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Abstract

This paper studies the process by which open flows select a
global frequency of oscillation. Two model systems are pre-
sented: the canonical flow past a circular cylinder; and the
flow over an open rectangular cavity. The method used is
a global linear stability analysis of the time-mean flow. For
both the model systems, this method is shown to very ac-
curately capture the saturated global frequency of the flow,
even at Reynolds numbers far beyond that at which the flow
becomes unsteady. Additionally, the time-mean flow in
both systems is shown to be close to marginally stable over
a wide range of Reynolds numbers, an important finding in
the effort to understand the nonlinear saturation process.

Introduction

This paper analyses the stability characteristics of the time-
mean of two periodic flows, the vortex-shedding wake be-
hind a cylinder, and a periodic open cavity flow. A linear
stability analysis of the time-mean flow is conducted, to de-
termine a growth rate and a characteristic frequency.

This process can appear circular; to obtain the mean flow,
the time-dependent periodic flow needs to be calculated,
from which the flow frequency could be measured directly.
However, the goal of the analysis is not to come up with
a complicated way to measure frequency, but to try to un-
derstand the saturation process, the process by which a flow
selects a certain frequency. For open flows such as the cylin-
der wake, this is typically a highly nonlinear process, and its
understanding has important ramifications for flow control
techniques.

The analysis procedure used is a linear stability analysis,
treating the time-mean flow as a new steady base state. This
analysis returns two important quantities; a characteristic
frequency, and a growth rate of any introduced perturba-
tions. If the final, saturated flow is the sum of the base state
(in this case, the mean) and a single, linear mode, the char-
acteristic and saturated frequencies should be similar. Ifthe
base state (in this case, the mean) is marginally stable, the
growth rate should have unit magnitude.

Previous researchers have studied this problem. In partic-
ular, [2] performed the linear stability analysis of the time-
mean cylinder wake forRe6 180, where the flow remains
two-dimensional. This study found that the mean flow over
this range of Reynolds numbers remained very close to
marginally stable, and the characteristic frequency was very
close to the measured saturated frequency.

[5] then performed a weakly nonlinear analysis of this same
flow, strictly valid only in the vicinity of the bifurcation
to periodic flow (which occurs aroundRe= 47 [3]). This
study found that the mean flow of the circular cylinder wake
would remain close to marginally stable, and the character-
istic frequency close to the saturated frequency. However,
this study also produced an apparent counter-example, in
the form of the flow over an open rectangular cavity. Here,

the asymptotic analysis predicted the mean flow would not
remain marginally stable, invalidating its use as a new base
state.

However, it should be noted that the asymptotic analysis is
only strictly valid in the vicinity of the bifurcation, and the
results gained require some interpretation. The interpreta-
tion of [5] may have been stricter than some.

Because of this, the current study has taken two courses:
first, the range of the analysis of the cylinder wake mean
flow, to Reynolds numbers where the flow is strongly three-
dimensional, has been conducted; second, extending and
testing the findings of [5], the mean flow over an open rect-
angular cavity has been analysed. In both cases, it is found
that the mean flow remains quite close to marginally sta-
ble, and the characteristic frequency tracks the saturatedfre-
quency very closely.

The success of the linear analysis over such a wide range of
Reynolds numbers, and for different open flows, indicates
that in general, the mean flow plays the role of a new base
state. The mean flow is corrected by the fluctuation to the
point where it reaches marginal stability.

Methodology

Computational Method

All the flows for this study were produced using direct nu-
merical simulations (DNS). The DNS were conducted us-
ing a highly-accurate spectral-element method for the spa-
tial discretisation. The geometry was divided into a seriesof
macro quadrilateral elements, that were free to have curved
surfaces (to accurately model the cylinder). The macro el-
ements were then further discretised, by using high-order
(anywhere from 7th-11th order) tensor-product Lagrange
polynomials as shape functions, associated with Gauss-
Lobatto-Legendre points. This configuration was used to
solve the weak form of the incompressible Navier-Stokes
equations. All the flows were resolved using a three-way
time-splitting method. This solver has been extensively val-
idated and successfully utilised in many previous studies
[7, 4].

Two- and three-dimensional simulations were conducted
for the cylinder flow. For the three-dimensional case, the
code employed the same spectral-element method in planes
perpendicular to the cylinder axis, and a Fourier expansion
in the spanwise direction. Steady flows for the cylinder and
cavity problems were obtained using the same timestepper,
employing the selective frequency damping (SFD) method
of [1], allowing steady solutions to be obtained at values of
Rewell above that at the natural onset of unsteady flow.

Exact definitions of the geometry used can be found in [4]
for the cylinder, and [5] for the cavity.

Stability analysis



Global linear stability analysis was carried out, using the
time-mean of the periodic flow, as the base flow. Perturba-
tion equations were formed by decomposing the flow vari-
ables into base and perturbation components, cancelling the
base components, and linearising the remaining terms. The
equations for the perturbation quantities were then solved
using the same spectral-element method as the base flow.
To determine characteristic frequencies, and growth rates,
eigenvalues were determined using an Arnoldi decomposi-
tion of saved snapshots of the perturbation field at regular
intervals (typically around 1000 timesteps). This allowed
the full complex eigenvalues of the fastest-growing mode, ,
to be resolved, the magnitude of which determine stability,
and the phase of which determine frequency.

Results and Discussion

The cylinder flow

The flow of interest to this study was the unsteady flow be-
hind a fixed circular cylinder. The flow is characterised
by a single dimensionless parameter, the Reynolds num-
ber Re= UD/ν, whereU is the freestream velocity,D is
the cylinder diameter, andν is the kinematic viscosity. At
Re> 47, this flow is periodic, and two-dimensional, and
is characterised by the alternate shedding of vortices into
the wake from each side of the cylinder, forming the von
Kámán vortex street. This is clearly illustrated in figure1.

At Re> 190, the two-dimensional flow becomes unstable
to a three-dimensional instability known as mode A, and
with further increases inRe, to a second instability known as
mode B [8]. However, while these three-dimensional modes
alter the flow geometry, the dynamics of the flow are still
dominated by the periodic vortex shedding. Because of this,
a single dominant frequency is chosen by the flow, over a
wide range ofRe. It is the process of the selection of this
single global frequency by the flow that is the subject of this
study.

The cavity flow

The cavity in question is square, and the length of the side of
this square,L, is taken as the relevant length scale. Again,
this flow is characterised solely by the Reynolds number
Re= UL/ν. For this setup used in this study, this two-
dimensional flow first becomes unsteady atRe≃ 4350. This
unsteady flow is characterised by vortices being shed from
the rear edge of the cavity. The basic mechanism appears to
be that the free shear layer develops some instability at this
rear edge, which is then fed back to the start of the shear
layer through the recirculating flow in the cavity. This feed-
back loop leads to a global instability, and the flow again
settles on a single global frequency. An example of the
flow produced in shown in figure 1 There are two instability
modes that can influence the flow, and there is a discontinu-
ity in the curve of frequency againstReas the two modes
exchange dominance.

Frequency prediction using linear stability analysis

Here the results of the linear stability analysis of the mean
flow are presented. This technique is slightly unconven-
tional, and therefore perhaps needs some explaining. In a
traditional stability analysis, the stability of a steady solu-
tion is studied. Perturbation equations are formed by lin-
earising around this steady solution. An eigenvalue prob-
lem is formed for the perturbation velocity field. The eigen-
vectors of this system are the linear instability “modes”, and
the eigenvalues indicate stability. If an eigenvalue,µ, is such

that|µ|> 1, is is predicted that the linear perturbations grow
in time. If this is the case, the original steady flow is said
to be linearly unstable. The eigenvalue also contains fre-
quency information, as it is, in general, complex, and there-
fore results in the instability mode oscillating.

For this analysis, however, a steady solution is not anal-
ysed. Instead, the mean flow, extracted from the fully sat-
urated time-dependent flow, is used. In this case, the sta-
bility analysis can be interpreted as investigating the effect
of linear disturbances on the mean flow, as long as the forc-
ing term in the time-averaged Navier-Stokes equations due
to the fluctuation is unperturbed at linear order (see [2] for
further explanation).

If the fluctuation is unperturbed at linear order, it therefore
might be expected that the flow is well described simply by
a linear combination of the mean flow, and a single global
mode. If this is the case, this single global mode should
have a frequency similar to that of the original flow. Further,
since we know the original, time-dependent, flow is fully
saturated (that is, not growing or decaying in time), it should
be expected that this linear mode does not decay or grow in
time, and therefore has an eigenvalue|µ| ≃ 1. This there-
fore leads to an hypothesis that there exists a class of time-
dependent flows, where saturation occurs exactly where the
mean flow reaches marginal stability, with|µ| = 1.

The frequency behaviour, and the growth rates, of the lin-
ear global modes growing on the mean cylinder and cavity
flows are presented in figure 2.

Figure 2a shows the frequency data for the circular cylin-
der. The crosses show the frequency of the saturated flow
measured directly from the DNS simulations. ForRe<
190, these simulations were two-dimensional, whereas for
Re> 190, fully three-dimensional DNS simulations were
conducted. For validation of the numerical simulations, the
solid line in figure 2 shows the frequency measured from
laboratory experiments [9]. Finally, the open circles show
the predicted frequency from the eigenvalue of the linear
mode growing on the mean flow. The match between all
three is excellent, over the entire range ofRe. Note that
the mean flow for the three-dimensional simulation was the
time-mean of the spanwise spatial mean. The match of the
data strongly supports the hypothesis that, for the cylinder
flow, the flow is comprised of a single, linear global mode
combined with the mean flow.

Further confirmation is drawn from the growth rates of this
linear mode. These growth rates are presented in figure 2b.
For all of the simulation where the flow is two-dimensional
(Re< 200), the growth rates remain extremely close to
unity. Even when the flow is three-dimensional, the growth
rates never exceed|µ| = 1.05. These findings combined
suggest that even at Reynolds numbers far beyond the onset
of vortex shedding, the cylinder wake can be characterised
by its mean and a single mode, and that the flow saturates
when the mean flow is “corrected” to the point that it be-
comes marginally stable.

Figure 2c presents the frequency data for the flow over the
open cavity. The range ofRespanned sees two separate lin-
ear global modes controlling the dynamics, and hence there
is a discontinuity in the frequency curve, and begins just
after the onset of periodic vortex shedding from the cavity.
The measured frequency taken directly from the simulation
are presented with open squares; the frequency predicted by
the linear stability analysis is presented with filled squares.
Over the whole range ofRe, the match is again excellent,



Figure 1: Examples of the model flows, illustrated with contours of vorticity. Left is the cylinder wake atRe= 100, showing
periodic vortex shedding. Right is the open cavity flow atRe= 6000, showing the periodic ejection of vortices from the rear
edge of the cavity. Flow is from left to right in both images

 0.12

 0.14

 0.16

 0.18

 0.2

 0.22

 0  100  200  300  400  500  600

Re

f ∗

 0.9

 0.95

 1

 1.05

 1.1

 0  100  200  300  400  500  600

Re

|µ|

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

 4400  4600  4800  5000  5200  5400  5600  5800  6000

Re

f ∗

 0.9

 0.95

 1

 1.05

 1.1

 4400 4600 4800 5000 5200 5400 5600 5800 6000

Re

|µ|

(a) (b)

(c) (d)

Figure 2: A comparison of frequencies measured directly from the saturated flow, with the frequency predicted by the linear
stability analysis, along with growth rates from the linearstability analysis. For both flows, the measured and predicted fre-
quencies are in excellent agreement, and the growth rate of the linear modes remain close to the marginally stable value of 1.
(a) Frequencies for the cylinder flow: measured saturated frequency (+); measured frequency from experiments (-); predicted
frequency from stability analysis (◦). The vertical dashed line indicates where the flow becomes three-dimensional (b) Growth
rate of the linear mode growing on the mean flow for the cylinder flow. (c) Frequencies for the cavity flow: measured saturated
frequency (�); predicted frequency from stability analysis (�). (d) Growth rate of the linear mode growing on the mean flow
for the cavity flow.



Figure 3: Mean and steady flows for the two model flows,
represented with vorticity contours. Steady (top) and mean
(bottom) cylinder flows atRe= 100. Steady (left) and mean
(right) cavity flows atRe= 6000. It is clear from these
images that the nonlinearity of the flow induces a strong
mean-flow “correction” in both cases.

even well beyond the initial onset of periodic flow.

Further evidence for the efficacy of this method is presented
in figure 2d. Here the growth rates of the linear modes
growing on the mean cavity flow are presented. Again, the
are shown to only slightly deviate from the marginally sta-
ble value of unity. This suggests that, again, this flow is
well-characterised by its mean and a single linear mode, and
that the flow saturates at the point where the mean becomes
marginally stable.

The positive result may at first seem to be in contradiction
to the result of [5], who presented this flow as a counter-
example to this theory of saturation at marginal stability.
The nonlinear analysis of [5] was certainly carefully con-
ducted, and we are not suggesting that the results presented
therein are erroneous. However, the conclusion drawn in
that study relied on interpretation of results from a complex
analysis. The results of the current study indicate that the
original interpretation was perhaps slightly too strict, and
that this theory can be used to analyse this cavity flow.

Correction of the mean flow

The success of the this linear analysis of the mean flow per-
haps suggests that nonlinear effects are not so important
in these flows. However, this is not the case, as the mean
flow in both problems is significantly different to equiva-
lent steady flow. This “correction” of the mean flow [6] is
due to the Reynolds stress induced by the fluctuating flow
field.

The extent of this correction is clearly seen in figure 3. Here
mean and steady flows are presented for the cylinder flow at
Re= 100, and the cavity flow atRe= 6000. In both cases,
the topology of the flow is clearly different. For the cylinder
flow, the recirculation region is far shorter. For the cavity
flow, the circulation in the cavity is far more intense in the
mean flow than in the steady flow. These images show that
nonlinear effects are highly important, however, they can
essentially be lumped together and considered simply in a
mean sense when considering the saturation process.

Conclusions

Linear stability analysis of the mean flow of two open flows
has shown that the saturation process, at least for these two
examples, can be understood as a process of mean flow cor-
rection. In essence, these flows select a frequency such that
the eventual saturated flow has a mean that is marginally sta-
ble, and this mean plays the role of a new base state, with a
single linear global mode growing on this mean. The suc-
cess of the method in analysing two disparate flows, with
different physical instability mechanisms, suggests thata
wider class of open flows exists for which this hypothesis
holds. It remains an open research question to identify this
class. Its resolution may lead to the development of control
strategies and analysis techniques of open flows far more
complicated than those presented herein.
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