumbers observed is be-
tween 3 and 12. Experimental work by [5] also studied negative

Figure 4: Growth rateσ as a function of wavenumberk for var-
iousEk atRo= 0.395. Two peaking structures ofσ are present
at low and high wavenumbers. The dashed line represents the
zero-line where points above and below symbolize stable and
unstable modes, respectively.

Ro which only obtained wavenumbers 2 to 8. Unlike results
of linear stability analysis for positiveRo, only a single peak-
ing structure is seen to exist. For increasingRo magnitude or
decreasingEk, the growth rate continues to increase and shifts
the most unstable wavenumber to higher modes. Experimental
results of [5] report similar trends for negative and positive Ro
where modes decrease with either increasingRoor Ek. This is
in contrast to the numerical results as shown in the regime dia-
gram in figure 5. It demonstrates an increase in unstable mode
for increasingRomagnitude with a weak dependence onEk.

The threshold of stability ofRoas a function ofEk differs be-
tween positive and negativeRo. Growth rates are obtained by
scanning through theRoandEkparameter space. A growth rate
value of zero is then obtained via triangulation along with the
correspondingRoandEk threshold value. The critical Rossby
number obtained from an empirical fit follows the relationship
given by|Roc| ∝ Ek0.767 for positiveRo, and|Roc| ∝ Ek0.826

for negativeRo. These relationships differ from the one ob-
tained in [5], given by|Roc|= 27Ek0.72. Data points from neg-
ative and positiveRo were used to obtain this empirical fit as
no differences were found between negative and positiveRo
thresholds. These discrepancies may be due to the presence
of the rod which drives the disks or the experimental flow may
contain non-linear effects which are neglected in this analysis.

Despite the differences in stability trends between negative and
positive Ro, the instability mode shape and vertical structure
is primarily consistent. The structure of the instability mode
is vertically independent similar to its basic flow. The three-
dimensional flow is reconstructed from a spectral-element-
Fourier expansion of a superposition of the two-dimensional
base flow and the leading eigenmode of an instability. An in-
stability structure ofk = 5 at mid-depth is shown in figure 6.
This mode exhibits a pentagonal configuration which does not
change throughout the vertical except for regions near the hori-
zontal boundaries. The circumferential chain of vortices is com-
prised of higher vorticity compared to the central polar vortex
for negativeRo and reversed for positiveRo. Other polygonal
shapes have also been captured such as triangles (k= 3), squares
(k = 4) and hexagons (k = 6). A distinct polygonal configura-
tion is more difficult to observe with higher wavenumbers due
to the shorter wavelengths forming around the disk.



Figure 5: The same as figure 3 except for negativeRo.

Conclusions

A numerical study on the linear stability of flows generated in a
rotating cylindrical tank with differential boundary forcing has
been conducted. Axisymmetric flows characterized by a pair
of RoandEk values were obtained. LowRoflows exhibit fea-
tures indicative of the Taylor-Proudman theorem where flows
are highly two-dimensional with motions suppressed along the
axis of rotation. As positiveRo is increased, the flow loses its
two-dimensional nature and becomes complex in structure. In-
creases in negativeRo magnitude continues to display vertical
independence.

Linear stability analysis revealed two distinct modes in plots
of growth rate against wavenumber for positiveRo. One mode
emerges at low wavenumbers and is the dominant mode at low
Roand highEk. With increasingRoor decreasingEk, the sec-
ond mode outgrows the first indicating that a higher wavenum-
ber governs the flow. This dominant higher wavenumber may be
related to irregular and chaotic flows seen in experimental stud-
ies. In the negative-Ro regime, only a single instability mode
was detected.

Differences in stability properties are seen between positive
and negativeRo. The peak wavenumbers of instabilities in the
positive-Roregime exhibited strong dependence on bothRoand
Ek, whereas a weak dependence onRois displayed for negative
Ro. The threshold of stability also differed between negative
and positiveRowhich is in contrast to that reported by [5]. The
discrepancies may be due to the absence in these simulations
of the central rod present in [5], and the absence of non-linear
mode evolution in the present analysis.
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