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Abstract

The current study seeks to identify the mechanism responsible
for the instability leading to unsteady flow in horizontal con-
vective flow. A one-dimensional (1D) linear stability analy-
sis algorithm is developed which linearises the momentum and
energy equations under the Boussinesq approximation, and is
applied to vertical velocity and temperature profiles extracted
from computed two-dimensional flow solutions. It is demon-
strated that a Rayleigh–Bénard type transverse roll instability
within the thermal layer ultimately leads to formation of plumes
and consequently gives rise to unsteady flow in horizontal con-
vection.

Introduction

Temperature gradients within a fluid give rise to density dif-
ferences that produce buoyancy driven flows. Horizontal con-
vection (HC) describes the motion of fluid due to uneven heat-
ing along one horizontal boundary [17] 1. The key parameter
characterizing horizontal convection is Rayleigh number, which
quantifies the strength of thermal forcing on the flow.

Instability and mixing are known to be very important in geo-
physical flow [8]. Many theoretical oceanographers [3, 21, 6]
argued that HC alone is insufficient to drive a significant over-
turning geophysical flow. Paparella et al.[10] illustrated that
HC alone does not statisfy the ”zeroth” law to be a true trubu-
lent flow. This true turbulent test for HC has been disputed by
Scotti et al.[13] as being too restrictive, rendering Rayleigh–
Bénard convection non-turbulent as well, and that statistically
HC has the characteristic of a turbulent flow. The unsteadiness
of HC was investigated numerically [16, 2, 4] and experimen-
tally [20, 5] to show that HC is unsteady and turbulent at high
Rayleigh number, able to propagate through the entire domain
to create an overturning circulation. However, the flow transi-
tion mechanism is still an open question. As noted by Hughes
et al.[5], horizontal convection takes place without an instabil-
ity, the terms stabilizing/destabilizing buoyancy were used to
describe instability in HC flow.

The onset of convective instability in Rayleigh–Bénard con-
vection (RBC) and Rayleigh–Bénard–Poiseuille (RBP) flows
have been studied extensively. In RBC, instability invokes
convection beyond a critical Rayleigh number as buoyancy of
the heated bottom layer of fluid overcomes the stabilising vis-
cous damping and manifests as transverse convective rolls. In
constrast, the through-flow in RBP acts as a selection mecha-
nism determining the direction of the convective instability roll.
However, it was found that Rayleigh–Bénard type instability
is unaffected by low velocity through-flow. This is similar to
the forcing boundary layer in horizontal convection, where the
overturning flow velocities are low at Rayleigh number where
the flow remains steady (Ra≤ 5×108). Sun [18] subsequently
looked into the instability mechanism of HC flows. His numer-

1Rayleigh–Bénard convection (RBC) occurs under the influence of
a temperature gradient across two opposing boundaries. Rayleigh–
Bénard–Poiseuille describes a RBC with a through flow.

ical experiment involved thermal forcing at the centre as well
as side-wall forcing with two circulating cells. He concluded
that velocity shear instability rather than thermal instability is
responsible for the unsteady HC flow through a Hopf bifurca-
tion with a critical Rayleigh number of 5.5377×108 at Pr = 1.
In contrast to [18], the present work considers HC with one cir-
culating cell at Pr = 6.14, such as those investigated by Gayen
et al.[4].

A local stability analysis is used here to explain the instabil-
ity mechanism of HC flows. In constrast to the view conveyed
in [4] that unsteady flow originate in the plume, instead we
turn our attention to the forcing boundary layer. The aim of
the present work is to elucidate the mechanism of horizontal
convection instability through local one-dimensional (1D) lin-
ear stability analysis.

Numerical Setup

The system comprises a rectangular enclosure of width L and
height H. The flow is driven by a non-uniform constant temper-
ature profile applied along the bottom of the enclosure.

The side and top walls are insulated (a zero temperature gradi-
ent is imposed normal to the wall), and a no-slip condition is
imposed on the velocity field on all walls. A Boussinesq ap-
proximation for fluid buoyancy is employed, in which density
differences in the fluid are neglected except through the gravity
term in the momentum equation. Under this approximation the
energy equation reduces to a scalar advection-diffusion equa-
tion for temperature which is evolved in conjunction with the
velocity field. The fluid temperature is related linearly to the
density via the thermal expansion coefficient α. The dimen-
sionless Navier–Stokes equations governing a Boussinesq fluid
may be written as

∂u
∂t

=−(u ·∇)u−∇p+Pr∇
2u−PrRaĝT, (1)

∇ ·u = 0, (2)

∂T
∂t

=−(u ·∇)T +∇
2T, (3)

where u, p, t, Ra, Pr, ĝ and T are the velocity vector, kine-
matic static pressure, time, Rayleigh number, Prandtl number,
a unit vector in the direction of gravity, and temperature, re-
spectively. Lengths are scaled by the enclosure width L, veloc-
ities by κT /L (where κT is the thermal diffusivity of the fluid),
time by L2/κT , and temperature by δT (the imposed tempera-
ture difference imposed across the bottom wall). The horizon-
tal Rayleigh number is defined as Ra = gαδT L3/νκT , where
g is the gravitational acceleration and ν is the kinematic vis-
cosity of the fluid. The Prandtl number of the fluid is given
as Pr = ν/κT , and throughout this study Pr = 6.14, which ap-
proximates water at laboratory conditions. The Nusselt number,
a measure of the ratio of convective to conductive heat transfer,
is defined as Nu = FT L/ρcpκT δT . The heat flux is given by
FT = κT ρcp(∂T/∂y), where cp is the specific heat capacity of



the fluid, and ∂T/∂y is the average absolute vertical temperature
gradient along the forcing boundary.

Two-dimensional solutions are computed using a high-order
spectral element method for spatial discretization and a third-
order time integration scheme based on backward-differencing.
This code had been validated in a number of studies on wake
dynamics of flow over bluff bodies [14] [15].

1D Linear Stability Analysis

We are interested in the stability of one-dimensional base flows
(uB, pB, θB) extracted from two-dimensional solutions along
lines of constant x (i.e. ∂/∂x � ∂/∂y and ∂/∂z � ∂/∂y) to
small three-dimensional time-dependent perturbation of veloc-
ity (u,v,w), pressure p or temperature, θ of the form

f = fB +δ f̃ e(i(αx+βz−ωt)), (4)

where δ is an arbitrary small constant. The perturbation com-
prises a travelling wave number component (α,β) in x and z
directions, and a frequency and growth rate dictated by ω. The
disturbance equations are obtained by substituting equation (4)
into (1)-(3), subtracting the base flow equations, and neglect-
ing O(δ2) terms. The exponential terms subsequently cancel,
and following the similar approach to the derivation of the Orr–
Sommerfeld equation [11, 12], the continuity and momentum
equations are combined to eliminate ũ, w̃ and p̃. The problem
then reduces to

iα
[
u′′B−uB(D2− k2)

]
ṽ+Pr(D2− k2)2ṽ

−PrRak2
θ̃ = iω(D2− k2)ṽ,

(5)

θ
′
Bṽ+uBiαθ̃− (D2− k2)θ̃ = iωθ̃, (6)

where the operator D evaluates partial derivatives with respect
to y, k2 = α2 + β2, and primes denote differentiation with re-
spect to y. As per convention, we seek solutions subject to the
boundary conditions

ṽ(0) = ṽ(H) =
dṽ(0)

dy
=

dṽ(H)

dy
,

dθ̃(0)
dy

=
dθ̃(H)

dy
= 0. (7)

Equations (5)-(7) are discretised using a Chebychev colloca-
tion method [19], and are of the form Axk = ωkBxk. Eigen-
vector xk is a concatenation of the vectors of collocation-point
values of ṽ and θ̃, i.e. xk = [ṽ θ̃]T . The k-th eigenvalue
ω = ωr + iωi describes spatio-temporal mode evolution through
eωit(cosωrt− isinωrt). The imaginary part provides the growth
rate, with instability corresponding to ωi > 0, while the real part
gives the angular frequency of any oscillatory component of the
instability mode. Transverse roll instability is investigated by
keeping β fixed and finding α maximising Im(ω). Longitudinal
roll instability is investigated by keeping α fixed and finding β

maximising Im(ω).

The stability code was validated against an accurate numerical
result [9], where the critical Reynolds number of Rec = 5772.22
and wavenumber αc = 1.02056 for plane Poiseuille flow were
reproduced.

Result and Discussion

A numerical experiment on a rectangular enclosure with an im-
posed linear temperature profile at the bottom boundary with
insulated top and side walls was conducted with an aspect ratio
of H/L = 0.16. With the imposed linear temperature profile on
the bottom wall, heat is being extracted at the cold end while the
fluid at the hot end is being heated. With higher temperature at
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Figure 1. A plot of Nusselft number against time with the cor-
responding temperature and vorticity contour at the hot corner
of the enclosure with different Rayleigh number as stated. Dark
to light temperature contours show temperatures ranging from
0.225 ≤ T ≤ 0.375. The minimum and maximum levels of the
vorticity contours for Ra = 108,109 and 1011, respectively are
1×10−5 to 1×105, 1×10−5 to 1×105 and 2×10−6 to 2×106

the hot end, fluid is carried upward with buoyancy forcing due
to the density stratification in the heated region. The fluid from
the cold end will move toward the heated end to fill the void left
by the heated buoyant fluid which rises upward. The warm fluid
will move upward and gradually fall back down toward the cold
end and thus complete an overturning circulating cell within the
enclosure. The characteristics and strength of this circulation
are determined by the Rayleigh number.

At low Rayleigh number, where the imposed temperature is
mainly transmitted through conduction into the enclosure, the
flow will reach a time steady solution where distinct boundary
layer is observed along the forcing boundary. With further in-
creases in Rayleigh number, the flow enters a mixed conduc-
tion/convection regime, and remains time invariant. Beyond
Ra ≈ 3.2× 108, a convection-dominant flow appears leading
to a time-periodic solution. With a further increase in Rayleigh
number, time periodicity is broken, giving way to an irregu-
lar regime. The nature of these regimes is demonstrated in fig-
ure 1 where the Nusselt number time history and instantaneous
flow fields are plotted. A time periodic solution is clearly seen
at Ra = 1× 109; at this Rayleigh number disturbances are ad-
vected along the thermal boundary layer and feeding into the
rising plume. As the plume rises to mid-height, all internal en-
ergy has been converted to potential and kinectic energy. Subse-
quently, the plume descends and creates a small local circulation
zone near the corner of the hot wall. This plume lack the energy
to rise up to the top to create a larger circulation as seen in cases
with higher Rayleigh number. With higher Rayleigh number,
figure 1(c) shows a low frequency oscillation superimposed on
the time periodic flow, this can be seen at Ra ≥ 3.2× 109. At
these Rayleigh numbers, the plume has sufficient energy to rise
beyond the mid height, with some partial plume break-up ob-
served at mid height to form a local circulation and the major-
ity of it rises to the top, mixed with the bulk flow to form a
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Figure 2. (a) A plot of local dimensionless horizontal veloc-
ity and temperature profile at x = 0.9 for Ra = 1× 108. (b) A
contour plot of the perturbation vorticity at x=0.90 from the 1D
stability analysis showing the instability is confined to a bound-
ary layer region along the lower boundary. (c) A contour plot of
perturbation vorticity for RBC is included for comparison.

much larger overturning circulation over the whole enclosure.
It is this large global circulation which superimposes the low
frequency oscillation over the higher frequency plume forma-
tion. The interaction of this global and local circulation creates
a more irregular flow characteristic within the enclosure which
breaks the periodicity of the flow. This large scale global and
local transport interaction was discussed in a recent review by
Ahlers et al.[1].

To initiate our 1D LSA, local profiles at different x-locations
were used as base flow condition to solve for the linear stabil-
ity eigenmodes. Figure 2 (a) shows extracted u & θ profiles
at x = 0.90 for Ra = 1× 108. The wavenumber producing the
maximum growth is α = 58, figure 2 (b) plots the perturbation
vorticity field of the corresponding eigenvector field. By com-
parison, figure 2 (c) shows the vorticity field for RBC instability.
The leading perturbation shows that instability indeed is con-
fined to a thin boundary layer adjacent to the bottom surface,
corresponding to the region of the flow with a strong adverse
temperature gradient, consistent with the canonical RBC flow.
The vorticity exhibits a counter-rotating structure which resem-
bles RBC instability. In this region the velocity profiles do not
exhibit any inflexion, which is neccessing but not sufficient for
shear instability according to Rayleigh inflexion point theorem
[7]. These results combined to show that HC instability is ther-
mally driven rather than a velocity shear instability in contrast
to [18].

The conjecture that HC instability is a thermal instability due to
an RBC instability mechanism is tested by independently per-
forming the analysis on the velocity and temperature base flow
profiles separately. Isolated local velocity or temperature pro-
files are used to study instability for Ra = 1× 108. Figure 3
shows the differences in growth rate when only the velocity or
temperature profile is used. The thermal profile produces al-
most identical growth up to wavenumbers exceeding the dom-
inant wavenumber; whereas the velocity profile remains stable
and monotonically decreases with increasing α. At the domi-
nant wavenumber, the eigenmode produced by the thermal pro-
file is almost indistinguishable from the reference case, whereas
the velocity profile produces a completely different disturbance
structure. This confirms that the instability is thermally driven,
and is virtually insensitive to the velocity profiles.

Figure 4 maps marginal stability curves for different locations
along the forcing boundary, showing larger unstable regions
towards the heated end of the enclosure. Local instability
was found to progressively advance upstream with increasing
Rayleigh number. As the location of local instabilities moves
upstream, more energy is accumulated as disturbances advect
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Figure 3. A plot of wavenumber, k, against growth rate, σ at
x = 0.90 for Ra = 1× 108, positive growths were found when
(a) local base flow profiles were used and when (b) local base
flow velocity was set to zero. Negative growth rate was obtained
when (c) base flow temperature was set to zero. Respective
perturbation vorticity contours are included for comparison.

in the forcing boundary layer, eventually leading to global in-
stability. For instance, at Ra = 3.2× 109, local instability was
found from x = 0.70 onward, which generates sufficient am-
plification to tip the flow to global instability. The marginal
Rayleigh number can be extrapolated to x = 1, yielding a criti-
cal marginal Rayleigh number of Racm = 1.23×107.

In order to verify the 1D stability analysis and to elucidate on
the mechanism of HC instability, a two-dimensional perturba-
tion analysis was performed on a time steady solution with
Ra = 1×108. This steady solution is seeded with random per-
turbation before continuing with time integration. Random fea-
tures quickly dissipated, isolating the dominant disturbance in
the flow (figure 5) The disturbance in figure 5 is consistent in
structure to that predicted in figure 2(b), and has a similar wave-
length (λ2D = 0.07452) to that predicted by the 1D analysis
(λ1D = 0.1073).

Conclusion

We have shown that a one-dimensional linear stability analy-
sis can elucidate the instability mechanism in horizontal con-
vection, revealing it to be themally driven and consistent with
Rayleigh–Bénard convection instability.
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