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“It is not the process of linearization that

limits insight. It is the nature of the state

we choose to linearize about.”

Eric Eady.
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Abstract

A numerical study of flows in a differentially rotating container is presented. The

container is comprised of a cylindrical rotating tank coupled with differentially rotating

disks placed flush with the top and bottom horizontal boundaries of the tank. The tank

and the disk share the same axis of rotation. The differential speed imposed by the

disks produce shear layers that are susceptible to instabilities. Flow transitions in the

axisymmetric flow including steady, unsteady and time-periodic states are investigated.

In addition, non-axisymmetric flows are examined via quasi-two-dimensional and three-

dimensional models.

The flow conditions in this configuration are characterised primarily by the Rossby

and Ekman numbers, which are non-dimensional parameters. The Rossby number,

Ro, describes the balance between inertial to Coriolis forces, while the Ekman number,

E , describes the balance between viscous to Coriolis forces. A third non-dimensional

parameter, the Reynolds number, which is the ratio of inertial to viscous forces, is also

used to characterise the onset of several critical flow transitions. The aspect ratio of

the tank, defined by the ratio of the disk radius to the tank height, is explored between

1/6 6 A 6 2. Additionally, Rossby numbers between −4 6 Ro 6 0.6 and Ekman

numbers ranging between 5× 10−5 6 E 6 3× 10−3 are primarily investigated.

A spectral-element method is employed to compute axisymmetric flows on a semi-

meridional mesh. The numerous meshes used throughout the study are validated

through grid resolution studies under computationally demanding flow conditions. Ach-

ieving grid independence for such flow conditions ensures that the flow solutions ob-

tained for a wide range of Ro and E are accurate.

The axisymmetric base flow is obtained for a range of Ro and E , and in vari-

ous aspect ratio containers. The vertical structure of the flow reveals that small-|Ro|
flows demonstrate strong axial independence in accordance with the Taylor–Proudman

theorem. This theorem becomes invalid at sufficiently large |Ro| with distinct depth-

dependent features displayed in the positive and negative-Ro regime. The transition

from reflectively symmetric flow to symmetry-broken flow is determined and reveals

an independence on the aspect ratio. Measurements of the Stewartson layer thickness

across the explored parameter space have established trends away from Ro ≈ 0 for the

first time. Transition to unsteady and time-dependent flow from these steady-state

flows has been achieved by either increasing the Rossby number or decreasing the Ek-
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man number, both of which serve to increase an internal Reynolds number based on

the shear layer thickness and velocity differential.

Interest in the developing non-axisymmetric three-dimensional structures on an un-

derlying axisymmetric base flow motivates an application of a linear stability analysis

technique. The eigenmodes extracted from the analysis describe the growth rates and

the mode shapes of the wavenumber instability. The differentially rotating flow un-

der investigation exhibits an instability typical of barotropic instability as its primarily

linear instability mode, with typical dominant scaled azimuthal wavenumbers ranging

between 1 6 kA 6 6. The instability deforms the base flow in such a way that a polyg-

onal structure described by the most unstable wavenumber is seen precessing around

the centre of the tank. Secondary instability modes are also present, and often display

depth-dependent structures with higher azimuthal wavenumbers. Increases to the as-

pect ratio demonstrates a shift in preference to lower-wavenumber structures and to a

more stable flow. Provided that the shear layer in the axisymmetric base flow is not

affected by the confining walls, the growth rate data universally collapses when the

azimuthal wavenumber is scaled by the aspect ratio.

Non-axisymmetric studies are conducted using a spectral-element-Fourier method.

Nonlinear effects are seen to encourage the coalescence of vortices, resulting in the se-

lection of smaller azimuthal wavenumbers with increased forcing. Thus, the resultant

wavenumber generally illustrates a larger difference compared to the predicted linear

mode when the described flow conditions move further away from the linear instabil-

ity threshold. The vacillation process typically occurs through unit increments and

reversing the forcing yields an increasing wavenumber configuration with observable

hysteresis. The transition from axisymmetric to non-axisymmetric flow is determined

to be supercritical from the application of a Stuart–Landau model. The simulations

reveal the laborious growth of the instabilities in the flow and suggests that under

typical experimental parameters, many months may be required for a stable flow state

to saturate! Thus, these results may have implications for the experimental results

previously reported in the literature.

Computations of a quasi-two-dimensional model are used to compare the qualitative

and quantitative results of the axisymmetric and three-dimensional flows. Due to the

inability of the quasi-two-dimensional model to capture the vertical structure of the

flow, the linear stability analysis expresses the same characteristics between positive

and negative-Ro flows. The predicted dominant azimuthal wavenumber demonstrates

strong agreement with those obtained by the axisymmetric model. Contrasts between

the quasi-two-dimensional model and the three-dimensional model are performed, with

the same trends being established from both models such that increasing the forcing

conditions produces a lower-wavenumber structure.
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Nomenclature

Symbol Description

§ Thesis section
∫

Integration

log10 Logarithm to the base of 10

loge Natural logarithm

∇ Vector gradient operator (grad)

∇2 Del squared (or div grad) operator
∑b

i=a Sum of arguments with i incrementing from a to b

∞ Infinity

α Exponent of the Rossby number used in power-law fitting,
Width of the jet

αj The jth coefficient used in the third-order backwards multi-step
scheme

β Exponent of the Ekman number used in power-law fit,
Linear topographic parameter

βj The jth coefficient used in the third-order backwards multi-step
scheme

Γ Circulation

γ Parabolic topographic parameter,
Ratio of shear zone radius to characteristic length

∆x Change in a given variable x

δ Boundary/shear layer thickness,

Small positive constant

δE Ekman layer thickness

δHa Hartmann layer thickness

δvel Shear-layer thickness derived from the relative azimuthal velocity
profile

Continued on the next page.
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Continued from previous page.

Symbol Description

δvort Shear-layer thickness derived from the radial gradient of axial vorticity
profile

ǫ Threshold of the maximum change in velocity between successive time
steps

ε Relative percentage error

ζ Relative vorticity

θ Angle of the sloping bottom boundary relative to the horizontal,
Azimuthal cylindrical polar coordinate,
Latitude

θ0 Reference latitude

λ Wavelength

λθ Azimuthal wavelength

µ Floquet multiplier,
Fluid viscosity

ν Kinematic viscosity

ξ Spatial coordinate

ρ Fluid density,
Real and non-negative amplitude

ρsat Saturated real and non-negative amplitude

σ Aspect ratio of the bottom disk radius to the cylindrical tank radius,
Complex growth rate of the azimuthal wavelength disturbance,
Electrical conductivity

σpeak Peak growth rate

σpos Ro Growth rate associated with a positive-Ro flow

σneg Ro Growth rate associated with a negative-Ro flow

σRo=0 Growth rate associated with a zero-Rossby number flow (solid-body
rotation)

σR Real component of the growth rate

τ Shear stress
Time period of integration

Φ Rayleigh’s discriminant

Continued on the next page.
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Continued from previous page.

Symbol Description

φ Phase of a real and non-negative amplitude,
Wave amplitude

φ∗ Complex conjugate of the wave amplitude

ψ Streamfunction

ψ′ Streamfunction perturbation

Ω Anti-symmetric part of the decomposed velocity-gradient tensor

Ω Planetary rotation rate,
Tank rotation rate

Ω1 Angular velocity of the disk

Ω2 Angular velocity of the tank

Ωi Angular velocity of the inner cylinder

Ωo Angular velocity of the outer cylinder

Ω Mean rotation rate

ω Angular oscillation frequency of the linear mode,
Differential rotation,
Vorticity

ωsat Saturated angular oscillation frequency of the linear mode

ωz Axial vorticity

ωz,0 The z-component of the vorticity to zeroth order Rossby number

ωz,bc The z-component of the vorticity field boundary condition

ωz,disk Axial vorticity of the disk

ωz,tank Axial vorticity of the tank

ω′ Vorticity of the bottom plate boundary

A(τ) Linear time integration operator over time period τ

A Aspect ratio of the disk radius to tank height,

Complex amplitude

a Ageostrophic component,
Disk radius,
Inner cylinder radius

B Vertical magnetic component

Continued on the next page.
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Continued from previous page.

Symbol Description

b Outer cylinder radius
c Landau constant,

Vertical intercept of a linear curve,
Zonal propagation speed

ci Imaginary component of the zonal propagation speed

cr Real component of the zonal propagation speed

c∗ Complex conjugate of the zonal propagation speed

d Fluid depth,
Separation distance between the source and the sink

E Ekman number

Ek Energy contained in the kth azimuthal wavenumber

F Fourier transform in the azimuthal direction

F External forcing term

F Pumping rate

Fr Froude number

f Angular frequency,
Coriolis parameter

f0 Constant Coriolis parameter at reference latitude

fd Disk frequency

fg Daughter wave frequency

fm Parent wave frequency

G Coefficient of the forcing term linear with the velocity field

g Geostrophic component,
Gravity

g′ Velocity component or pressure

H Angular momentum per unit mass,
Height/depth of the fluid,
Height/depth of the fluid at the split-disk radius,
Spacing between two parallel plates

Ha Hartmann number

Htank Height of the tank sidewall

Continued on the next page.
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Continued from previous page.

Symbol Description

h0 Initial water height

i Imaginary number (i =
√
−1)

i Spatial index of a data point

J Number of azimuthal Fourier planes,
Order of the scheme,
Richardson number

j Spatial index of a data point

k Azimuthal cylindrical polar wavenumber,
Cartesian y-direction wavenumber

kc Azimuthal wavenumber at the onset of instability

kpeak Azimuthal wavenumber corresponding to the maximum growth rate

k∗ Average azimuthal wavenumber weighted by energy

L Lagrange polynomial,
Length scale,
Shear-layer thickness

LD Rossby deformation radius

L∗ Dimensionless jet width

l Non-dimensional parameter used to characterise hysteretic transitions

Ma Mach number

m Gradient of a linear curve,
Modulated oscillating state

N Azimuthal mode,
Buoyancy frequency,
Initial equilibrium state,
Interaction parameter,
Number of Fourier modes,
Total number of data points,
Value equating to three times the number of mesh nodes

Np Polynomial degree

Continued on the next page.
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Continued from previous page.

Symbol Description

n Azimuthal cylindrical polar wavenumber
Number of Ekman layers,
Number of Hartmann layers,
Positive integer value

nV Noisy vortex

O(X) Order of magnitude X

P First positive invariant of the velocity-gradient tensor,
Kinematic pressure,
Period-doubled state

Pm Legendre polynomial

P̄ Mean kinematic pressure

p Pressure

p Mean pressure

p′ Pressure perturbation

Q Second positive invariant of the velocity-gradient tensor

q Potential vorticity

R Reynolds number,
Shear zone radius,
Third positive invariant of the velocity-gradient tensor

Rd Disk radius
Ri Reynolds number based on the inner cylinder rotation rate

Ro Reynolds number based on the outer cylinder rotation rate

Rt Tank radius
Re Reynolds number

Rec Critical Reynolds number

ReE Reynolds number based on the Ekman layer thickness

Re
E 1/3 Reynolds number based on the E 1/3 Stewartson layer thickness

Rei Internal Reynolds number

Rei,c Critical internal Reynolds number

Ro Rossby number

Roc Critical Rossby number describing the onset of instability

Continued on the next page.
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Continued from previous page.

Symbol Description

Roc1−c2 Critical Rossby number describing the transition of reflectively sym-
metric to symmetry-broken flow

Romode II Critical Rossby number describing the onset of the mode II waveband

RoI−II Critical Rossby number describing the dominance of mode I and
mode II transition

r Radial cylindrical polar coordinate

r0 Split-disk radius

ri Inner sphere radius

rm Mean radius of the jet

ro Outer sphere radius

S Symmetric part of the decomposed velocity-gradient tensor

s Slope of the bottom topography

T Taylor vortex,
Time period

T ∗ Ratio of the Ekman friction time to the eddy turnover time

t Time

t∗ Reference time

U Velocity scale

U0 Maximum jet velocity

UB Non-dimensional lower boundary tangential velocity

U Axisymmetric base velocity field

U∞ Velocity value sufficiently far from the boundary

u Velocity vector

u0 Forcing velocity due to electrical conduction

ua Ageostrophic velocity vector

ubc Velocity vector of the boundary condition

ubc,B Velocity vector of the bottom boundary condition

ubc,T Velocity vector of the top boundary condition

ug Geostrophic velocity vector

u
′ Velocity perturbation vector

Continued on the next page.
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Symbol Description

u
′
k kth perturbation field

û′
k kth Complex Fourier coefficient

ˆ̂
u
′
k kth eigenvector

u Mean velocity vector

u⊥ Interior velocity field relative to the boundary velocity

u Axial cylindrical polar velocity component,
Cartesian x-direction velocity component,
Horizontal velocity component

uθ Azimuthal velocity

uθ,rel Azimuthal velocity relative to the tank

uθ−rel Azimuthal velocity relative to the tank

uθ−rel, max Maximum azimuthal velocity relative to the tank

uθ−rel, min Minimum azimuthal velocity relative to the tank

ui,j Variable ui differentiated with respect to the jth direction

usound Speed of sound

uz Axial velocity

V Volume of the computational domain

v Cartesian y-direction velocity component,
Radial cylindrical polar velocity component,
Tangential velocity compoent

v Tangential velocity of the basic flow

ṽ Transformed radial velocity component

w Azimuthal cylindrical polar velocity component,
Weak fluctuation

w∗ Disk speed

w1 Vertical velocity to the first order of Rossby number

wd Vertical velocity induced by the disk

wj The jth weighting coefficient of the Gauss–Lobatto–Legendre
quadrature

w̃ Transformed azimuthal velocity component

Continued on the next page.
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Symbol Description

x Cartesian eastward coordinate

y Cartesian northward coordinate

z Cartesian upward coordinate,
Axial cylindrical polar coordinate

zs An arbitrary point in the flow
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Chapter 1

Introduction

This thesis presents the results of a numerical investigation of the structure and stability

of shear layers arising in rotating flows. The following sections outline an overview of

the problem and describes common flows related to the origin of this work. Governing

non-dimensional parameters and instabilities relating to these flows are also established,

followed by the aims of this current study. The structure of this thesis concludes this

preliminary chapter.

1.1 Overview of the problem

Hydrodynamic stability occupies a central position in the field of fluid mechanics as

instability phenomena are widely seen across disciplines of engineering and science, and

frequently observed in nature. Its main concerns are in studying a saturated base flow

forced by disturbances and examining the resultant flow development and end state.

Since the distinguished investigations by Helmholtz, Kelvin, Rayleigh and Reynolds

in the 19th century, advancements in hydrodynamic stability have been steady and

ongoing. Rotating flows is one such category of flows that encompasses a class of

interesting instabilities and has gauged key interest from researchers.

Rotating flows are abundant in nature and are renowned for their instabilities lead-

ing to the formation of intriguing structures of geometric shape, for which a com-

prehensive understanding is desired. These flows are generally influenced by external

disturbances that induce a differential rotation to the bulk fluid motion. Consequently,

shear and boundary layers are developed within the flow in order to accommodate the

changes in velocity. These layers are significant in governing the state and evolution of

the flow.

Flows that are influenced greatly by rotation are most clearly observable in the large-
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scale structures present in atmospheric and oceanic flows. The thin atmosphere exhibits

fluid motions that are predominant in the horizontal direction while vertical motions

are weak in comparison. Thus, such flows have been largely approximated by two-di-

mensional and quasi-two-dimensional models. As such, any external horizontal forcing

acting on these approximately two-dimensional flows are likely to produce vertical shear

layers. These shear layers may become unstable resulting in an instability deforming

the shear layer. An unstratified flow disturbed by horizontal forces encourages a shear-

layer instability that is known as barotropic instability. However, atmospheric flows

are stratified, which lend its potential energy to a second type of instability. This

instability is known as baroclinic instability and it is common for it to coexist with

barotropic instability in altering the base flow.

Barotropic and baroclinic instabilities are best recognised in the range of weather

systems experienced on Earth. Mechanisms of these instabilities arise from many fac-

tors including wind shear, land topography, Coriolis parameter variation and the pole-

equator temperature gradient. Interests in these instabilities are caused by the need

to predict and understand geophysical phenomena. Baroclinic instability originates

from perturbations that grow in rotating stratified fluids that are forced by a horizon-

tal temperature gradient. In contrast, barotropic instability occurs in barotropic flows

due to a horizontal shear forcing. Although barotropic flows are recognised as sim-

pler systems to study in comparison to baroclinic flows, they are dynamically similar

(McWilliams 1991; Vallis 2006). Thus, understanding barotropic instability can provide

important insights in the flow structure and mechanisms of baroclinic problems. De-

spite this perceived simplicity, barotropic instability is still not fully understood, even

in its linear-growth regime. The aims of this thesis are in examining the barotropic

shear-layer instability.

An important aspect of barotropic instability is displayed in the extensive range of

scales at which it can be observed. Given the difficulty in monitoring and obtaining rel-

evant data on Earth and extraterrestrial planets, laboratory experiments have been the

primary choice for prior research. The reason for this is because laboratory experiments

enable complete control over the flow conditions, which can be quite extensive. How-

ever, physical and geometrical complexities paired with limited measuring techniques

demand the implementation of theoretical and numerical simulations. Previously, sim-

ulating three-dimensional flows have been computationally expensive, though with the
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continual advancement in computational power has made solving the governing equa-

tions within a reasonable time frame more realisable. The main benefit in adopting a

numerical approach is in the immense flow details that are available. The numerical

solutions are able to provide flow information on a fine scale, which would otherwise

be unattainable through experiments. Both the experimental and numerical methods

clearly play a complimentary role in the study of shear-layer instability.

1.2 Existence of barotropic instability

In order for barotropic instability to develop, there must exist some form of horizontal

shear forcing imposed on the flow. These horizontal shear forces are commonly observed

in the large-scale atmospheric and oceanic flows on Earth. Lesser-known examples of

barotropic instability have been observed in astrophysical systems, planetary cores,

planetary atmospheres and industrial processes. It is clear from this list that the scales

driven by barotropic instability differ vastly. The following sections provides a brief

insight into previously observed phenomena as a consequence of barotropic instability.

1.2.1 Tropical cyclone eyewalls

The formation of a tropical cyclone is complex and often described through a sequence

of stages (e.g. Montgomery & Farrell 1993; Gray 1998). The formation generally

involves environments of enhanced vorticity, humidity, convection and warm sea surface

temperatures and may be perturbed by weather fronts and trade winds (Tory & Frank

2010). It may originate from a tropical storm that is comprised of waves, which are

susceptible to instability (Schär & Davies 1990). These instabilities generate an increase

to the wind speeds and the spatial structure that may eventually form a tropical cyclone.

This structure rotates cyclonically with a warm low-pressure core, surrounded by colder

high-pressure air. For hurricanes, the system is sustained by the ocean’s heat and water

evaporation at the surface. A hurricane may extend 450 km in diameter with speed

typically ranging between 33 m/s and 70 m/s. The Saffir–Simpson Hurricane Wind

Scale classifies these two extreme speed cases as Category 1 and Category 5. The

scale was developed by Herbert Saffir and Robert Simpson to provide a measure of the

strength of a hurricane.

At the centre of this seemingly violent system is a region of calm weather, known

as the “eye”. Hurricane eyes are characterised by a low pressure region typically of
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30 to 60 km in diameter where cooler air is drawn downwards. The border of this

typically circular structure is known as the eyewall, and extends in the vertical while

being surrounded by extreme weather conditions. The eye and eyewall have exhibited

many interesting features, which have fascinated scientists as the general mechanisms

forming these structures are not well known. Of particular interest is in understanding

mesovortices which have been observed in the eyewall (e.g. Lewis & Hawkins 1982;

Kossin & Schubert 2004).

In observing film from land-based and airborne radars, initial investigations by

Lewis & Hawkins (1982) frequently observed hurricane eyes which were not circular

but rather polygonal in shape. In particular, a pentagonal shaped eyewall was detected

in Hurricane Debbie (1969) and Hurricane Anita (1977). Other observed shapes include

squares and hexagons. Considering that these polygonal structures were often incom-

plete, it was believed that these astonishing structures were attributed to artifacts of

the radar systems used. However, further observations evidently exemplified the exis-

tence of polygons in the eyewall. It was then proposed that the polygonal patterns are

a result of the interference of horizontally propagating internal gravity waves.

As noted by Kossin & Schubert (2001), Willoughby et al. (1982) recognised that

the azimuthal mean velocity is characterised by a “U-shaped” profile within the radius

corresponding to the maximum tangential wind of the hurricanes. Outside of this ra-

dius, the azimuthal mean velocities are seen to decrease significantly. Correspondingly,

an annular ring of high vorticity in the eyewall exists surrounded by low vorticity. This

annular ring is generally circular but has demonstrated polygonal configurations indica-

tive of deformations due to barotropic instability. The presence of barotropic instability

related to the large shearing forces near the edge of the eyewall was also suggested by

Muramatsu (1986) who observed distinct polygonal eyewall in Typhoon Wynne (1980).

An unforced barotropic non-divergent model of rings exhibiting elevated vorticity

was investigated by Schubert et al. (1999). Numerical results of linear stability analy-

sis and direct numerical simulations demonstrated polygonal eyewalls near the radius

of maximum tangential velocity as a result of barotropic instability. This work was

extended by Kossin & Schubert (2001) using a two-dimensional barotropic model of

hurricane-like vortices. The eyewall was represented by a thin annulus of vorticity that

is surrounded by nearly irrotational flow. Their results revealed that these flows sus-

tain barotropic instability at high wavenumbers and large growth rates. A nonlinear
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Figure 1.1: Hurricane Isabel with six mesovortices in the eye (one at the centre and five

surrounding it). These vortices form a starfish pattern. This figure is reproduced from Kossin

& Schubert (2004), courtesy of Dr. Jim Kossin.

analysis of the flow illustrated the ring of vorticity rolling up into mesovortices which

were capable of undergoing merging processes and displaying long-lived polygonal con-

figurations.

Previous findings of these polygonal configurations using simple barotropic models

were complemented with the observations of a hurricane that formed during Septem-

ber 6-19 of 2003. The deadly tropical cyclone, named Hurricane Isabel was captured

photographically via the eastern Geostationary Operational Environmental Satellite

(GOES-12) using super rapid scan operations. The images revealed the existence of

mesovortices at the eye-eyewall interface with the number of vortices ranging from an

initial 8 to a 4-vortex configuration after coalescence. Figure 1.1 illustrates Hurricane

Isabel with six mesovortices in the eye. These vortices often arranged themselves into

a polygonal configuration similar to those obtained by previous numerical studies im-

plementing barotropic models. These observations strongly suggests that mesovortices

arise primarily due to barotropic instability.

Although these models are highly idealised, the simplistic barotropic models have

revealed important characteristics in the formation of polygonal structures in tropical
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cyclone eyewall regions.

1.2.2 Planetary vortices

1.2.2.1 Earth’s polar stratosphere

The combination of the temperature gradient, Coriolis parameter variation and con-

servation of angular momentum on Earth causes circumpolar jets to develop. This

occurs especially during the Winter months as the temperature drops and the wind

speeds increase, resulting in a circumferential jet around a cyclonic vortex at polar

latitudes. The planetary-scale vortex is known as a polar vortex and is characterised

by a low pressure core. Polar vortices are formed in both hemispheres on Earth with

its development initiating typically at the start of Autumn, peaking in Winter and

subsequently decaying with the onset of Spring. The large-scale structures extend into

the stratosphere and usually exhibit stable, long-lived and is typically circular features.

It is well known that strong coherent vortices are able to trap fluid inside their

cores and isolate it from surrounding flow (Provenzale 1999). This property poses is-

sues for the climate conditions on Earth as polar vortices are most prominent during

Winter, which exacerbates chlorine build-up over the poles of the planet. The chlorine

is formed via the reaction between nitric acid in polar stratospheric clouds (PSC) and

the chlorofluorocarbons. The onset of spring weakens the strength of the polar vortex,

eventually leading to the break up of the structure. Thus, chlorine is released and

catalyses the process of ozone destruction leading to deterioration of the ozone layer.

Consequently, climate variability has been observed in polar latitudes of the southern

hemisphere (e.g. Thompson & Solomon 2002). The effects propagate equatorward im-

pacting countries such as Australia (Karoly 2003) through prolonged drought conditions

(Murphy & Timbal 2008). The significant consequence of polar vortices on mankind has

garnered increasing interest in understanding the dynamics of polar vortices in recent

decades.

The polar vortices generated in the northern and southern hemispheres have re-

vealed differences in their strength and size. The Antarctic polar vortex often exhibits

greater wind speeds, a larger spatial structure, and has superior longevity (Waugh &

Polvani 2010). These differences are accounted for by the hemispheric differences in

the land-sea contrast and the topographic features. Small-scale waves such as gravity

waves are generated from the topography that act to perturb the polar vortex through
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the interactions with large-scale Rossby waves. Since there are more obstructions such

as mountains and buildings present in the polar latitudes of the northern hemisphere,

more waves are generated that act to disrupt and break up the polar vortex struc-

ture. This is a reason for why sudden stratospheric warming occurs more frequently

in the northern hemisphere. In contrast, the polar vortex in the southern hemisphere

is not hampered by any such waves and therefore maintains its strength throughout

the Winter season. Hence, ozone depletion is more problematic above the Antarctic.

Furthermore, the wave activity can influence the spatial and temporal properties of the

polar vortex such that the ozone levels and its distribution which affect the atmospheric

circulations and climate (Ialongo et al. 2012).

The significant temperature differences between the hemispheres also plays a role

in the dynamics of the polar vortex. Air masses are considerably colder in the south-

ern hemisphere which creates conditions that a favorable for PSC formation. These

clouds form approximately below 195 K which is exhibited for five months on aver-

age in the southern hemisphere. In contrast, conditions capable of stratospheric cloud

formation are only sustained approximately for only two months in the northern hemi-

sphere (Waugh & Polvani 2010). Moreover, there is greater temperature variability in

the northern hemisphere compared to the southern hemisphere. Additionally, ozone

depletion is also dependent on the volume of air on which PSCs can form (Harris et al.

2010), and so a larger polar vortex has a greater potential to promote ozone loss.

As the polar vortices on Earth become unstable, their circular structures deform into

polygonal shapes which are typically ovals and dipoles. The splitting of the polar vortex

in the southern hemisphere into two separate vortices in 2002 is a phenomenal event

that was not expected since the southern structure is generally stable. The dynamics of

this rare event have been thoroughly studied with details presented in Charlton et al.

(2005), Grooß et al. (2005) and Newman & Nash (2005). This splitting demonstrated

similar patterns to those observed in the northern hemisphere when the polar vortex

experiences a major warming of the azimuthal wavenumber 2 type.

Unlike the polar vortices on Earth, extraterrestrial planets have sustained long-lived

structures exhibiting higher wavenumber polygonal shapes. Two well-known examples

are of Venus’ dipolar vortices and Saturn’s northern polar hexagonal configuration,

both of which are described in the next section.
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Figure 1.2: The changes in the structure of Venus’ south polar vortex over several days are

illustrated via infrared images. The left frame represents the well-known dipolar structure.

This figure is a reproduction, courtesy of Itziar Garate Lopez. Credit: ESA/VIRTIS/INAF-

IASF/Obs. de Paris-LESIA/Universidad del País Vasco (I. Garate Lopez).

1.2.2.2 Other atmospheres

The displayed features on Earth and Venus are vastly different, despite the similarity

in the size of the planets. For example, Venus rotates at a much slower rate and in

the opposite direction to Earth. In addition, its planetary rotation is slower than its

atmosphere (known as a super-rotating atmosphere), which is predominantly comprised

of carbon dioxide. Also, Venus does not experience any pronounced seasonal forcing

which largely plays a role in the formation of polar vortices on Earth.

Venus’ dipole in the northern hemisphere was first observed using ground-based ob-

servations in 1962 (Murray et al. 1963) with a spectral coverage of 8-14 µm. Spacecraft

observations were obtained a decade later on the Mariner 10 in 1974 and mapped by

Pioneer Venus Orbiter (Taylor et al. 1980) in the middle atmosphere. Later observa-

tions revealed a similar dipole-structure phenomenon at the south pole (Piccioni et al.

2007). Observations at a wavelength of 5.05 µm acquired in 2006 demonstrates the

dipoles being represented by an inverse “S” shape. The dipolar structures are enclosed

within a cold “collar” which is approximately 5000 km in diameter. This long-lived

structure is also reported to be at least 20 km high (Garate-Lopez et al. 2013) and

its internal structure is constantly varying on a daily time scale (Luz et al. 2011). Its

chaotic character is unlike the polar vortices on other planets such as Earth and Saturn

which are more stable. This variability is shown in figure 1.2. Although this structure

has been observed for many years, the phenomenon on Venus remains mysterious.

A polar vortex on Saturn during its Spring season was first observed in the 1980s

through images captured by the Voyager spacecraft (Godfrey 1988). The structure of

the vortex represents a hexagon at a latitude of 78◦ in the northern hemisphere. The
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(a) (b)

Figure 1.3: (a) The hexagonal polar vortex as seen on Saturn’s north pole during its Spring.

The hexagon border is seen at 77◦ north latitude and spans approximately 25, 000 km across

with each side being 13, 800 km long. A natural-color view is shown to illustrate what the

human eye would observe on Saturn. (b) A closeup false-color image the hexagon’s eye which

demonstrates the large storm systems. The eye is approximately 2, 000 km across with cloud

speeds as fast as 150 m/s. Credit: NASA/JPL-Caltech/Space Science Institute.

Cassini spacecraft which arrived in the Saturn system in 2004, rediscovered the hexago-

nal structure in 2007 (Baines et al. 2007, 2009) through thermal fields and demonstrated

that the structure is persistent throughout Saturn’s annual solar variation. This sug-

gests that the polar vortex is insensitive to seasonal changes. The straight sides of the

hexagon are approximately 13, 800 km in length which is larger than the diameter of

Earth. The emergence of Spring in recent times has enabled new amazing images to

be captured due to sunlight directed towards the north pole. Images of the hexago-

nal structure and its central eye are illustrated in figure 1.3. This long-lived structure

provides an appreciation of the grand scales at which polar vortices can exist.

In addition to the hexagonal structure, a large dark spot was observed south of the

hexagon in the images captured by the Voyager in 1980 and ground-based observations

in 1990 (Sanchez-Lavega et al. 1993). It was proposed by Allison et al. (1990) that

this vortex-like feature is responsible for the generation of a azimuthal wavenumber six

Rossby wave. However, imagery by the Cassini captured decades later have not been

able to identify the same dark spot. Thus, the validity of a planetary wave mechanism

being responsible for the hexagonal polar vortex is in doubt and the mechanism of

the hexagon remains uncertain. It is quite possible that the dark spot is completely
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(a) (b)

Figure 1.4: (a) A natural-color view of Titan revealing the position of its southern polar

vortex. (b) A closeup true color image of the south polar vortex. Credit: NASA/JPL-

Caltech/Space Science Institute.

unrelated to the formation and subsistence of the polar vortex.

Unlike the northern hemisphere which habitats a hexagonal configuration, the south-

ern hemisphere displays a hurricane-like eyewall structure. This structure was picked

up as a localised hot spot by the Keck I telescope in 2004 (Orton & Yanamandra-Fisher

2005) and was observed in 2006 by the Cassini spacecraft (Dyudina et al. 2008, 2009;

Fletcher et al. 2008). The observations revealed an hurricane eye-like structure sur-

rounded by two cloud walls that extend through the troposphere and stratosphere. Its

structure consists of features in common with terrestrial hurricanes and Venus’ polar

vortices in terms of its warm core, structure and cyclonic rotation. This is in contrast

with Earth’s seasonal polar vortices which has a low temperature core.

Unique to Saturn is its largest moon Titan which has recently exhibited a polar

vortex structure on its south pole during the Winter season. The south polar vortex

was observed during Cassini’s flyby of Titan on June 27, 2012 and is believed to be

a permanent structure. The thickness of the atmosphere on Titan is what makes it

unique and perhaps it is the reason for why it is able to sustain and produce these

vortical structures. The atmosphere rotates faster than the moon’s surface which is

analogous to Venus’ super-rotating atmosphere. These features in addition to its minor

temperature contrast between the poles and the equator displays similarities to Venus.

Further out in the solar system, a hot spot was observed at the south pole of
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Neptune. These cloud features were seen to split into two during 2007 via the Keck

near-infrared images. Orton et al. (2007) and Hammel & Lockwood (2007) analysed

the structures and suggested that the higher temperatures may be representative of a

vortex, similar to that of Venus’ polar vortices or Earth’s polar vortex during the event

of a sudden stratospheric warming. Closer links were drawn towards Venus’ south pole

which habitats a long-lived hot polar vortex.

It may be possible that polar vortices exist on other planets and moons. However,

at this point in time, there is insufficient observation and detection to suggest that

this phenomenon is more widespread. Well-known structures of Saturn’s ribbon at 47◦

and Jupiter’s Great Red Spot may be a related phenomenon, as are the dark spots on

the icy planets of Neptune and Uranus. Despite the vast interest in these planetary

scale structures, there is still a great deal that is not understood. Particularly, the

origin of these polar vortical shapes and the mechanisms which sustain these long-

lived structures remains unknown. It has been proposed that these wave-like structures

emerge from either a barotropic or baroclinic instability, or a complex interaction of

both (Montabone et al. 2009; Aguiar et al. 2010).

1.3 Governing parameters and flow approximations

Many atmospheric and oceanic motions are strongly influenced by Coriolis effects aris-

ing from the rotation of the planet. For an incompressible rotating flow, the Navier–

Stokes equations are described by

∂u

∂t
+ (u · ∇)u+ f × u = −∇P + ν∇2

u,

∇ · u = 0,
(1.1)

where u is the velocity field, t is time, P is the kinematic pressure, ν is the fluid

kinematic viscosity, and f is the Coriolis parameter. The Coriolis parameter is repre-

sentative of the background vorticity which is non-uniform due to the spherical shape

of the planet and its rotation. That is, the vertical component of the Coriolis parameter

varies with latitude θ, given by f = 2Ω sin θ, where Ω is the planetary rotation.

1.3.1 Governing parameters

The terms in the momentum equation (1.1) from left to right, describe the unsteady ac-

celeration, convective acceleration, Coriolis force, pressure gradient and viscous forces.

A scaling estimate between the convective acceleration and viscous forces to Coriolis
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forces yields two non-dimensional parameters given by

(u · ∇)u

f × u
∼ U2

L

1

fU
=

U

fL
= Ro, (1.2)

ν∇2
u

f × u
∼ νU

L2

1

fU
=

ν

fL2
= E , (1.3)

where L and U represent the length and velocity scales, respectively. The ratio between

the inertial and Coriolis forces is known as the Rossby number, Ro, and provides a

measure of rotational importance on the system. A small Rossby number indicates

that the flow is dominated by Coriolis effects. The Ekman number, E , indicates an

interaction between frictional forces and Coriolis forces within the system.

An additional parameter can be defined based on the ratio of the Rossby and Ekman

number. The resulting parameter is known as the Reynolds number, Re, given by

Ro
E

=
U

fL

fL2

ν
=
UL

ν
= Re, (1.4)

and describes the ratio of inertial to viscous forces.

1.3.2 Coriolis variation approximations

Flows that are characterised by a very small Ro and small E can be described by the

quasi-geostrophic potential vorticity equation (1.15), which expresses the conservation

of potential vorticity. The potential vorticity is defined as

q =
f + ζ

H(r)
, (1.5)

where f is the planetary vorticity, ζ is the relative vorticity and H is the fluid depth.

The planetary vorticity represents the vorticity associated with the background rota-

tion while the relative vorticity is associated with motions relative to the background

rotation. Thus for a constant fluid depth, the absolute vorticity, which is the addi-

tion of the planetary and relative vorticity, must remain constant. The change in either

vorticity component can be demonstrated by considering a column of fluid in the north-

ern hemisphere that has an associated potential vorticity. This column experiences a

larger Coriolis force when it is displaced northward and therefore the relative vorticity

is reduced to conserve potential vorticity. The reverse is true when the column moves

southward.

The simplest treatment of incorporating the Coriolis variation into the model is

by adopting a constant value for f (i.e. f = 2Ω). This is known as the f-plane
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approximation. In order to include latitudinal variation of the Coriolis parameter, a

Taylor expansion of f about a central latitude θ0 must be considered. To first order,

this approximation, known as the β-plane approximation, is given by

f ≃ f0 + βy, (1.6)

where f0 = 2Ω sin θ0, β is the topographic parameter and y is the northward coordinate.

The topographic parameter is related to the variation of the Coriolis parameter with

latitude, and is defined as

β =
2Ω

R
cos θ0, (1.7)

where R is the radius of the planet. Two special cases are developed at the extreme

latitudes of θ0 = 0 and θ0 = π/2. The former is known as the equatorial β-plane. It

is noted that for the latter case, the β parameter vanishes. Thus in order to capture

the variation of the Coriolis parameter in this case, the second order term in the Taylor

expansion of f is required. To second order with a reference latitude of θ0 = π/2, the

Coriolis parameter is given by

f ≃ f0 − γ(x2 + y2), (1.8)

where x and y are the eastward and northward coordinates, respectively, and γ = Ω/R2.

In a laboratory setting, a flat cylindrical rotating tank with a constant fluid depth

will exhibit a constant vertical component of background vorticity. By conservation of

potential vorticity (1.5), the relative vorticity will also be constant. These conditions

mimic the f-plane approximation. However, to achieve the dynamic similarity with that

of planets (i.e. a decrease in relative vorticity at higher latitudes) in a rotating tank

(constant f), the fluid depth must vary. Specifically, the fluid depth must increase with

increasing radius such that the relative vorticity of a fluid column translating towards

deeper regions (larger H) will decrease. By selecting the appropriate profile for the

topography, the appropriate variation of the Coriolis effect can be attained. For the

β-plane, the topography is linear whereas for the γ-plane the topography is parabolic.

This dynamic similarity has been exploited by many authors in various media including

air, water and plasma (van Heijst 1994; Sansón & van Heijst 2002; Rasmussen et al.

2006; Montabone et al. 2009; Aguiar et al. 2010).
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1.3.3 Geostrophic and quasi-geostrophic approximations

Large-scale atmospheric and oceanic flows are generally governed by Rossby and Ekman

numbers less than unity. Motions in the thin layer of the atmosphere are dominated by

horizontal motions where vertical motions may become negligible. Applying these ap-

proximations yield simplified models that can be used to accurately describe planetary

or oceanic fluid dynamics. Assuming that Ro ≪ 1 and E ≪ 1, the Navier–Stokes equa-

tions (1.1) can be simplified to the geostrophic approximation. That is, the convective

and viscous terms are neglected and the time derivative and Coriolis force balances the

pressure gradient. For time-independent flows, the balance of forces in the horizontal

direction reduces to

f × u = −∇p, (1.9)

where u(x, y, z) = (u, v, w) is the velocity field with u and v, the horizontal velocity

components, and w denoting the vertical velocity component and p is the pressure.

Equation 1.9 represents geostrophic balance and describes the geostrophic velocity in

terms of the pressure gradient and the Coriolis parameter. The accompanying vertical

force balance is given by the hydrostatic approximation,

ρg = −∂p
∂z
, (1.10)

where g represents the gravity. The prevailing horizontal motions cause the vertical ve-

locities to become negligible. In addition to the momentum equations, the conservation

of mass

∂ρ

∂t
+ (u · ∇)ρ+ w

∂ρ

∂z
= 0, (1.11)

forms the planetary geostrophic equations. Here, ρ is the fluid density. Appropri-

ate boundary conditions used together with these equations may provide accurate

geostrophic fluid motion such as large-scale oceanic systems.

Unfortunately, the geostrophic equations cannot describe all of the atmospheric and

oceanic flows since certain flows are not characterised by Rossby numbers that are suf-

ficiently small. That is, the inertial accelerations cannot be ignored and the flow is

no longer in geostrophic balance. Thus, the governing equations are required to de-

scribe ageostrophic effects, which is known as the quasi-geostrophic vorticity equation.

Assuming that the velocity field is comprised of a geostrophic and a ageostrophic com-

ponent, the horizontal velocities can be written as u = ug + ua and v = vg + va where
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subscripts ‘a’ and ‘g’ denote ageostrophic and geostrophic properties, respectively. To

first order (terms comparable to O(Ro)), the horizontal momentum equations after

neglecting lower order terms becomes

∂ug

∂t
+ (ug · ∇)ug + f0 × ua + βy × ug = 0. (1.12)

Taking the curl of the horizontal momentum equations yields the vorticity equation,

(

∂

∂t
+ u · ∇

)

ζ + βv = f0
∂w

∂z
, (1.13)

where ζ = ∂v/∂x−∂u/∂y is the relative vorticity. The absolute vorticity is comprised of

the planetary vorticity and the relative vorticity (ξ = f0+βy+ ζ). A streamfunction is

introduced such that u = −∂ψ/∂y and v = ∂ψ/∂x. The ageostrophic vertical velocity

is given by

wa = − f0
N2

(

∂

∂t
+ ug · ∇

)

∂ψ

∂z
, (1.14)

where N is the buoyancy frequency. Noting that βvg = ug ·∇(f0+βy) and ζ = ∇2φ and

combining it with equation 1.14, the horizontal momentum equation (1.12) becomes the

quasi-geostrophic potential vorticity equation defined as

(

∂

∂t
+ u · ∇

){

∇2ψ + f0 + βy +
∂

∂z

(

f0
N2

∂ψ

∂z

)}

= 0. (1.15)

The quantity inside the braces is known as the quasi-geostrophic potential vorticity

which is comprised of the relative vorticity, planetary vorticity and stratification. This

is a materially conserved quantity in the absence of friction and diabatic heating.

1.3.3.1 Taylor–Proudman theorem

An important characteristic arising from geostrophic balance (1.9) is that the flow may

become two-dimensional in planes perpendicular to the axis of rotation. This can be

demonstrated by taking the curl of equation 1.9 which assumed incompressible flow.

This is represented by

∇× (f × u) = −∇×∇p. (1.16)

Recognising that the curl of the pressure gradient is identically zero (since the pressure

gradient is a scalar), the expansion of equation 1.16 yields

(∇ · u)f − (f · ∇)u+ (u · ∇)f − (∇ · f)u = 0. (1.17)

15



The spatial derivatives of the Coriolis parameter are zero as f is not a function of

position. Rather, f has a single component that is parallel to the axis of rotation such

that

f = 2Ω = (0, 0, 2Ω), (1.18)

where Ω is a scalar. Paired with the continuity result of an incompressible flow (∇·u =

0), the resulting equation is given by

(2Ω · ∇)u = 2Ω
∂u

∂z
= 0. (1.19)

Equivalently, the result is ∂u/∂z = 0 which implies that the velocity field u is indepen-

dent of z, which is the direction parallel to the axis of rotation. This result is known

as the Taylor–Proudman theorem after Joseph Proudman who derived this theoretical

result in 1915 and Sir Geoffrey Ingram Taylor who demonstrated it experimentally.

For a rotating system with solid boundaries perpendicular to the axis of rotation, the

axial derivatives of the radial and azimuthal velocities are zero. Furthermore, the zero

axial velocity present at the impenetrable boundary is enforced throughout the domain.

Therefore, the flow can be described by two-dimensional motion in planes perpendicular

to the rotation axis well away from the boundaries. It should be noted that details of the

boundaries have not been specified here. That is, irrespective of the boundary profile

(e.g. f-plane, β-plane or γ-plane), the fluid motion remains independent along the axis

of rotation rather than the common misconception of fluid columns being perpendicular

to the local normal. The theorem is invalid in the proximity of the boundaries due to

the presence of boundary layers which are viscous. Boundary and shear layers are

described in the next section.

1.4 Boundary and shear layers

Systems with viscous fluids are able to develop boundary layers. As the name suggests,

these layers form on the boundaries of the system and serve as a transitional zone in

smoothing out velocities from the boundary to the surrounding flow and to transport

mass. An intuitive example of this is of a flow over a flat plate where the boundary

layer develops at the leading edge and continues to grow downstream. However, these

layers do not always need to be attached to the boundary. Such layers are known as

free or detached shear layers and can exist in rotating flows.
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Figure 1.5: Illustration of the Stewartson and Ekman layers in this differential-disk rotating

configuration. The tank rotates at a rate of Ω while the disks rotate at Ω+ω. The thickness

of each layer is indicated and scaled against the Ekman number, E . This figure is reproduced

from Früh & Read (1999) with permission from Dr. Wolf-Gerrit Früh and the Cambridge

University Press.

A shear layer can be produced through mechanical forcing by imparting differential

velocities on parts of a stationary or rotating flow. An example of this is given by

two concentric spheres which rotate about the same axis with slightly differing angular

velocities. This configuration was first considered by Proudman (1956). By superim-

posing a small angular velocity perturbation onto one of the spheres, three different

regions of the flow can be observed. The most important of which is a cylindrical shear

layer which circumscribes the inner sphere. From the balance of fluid entering and

leaving the boundary layers on the surfaces, it was inferred that a return of fluid may

occur in the shear layer. Proudman (1956) was unable to determine the thickness of the

shear layer but proposed that the thickness is of O(Re−1/4) where Re is the Reynolds

number.

Stewartson (1957) embarked on studying a simpler system to determine the thick-

ness of the shear layer. The configuration considered was comprised of two coaxial disks

rotating differentially to rotating plates. An illustration of the configuration considered

is shown in figure 1.5. The two disks rotate in the same orientation at a different angular

velocity compared to the tank walls. A vertical shear layer is produced to smooth out

the discontinuity in angular velocity at the disk-tank interface similar to that produced

in the concentric spheres configuration. The shear layer was found to be a nesting of

two vertical layers. The thick outer layer had a thickness of O(Re−1/4) which func-
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tioned to smooth out the discontinuity in angular velocity across the layer. The thin

layer has a thickness of O(Re−1/3) which is embedded inside the Re−1/4 layer. The

purpose of the thinner layer is to complete the meridional circulation of the fluid in the

layer. The thickness scaling of these Stewartson layers are often represented through

the Ekman number, which is proportional to the reciprocal of Re. Hence, the layers are

often referred to as the E 1/3 and E 1/4 layers, respectively. In addition to these shear

layers, boundary layers are formed at the top and bottom horizontal boundaries which

are known as Ekman layers. These have thicknesses which scale with E 1/2.

The Stewartson and Ekman layers are also present in source-sink configurations

where fluid is continuously pumped into and withdrawn from the system. These layers

arise primarily due to the mass transport of fluid required from the source port to the

sink port. According to the Taylor–Proudman theorem, which was explained in detail in

§ 1.3.3.1, the vertical motions are inhibited due to the dominant rotation. Thus the only

regions where vertical transport can occur is in the vertical shear layers. This theory

has been complimented by several investigations of source-sink flow in a rotating fluid

including that of Hide (1968). That particular study revealed that the injected fluid

is only transported through the vertical Stewartson layers and the horizontal Ekman

layers for small flux values (small Ro). An example route from the source entry to the

sink exit and the shear layers is illustrated in figure 1.6.

It should be noted that the Stewartson E 1/4 layer is a depth-independent structure

while the E 1/3 layer is not. Thus, the quasi-geostrophic vorticity equation (1.15) cannot

describe the structure of the thin E 1/3 layer. The significance of the E 1/3 layer is still

not completely known. Indeed in many differential-disk rotation set-ups, both the

E 1/3 and E 1/4 Stewartson layers exist. However, it is believed that there are several

conditions and configurations which can eliminate the E 1/4 layer. For the case of

counter-rotating disks (Stewartson 1957; Baker 1967), it has been found that the E 1/3

alone is enough to sustain the shear. This is in contrast to the requirement of both layers

in the co-rotating case. The argument behind this is due to the zero depth-averaged

azimuthal velocity in the counter-rotating case. Therefore, there is no discontinuity at

the split-disk radius and no need for the E 1/4 layer. The counter-rotating experiments

by Baker (1967) found that the vertical shear-layer thickness scales with E 0.4. It was

claimed that this result is consistent with the theoretical result of E 1/3. The attainment

of a thicker shear-layer scaling compared to theoretical predictions are not unusual in
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Figure 1.6: Meridional semi-plane of an example rotating source sink configuration. Trans-

port and direction of flow are illustrated by the arrows in the shear and boundary layers.

The horizontal and vertical shear layers are the Ekman and Stewartson layers, respectively.

The scaling of each layer is the same as that shown in figure 1.5. This figure is adapted from

Matsuda et al. (1975).

experiments as viscosity acts to broaden the shear layer. Also, the measurements are

limited by the visualisation techniques and the classification of the shear-layer edge.

The depth-averaged azimuthal velocity value will differ between different configura-

tions. This may alter which shear layer is of primary importance but also may introduce

additional shear layers. For example, a differentially-rotating spherical system has an

additional E 2/7 Stewartson layer and a E 2/5 thickening of the Ekman layer around

the equator (Stewartson 1966). It may be that these additional shear layers have a

significant effect on the stability of the flow. In fact, in a source-sink system, the E 1/4

is independent on the fluid injection and withdrawal method whereas there is a notable

dependence with the E 1/3 layer (Conlisk & Walker 1981; van Heijst 1984). Thus, the

knowledge of individual shear layers is significant, particularly for numerical investi-

gations, as the quasi-geostrophic approximation does not model any depth-dependent

structures.

1.5 Barotropic instability

The following section provides equations and criteria commonly used in studying baro-

tropic instability for both viscid and inviscid flows. Many prior studies have investigated
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inviscid flows due to the simplicity introduced by neglecting viscous dissipation.

1.5.1 Inviscid flows

A time-dependent inviscid barotropic flow influenced by rotation in two-dimensional

space is described by
∂u

∂t
+ (u · ∇)u+ f × u = −∇P,

∇ · u = 0.
(1.20)

Decomposing the flow variables of velocity and pressure into a mean (u, v, p) and per-

turbation components (u′, v′, p′) yields

u = u(y) + u′(x, y, t),
v = v′(x, y, t),
p = p(y) + p′(x, y, t),

(1.21)

and linearising the governing equations acquires

∂u′

∂t
+ u

∂u′

∂x
+ v′

du

dy
− (f0 + βy)v′ = −1

ρ

∂p′

∂x
,

∂v′

∂t
+ u

∂v′

∂x
+ (f0 + βy)u+ (f0 + βy)u′ = −1

ρ

∂p′

∂y
,

∂u′

∂x
+
∂v′

∂y
= 0.

(1.22)

The products of the perturbation have been neglected due to their negligible contribu-

tions. The perturbation velocities are related to the streamfunction via u′ = −∂ψ′/∂y

and v′ = ∂ψ′/∂x, which allows the horizontal momentum equations to combine into a

single equation
(

∂

∂t
+ u

∂

∂x

)

∇2ψ′ +

(

β − d2u

dy2

)

∂ψ′

∂x
. (1.23)

Taking the normal mode approach, the streamfunction takes the form

ψ′(x, y, t) = φ(y)eik(x−ct), (1.24)

where φ is the wave amplitude, k is the wavenumber and c may be complex with its

real component representing the propagation speed. This form transforms equation 1.23

into the second-order ordinary differential equation

d2φ

dy2
−
(

k2φ+
β − d2u

dy2

u− c

)

φ = 0. (1.25)

Equation 1.25 is known as the Rayleigh–Kuo equation. The addition of Coriolis varia-

tion via the β parameter by Kuo (1949) produces a generalised expression to an earlier

equation developed by Rayleigh (1880). As a result, equating β = 0 in the Rayleigh–

Kuo equation attains Rayleigh’s equation. Likewise, the Orr–Sommerfeld equation,
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which includes the effects of viscosity, is another generalisation of the Rayleigh equa-

tion, which describes linear two-dimensional instabilities in a viscous parallel flow such

as pipe flow (e.g. Meksyn & Stuart 1951; Niino & Misawa 1984; Drazin & Reid 2004).

The Orr–Sommerfeld equation is described by

(u− c)

(

d2

dy2
− k2

)

φ− d2u

dy2
= − i

kRe

(

d2

dy2
− k2

)2

φ, (1.26)

where Re is the Reynolds number.

Assuming that the flow is bounded between two walls (y1, y2) in which there is no

permeation (v′ = 0) results in a zero streamfunction. Therefore, the wave amplitude

at the boundaries are φ(y1) = φ(y2) = 0. The boundary conditions coupled with equa-

tion 1.25 represents an eigenvalue problem. A property of the Rayleigh–Kuo equation

is that if c = cr+ici is an complex eigenvalue, then so is its complex conjugate c∗. Thus

complex eigenvalues come in pairs. This implies that if any complex eigenvalue can be

found then the base flow must be unstable as an imaginary component of ci > 0 must

exist. This is demonstrated in the streamfunction ψ = φeik(x−crt)ekcit via the complex

expansion of c.

Multiplying equation 1.25 by the wave amplitude conjugate φ∗ and integrating over

the domain (y1, y2) produces
∫

y2

y1

[

∣

∣

∣

∣

dφ

dy

∣

∣

∣

∣

2

+ k2|φ|2
]

dy +

∫

y2

y1

β − d2u
dy2

u− c
|φ|2dy = 0. (1.27)

A more practical form can be achieved by multiplying the second integral of equa-

tion 1.27 by (u− c∗)/(u− c∗), and upon expansion obtains the following expression
∫

y2

y1

[

∣

∣

∣

∣

dφ

dy

∣

∣

∣

∣

2

+ k2|φ|2
]

dy +

∫

y2

y1

(β − d2u
dy2 )(u− cr)

|u− c|2
|φ|2dy

+ ici

∫

y2

y1

β − d2u
dy2

|u− c|2
|φ|2dy = 0.

(1.28)

There are two possible scenarios to satisfy the imaginary term of equation 1.28. It is

required that either ci vanishes or the integral does. However, ci 6= 0 if the flow is

unstable as stated previously. Therefore only the latter option is viable for an unstable

flow. Since the magnitudes of u− c and φ are positive, the term

β − d2u

dy2
(1.29)

must change sign somewhere within the domain (y1, y2) for the imaginary term to be

satisfied. This condition is known as the Rayleigh–Kuo condition and again is a gen-
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eralised condition of Rayleigh’s inflexion point theorem discovered earlier by Rayleigh

(1880); that is, d2u/dy2 must change sign in the domain to permit instability.

These criteria are a physical representation of the gradient of absolute vortic-

ity which is comprised of the planetary vorticity (Coriolis parameter) and the rela-

tive vorticity. In cylindrical coordinates, the vorticity in the r-θ plane is given by

1/r[∂(rv)/∂r − ∂u/∂θ], where u and v represent the radial and azimuthal velocity

components respectively. Therefore an equivalent instability criterion in cylindrical

coordinates for a flow governed only by v(r) is that

d2v

dr2
+

1

r

dv

dr
− v

r2
− df

dr
= 0, (1.30)

be satisfied. It must be noted that the absolute vorticity changing sign is a necessary but

not sufficient condition. This was demonstrated by Drazin & Howard (1966) through

an analysis using a u = sin(y) velocity profile. Additionally, a stricter criterion based

on Rayleigh’s criterion was derived by Fjørtoft (1950) (see Drazin 2002; Schmid &

Henningson 2001). The necessary condition for instability follows u′′(u − us) < 0

somewhere in the flow, where us = u(zs) and zs is a point in the flow where u′′(zs) = 0.

It should be noted that these criteria are only valid for a barotropic inviscid flow.

The development of linear stability theory for inviscid plane-parallel shear flows by

Rayleigh (1880) is able to describe the initial structure of the instability in inflectional

shear flows. However, it failed when applied to flows such as Poiseuille flow due to the

viscous processes which are involved and necessary for the initial instability of certain

flows. Hence, a theoretical criterion (equation 1.26) was formulated by Orr (1907) and

Sommerfeld in 1908 (Drazin & Reid 2004) which incorporates viscous effects.

1.5.2 Viscid and frictional effects

The development of a more complete theory for the linear stability of barotropic flow

was achieved by incorporating the effects of both the Ekman friction and internal

viscous diffusion. The Ekman friction is associated with the friction within the Ekman

boundary layers. Prior studies had considered either inviscid flow, Ekman friction only

or internal diffusion only (see Niino & Misawa (1984) for references). As concluded by

Niino & Misawa (1984), the effects of both factors are significant and alter the critical

Reynolds number and corresponding azimuthal wavenumbers. Thus prior studies which

had not considered both effects have encountered quantitative inconsistencies. A brief
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Figure 1.7: Idealised configuration of the differential experiment used for theoretical con-

sideration. This figure is reproduced from Niino & Misawa (1984) with permission from the

c© American Meteorological Society.

description and derivation of the basic flow stability is described in this section. A more

complete walkthrough can be found in Niino & Misawa (1984).

The theoretical model developed by Niino & Misawa (1984) considers a flat cylin-

drical container of depth H. The upper boundary located at z = H and the bottom

boundary located at z = 0 rotate at an angular rate of Ω and Ω ± ω, respectively.

For radii less than the shear zone radius R, the differential rotation imposed is in the

same direction as that of the lid while beyond R, the differential rotation imposed is

in the opposite direction. Thus, a shear layer is developed via the angular discon-

tinuity at r = R. A schematic of the idealised configuration is shown in figure 1.7.

Given that ω ≪ Ω (small Ro), the flow field can be described by the non-dimensional

quasi-geostrophic vorticity equation written as

∂

∂t
∇2ψ +

Re
r

(

∂ψ

∂θ

∂

∂r
∇2ψ − ∂ψ

∂r

∂

∂θ
∇2ψ

)

+∇2ψ +
1

2r

∂

∂r
(rUB) = ∇4ψ (1.31)

where ψ is the streamfunction in the horizontal plane and UB is the non-dimensional

tangential velocity at the lower boundary. The terms ∇2ψ and ∇4ψ represent the

Ekman friction and internal diffusion effects, respectively. The variables have been

non-dimensionalised as r′ = Lr, z′ = Hz, U ′
B = UUB , ψ′ = ULψ, ∆Ω′ = (ω/2)∆Ω and

t′ = E−1/2/(2Ω)t, where the primes denote dimensional quantities. Here, L and U are

23



the characteristic length and velocity of the basic flow, respectively, defined as

L =

(

E
4

)1/4

H and U =
ωR

2
. (1.32)

The Reynolds number is defined as Re = UE 1/2/(2ΩL) = UL/ν, which was reported

as the only parameter required to determine the stability of this system if the ratio of

the shear zone radius to the characteristic length is asymptotically large, denoted by

γ = R/L. The tangential velocity boundary condition imposed at the bottom boundary

in producing a shear layer is given by

UB =















−2r

γ
for r < γ

2r

γ
for r < γ

(1.33)

while for a jet, the velocity boundary condition is given by

UB =















0 for r < γ − α

−2r

γ
for |r − γ| < α

0 for r > γ + α

(1.34)

where 2α is the dimensionless width of the jet (gap between the outer edges of the two

disks). For steady and axisymmetric base flows, the governing equation becomes

∇2ψ +
1

2r

∂

∂r
(rUB) = ∇4ψ. (1.35)

Integration of equation 1.35 with respect to r yields

v =

{

−ey + 1 + O(y/γ) for y < 0

e−y − 1 + O(y/γ) for y > 0
(1.36)

where v is the tangential velocity of the basic flow and y = r− γ. This is only true if γ

is sufficiently large. If the shear zone layer is small in comparison to the characteristic

length, the curvature of the geometry becomes significant and the basic flow field no

longer satisfies equation 1.36.

As these velocity profiles satisfy the inviscid Rayleigh–Kuo criterion at y = 0, it is

expected that these flows are unstable to barotropic instabilities under sufficient forcing

conditions. An added perturbation to the streamfunction substituted into equation 1.31

and neglecting second-order terms (i.e. O(ψ′2)) leads to

∂

∂t
∇2ψ′ +

Re
r

(

v
∂

∂θ
∇2ψ′ − ∂

∂r

[

1

r

d

dr
(vr)

]

∂ψ′

∂θ

)

+∇2ψ′ = ∇4ψ′, (1.37)

where ψ′ is the perturbation added to the streamfunction variable.
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By following a normal mode approach similar to that of the previous section for

inviscid flows and assuming a sufficiently large γ, equation 1.37 can be simplified to

[ikRe(v − c) + 1]

(

d2φ

dy2
− k2φ

)

− ikRe
dv

dy2
φ =

(

d2

dy2
− k2

)2

φ, (1.38)

where φ is the wave amplitude and k is the wavenumber. In fact, this equation is the

Orr–Sommerfeld equation (1.26) with the added Ekman friction term. These equations

are only valid for large γ; further details and derivations can be found in Niino &

Misawa (1984) regarding smaller γ. The results of their study are detailed in the next

chapter (§ 2.4.2).

1.6 Centrifugal instability

Centrifugal instabilities are another important type of hydrodynamic instability that

arise in swirling flows. Similar to parallel flows, the classical swirling flow is the circular

Couette flow. Rayleigh (1916) was the first to consider the stability of swirling flows

to axisymmetric infinitesimal perturbations. It was found that a pure rotational flow

having a velocity field V (r) that is solely azimuthal and varies only in r, is unstable to

infinitesimal axisymmetric disturbances if

dκ2

dr
> 0, (1.39)

for every r in the domain, where κ = rV is the swirl function or circulation. That

is, the circulation of the flow should not decrease as r increases away from the axis

of rotation. Rayleigh derived this criterion through an energy argument which will be

described via the example given by Drazin (2002). Consider two fluid rings of the same

volume in an inviscid flow at different radii (r1 and r2). Each ring possesses an angular

momentum per unit mass given by

H = rV (r). (1.40)

By Kelvin’s circulation theorem, the circulation Γ = 2πH, will be conserved when the

ring is perturbed. Therefore, H is conserved. The total kinetic energy per unit volume

is
1

2
ρV (r1)

2 +
1

2
ρV (r2)

2 =
1

2
ρ

(

H1
2

r12
+
H2

2

r22

)

. (1.41)

The resulting kinetic energy after the interchange of the two fluid rings is given by

1

2
ρ

(

H1
2

r22
+
H2

2

r12

)

. (1.42)
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The difference is therefore proportional to

(H2
2 −H1

2)

(

1

r12
− 1

r22

)

. (1.43)

Taking r2 > r1 without loss of generality, the interchange can only release energy and

hence generate instability if H1
2 > H2

2. That is, instability can occur only if

dH2

dr
< 0, (1.44)

somewhere in the flow and is stable if

dH2

dr
> 0, (1.45)

is met for all r in the domain. Hence, a rotating, inviscid fluid described only by az-

imuthal flow is stable with respect to axisymmetric perturbations if the square of the

circulation increases monotonically with radius. This is Rayleigh’s circulation criterion

for instability. This criterion was later strengthened by Synge (1933), who mathemati-

cally determined that the Rayleigh’s criterion for stability is in fact sufficient (Drazin

2002; Billant et al. 2005). The stability condition is given by

Φ = r−3dκ
2

dr
> 0, (1.46)

where Φ is the Rayleigh’s discriminant. Note that equation 1.46 is equivalent to equa-

tion 1.45, in that the square of the circulation should nowhere decrease as the radius

increases. A development of Synge’s proof can be found in Green (1995). It should be

noted that Rayleigh’s argument considered only axisymmetric perturbations in inviscid

flows. The flow may still be unstable to non-axisymmetric perturbations even if equa-

tion 1.46 is satisfied. A discontinuous velocity profile which inhibits instability via a

Kelvin–Helmholtz instability mechanism is such an example (Drazin 2002).

The circulation theorem was extended by Kloosterziel & van Heijst (1991) to a

swirling flow imposed on a rotating fluid. That is, the azimuthal velocity consists of a

background rotation Ωr and a vortex velocity field vθ(r), and the vorticity is given by

the combination of the background vorticity f = 2Ω and the relative fluid vorticity ωz.

For a vortex whose centre remains on the axis of rotation, the extended criterion can be

generalised to the possibility of an instability generated if the product of the absolute

velocity and absolute vorticity is negative anywhere in the domain. In mathematical

form, the resulting criterion is

(vθ +Ωr)(ωz + 2Ω) < 0. (1.47)
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The general circulation theorem described is limited in that the azimuthal flow is only

a function of radius. The range of the domain for which equation 1.47 is true serves as

a guideline for the regions of possible instability. Although the criterion is restricted

to axisymmetric perturbations, studies have found it as a useful guide even for three-

dimensional disturbances (see Carnevale et al. 1997; Smyth & Peltier 1994; van Heijst

& Clercx 2009).

The effect of axial flow in addition to swirling flow was investigated by Howard &

Gupta (1962). This extension derived a sufficient condition for linear stability, given

by

J =
Φ

(

du
dr

)2 >
1

4
, (1.48)

where u represents the axial velocity component and J is known as the Richardson

number. Violation of this criterion does not guarantee instability but it is necessary.

This is a generalised condition to Rayleigh’s criterion. That is, the Richardson number

criterion of a zero or constant axial component of velocity is equivalent to Rayleigh’s

circulation criterion (equation 1.46).

Linear stability theory of non-axisymmetric perturbations on columnar vortices have

been investigated. The most notable study stems from Leibovich & Stewartson (1983)

who considered the stability of inviscid columnar vortex flows involving azimuthal and

axial shear in unbounded domains to three-dimensional perturbations. Through the

use of asymptotic theory, they were able to derive a sufficient condition for instability

given by

w
dΩ

dr

[

dΩ

dr

dΓ

dr
+

(

du

dr

)2
]

< 0, (1.49)

at any point in the flow, where Ω represents the angular velocity, Γ = rw, with w the

azimuthal velocity and u the axial velocity. Also, it is emphasised that the condition is

only sufficient and not necessary. Their results were applied to a trailing vortex flow

and claim to be comparable to the linear stability analyses carried out by Lessen et al.

(1974) and the extended studies by Duck & Foster (1980).

1.7 Vortex identification and eduction methods

Vortices are abundant in the field of fluid mechanics due to the rotational nature of

many practical and existing natural flows. Intuitive examples include tornadoes, hurri-

canes, Kelvin–Helmholtz vortex rolls, Jupiter’s Great Red Spot and wing-tip vortices.
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The vortices are generated from various flow instabilities such as those governed by

shear, centrifugal and baroclinic processes. The gathered interest in these flows arise

from the importance in the roles that the vortical configurations play. These motions

enable kinetic energy production, mixing, diffusion and the transport of mass, heat

and momentum. Achieving an understanding of how these structures are generated,

subsequently evolve and interact is most desired.

The familiar examples previously stated are relatively easily recognised, not due

solely to their spatial scales, but rather their distinctive rotating cores. This view

contributes to the general perception that a vortex is described by a region of circulating

fluid. However, not all rotating motions can be categorised as vortices. An accepted

view of what constitutes a vortex is still in much debate with studies working towards

a desired universal definition. Despite the difficulty in obtaining a vortex definition, it

is clear that at the basic level the word “vortex” is accompanied by thoughts of rotating

characteristics.

In order to accurately study flows characterised by vortical features, the vortices

within the flow must first be identified and visualised. However, the dual combination of

the importance of vortex dynamics and the inconsistent definitions of a vortex presents

complexity in visualising and locating vortices. Thus various criteria and techniques

have been developed by many authors with considerable progress, though a definitive

solution for vortex visualisation still remains elusive. A background into several com-

mon methods are described in the following sections as it is important to understand

and correctly interpret results from any numerical models. Moreover, several of these

methods have been used to advance the research in this thesis.

1.7.1 Intuitive definitions

Jeong & Hussain (1995) recount several techniques for visualising vortices and their

inadequacies which they denote as intuitive. These techniques are based on pressure,

velocity and vorticity, which are easily calculated or measured. The intuitive approaches

are briefly reviewed below.

1.7.1.1 Pressure minimum

For a steady inviscid planar two-dimensional flow, a rotating flow generally exhibits

minimum pressure at the axis of circulating motion. This low pressure arises from

the balance of centrifugal force and radial pressure gradient in a steady inviscid planar
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flow. However, unsteady, three-dimensional viscous flows cannot adopt the low pressure

approach as pressure may have a minimum in all directions at a point or in a plane

perpendicular to the vortex axis. Also, if multiple vortices co-exist within the flow, it

would be difficult to educe all the vortices if their respective pressure minima differed.

This issue was demonstrated by Robinson (1991) where no appropriate pressure level

exists in identifying all vortices within a turbulent boundary layer. Importantly, the

pressure representation method is inadequate as low pressure does not necessarily imply

a swirling structure and vice versa.

1.7.1.2 Streamlines and pathlines

A vortical structure can be identified and represented by closed or spiraling stream-

lines and pathlines in certain flows. This detection method was proposed by Lugt

(1979). However, this approach is dependent on the frame of reference used. Indeed,

this approach is problematic with the existence of multiple swirling structures as these

structures may undergo nonlinear processes. The characterisation via pathlines intro-

duces a vulnerable inadequacy as the production of these circular lines requires that

a particle complete a full revolution around the vortex centre. It is clear that this is

not always evident, particularly in unsteady and transitionary flows. Jeong & Hussain

(1995) illustrate the varying streamlines resulting from a Lamb vortex when viewed

from different reference frames. Also, it is stated that multiple vortices travelling at

different velocities will increase the complication in locating and displaying them.

1.7.1.3 Vorticity magnitude

A commonly utilised intuitive measure to educe vortex cores is through the illustration

of the vorticity magnitude, defined as ω = |∇ × u|. In specific cases, vortex structures

have been identified by regions of high vorticity. Hence, regions with vorticity above

a user selected threshold of the vorticity magnitude correspond to vortical structures.

The arbitrariness of the chosen threshold poses similar problems present with the low

pressure definition. That is, the existence of multiple vortices introduces issues in

identifying all vortical structures within the flow. Also, indications of vorticity are

ambiguous as there is no distinction between rotation due to pure shearing motions

and rotation due to swirling motions. Thus, a combination of background shear and

vortical activity with the same order of magnitude will evidently mask actual vortex

structures. According to Jeong & Hussain (1995), Lugt (1979) has shown that the
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maximum vorticity magnitude in planar wall-bounded flows only occurs at the wall

surface for where coincidence of vortex cores cannot exist.

1.7.1.4 Discussion of intuitive methods

For simple flows with a priori knowledge of the motions, these intuitive techniques

may be adequate in providing required insight if used appropriately. Indications of

vortical structures are also made possible from using a combination of these intuitive

identification and visualisation techniques. Complementary results may strongly signify

the existence of a vortex and their location. In short, employing any of the intuitive

methods described requires proper attention.

Issues and counter-examples with the definitions described above have been effec-

tively exposed by authors such as Jeong & Hussain (1995) and Cucitore et al. (1999).

In response to the inadequacies, Jeong & Hussain (1995) suggest that a vortex core

should satisfy the following requirements:

1. A vortex core must have net vorticity and therefore net circulation. Thus, the

potential flow regions are excluded from vortex cores and a zero cross-section is

a potential vortex.

2. The geometry of the identified vortex core should be Galilean invariant.

Galilean invariance implies that the dynamics remain the same regardless of the inertial

frame used. It is noted that the three intuitive techniques described fails to satisfy at

least one of these two conditions. Thus, definitions based on the Galilean invariant

velocity-gradient tensor have been proposed by numerous authors. These methods are

presented in the next section.

1.7.2 Velocity-gradient tensor based definitions

Advancements in vortex identification have been driven largely through the desire to

understand turbulent motions. Turbulence has been recognised as spatially coherent

and temporally evolving vortical motions, rather than just random noise. The majority

of the vortex identification, visualisation, criteria and definitions used to investigate

such flows have been developed over the last two decades. An overview list of studies

has been conveniently tabulated in Kolář (2011) with further listings found in Jiang

et al. (2005). A large number of these proposed methods have been derived mathemat-

ically and usually take advantage of the velocity-gradient tensor ∇u. In determining
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vortex structures and their definition requirements, Kolář (2011) has summarised the

requirements which include validity for compressible flows, determination of the swirl

orientation, Galilean invariance and vortex-axis location. Despite the acknowledgement

of these requirements, the definitions proposed have been unable to satisfy all the re-

quirements. Thus, no single study or definition has been proven to be definitive, though

it has been noted that the use of multiple methods may be effective (Stegmaier et al.

2005). Although existing definitions do not grant a universal solution, they do have

the potential of providing useful insight. Indeed, as noted by Chong et al. (1990), there

may never be a definition of a vortex that will admit universal acceptance.

The most popularly used criteria, namely the λ2 (Jeong & Hussain 1995), ∆ (Chong

et al. 1990) and Q criterion (Hunt et al. 1988), are region-type as opposed to line-type

methods. These criteria are founded on the properties of the velocity-gradient tensor

and are briefly described in the following sections.

1.7.2.1 λ2 criterion

The λ2 criterion was developed by Jeong & Hussain (1995) on the basis that a low

pressure represents a vortex core. They circumvent the inadequacies of the intuitive

low pressure definition previously described, by considering the Navier–Stokes equations

without the unsteady irrotational straining and viscous terms. Exclusion of these terms

will prevent a pressure minimum arising in the absence of a vortex and retain a pressure

minimum within the vortex.

The velocity-gradient tensor ∇u is computed and decomposed into a symmetric

part S and antisymmetric part Ω, defined by

∇u = S+Ω, (1.50a)

Si,j =
1

2
(ui,j + uj,i) , (1.50b)

Ωi,j =
1

2
(ui,j − uj,i) . (1.50c)

The subscript indices i and j represent the positional components and the notation ui,j

denotes ui differentiated with respect to the jth direction. Equivalently, ui,j = dui/dxj

where x is the position vector.

Physically, S and Ω represent the strain-rate tensor and rotation tensor, respec-

tively. A vortex is defined as a connected fluid region with two negative eigenvalues of

(S2 + Ω
2). Since, (S2 +Ω

2) is symmetric, it only has three real eigenvalues labelled
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as λ1, λ2 and λ3. The classification of these eigenvalues is related to their magnitudes

such that λ1 > λ2 > λ3. A presence of a vortex core requires that two of the eigenvalues

is negative. Thus, the definition of the vortex identification is equivalent to λ2 < 0.

Hence, a field of negative λ2 values is used in visualising the vortical structures in the

flow. A restriction with the λ2 definition is that the flow considered is incompressible.

1.7.2.2 Q criterion

Hunt et al. (1988) developed the Q criterion which identifies a vortex as connected fluid

regions with the second positive invariant of ∇u. For incompressible flows, the second

invariant Q is given by

Q =
1

2

(

u2i,i + ui,juj,i
)

= −1

2
ui,juj,i =

1

2

(

‖Ω‖2 − ‖S‖2
)

. (1.51)

Thus, positive Q values indicate that the vorticity magnitude dominates the strain-rate

magnitude. Therefore this situation guarantees that no vortex will be incorrectly educed

from shear flows. However, it has been noted that Q > 0 does not necessarily imply

a region of minimum pressure. Hence, Hunt et al. (1988) also proposed an additional

requirement such that the pressure in the region should be lower than the ambient

pressure, if a vortical structure is to be identified.

In many cases, it has been shown that the vortex identification results from the Q

and λ2 criterion are similar far from a wall (e.g. a Bödewadt vortex (Cucitore et al.

1999)). The similarity arises from both definitions describing a balance between the

rotation and deformation rates of a fluid element; the Q criterion compares global

values whereas the λ2 criterion calculates the balance in the plane of interest. However

great differences between the definitions are illustrated when vortices with strong core

dynamics exists. In this case, the Q criterion becomes erroneous.

1.7.2.3 ∆ and λci criteria

The ∆ criterion was proposed by Chong et al. (1990), which identifies a vortex as

regions in which the eigenvalues of ∇u are complex (a pair of complex conjugates).

In a local reference frame moving with a fluid particle, the eigenvalues determine the

streamline pattern. In particular, a pair of complex conjugate eigenvalues represents

streamlines that are closed or spiralling. The eigenvalues λ of ∇u satisfies the charac-

teristic equation

λ3 + Pλ2 +Qλ+R = 0, (1.52)
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where P , Q and R are the three invariants of ∇u. The Q invariant (second invariant)

has been previously defined (§ 1.7.2.2) while P (first invariant) and R (third invariant)

are given by P = −∇ · u and R = −Det(∇u), respectively. For incompressible flows

where P = 0, the resulting discriminant for equation 1.52 is given by

∆ =

(

1

2
R

)2

+

(

1

3
Q

)3

. (1.53)

Complex eigenvalues exist when the discriminant is positive (∆ > 0).

An extension of this definition has been developed by Zhou et al. (1999) known as

the swirling strength criterion or λci criterion. The criterion identifies vortical regions

from the imaginary part of the complex conjugate eigenvalue (λ = λcr ± λci), which is

a measure of the local swirling rate inside the vortex. The real component λcr provides

an indication of the compression or stretching strength of the vortex.

An enhancement to the swirling strength criterion has been proposed by Chakraborty

et al. (2005) which is based on the non-local criterion proposed by Cucitore et al. (1999).

Chakraborty et al. (2005) state three requirements for the identification of a vortex core

in three dimensional flow, which are

1. The identification criterion should be Galilean invariant

2. The local flow in the frame of reference translating with the vortex should be

swirling

3. The separation between the swirling material points inside the vortex core should

remain small.

The first two requirements are satisfied for the ∆ and λci criteria. However, only the

enhanced λci definition satisfies all three.

1.7.2.4 Discussion on velocity-gradient tensor based methods

The widely used λ2, Q and ∆ criterion have been described together with extensions of

the ∆ criterion. These approaches are based on the properties of the velocity-gradient

tensor ∇u. Although the criteria are Galilean invariant, the results still vary with

time-dependent rotations. This objectivity has been investigated by Haller (2005) who

derived a definition that is objective and does not require a user-defined threshold,

unlike the ∇u based definitions. However, it is not as widely used due to its large

computational resource requirements in calculating tracer trajectories.
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Importantly, each of the ∇u based definitions require a user-defined threshold to

reveal the appropriate vortices. Consequently, the size and boundary of the vortices are

quite arbitrary and subjective. Multiple studies have investigated the feasibility and

accuracy of these definitions. At least one counter-example exists for each technique

which provides erroneous or ambiguous results. The application and discussion of these

methods can be found in Jeong & Hussain (1995), Cucitore et al. (1999) and Dubief &

Delcayre (2000).

Evidently, there has not yet been a proposed definition which offers a universal

solution in identifying and visualising vortical structures. Like intuitive methods, these

proposed definitions are unable to fulfill many of the vortex detection and visualisation

requirements. However, appropriate uses of existing definitions are still able to offer

significant information about the flows. Depending on the flow type, certain techniques

may be more suitable and therefore knowledge of the flow is beneficial. In addition,

a combination of these methods (including intuitive methods) becomes effective in

understanding the physics of the flow structure.

1.8 Aims of the study

The purpose of this research is to numerically study the stability of shear layers pro-

duced in rotating flows. These shear layers are produced via differential rotation forcing

imposed on a rotating flow. The basic axisymmetric flows are numerically computed

and solved using a spectral-element method. In this study, the base flow is governed

by the axisymmetric Navier–Stokes equations, which permit the development of depth-

dependent structures. This is a distinct difference to prior numerical studies which have

strictly enforced depth independence through the implementation of two-dimensional

quasi-geostrophic models. Thus, observations of the shear-layer structure are made in

accordance to the changes in any of the governing parameters (Ro and E ). In addition,

comparisons of these observations will be performed to determine the validity of the

quasi-two-dimensional model.

Linear stability analysis will uncover the most unstable azimuthal mode specific to a

flow condition. The structure of this mode can be visualised in isolation to the base flow,

which is particularly difficult in an experimental setting. A wide examination of the

parameter space with the determination of the preferential mode will allow a mapping

of the unstable linear mode as a function of Ro and E . Linear stability analysis will
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also reveal other global instabilities that have not yet been recognised in the literature.

Differences in flow structure and instability between positive and negative Ro will be

investigated. Again, comparisons between the axisymmetric and the quasi-two-dimen-

sional model relating to the preferred azimuthal wavenumbers will be established to

investigate the significance of the E 1/4 and E 1/3 Stewartson layers.

Three-dimensional direct numerical simulations are undertaken to monitor the ef-

fects and significance of nonlinear effects. These nonlinear effects may change the stable

azimuthal structure observed and may also prohibit certain instability modes or types

from growing. The sensitivity of the flow to initial conditions will also be examined by

perturbing the axisymmetric steady-state base flows and saturated flows white noise

and a variety of unstable linear modes.

Although the parameter condition of these numerical flows do not quantitatively

match those in nature where Reynolds numbers are very high, qualitative details may

still provide insights to natural atmospheric flows. In addition, the implementation

of the quasi-two-dimensional model permits a larger parameter space to be studied,

and the results of which will be computed to the axisymmetric and three-dimensional

model. More importantly, this numerical study aims to draw a connection between

numerical and previous experimental results. The previous experimental studies are

described in the next chapter in addition to the review of these aims specific to the

past literature. The key findings from this numerical study will further increase the

fundamental knowledge of shear layers in rotating flows.

1.9 Structure of the thesis

This thesis is comprised of eight chapters. Following this introductory chapter, Chap-

ter 2 presents a thorough review of the literature surrounding unstable Stewartson layers

that resemble those of planetary vortices. Chapter 3 details the numerical method-

ologies used throughout this research and its validation. The numerical results form

Chapters 4-7 with the first three result chapters dedicated to the three-dimensional

modelling of the differential-disks double end-wall configuration. Chapter 4 describes

the structure of the axisymmetric base flow and Chapter 5 establishes its linear stabil-

ity. Chapter 6 presents results relating to the significance of nonlinear effects in these

rotating systems. A comparison of the axisymmetric and non-axisymmetric simulations

in the prior chapters to the results of the quasi-two-dimensional model are revealed in
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Chapter 7. Concluding remarks are provided in Chapter 8 in addition to suggestions

for future research.
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Chapter 2

A Review of the Literature

A review of the literature involving structures resembling those of polar vortices that

have been reproduced experimentally and numerically are described in this chapter.

This review is structured as follows.

§ 2.1 reviews investigations into the stability of conceptually simple shear flows.

The purpose of this section is to provide an introduction and an appreciation of the

complexity of flow stability and the pursuit of an understanding of flow transitions. The

remaining sections focus on rotating flows which have been able to reproduce structures

that exhibit features similar to those observed in planetary polar vortices. That is, flows

which facilitate instabilities capable of causing deformations in the azimuthal direction.

This begins with a review of hollow vortex core flows in § 2.2. Following this, the

generation of non-hollow vortical structures in a source-sink configuration is described

in § 2.3. § 2.4 presents studies pertaining to the differential-disk rotation apparatus

and contributes to bulk of this chapter as it is closely related to the research of this

thesis.

This chapter concludes with a summary of the related work in § 2.5 and the proposed

aims and hypotheses of the project in § 2.6.

2.1 Transition to turbulence in shear flows

Shear flows engender great interest due to their intriguing stability behaviour. Such

flows are able to exhibit a wide variety of flow states, for which an understanding is

desired from a fundamental point of view. Conceptually, some of the simplest examples

include Couette, Poiseuille and Taylor–Couette flow. Plane Couette flow involves fluid

between two parallel plates with shear imparted by the movement of one or both plates

at a constant speed in opposite directions (Leutheusser & Chu 1971; Daviaud et al.
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Figure 2.1: An illustration of a turbulent spot at the onset of instability in a plane Poiseuille

flow. This figure is reproduced from Carlson et al. (1982) with permission from the Cambridge

University Press.

1992). For plane Poiseuille flow, the plates are stationary and the flow is driven by

a non-zero pressure gradient in the streamwise direction (Carlson et al. 1982). The

Taylor–Couette flow is described by a viscous fluid in an annulus driven by two rotating

cylinders (Taylor 1923).

The Couette, Poiseuille, and Taylor–Couette flow have been central in investigating

the mechanisms and processes in the transition from laminar to turbulent flow. The

transition point, generally measured by a flow parameter, is of particular interest due to

the large differences in properties between the laminar and the turbulent flow regimes.

The presence of irregular fluctuations in velocity provides an increase in mixing and

the transfer of heat, mass and momentum which is of considerable importance in many

engineering applications (Jiménez 2004; Dimotakis 2005; Avila et al. 2011). Indeed it

was the observed flow disruptions in a pipe flow by Reynolds (1883) that pioneered

such hydrodynamic stability research. Although investigations began over a century

ago, many of the phenomena remain unanswered with new discoveries and validations

still being achieved in recent times (e.g. Kuik et al. 2010; Moxey & Barkley 2010).

These classical problems have become fundamental in fluid mechanics.

Linear stability analysis has been a useful tool in providing an indication of where

the instability transition occurs as a function of one or more flow parameters; this is

typically measured by the Reynolds number based on the centreline velocity and half
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the channel width for Couette and Poiseuille flow (Nishioka et al. 1975; Carlson et al.

1982). However, the onset of turbulence may not always be predicted using linear

stability analysis. Plane Poiseuille flow is such an example whereby the flow has been

determined to become linearly unstable to Tollmien–Schlichting waves at Rec = 5772.22

(Orszag 1971; Bayly et al. 1988) through the solution of the Orr–Sommerfeld equation

(1.26). However, experiments have demonstrated turbulence at much smaller values of

Re than those predicted by linear stability analysis. Thus, subcritical instability occurs

in plane Poiseuille flow. Orszag & Kells (1980) were able to establish a transition to

turbulence around Re = 1000 given that the disturbances are of finite amplitude via

direct numerical simulation. In contrast, Nishioka et al. (1975) was able to maintain

laminar flow up to a Reynolds number of Re = 8000. Flow visualisation of the structures

in this turbulent regime was first captured by Carlson et al. (1982) with a determined

onset described approximately by Re = 1000. The most prominent structure was a

turbulent spot, which is illustrated in figure 2.1.

In contrast to plane Poiseuille flow, plane Couette flow has been determined to be

linearly stable to all Re (Romanov 1973). Despite this, turbulence has been observed

in experiments at relatively small Re. Pipe Poiseuille flow is also believed to be linearly

stable for all Reynolds numbers. Given the difficulty in designing an apparatus that can

produce pure plane Couette flow, there is limited experimental literature regarding its

transition to turbulent flow. The first flow visualisations were obtained by Tillmark &

Alfredsson (1992) through the use of an infinite-belt type channel with counter-moving

walls. The determined transition point was Rec = 360 ± 10. Two prior experiments

without visualisation ascertained critical values of Rec = 280 ± 20 and Rec = 750 by

Leutheusser & Chu (1971) and Reichardt (1956), respectively. The large discrepancies

in these values may be attributed to the set-up of the experiments, the differences in the

inlet disturbance amplitudes, experimental noise, and the monitoring techniques used.

Numerical work concerning the transitional point was investigated by Orszag & Kells

(1980) who found Rec ≈ 1250. Direct numerical analysis by Lundbladh & Johansson

(1991) found that turbulent spots could be sustained at a Reynolds number as low as

Re = 375, which is close in value to the experimental studies of Tillmark & Alfredsson

(1992) and Daviaud et al. (1992) of Re = 370± 10. Although plane Couette and plane

Poiseuille flow present qualitatively similar features, the quantitative characteristics are

very different.
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Figure 2.2: An illustration of the various regimes that may exist in a Taylor–Couette flow.

The parameters Ri = a(b − a)Ωi/ν and Ro = b(b− a)Ωo/ν represent the inner (subscript i)

and outer (subscript o) Reynolds numbers, respectively, where a is the inner radius, b is the

outer radius and Ω represents the rotation rate. This figure is reproduced from Andereck

et al. (1986) with permission from Dr. David Andereck and the Cambridge University Press.

A succession of bifurcations to flow states that are not turbulent may exist between

the laminar and turbulent flow regime. Such bifurcations are evident in the Taylor–

Couette flow. According to Rayleigh’s criterion (§ 1.6), it is possible for the Taylor–

Couette flow to be unstable for any inner cylinder rotation rate, provided the outer

cylinder is stationary. The investigation of this flow was pioneered by Taylor (1923)

who found remarkable agreement between his numerical and experimental results. For

low rotation rates of the inner cylinder, the flow is stable and demonstrates a laminar

Couette-like flow. This state is known as a circular Couette flow. The flow becomes

unstable to axisymmetric perturbations when the angular velocity of the inner cylinder

exceeds a critical value. This unstable flow exhibits axisymmetric toroidal vortices and

is known as the Taylor vortex flow. Further increases to the angular speed promoted

transitions to other flow states such as wavy vortex flows and spiral vortex flows. Since

this pioneering work, a vast number of studies have been conducted and many more flow

states have been discovered. A highlighted study stems from the work of Coles (1965)

who established that these periodic flows are non-unique to Reynolds numbers and
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that for a given Re, twenty or more different flow states could be produced. A perfect

illustration of how complicated this forced-flow can become is shown in figure 2.2.

The figure represents a regime diagram of the different flow states as functions of the

Reynolds numbers based on the inner and outer rotation rates.

This section has briefly presented the variety of thrilling phenomena that can exist

in even the simplest of shear flows. These canonical flows have been developed with the

aim of understanding flow transitions from laminar to structured unstable flows, and

eventually turbulent flow. This is significant as certain engineering applications aim to

either avoid or generate turbulent environments, typically with the aim of improving

efficiency. Further details and examples of these flows can be found in texts such

as Chandrasekhar (1961), Schmid & Henningson (2001), Drazin & Reid (2004) and

references therein.

2.2 Hollow vortex core flow

Free surface flows in a rotating container may demonstrate a parabolic deformation of

hollow depression at the centre. The balance between the horizontal pressure gradient

and the centrifugal forces explains this result. However, this parabolic deformation may

exhibit an azimuthal polygonal shape for certain conditions when a rotating base and

a stationary side wall are employed. This simple confinement has exhibited structures

that resemble those observed in geophysical, astrophysical and industrial environments

(e.g. Lopez et al. 2004; Jansson et al. 2006; Cogan et al. 2011; Tophøj et al. 2013).

A rotating disk located near the base of a stationary open container was qualita-

tively investigated by Vatistas (1990). The apparatus is illustrated in figure 2.3. The

motion of the disk imparts centrifugal forces in the flow that pushes the fluid outwards

towards the fringe of the container. The receding fluid at the centre exposes the disk

for which the perimeter of the hollow core reveals a polygonal stationary state. It was

found that for low angular velocities, the core was always filled and displayed a circu-

lar shape. With increasing angular velocity, an elliptical shape was initially formed.

Further increases causes a greater surface depression that ultimately results in a hol-

low core exhibiting polygonal modes on the disk. It was also found that polygonal

shapes with lower azimuthal wavenumbers are sustained over a wider range of angular

frequencies compared to the higher-wavenumber polygonal structures. The decreasing

frequency bandwidth at higher wavenumbers caused difficulty in visualising stationary
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Figure 2.3: A schematic of the apparatus used to create hollow vortex cores. This figure

is reproduced from Vatistas (1990) with permission from Dr. Georgios H. Vatistas and the

Cambridge University Press.

states greater than wavenumber 6. It was also noted that the surface tension rounded

off the crests and troughs of the waves, which prohibited clear structural identification.

Evidently an alternative apparatus is required for studying a larger range of stationary

states.

An extension of the study with a variety of viscous fluids was performed by Vatistas

et al. (1992). A working fluid of water (ν = 1.00× 10−6 m2/s) produced similar results

described in Vatistas (1990). Again, stationary states beyond the N = 6 mode were not

seen as the flow would change transient states over time while greater rotation rates

displayed chaotic flow characteristics. Two different oils were used in the experiments,

characterised by a viscosity of ν = 5.67 × 10−5 m2/s and ν = 6.4 × 10−4 m2/s. Both

fluids exhibited completely different behaviors in comparison to water. For the less

viscous oil, core patterns between N = 1 and N = 11 were observed. Unlike water, the
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Figure 2.4: Typical examples of polygonal patterns observed in water when viewed from

above. Illustrated polygons of a (a) wet triangle, (b) a square and (c) a pentagon. This figure

is reproduced from Jansson et al. (2006) with permission from Thomas R. N. Jansson and

the American Physical Society.

unstable mode observed did not increase orderly with increasing rotation rate, rather

the changes were abrupt. Sub-harmonically modulated states were also encountered.

Fluctuations in preferable states were observed for experiments of different depths, spin

up and spin down. These differences clearly express the existence of hysteresis in the

flow. The oil with a greater viscosity demonstrated highly stable flow typically ex-

hibiting a circular core. Stationary waves were only seen for large depths at high disk

speeds. The flow evolution was found to be affected by the disk speed, the kinematic

viscosity and the initial liquid height. Explanations for the major differences in prefer-

ential modal trend seen between water and oil were not provided, although a suggestion

would be that of the Ekman number difference which is related to the fluid viscosity.

The symmetry breaking of the free surface to azimuthal disturbances was also ex-

plored by Jansson et al. (2006) in a cylindrical tank. The disturbances were induced

by the rotation of the entire bottom plate of the tank with stationary sidewalls. The

difference between this set-up and the one used by Vatistas (1990) is the considerable

gap between the rotating disk and the base (see figure 2.3). Two different set-ups of

varying cylinder radius were studied. This had been a neglected parameter in previ-

ous studies. The difference between the two radii cases investigated is approximately

a factor of 1.5. A working fluid of water exhibited typical hollow vortex cores with

azimuthal wavenumbers ranging between N = 2-6, with several examples reproduced

in figure 2.4.

Unlike Vatistas (1990), who reported stationary and mixed states, Jansson et al.

(2006) observed spontaneous breaking of axial symmetry on the surface. The state
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of the flow was defined by two control parameters, the rotation frequency and the

height of the undisturbed fluid. These key parameters were used to map the azimuthal

wavenumber of various stationary states observed. In agreement with past experiments,

it was seen that an increasing rotation rate leads to an increasing azimuthal wavenumber

for a fixed initial height. The primary height of the fluid was found to have an effect

with a decrease in azimuthal wavenumber with increasing height for a fixed rotation

rate. These relationships described both “dry” and “wet” polygons where dry polygons

are formed on the surface of the disk and wet polygons formed above the disk. The

transition lines between polygonal states were demonstrated on a phase diagram as a

function of the rotation rate and the initial fluid depth. The transition between the

observed wavenumbers are described roughly by a positive linear relationship for both

radii cases. The transition lines and observed states were seen to vary with radii and

viscosity. Slight differences were seen between the two radii cases with water, while a

large discrepancy was demonstrated with ethylene glycol, which is 15 times more viscous

than water. Only azimuthal wavenumbers from N = 0 to N = 3 was demonstrated for

ethylene glycol. It is possible that the viscosity diffuses and dissipates the perturbations

that lead to the formation of higher modes. Also, it was suggested that the vortices

that form on the periphery of the polygonal sides are due to the shear layer induced

by the stationary side wall, which is susceptible to a Kelvin–Helmholtz–Rayleigh type

instability.

Vatistas (1990) and Jansson et al. (2006) investigated rotating flow in different

configurations and of differing aspect ratio. The aspect ratio is defined as σ = Rd/Rt

where Rd is represents the radius of the bottom rotating disk and Rt represents the

cylindrical tank radius. The effect of varying the aspect ratio was reported by Vatistas

et al. (2008). For σ < 1, the flow reveals a circular vortex core for low rotation rates.

Gradual increases in rotation transforms the circular state (N = 0) into a precessing

circular core (N = 1). Further increases leads to successive polygonal states up to

hexagons (N = 6). Modes above N = 6 were not clearly seen as higher rotation rates

are said to amplify dynamical noise that wash out the sharp spectral peaks. Mixed

states are evident between pure modes, which is in agreement with observations of

Vatistas (1990). As for σ = 1, the spontaneous symmetry breaking seen by Jansson

et al. (2006) was confirmed. The experiments demonstrated that high-wavenumber

structures only exist over a short bandwidth of rotation rates. This is particularly true

44



for wavenumber 6 which appears to exist only between disk speeds of 225-227 rpm as

compared to wavenumber 3 which exists over a span of approximately 35 rpm. Hence,

identifying the existence of a mode 7 structure would be very difficult. Vatistas et al.

(2008) have reported that their results are in great agreement with theoretical work of

vortices arranged in a circular row with an exterior boundary (see references therein).

Those studies have found stability for N < 6 states and instability for N > 8 states.

The N = 7 state has been found to be both stable and unstable depending on the type

of analysis performed.

The continuation of the work of Vatistas et al. (2008) and Abderrahamne et al.

(2009) is detailed in Abderrahmane et al. (2011) with the focus on pattern transition.

With water as the working fluid, three parameters that influence the resulting structure

of the flow were determined to be the initial water height h0, disk frequency fd, and

the disk radius Rd. A combination of these parameters yield the dimensionless Froude

number given by

Fr =
Rdfd

2π
√
gh0

, (2.1)

where g denotes the gravity. This non-dimensional parameter was deemed most ap-

propriate for dictating the state of the flow. It was observed that increases in Fr

yields transitions from a lower-wavenumber to higher-wavenumber polygonal pattern.

Increasing Fr is achieved by either one of increasing the disk rotation, lowering the

initial height or increasing the disk radius, while the other parameters remain fixed.

An in-depth study of the transitions from N = 2 to 3 and N = 4 to 5 was reported

in Abderrahamne et al. (2009) and the phenomena generalised in Abderrahmane et al.

(2011). A spectral analysis of the time series of the polygonal structure revealed two

distinct wave frequencies, namely the dominant parent wave frequency fm, and a lesser

daughter wave frequency fg. The spectral peaks are determined by the parent’s wave

harmonics and the subtraction/addition of the parent wave to the daughter wave. The

power spectra of the transitions from N = 2 to N = 3 and N = 3 to N = 4 are

reproduced in figure 2.5. As Fr increases and evolves towards the higher state, the am-

plitude of the daughter wave becomes comparable and eventually dominates the parent

wave. The flow was found to be in a state of synchronisation with the locking of the

parent and daughter waves when the ratio of fm/fg is rational. The ratio of fm/fg was

determined to be
fm
fg

=
N − 1

N
, (2.2)
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Figure 2.5: The power spectrum of the radial displacement during the transition phase from

(left) N = 3 to N = 4 with frequency locking between two intrinsic modes fm = 3.4 Hz and

fg = 5.1 Hz, and (right) N = 2 to N = 3 with frequency locking between fm = 1.46 Hz and

fg = 2.92 Hz. This figure is reproduced from Abderrahamne et al. (2009) with permission

from the American Physical Society.

where N is the mode of the initial equilibrium state. For the subsequent transition,

the fg becomes fm. Thus two processes are involved from the transition from mode N

to N + 1. Initially, the pattern is characterised by the ratio fm/fg, which is irrational

and the dynamics are quasi-periodic. As Fr increases, the daughter wave strengthens

and the ratio fm/fg approaches a rational value. The rational value represents the

transition from N to N +1 where the parent wave and daughter wave locks and exhibit

synchronicity. It was further found that the frequency of the disk to the polygon

frequency was equal to 1/3, which is independent of the Froude number. This is in

agreement with what has been found by Miraghaie et al. (2003), although it is in

contrast to the findings of Jansson et al. (2006), Poncet et al. (2007) and Vatistas et al.

(2008).

Despite these previous studies, the instability leading to polygonal formation is still

unexplained. Bergmann et al. (2011) set out to fill the knowledge gap by investigating

the development of a triangular polygon. The apparatus used was similar to that used

by Jansson et al. (2006). It was noted that the generated polygon structure is robust

and stable, and was developed using three different approaches. The approaches were

of either increasing rotation rate from rest, starting from a manually destroyed fully

developed triangle or decreasing the rotation rate from an initially high rotation rate.

All three approaches resulted in the same eventual structure of a triangle, which implies
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that the flow is insensitive to initial conditions.

The instability forming these surface polygons are not thought to be of pure baro-

tropic instability and Kelvin–Helmholtz instability. This is because these instabilities

occur primarily in two-dimensional flows whereas the instability producing these hol-

low core vortices appear to be three-dimensional. This may be the primary reason for

why there is a lack of numerical studies concerning these flows. However, great insight

into the formation of these structures can potentially be provided from understanding

two-dimensional instabilities forming similar polygonal structures. It may be possible

that extremely wet polygons are structures resulting from a two-dimensional instabil-

ity, which then manifest into three-dimensional structures as the depth of the fluid

depresses towards base.

Attention is now turned to the class of vortex flows central to this thesis, that of

non-hollow vortex core studies, which are described in the sections to follow.

2.3 Source-sink flow

Vortex structures closely resembling polar vortex structures have been generated in

rotating systems forced by fluid injection and extraction. The flows produced from

these configurations are known as source-sink flows. Typically, these involve a rotating

tank with ports located on the boundaries of the tank that can either act as sources

(fluid injection) or sinks (fluid extraction). Initially, these experimental configurations

were used primarily in investigating the transport of mass through boundary and shear

layers. Following this, studies investigating the instability and appearance of source-

sink flows were conducted. Both of these aspects are described in this section, with

particular attention focused on the latter.

2.3.1 Transport through boundary and shear layers

Various distributions of sources and sinks in a rotating container have been studied by

numerous authors both theoretically and experimentally. This type of forcing provides

a closer relationship to problems of atmospheric and oceanic current flows. These flows

are also applicable to industry such as those involving gas centrifuges and chemical

bio-reactors. As noted by Matsuda et al. (1975), compressibility effects are significant

in gas centrifuges. However, they find that the structure of the shear layers in the

flow remain essentially unchanged compared to those under incompressible conditions.
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Thus, many theoretical works have considered incompressible flows as they are simpler

to study. Also, the fluid motion is assumed to be very slow compared to the angular

velocity of the system (small Ro) such that nonlinear effects can be neglected.

Barcilon (1967) investigated the flow induced by radially pumping and withdrawing

fluid through the vertical side wall of a rotating cylinder. The cylinder is filled with

a viscous incompressible fluid. Theoretical consideration of this configuration found

that vertical transport is achieved via the Stewartson E 1/3 layer while the horizontal

transport occurs in the interior. This is in contrast to the experimental results of Hide

(1968) who found horizontal motion confined to the Ekman layer. This contradiction

could be due to the difference in configuration considered between the two authors. Hide

(1968) studied a cylindrical rotating system with a vertical line source and vertical line

sink under various arrangements. Barcilon (1967) claims that the simple experimental

set-up failed to demonstrate any significant motion in the Ekman layer, visualised

through dye. In addition, any dye introduced into the flow interior was shown to

transit towards the sink via the interior region.

Later theoretical work by Hashimoto (1975) considered an incompressible viscous

fluid in a rotating circular cylinder. The majority of mass transport was observed to

occur through the horizontal and vertical shear layers. The sources and sinks were

represented as concentric circles on the top and bottom surfaces. The positioning of

the sources and sinks along the radius were varied and the effect of a discontinuity in

angular velocity across the entry and exit points was explored. The discontinuity in the

angular velocity produced E 1/3 and E 1/4 Stewartson layers around the periphery of the

sources and sinks. These results were observed experimentally by van Heijst (1984) in

which a ring source is located in the fluid interior while a ring sink is prescribed around

the bottom corner.

2.3.2 Unstable flow

Prior studies have focused on investigating the transport of fluid in the shear layers

and its respective vertical structure produced via a source-sink forcing. The stability

of these shear layers and the possible deformations were not examined. Sommeria

et al. (1988) and Meyers et al. (1989) proposed that Jupiter’s Great Red Spot may be

related to a westward jet on a background shear. Thus, they experimentally studied the

stability of a jet. Their particular arrangement involves a rotating annular tank with 3
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Figure 2.6: (Top) A cross section of the tank used for source-sink experiments. (Bottom) A

top-down view of the configuration with the expected flow direction above each port where

partially filled circles represent sources, crossed circles represent sinks and filled circles rep-

resent inactive ports. This figure is reproduced from Meyers et al. (1989) with permission

from Dr. Steven Meyers and Elsevier.

rings comprised of 6 holes each at its base which could act as either a source or a sink.

A schematic of the configuration is shown in figure 2.6. This particular configuration

could induce a continuous circulation that mimics the mass transfer between tropical

latitudes to the polar latitudes. Fluid jets which are susceptible to instability are formed

as a result of the continuous poleward flux.

Water was used as the working fluid to match the density of the polystyrene latex

spheres used for streak photography. A conical base was used to replicate the β-effect

and free-surface effects were ignored by using a solid lid. Experiments achieved small

Rossby number flows by rapidly rotating the tank. At low pumping rates, vortices

developed above the sources and sinks and remained stationary relative to the origi-

nal sink or source. The vortices only begin to drift with the flow when the forcing is

increased beyond a sufficient value. The drift of the vortices develops a jet that is sus-
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ceptible to instabilities. An unstable jet portrays a waviness in the azimuthal direction

with its borders resembling a polygon. Two dimensionless parameters were chosen to

characterise the flow conditions, namely the jet width L∗, and the ratio of the Ekman

friction time to an eddy turnover time T ∗. These are defined as

L∗ =
c2
rm
F 1/3Ω−1/6, (2.3)

T ∗ =
h0c1

2c2ν1/2
(FΩ)1/3, (2.4)

where c1 = (sd2/2π2νh0r
2
m)1/3, c2 = (dh0/4πsrmν

1/2)1/3, F as the pumping rate, rm

is the radial position of the jet, d as the separation distance between the sources and

the sink, s as the slope of the bottom topography and h0 is the mean depth of the

tank. The constants of c1 and c2 were determined by physical arguments. Specifically,

the torque arising from the action of the Coriolis force on the radially pumped fluid is

balanced by the torque arising from the dissipation in the boundary layers. Thus, the

width and maximum velocity of the jet are only approximations.

At a sufficient pumping rate, the rotating flow becomes unstable to barotropic in-

stability, which develops a polygonal structure comprised of multiple vortices. Vortices

were primarily observed in a westward forcing (inner ports acting as sources). These

vortices began to merge upon further increasing of the pumping rate. During the merg-

ing process, a particular vortex increases its speed which causes it to subsequently pass

through the other vortices. Upon each vortex-vortex interaction, the faster vortex im-

parts an amount of its energy until it is completely consumed. Thus a structure of 5

vortices would become 4, then 3 and eventually a monopole provided the pumping rate

was increased gradually and sufficiently. At each step, the remaining vortices become

stronger and larger, filling up a larger portion of the tank. The number of vortices ob-

served under particular flow conditions were mapped on a regime diagram as a function

of L∗ and T ∗. A range of 1 to 5 vortices was observed in the parameter space explored

with L∗ ranging between 0.3 6 L∗ 6 0.45 and T ∗ ranging between 20 6 T∗ 6 80. The

resulting monopole vortex displayed a similar appearance to that of Jupiter’s Great

Red Spot. In addition, a few similar properties were observed between the experimen-

tal vortex and Jupiter’s spot. These include that the primary monopole consumed any

introduced vortices of lesser strength, that the vortex has vorticity of the same sign

compared to the background rotation, and that the spot’s length to width ratio is ap-

proximately 2. Also, the vortex was observed to be very robust. Dye introduced into
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the vortex remained in the vortex for long time periods while dye introduced outside the

vortex quickly mixed with the background flow. The arrangement of the sources and

sinks was claimed to have no effect on the resulting structure, provided the momentum

and energy production and the velocity of the flow with respect to the forcing ports

remained the same. That is, closing all the ports on one side of the tank produced

structures similar to those created if all ports were open.

Sommeria et al. (1989) and Sommeria et al. (1991) furthered their previous work

with a primary focus on eastward jets. The work was motivated by Earth’s oceanic

and atmospheric flows, which are dominated by Coriolis forces. They used the same

apparatus as that in Sommeria et al. (1988). The vortices produced above each port

remained stationary for F < 15 cm3/s and began to drift for F > 15 cm3/s, which

resulted in a jet. Radial pumping towards the centre of the tank (inner ports acting as

sinks) produces an eastward jet while radial pumping away from the centre (inner ports

acting as sources) produces a westward jet. From the obtained data, the azimuthal

profiles of the jets exhibited a sech2 profile with differences between westward and

eastward jets. The maximum jet velocity and the width of the jet were revised as

U0 =

(

b

a2

)1/3( sd2

2π2νh0r2m

)1/3

(ΩF )2/3 , (2.5)

L =

(

1

ab

)1/3( dh0
4πsrmν1/2

)1/3

Ω−1/6F 1/3, (2.6)

where a = 2 and b = −1/2 for an eastward jet and a = 2 and b = 3/2 for a westward

jet.

Assuming that the jet has a velocity profile described by U(y) = U0 sech
2(y/L)

yields a development of an instability criterion through a normal mode approach. This

velocity profile is known as the Bickley jet and the normal mode approach follows that

detailed in § 1.5.1. That is, the gradient of absolute vorticity (β − d2U(y)/dy2) must

change sign somewhere in the flow for the possibility of instability. Although β is

positive, changing its sign is mathematically equivalent to reversing the flow direction.

Hence, a westward jet corresponds to U(y) = −U0 sech
2(y/L) with β > 0. The analysis

determined that an eastward jet is unstable for β∗ < 2/3 and a westward jet is unstable

for β∗ > 2. Here β∗ is the β-effect non-dimensionalised by L2/U0. Thus, the β-

effect is required to be three times stronger to stabilise a westward jet compared to an

eastward jet with a sech2 profile. In other words, a jet with a narrow width would be

stable for an eastward jet but unstable for a westward jet, assuming that they both
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Figure 2.7: Visualisation of vortex chains in the presence of pumping for (left) Re = −42

and (right) Re = 110. This figure is reproduced from van de Konijnenberg et al. (1999) with

permission from the Cambridge University Press.

exhibit a sech2 profile. From a linear stability analysis, the wavelength of a sinusoidal

instability for a marginally stable eastward jet on a β-plane is given by λ = πL
√
2. Many

analytical solutions for the Bickley jet can be found in Maslowe (1991), Burns et al.

(2002), Engevik (2004), Drazin & Reid (2004) and references therein. Consequently

the wavenumber can be predicted and for the range of L obtained, the wavenumber

dependence on Ω and F compared qualitatively well to the experimental observations.

However, there were quantitative discrepancies which are attributed to the flow being

highly nonlinear with large amplitude waves resembling wavenumbers structures of

3 to 8 for an unstable eastward jet. Increasing either Ω or F has the same effect

as decreasing the Rossby number, which has demonstrated a preference to higher-

wavenumber structures (further described in § 2.4).

Van de Konijnenberg et al. (1999) briefly investigated the effects of fluid pump-

ing via a source-sink arrangement. The experiments were performed on a tank with

a parabolic base, where a portion of the tank can rotate independently of the tank

rotation. In addition, a port is situated at the centre of the base to facilitate fluid

pumping while fluid is naturally withdrawn from the periphery of the tank. Results

from the differential-disk rotation forcing of this study are covered in § 2.4. In the

absence of differential rotation, fluid was pumped from the centre port which produced

a westward jet. Thus for negative-Re flows, the effects of the shear from both the ro-

tation of the fluid and the radial pumping combine to cause the shear layer to become

more unstable as compared to the case of no pumping. Hence, for a particular |Re|, the

negative counterpart will exhibit a lower number of vortices as the greater instability of
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Figure 2.8: A sketch of the source-sink experimental configuration. The sink has a parabolic

colander-like surface while the source is represented by a flat ring. This figure is reproduced

from “Evolution of coherent modes in the dynamics of planetary polar vortices” proposal

for the 6th EC framework programme integrated infrastructure initiative Hydralab III, with

permission from Dr. Luca Montabone.

the jet causes an elongation of the vortices and an increase in vortex-vortex interaction.

The opposite effect was observed for Re > 0 where only higher wavenumber modes

were reproducible in the comparative parameter space. Dye visualisation revealed that

the vortices are more distinct when the jet is westward (positive Re), as illustrated in

figure 2.7.

Montabone et al. (2010a) conducted experiments on the 5 m Coriolis rotating tank

at Norwegian University of Science and Technology in Trondheim, which has fluid

pumping and extraction capabilities. Later work by Montabone et al. (2010b) was

conducted on a larger Coriolis platform with a diameter of 13 m in Grenoble. A figure

of the Trondheim apparatus is shown in figure 2.8. The tank incorporates a source

ring with ports situated at a constant radius and a central circular sink. The sink is

able to facilitate a flat platform or a parabolic colander-like profile. The former and

latter topographic features are used to mimic to the f-plane and γ-plane, respectively.

Also, the sink can partially be covered in order to change the usual circular sink into a

ring-shaped sink.

The poleward flux and conservation of angular momentum results in the production

of a jet that is susceptible to barotropic instability under sufficient forcing. This leads

to the formation of vortices that rearrange themselves into polygonal shapes, ranging
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Figure 2.9: Top panels: Polar vortices as observed in nature on Venus, Earth and Saturn

from left to right. Bottom panels: The laboratory counterparts of the natural polar vortices as

produced in the source-sink system. From left to right, the structures are of a dipole, triangle

and a hexagon. This figure is reproduced from Montabone et al. (2009) with permission from

Dr. Luca Montabone.

from dipoles to hexagons. It is reported that these are “minimal energy” configurations,

although it is believed that the term here is used loosely as no results support this claim.

Injection of dye in the polygon or the vortices demonstrate a strong prohibition of fluid

leaving and entering the structure. The governing parameters for this system are the

Rossby number and the flow rate. Although the Ekman number is expected to have

some importance with the preferential structures, the effect of this parameter was not

explored. The qualitative results for these experiments reinforce the idea of barotropic

instability being a plausible mechanism for the origin of polar vortices.

Visualisation of the laboratory vortical structures are presented in figure 2.9 along

side their natural polar vortex counterparts. Interestingly, distinct vortices are seen

bordering the polygon only for the triangular configuration while for the hexagon, the

dye reveals a structure which is not as sharp. It is unclear whether this is a consequence

of the location of the dye injection or if these visualisations are due to the manifestation

of the flow itself. For the dipole, two strong vortices are seen rotating inside a larger

patch of dye. It may well be that the dye has been introduced inside the hexagonal

interior as well as the bordering satellite vortices. It is unclear whether these satellite

vortices are present for the hexagon. In fact, no satellite vortices have been observed
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for the hexagon on Saturn.

It is clear that there remains much to understand about flows developed via source-

sink forcing, especially those that are influenced by barotropic instability. The com-

plexity of the apparatus combined with limited measurement techniques and the many

unknown variables such inlet and outlet flow profiles are contributing factors for the

lack of results from this configuration to date. The next section details results from a

more well-defined configuration, namely the differential-disk rotation apparatus.

2.4 Differential rotating flow

After the discovery of the shear layers in the original apparatus used by Stewartson

(1957), numerous authors have experimentally reproduced the shear layers under vari-

ous differential rotation configurations to observe the instabilities present. It is recalled

that Stewartson only considered the limit of infinitesimally small ∆Ω (Ro → ∞) where

the flow is highly stable due to the insignificance of the inertial forces. For sufficiently

larger forcing, an instability forms and alters the flow structure. The instabilities in

these system often cause the initially circular shear layer to deform into a ring of vortices

that rearrange themselves around a polygon-shaped interior. These aesthetic structures

usually extend the entire depth of the system and are representative of the polar vor-

tices observed in nature. A review of the different configurations used to recreate these

polar vortical structures and the stability of the flow are presented in this section.

2.4.1 Internal rotation

Hide & Titman (1967) first visualised polygonal patterns in a fluid-filled cylindrical

rotating tank with a submerged differentially rotating disk. The disk was suspended by

a connecting rod attached from above. The configuration is illustrated in figure 2.10.

Through theoretical considerations of small-Ro and small-E conditions, the expected

shear and boundary layers and their locations were determined. Vertical shear layers

around the periphery of the disk and horizontal layers along the surface of the disk,

the base and the lid were noted theoretically and observed experimentally. The former

layers characterise Stewartson layers and the latter describe Ekman layers. For flows

with very small Rossby and Ekman numbers, the flow is steady, axisymmetric and

highly geostrophic outside of the shear layers. As the forcing of |Ro| is increased or as

E is decreased, the flow approaches an unsteady state. This is true for both positive
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Figure 2.10: Schematic diagram of the experimental set up. The tank and disk rotate at

different rates of Ω and Ω + ω, respectively. The solid lines around the disk, lid and base of

the tank represent the Ekman boundary layers. The dotted lines represent the Stewartson

layers. This figure is adapted from Hide & Titman (1967).

and negative Rossby numbers; where positive and negative Ro correspond to the disk

rotating faster and slower compared to the tank rotation, respectively.

The stability of the flow was determined experimentally via the threshold of the

critical Rossby number at various Ekman numbers. That is, an axisymmetric flow is

considered to be stable while flow is regarded as unstable once this axisymmetry is

broken. It is noted that only three readings were recorded for negative-Rossby-number

flows and it is claimed that there are little differences between the critical |Ro| threshold

value between the positive and negative-Ro regimes. An empirical relationship for the

instability threshold is provided by |Ro| ∼ 16.8E 0.568. Changing the disk radius did not

influence this threshold relationship. The effects of the disk thickness and depth location

were not investigated. Above the instability threshold, positive-Ro flows demonstrated

an instability in the vertical Stewartson layers that exhibited multiple vortices. These

vortices generally arranged themselves into polygonal configurations when viewed along

the axis of rotation and extends through the entire depth of the tank. As Ro is further

increased, the number of vortices decreases with the size of each vortex becoming larger.

The minimum number of vortices that was observed reached a limit of two. In contrast,

negative-Ro flows did not illustrate any polygonal patterns but instead only portrayed

an off-axis ellipse in the unstable regime. The number of vortices were mapped onto a
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Ro-E regime diagram for positive-Ro flows only and revealed a weak dependence of E

on the preferential azimuthal wavenumber.

2.4.2 Single end-wall rotation

Niino & Misawa (1984) demonstrated that carefully conducted experiments can be ex-

plained by linear stability theory where effects of Ekman friction and internal viscosity

are both considered. This approach is in contrast with previous studies of jets (Busse

1968; Dunst 1973) where linear theory incorporating either Ekman friction or viscosity

alone were unable to obtain quantitative agreement between the theory and the exper-

imental results. Their model has been previously described in § 1.5.2. In solving the

Orr–Sommerfeld equation with added Ekman friction (equation 1.38), the stability of

the shear layer and jet was determined as a function of Re, k and γ. Here, k denotes

the azimuthal wavenumber while γ represents the aspect ratio of the disk radius to the

length scale L = (E /4)1/4H. The stability curves are illustrated in figure 2.11. It was

established that the curvature has an effect on the stability of the shear layer in that

the critical Re decreases with increasing γ. Accordingly, the wavenumber also increases

with decreasing γ. The effect of curvature on the flow’s stability is lost for γ > 25 as

its neutral stability curve closely matches that for γ = ∞. Thus, the stability can be

described solely by Re. Their model demonstrated a higher critical Reynolds number

and a lower corresponding critical wavenumber in comparison to a model that considers

Ekman friction only. This is true for the case of γ = ∞ for both the shear layer and

the jet with kc and Rec being approximately half and double, respectively. They at-

tribute this result solely on the incorporation of internal viscosity to their model. The

critical Re for the shear layer and jet was determined theoretically to be Rec = 11.6

and Rec = 15.5, respectively.

Their theoretical results displayed good agreement with the experiments, which

reinforces the importance of the effects of internal viscosity. Their experimental appa-

ratus involved a rotating cylinder where three disks of varying sizes were situated at

the base. The production of a shear layer was achieved by rotating two disks at the

same rate, but in opposite directions. A jet was developed by differentially rotating a

single disk. The Rec determined from the experiments for the shear layer and the jet

was Rec = 11.7 ± 0.5 and Rec = 15.2 ± 1.1, respectively. These values are very close

to the theoretically established ones. The number of vortices varied between 2 to 8
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Figure 2.11: Neutral stability curves of a shear layer as a function of the Reynolds number

R, the wavenumber k, and an aspect ratio γ. Here, γ = a/L where a is the disk radius

and L = (E /4)1/4H is the shear-layer thickness and H is the tank height. The dashed

line represents the neutral stability curve for when Ekman friction is only considered. This

figure is reproduced from Niino & Misawa (1984) with permission from the c© American

Meteorological Society.

for the shear layer and 6 to 13 for the jet. For both, the number of vortices decreased

with increasing Re. The neutral curves they obtained via linear stability theory did not

compare well with the experimental results of Hide & Titman (1967). It was proposed

that the thickness of the disk may be the cause of the discrepancy.

Van de Konijnenberg et al. (1999) studied the stability of a circular shear layer pro-

duced via differential rotation in addition to a source-sink forcing. Their experimental

set-up involves a fluid contained in a parabolic-shaped bowl atop a turntable. The

parabolic surface is comprised of two sections, an inner portion that is able to rotate

independently to that of the outer section. By rotating the tank at a nominal rate of

7.53 rad/s, the effects of the curved bottom boundary are mitigated and the results of

the experiments are dynamically similar to those on an f-plane. Rotation rates lesser

and greater than this nominal rate correspond to cases dynamically similar to β < 0

and β > 0, respectively. A Reynolds number based on the thickness of the Stewartson
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E 1/4 layer was used to measure the stability of the shear layer. The critical Reynolds

number identified as the transition from stable to unstable flow found was of a higher

value compared to that found by Niino & Misawa (1984). An explicit reason for this

quantitative difference was not given though the authors did suggest that the curvature

of the system may have influenced the results. Above the Rec, the shear layer becomes

unstable and forms discrete vortices which rearrange themselves into a polygon. This

is indicative of barotropic instability and has been observed in previous studies. As

the Reynolds number is increased, the number of vortices that form decreases with an

azimuthal wavenumber 2 structure being the lowest observed.

The presence of the parabolic topography was found to be that of a stabiliser. For

positive Reynolds numbers and β > 0, the number of vortices that appear is greater

than those compared to the β = 0 case. The same stabilising effect is seen for negative

Reynolds numbers of β < 0. Recall that as the flow becomes more unstable, the

vortices are likely to interact and coalesce, which yields a lower number of vortices.

The stabilisation from the β-effect is not seen for opposing signs of Re and β. The

introduction of pumping from the centre has a similar destabilising effect on the vortices.

It was found that an azimuthal flow induced by the pumping of the same sense of the

interior rotation yields a smaller number of vortices less than that compared to the

non-pumping state. The authors note that this is a consequence of easier interaction

between vortices after becoming elongated and less coherent. A two-dimensional model

which incorporates an approximation of Ekman pumping and the β-effect illustrated

the same trends seen in the experiments. The governing vorticity equation is given by

∂ω

∂t
+ u · ∇ω − βur =

√
νΩ

H
(ω∗ − ω) + ν∇2ω, (2.7)

where u is the velocity field, ω is the vorticity and ω∗ is the vorticity of the bottom

plate. Due to the two-dimensionality of the equation, the Ekman layer is not directly

simulated. Instead, an additional linear friction term is added on the right hand side

of the equation to capture the frictional effects induced by the Ekman layer (further

described in § 3.2). This model is known as a quasi-two-dimensional model. The

number of vortices observed in the numerical simulation was often lower than those

observed experimentally. Van de Konijnenberg et al. (1999) argue that this difference

is due to the simplicity of the model governing the flow whereby the E 1/3 Stewartson

layer is not simulated.
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Figure 2.12: A schematic diagram of the differential rotating disk set-up used by Früh &

Read (1999). The key dimensions are the disk radius Rd, tank radius Rt, and tank height

H . The disks (grey) and tank rotate about the central axis (vertical dashed line) at a rate of

Ω+ ω and Ω, respectively. This figure is adapted from Früh & Read (1999).

2.4.3 Double end-wall rotation

Double end-wall rotations in a rotating container have been investigated with the first

being considered by Stewartson (1957) in investigating the vertical shear layers at the

disk-tank interface in the limit of Ro → 0. Früh & Read (1999) investigated the same

configuration with a focus on the unstable regime. The differentially forced disks rotate

in unison having the same rotation rate and direction. A schematic of the apparatus is

shown in figure 2.12. The depth of the fluid was set to H = 10 cm and the radius of

the disks and tank were Rd = 15 cm and Rt = 30 cm, respectively. Two working fluids

were used; a mixture of water and glycerol with a kinematic viscosity of ν = 1.66×10−6

m2/s, and water (ν = 1× 10−6 m2/s).

Upon sufficient differential forcing of the disks, the shear layer becomes unstable

and forms a ring of multiple vortices. The vortices are arranged in such a way that an

appearance of a polygon is seen in the interior while the vortices form the perimeter

edge. Both positive and negative-Ro flows were studied such that the disks rotated

faster and slower than the tank, respectively. The parameter space ranged between

0.01 6 |Ro| 6 1.0 and 2 × 10−5 6 E 6 2 × 10−3, or equivalently, 10 6 Re 6 105 or

1× 103 6 Rei 6 2× 103, where Rei is the internal Reynolds number following Niino &

Misawa (1984), for which the length scale is based on the thickness of the shear layer

(L = (E /4)1/4H). Accordingly, the internal Reynolds number is given by

Rei ≡
√
2RoE−3/4, (2.8)
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where

Ro =
Rdω

2ΩH
, (2.9)

E =
ν

ΩH2
. (2.10)

Here, Rd is the radius of the disk, ω is the differential rotation of the disk, H is the

height of the tank, Ω = Ω+ ω/2 is the mean fluid rotation and Ω is the tank rotation

rate. The Reynolds number is defined as Re = UL/ν.

The flow was seeded with latex beads and monitored using laser-Doppler velocime-

try (LDV) and particle image velocimetry (PIV). LDV was used for experiments with

water to obtain high-precision time series while a PIV was used for the water/glycerol

mixture to obtain horizontal flow fields. Regime diagrams of the preferential azimuthal

wavenumber as a function of Ro and E were produced with the equation of the stability

threshold determined to be |Roc| = 27(±1)E 0.72±0.03. Due to the minimal differences

between positive and negative Roc, the threshold equation is representative for both

positive and negative-Ro regimes. Stable solutions with azimuthal wavenumbers be-

tween 2 to 8 were observed for both flow regimes. In addition, time-dependent flow

categorised as weak fluctuations, period-doubled, modulated and highly irregular zones

were demonstrated. The highly irregular flows, noisy vortices and anomalous period

flows were more prominent in the negative-Ro parameter space. It was found that the

flow states and the preferential vortex numbers at onset did not depend strongly on

the sign of Ro. This observation is in contrast with several prior studies, especially in

comparison to the internally forced experiments of Hide & Titman (1967).

The coverage of their parameter space was accomplished by slowly scanning through

the Ro range while keeping E constant. The two regime diagrams are shown in fig-

ure 2.13. In general, their parameter space concluded that a decrease in wavenumber

can be achieved by either increasing Ro or Re and to a lesser extent, decreasing E .

This transitional trend has been consistently observed in shear-layer experiments ir-

respective of the forcing mechanism and geometry (e.g. Hide & Titman 1967; Niino

& Misawa 1984; van de Konijnenberg et al. 1999). The experiments were the first to

confirm that the transition through supercritical instability is of a Hopf bifurcation.

Multiple wavenumbers were mapped in the same region on the regime diagram due to

the strong hysteresis observed during spin-up and spin-down of the differential forcing.

The dotted lines on their regime diagrams represented hysteretic transitions.
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(a)

(b)

Figure 2.13: Regime diagrams of the unstable azimuthal wavenumber as a function of Ek-

man number with (a) positive Rossby numbers and (b) negative Rossby numbers. The

numbers represent the unstable mode seen in that region of parameter space. The black

regions represent highly irregular flow, 0 the axisymmetric stable flow, m the modulated os-

cillating states, P period-doubled solutions, nV as noisy vortices and w as weak fluctuations

in velocity. Solid lines denote transitions without any noticeable hysteresis while the dashed

lines represent hysteretic transitions. This figure is reproduced from Früh & Read (1999)

with permission from Dr. Wolf-Gerrit Früh and the Cambridge University Press.
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It should be noted that the claim of the critical internal Reynolds number being

Rei,c = 19E −0.03 ≈ 24 ± 2 is based on a variant of equation 2.8. The definition of

Rei used by Früh & Read (1999) is a factor of 2 smaller than the one defined in

equation 2.8. It is also noted that the governing parameters between these systems are

not consistently defined across the literature, as some authors use Ω while others use

f = 2Ω in their definitions of Ro and E . Further, Früh & Read (1999) use neither

and instead opted for a mean fluid rotation rate. Therefore, a scaling of results is

required when conducting comparisons between studies which use different length and

velocity scales in addition to different conditions. Further details on these comparisons

are discussed later in § 5.1.3.

The work of Früh & Read (1999) was extended by Früh & Nielsen (2003), who

focused their attention on the time-dependent aspects of these differentially rotating

flows. The same apparatus from the prior experiments was used and the numerical

model adopted follows that of Bergeron et al. (2000) (described later in § 2.4.4). The

boundary conditions used were a no-slip condition for both the inner and outer side

boundaries and a smoothing function connecting the disk and tank azimuthal velocities

assumed a tanh profile. Experimental and numerical simulations were run at an Ekman

number of 10−4. Time-dependent flows were found in the form of two and three-

vortex flows. All flows with four or more vortices were found to be steady with the

appropriate symmetry. In addition, irregular weak fluctuations and highly irregular

flows were observed. The latter type of flow was observed to be similar in appearance

to Taylor vortices. As these structures were reproducible in both positive and negative-

Re regimes, it was noted that they cannot be Taylor vortices. This is due to all Re < 0

flows being stable to the Taylor–Couette instability. The weak fluctuating and highly

irregular flows were not investigated numerically due to the limitation of the quasi-

geostrophic model.

The numerical and laboratory results demonstrated a decrease in azimuthal wave-

number with increasing Re for a constant E . Here, the Re was redefined to be

Re = 12−1/4RoE 3/4 by choosing a length scale of L = (E /12)1/4H. In converting

the Ro < 0 regime diagram of Früh & Read (1999) to their Re definition, the criti-

cal Reynolds number was determined to be |Rec| = 36 ± 3. The enstrophy contained

in each azimuthal mode was monitored in numerical simulations, which demonstrated

saturation for steady type flows. The mode with the largest energy saturation was
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Figure 2.14: A comparison between experimental (lines) and numerically (diamonds) results

of the observed flow state in a differential disk-rotation configuration. The flow condition is of

E = 1× 10−4. The numbers represent the instability wavenumber, T as the presumed Taylor

vortices, m as modulated states, and a combination of two modes representing a distorted

time-dependent flow. The labels above the lines refer to experimental results while the labels

below the lines refer to the numerical results. This figure is reproduced from Früh & Nielsen

(2003) with permission from Dr. Wolf-Gerrit Früh and Copernicus Publications.

exhibited through the vorticity contours. It should also be noted that the dominant

mode differs to that of the mode in the linear regime where the enstrophy increases ex-

ponentially. Beyond a certain Re, the enstrophy in several modes becomes comparable

and this induces time-dependent flow. This is characterised by two or more modes in

competition and exhibited vortices that are of non-equal strength or size occurring in

combination with vortices developing from the central rod used to drive the disks in

their apparatus. The same was observed in the measurements of amplitude through a

laser Doppler anemometry of the various modes.

The number of vortices observed in the experiments and the simulations agreed well

with each other. The experimental and numerical results are summarised in figure 2.14

for E = 1 × 10−4. Here, the lines represent experimental steady vortex flows, “T ” as

the interruption of the Taylor-like vortices and the oscillating lines representing time-

dependent flows with the associating mode number. The diamonds depict the numerical

results. Despite the quantitative agreement, there are qualitative disagreements demon-
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(a) (b)

(c) (d)

Figure 2.15: The various configurations investigated by Aguiar (2008). Two monotonic and

two non-monotonic slopes are shown. (a) β < 0 configuration, (b) β > 0 configuration, (c)

β∓ configuration where {β < 0, r < R} and {β > 0, r > R} and (d) β± configuration where

{β > 0, r < R} and {β < 0, r > R}. This figure is reproduced from Aguiar (2008) with

permission from Dr. Ana Aguiar.

strated through the types of flows found. For the three vortex flows, experiments were

able to produce only the symmetric mode while the numerical simulations captured a

weakly distorted flow. The numerical results also demonstrated smaller-scale vortex

structures that were generated at the central rod, which interacted with the larger vor-

tices. The experimental visualisations were unable to capture these smaller vortices,

although they claim that these structures gave rise to the time-dependent behaviours

of the flows.

Aguiar (2008) investigated cases with various bottom topography in a rotating cylin-

drical tank with differential disk forcing. The apparatus they used was an upgraded

version of the differentially-rotating apparatus used for studying barotropic instability

by Früh & Read (1999). Four different types of topography were investigated, namely

β < 0, β > 0, β∓ and β±. With increasing radius, the respective configurations are

described by increasing depth, decreasing depth, increasing depth (r < Rd) and decreas-

ing depth (r > Rd), and decreasing depth (r < Rd) and increasing depth (r > Rd).

Schematics of these cases are reproduced in figure 2.15. All of these configurations were

investigated for both positive and negative Ro.
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The flow exhibited polygonal and vortex structures that were sharp and stable for

cases where the monotonic β and the Ro are of the same sign. For opposing signs of Ro

and β, the edges of the polygon were more curved and the vortices appeared distorted.

Regime diagrams of the opposing Ro and β also suggests that the distorted two-vortex

flows were more prominent over a larger region of the parameter space. These period-

doubling flows were either rare or non-existent for same signed Ro and β. This may

be due to the presence of Rossby waves which would interact with the shear layer and

distort the resulting structure, as seen by van de Konijnenberg et al. (1999). Aguiar

(2008) note that the main difference between positive and negative Ro for each sign

of β is the radial position of where the Rayleigh–Kuo criterion is violated (§ 1.5.1).

It was concluded that flow patterns have a more stable and sharp appearance when

the Rayleigh–Kuo criterion is violated at a radius outside the disk radius (r = Rd).

This occurs when Ro and β are of the same sign. The onset of instability displayed a

qualitative agreement against the theoretical result of Roc ∝ βE 1/2 (Schaeffer & Cardin

2005) when compared to the β = 0 case (Roc ∝ E 3/4). The regime diagram obtained

experimentally for β > 0 and positive Ro is demonstrated in figure 2.16 where the solid

blue line represents β = 0 and the red dashed line represents the non-zero β value.

Similar differences were seen for non-monotonic bottom topography. For Ro > 0 &

β± and Ro < 0 & β∓, the polygonal structures appeared robust and sharp. However,

for Ro < 0 & β± and Ro > 0 & β∓, the structures were more distorted with period-

doubling flows being predominant. The Rayleigh–Kuo criterion was again suggested

for this cause. It was observed that β and the relative vorticity, d2u/dy2, share the

same sign on either side of the shear layer for the cases of Ro > 0 & β∓ and Ro < 0 &

β±. Thus, β − d2u/dy2 = 0 is violated on both sides of the shear layer which becomes

susceptible to complex and irregular flows such as period-doubling. In contrast, the

reverse cases only violate the instability criterion at the r = R, similar to the f-plane

scenario. Indeed, the average β for these non-monotonic topographies is zero. This

may be the reason for why there is a better qualitative agreement of the instability

threshold when scaled against E 3/4 (β = 0) compared to βE 1/2 (non-zero β). The

results of the monotonic and non-monotonic geometries suggests that the value of β at

the location of the shear layer has an effect on the stability of the shear layer. Also,

the range of azimuthal wavenumbers observed between positive and negative Ro under

the various configurations did not demonstrate any strong asymmetry as observed by
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Figure 2.16: Unstable azimuthal wavenumbers observed experimentally for the β > 0 con-

figuration, mapped onto a Ro-E regime diagram. The solid blue line represents β = 0 and

the red dashed line represents the non-zero β value of the bottom topography. Solid filled

and hollow symbols represent two different time-varying forcing used to obtain the results.

This figure is reproduced from Aguiar (2008) with permission from Dr. Ana Aguiar.

Hide & Titman (1967) and Hollerbach (2003) (results of which are described later in

§ 2.4.5).

Aguiar et al. (2010) had a focus on explaining the origin of Saturn’s northern polar

hexagon. Measured profiles of Saturn’s mean zonal wind and absolute vorticity gradi-

ent profiles from cloud tracking were used in their linear stability analysis. From the

vorticity profile as illustrated in figure 2.17, violations of the Rayleigh–Kuo criterion

can be observed at multiple locations. This suggests that barotropic instability may

be possible on Saturn. However, the location of the hexagon vortex (77.5◦ N) and the

Ribbon wave (47◦ N) does not occur at the latitudinal locations of where the vorticity

gradient equals β. Instead, these structures have been observed at latitudes where the

velocities are large and sharp changes occur over a narrow latitudinal band.

Growth rates as a function of zonal wavenumber and the Rossby deformation ra-

dius LD were obtained through the linear analysis. For LD = ∞ (pure barotropic

flow), the wavenumber with the largest growth rate was predicted to be k = 13. The

maximum growth rate and associating wavenumber decreases with decreasing LD in
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Figure 2.17: Mean zonal wind and the relative vorticity gradient profiles measured from

Voyager cloud tracking measurements of Saturn’s northern hemisphere. The two horizontal

lines at 77.5◦ and 47◦ represent the latitudes of the polar vortex’s hexagonal border and

Saturn’s ribbon structure, respectively. The diagonal dashed line in the right plot represents

the planetary vorticity gradient, β. This figure is reproduced from Aguiar et al. (2010) with

permission from Dr. Ana Aguiar and Elsevier.

the range of 0 6 k 6 20. Beyond these wavenumbers, the growth rate appears to grow

continually. Also, for LD = 2000 km or less, the large-scale instability was suppressed

and the growth rate increased linearly with increasing wavenumber. For comparative

properties of Saturn where LD = 2500, the predicted peak wavenumber is k = 6 which

is consistent with the spacecraft observations. The same analysis was performed for

southern latitudes of Saturn and yielded peak growth rates at non-finite wavenumbers.

It is claimed that this is in agreement with the monopole observed at the south pole.

The experiments conducted in that study were performed on the same apparatus

used in Früh & Read (1999) and Aguiar (2008). Several modifications were made to

the equipment to accommodate depth variations and jet generation with a differential

rotating ring. The β-effect was mimicked by a linearly sloping bottom of approximately

5◦. In this barotropic jet configuration, the tank including the entire base rotates at a

rate of Ω while the ring rotates at Ω + ω. The working fluid was of a water/glycerol

mixture and fluorescein dye was injected at the radial location of the disk or ring edge

at the bottom boundary for visualisation purposes. Correlation imaging velocimetry

was used to obtain flow fields and compute the velocity and vorticity fields. The profiles
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were found to be independent of depth except in the vicinity of the Ekman layers. The

features in these profiles displayed similarities with those measured on Saturn. The

vorticity gradient indicated a strong negative peak with weak positive peaks on either

side similar to the latitudes between 72◦ and 82◦ on Saturn.

A regime diagram of the preferential azimuthal wavenumber as a function of Ro

and E for the differential-ring configuration with β = 0. Only the positive-Ro regime

was explored with wavenumbers ranging from 2-8. The majority of the parameter

space was comprised of steady-wave states. The same dependencies were observed in

this differential-ring configuration as compared to the differential-disks configuration.

That is, a decrease in azimuthal wavenumber is achieved by primarily increasing Ro or

decreasing E . The onset of instability was compared against the empirical relationship

obtained by Früh & Read (1999) of Roc = 27E 0.72. The experimental data points

showed good agreement for moderately small E but lost conformity at larger E values.

An empirical fit for the instability threshold was not provided.

With a length and velocity scale of L = (E /4)1/4H and U = Rω/4, respectively, the

critical Reynolds number was determined to be approximately Rei,c ∼ 27. The value

Rei,c ∼ 37 stated in the paper is a typographical error and the boundary condition

dψ/dz = 0 should read dψ/dy = 0 (personal communication). The reported critical

internal Reynolds number of Rei,c = 27 is close to that claimed by Früh & Read (1999)

(Rei,c = 24, although it should be noted that the velocity scales are different between

the two configurations). At the largest values of Re investigated, time-dependent flows

were observed for modes 2 and 3. This is in agreement with experiments from Früh &

Nielsen (2003), where time-dependent flows were only found for wavenumbers less than

4.

The velocity field of a wavenumber 6 structure demonstrated a prominent hexag-

onal ring with no clear indication of vortices at its boundary. However, the relative

vorticity field clearly displays a presence of vorticity patches around the border of the

hexagon. The ring is bounded by positive vorticity in the interior while the satellite

vortices on the outside exhibit negative vorticity. Their dye-streak visualisations re-

inforce the presence of these vortices. Similar to previous experiments, the structure

demonstrates prohibition of mass transport across the polygonal ring. It was observed

that structures produced on a β-plane appear much sharper around the borders of the

polygon compared to structures developed on an f-plane which adopt a wavy form.

69



Figure 2.18: A schematic cross section of an experimental apparatus investigating differ-

ential rotating flows in containers of small depths. This figure is reproduced from Rabaud

& Couder (1983) with permission from Prof. Marc Rabaud and the Cambridge University

Press.

The qualitative results from the instability of the jet and shear layer illustrate that

barotropic instability is certainly plausible for the origin of Saturn’s hexagon assuming

that baroclinic effects are negligible. Despite the large differences in the Reynolds and

Ekman numbers between the laboratory experiments and Saturn, the range of Rossby

numbers under which a wavenumber 6 was sustained is comparable.

2.4.4 Short cylinders

The previous section described studies involving double end-wall differential rotation

in containers which have a depth much greater than the Ekman layer thickness. This

section details the results of flow under the influence of differential rotation in containers

of small depths.

The instability of a circular shear layer was considered experimentally by Rabaud &

Couder (1983). The configuration investigated is shown in figure 2.18, which involves a

rotating container with differentially rotating disks. The working fluid is air. However,

the major difference between this configuration and those of previous sections is that

the height of the enclosure is very small compared to the tank radius. In fact, the

height is usually of the order of the Ekman layer thickness or smaller. This difference

causes the developing Ekman layers to fill up the entire cell, which suggests that the

centrifugal and Coriolis forces have no influence on the stability of the flow. The

experimental conditions in previous studies were governed by small Rossby and Ekman

numbers, which indicates the dominance of the Coriolis force in the system. Despite

the differences in conditions, the shear layer is observed to undergo a Kelvin–Helmholtz
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type instability. The resultant structure is of a ring of vortices originating from the

shear layer at the disk radius which is similar to that seen by other differential rotating

experiments (e.g. Hide & Titman 1967; Früh & Read 1999; Aguiar et al. 2010). An

illustration of an unstable structure is shown in figure 2.19. It was observed that modal

transitions of the flow can occur abruptly, thereby bypassing several modes entirely.

The transitions is seen to be dependent on the rate of increase or decrease of the

angular velocities. That is, a quasi-static increase in the difference in angular velocities

between the disks and the tank results in successive transitions described by k → k−1.

The difference in angular velocities is incorporated in the definition of the Reynolds

number, which is given by

Re =
|Ω2 − Ω1|RdH

ν
(2.11)

where Ω2 represents the angular velocity of the tank, Ω1 is the angular velocity of the

disks, Rd is the disk radius and H is the tank height. The Reynolds number is the

sole parameter used to characterise the stability of the flow. A decrease in Re yields

transitions described by k → k+1, although with strong hysteresis. For a wavenumber

of even parity, the transition from an k-fold symmetry is replaced by a k/2 symmetry

in its intermediate state before realising an eventual structure. The resulting structure

is dependent on the rate of spin up/down. For example, the intermediate state of a

wavenumber 6 structure involves a state where three vortices are enlarged while the

remaining three vortices are reduced in size. Provided that the rate of increase in the

forcing is large, then the k/2 pairing occurs resulting in a k = 3 structure. In contrast,

a small rate in forcing increase yields a k − 1 = 5 structure.

Various tank depths were investigated for which short depths have demonstrated

a critical Reynolds number of Rec = 85 ± 5 while for larger depths, Rec = 110 ± 10.

The selection of the azimuthal wavenumber that appears shortly beyond the instability

threshold was found to depend on the aspect ratio of the shear layer. An empirical

relationship for the wavenumber seen at the threshold of stability was given by kc =

0.85Rd/H. In addition, a phenomenon was observed when the outer cylinder radius is

comparable to the inner disk radius whereby the lateral friction along the side walls

causes the mode to oscillate between its initial wavenumber k and a wavenumber 2k

state.

The experimental rig used by Rabaud & Couder (1983) was further investigated by

Chomaz et al. (1988). Enhancements were made to the apparatus to allow a wider range

71



Figure 2.19: A wavenumber 8 structure visualised via a soap film placed at mid-depth. This

figure is reproduced from Rabaud & Couder (1983) with permission from Prof. Marc Rabaud

and the Cambridge University Press.

of aspect ratios between 2/13 6 A 6 1/12 to be explored. Their results complement

those found by Rabaud & Couder (1983) and they determined the critical Reynolds

number to be Rec = 80± 2. The wavenumber observed at the transition from axisym-

metric to unsteady flow is governed by the empirical relationship kc ∼ (0.77 ± 0.03)A.

In addition, they obtained empirical laws that fit tabulated data of angular velocity of

the vortical structure from Rabaud & Couder (1983). It follows that the wavenumber

pattern moves relative to the laboratory frame at

Ωv = αkΩ1 + βkΩ2, (2.12)

where

αk =
1

2
− 0.7

k
, (2.13)

βk =
1

2
+

0.7

k
, (2.14)

with Ω1 and Ω2 representing the disk and tank angular velocities, respectively. It

was found that the aspect ratio of the cell, defined by the ratio of disk radius to cell
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depth, influences the dynamical behavior of the flow. Differences were observed in the

transition in flow states for large and small cells. The formation from one wavenumber

to another occurs through localised processes in taller cells whereas successive breaking

of the symmetry is demonstrated in shorter cells.

Two-dimensional numerical simulations were conducted to demonstrate that the

characteristics of the instability observed experimentally can be captured numerically.

The median plane was modelled numerically by a modification to the two-dimensional

Navier–Stokes equations with the addition of drag due to the friction on the horizontal

boundaries. This Ekman friction is modelled through a forcing term. A parabolic

vertical dependence characteristic of Poiseuille flow between the two disks is assumed

for the velocity deviation from solid-body rotation. Thus the forcing term is given by

F = ν
∂2u

∂z2
∼ 8ν

H2
(u0 − u), (2.15)

where u is the velocity field and u0 represents the velocity boundary conditions. As u0

is discontinuous, a linear smoothing function was applied between the disk and tank

angular velocity over a width of H. The numerical results demonstrated an initially

circular shear layer deforming into polygonal structures as the Reynolds number is

increased beyond the instability threshold. The experimental trend of decreasing k

with increasing Re was also observed. Although several qualitative results were in

agreement, generally the quantitative results were not in agreement. The instability

threshold value was determined to be Rec = 55 ± 10, which is significantly different

compared to the experimental findings (Rec ∼ 80). The authors fault this discrepancy

on the simplicity of the model and due to the uncertainty with the width definition of the

shear layer. The spatial resolution was also believed to contribute to the discrepancy.

Bergeron et al. (2000) further investigated the disconnection between the experimental

and numerical results and stated that the model was insufficient.

The set-up from Rabaud & Couder (1983) and Chomaz et al. (1988) was also con-

sidered by Bergeron et al. (1996) from a numerical and theoretical perspective. A

numerical scheme based on a fully de-aliased spectral method was employed to solve

the vorticity evolution equation which includes an Ekman forcing. The adopted Ekman

forcing follows that of Chomaz et al. (1988) (equation 2.15) with linear interpolation

between the disk and tank angular velocities. The linear interpolation occurs over a re-

gion of width H centred around the disk radius. Further details of the numerical scheme

can be found in Chomaz et al. (1988) and Bergeron et al. (2000). The two-dimensional
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domain of the mid-plane was simulated, which allows for a direct comparison with the

visualisation obtained via prior experiments. Direct numerical simulations were per-

formed to determine the number of vortices present for a particular flow condition and

the stability threshold. The first 20 modes were initially excited with random phases

and low amplitudes. The critical Reynolds number was determined to be Rec = 86.178

analytically and Rec = 86.3± 0.1 numerically, which demonstrate great similarity. The

analytical result also bodes well against the prior experimental studies (Rabaud &

Couder 1983; Chomaz et al. 1988). In addition, the first unstable azimuthal wavenum-

ber obtained via linear stability analysis is in agreement with the empirical rule deduced

by Rabaud & Couder (1983) (kc ∼ (0.77± 0.03)A). It was found that the value of Rec

varies over a broad range in relation to the aspect ratio of the apparatus and with the

interpolated velocity forcing. This is significant as the latter variable can be tweaked

to achieve the critical Reynolds numbers obtained by the experiments.

Bergeron et al. (2000) furthered the investigation by studying the effects of the

boundary conditions imposed on the inner rod and outer walls. They employed a tank

aspect ratio of A = 2/13. Results from free-slip boundary conditions are compared to

the previously obtained no-slip boundary conditions. Moreover, the effect of various

interpolation profiles between the disk and tank angular velocities were studied. The

linear interpolation used previously attributes a discontinuity in the vorticity profile.

Thus, a tanh(r/∆r) and a cubic interpolation was considered for interpolation be-

tween the disk and tank angular velocities, where ∆r represents a normalisation length

(∆r = 0.4H). The cubic interpolation provides a continuous profile for vorticity as

well as illustrating a well-defined transition region while the tanh involves continuous

derivatives for all orders. However, it is unclear why the cubic interpolation profile was

favoured against a tanh profile (and vice versa) in certain cases as it is not explicitly

stated, and a direct comparison of the results associated with the two interpolation

profiles were not highlighted in the paper.

The value of Rec = 81.1±0.1 for the free-slip case was lower than that obtained with

the no-slip condition (Rec = 86.3±0.1). Good agreement was shown again between the

asymptotic analysis and the numerical study with an analytically determined value of

Rec = 80.6 for the free-slip case. A comparison of Rec with prior experiments suggests

that the no-slip boundary conditions are most suited to simulating an experimental

environment. This is not surprising; the primary difference observed in the vorticity
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contours between slip and no-slip conditions were in the vorticity strands developing

off of the inner rod and outer walls. These strands are able to develop into vortices,

particularly those originating from the inner wall at high values of Re. At high Re,

the flow becomes time-dependent and the introduction of the vortex shedding interacts

with the primary polygonal vortex structure. Strong hysteresis was also observed while

investigating the effects of spin-up and spin-down. The rate of spin-up was seen to affect

the transition between stable and unstable flow. That is, low spin-up rates reduce the

number of vortices by one while higher spin-up rates are able to cause a transitional

jump of multiple vortices. This effect was also observed by Rabaud & Couder (1983).

2.4.5 Spherical shells and spheroids

It is interesting that Hide & Titman (1967) found substantially different structures

between the two forcing directions (positive and negative Ro) while Früh & Read (1999)

found little difference. Much of the body of theoretical work has considered very small

|Ro|, or in the limit of Ro → 0. According to Hollerbach (2003), the governing equations

used (Busse 1968) in barotropic and quasi-geostrophic form do not depend on sign of

∆Ω. Thus, there is no difference between positive and negative Ro in the linear theory.

Hollerbach (2003) set out to determine the cause of this difference by considering fluid

flow in a spherical shell with differential-rotation forcing through numerical simulations.

A general schematic of the spherical shell configuration is illustrated in figure 2.20. The

incompressible Navier–Stokes equations were solved in the r-z plane to obtain the basic

state of the flow. The boundary conditions were u = r sin θ, θ ∈ [−π/2, π/2] at the

inner radius ri (inner sphere surface) and u = 0 at the outer radius ro (outer sphere

surface) in a rotating frame of reference. This basic state reveals a Stewartson layer

that circumscribes the inner sphere. It adopts a nested structure of the E 1/3 and E 1/4

layers much like that in the planar configuration, although with an intermediate E 2/7

layer. Upon sufficient forcing, the Stewartson layer adopts a wavy instability similar to

that observed in the planar configuration. The length and velocity scales were chosen

as (ro − ri) and Ω(ro − ri) such that the Rossby and Ekman numbers are defined as

Ro =
∆Ω

Ω
, (2.16)

E =
ν

Ω(ro − ri)2
, (2.17)

where Ω and ∆Ω are the rotation rate and differential rotation rate, respectively.
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Figure 2.20: A schematic diagram of the differential spherical shell set-up. The key dimen-

sions are the inner sphere radius ri and outer sphere radius ro. The inner sphere (grey) and

outer sphere (black) rotate about the central axis (vertical solid line) at a rate of Ω+ω and Ω,

respectively. The vertical shear layers represent the Stewartson layers which have thicknesses

scaling with E 1/4 and E 1/3. An additional thickness of E 2/7 exists, although not shown here.

An Ekman layer of thickness E 1/2 surrounds the inner sphere.

The stability curves for numerous wavenumbers were determined and plotted as a

function of Ro and E . This was achieved by obtaining the axisymmetric base states

for a pair of Ro and E conditions. A specific wavenumber is then considered and time-

stepped through the linearized Navier–Stokes equations until the dominant eigenmode

is obtained. If the chosen mode was found to grow, then Ro was decreased. This

method was repeated until the conditions of the instability onset were established.

Hollerbach (2003) determined that Roc ∝ E 0.65 for positive Ro while it is Roc ∝ E 0.45

for negative Ro. In addition, the most unstable modes for the range of E explored

(10−5 6 E 6 10−2) was 3 6 k 6 8 for positive Ro and 1 6 k 6 2 for negative Ro. The

stability curves they obtained are reproduced in figure 2.21. The significant difference

between the two forcing signs resembles the findings of Hide & Titman (1967), especially

with k = 1 being the most unstable throughout the majority of the parameter space

for negative Ro. It should be noted that Roc of positive and negative-Ro flows found
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Figure 2.21: Stability curves of the most unstable azimuthal wavenumbers as a function of

Ro and E , for the spherical shell configuration. The left and right plots are of the positive

and negative-Ro regimes, respectively. The most unstable modes differ significantly between

the two regimes. The base flow is of the spherical shell configuration with ri = 1/2 and

ro = 3/2. This figure is reproduced from Hollerbach (2003) with permission from Prof. Rainer

Hollerbach and the Cambridge University Press.

by Hide & Titman (1967) was found to be the same which is different here.

Multiple tests were conducted to establish the cause of this wavenumber asymmetry

between positive and negative Ro. Initial tests investigated aspects of the basic state

in which the nonlinearity was removed by setting Ro = 0 in the governing equations of

the base flow while allowing it to vary in the linearised equations. Other tests involved

artificially removing the meridional circulation from the Stewartson and Ekman layers.

The significance of the Ekman layers was proposed because of its thinner structure

which may become unstable before Stewartson layers. However, this is not the case.

The results of these initial tests suggests that all these factors do not greatly impact

the asymmetry observed in flow states between the positive and negative-Ro instability

curves.

The last aspect of the base flow that was tested was attributed to the depth-

independent structure of the Stewartson layer. Thus, the effects of the geometry was

modelled by mapping the flow of a particular ri/ro ratio configuration onto a different

ri/ro configuration. This is achieved by varying ri while keeping ro = 3/2 constant. A

full-sphere and a thin-shell arrangement was examined with ri = 0 and ri = 4/5, re-

spectively. An inner radius of ri = 1/2 was used as a reference case. Consequently, the

shear layer is no longer situated at the edge of the inner sphere. This change resulted

in the instability curves for negative and positive Ro displaying similar characteristics
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Figure 2.22: Stability curves of the most unstable azimuthal wavenumbers as a function of

Ro and E , for the spherical shell configuration. The left and right plots are of the positive

and negative Ro regime, respectively. The most unstable modes are similar between the

two regimes. The base flow of the spherical shell configuration has been imposed onto the

full-sphere configuration with ro = 3/2 by extending the solution to all of z. This figure is

reproduced from Hollerbach (2003) with permission from Prof. Rainer Hollerbach and the

Cambridge University Press.

for both the full-shell and thin-shell geometry. The stability curves for the full sphere is

shown in figure 2.22. For all cases, they find |Roc| ∝ E 0.7 which is in closer agreement

with Früh & Read (1999) and Busse (1968).

The critical aspect of the geometry was determined to be in the variation in height

across the shear layer. In the full shell geometry, the height of the shear layer decreases

with increasing radius across the shear layer while for the thin shell, the fluid height

continually increases with increasing radius. However, for the reference case which

exhibits the Stewartson layer at the edge of the inner sphere, the depth decreases

radially away from the edge in both directions. At the actual edge, the change in depth

against radius is considered as dh/dr = ∞. Thus it was concluded that if the height of

the fluid “does not change, or changes gradually, then positive and negative Ro will be

much the same, whereas if it changes abruptly, then negative Ro will be anomalous”.

This would indeed explain the discrepancy between the experiments of Hide & Titman

(1967) and Früh & Read (1999). In the internal forcing experiments, the shear layer

abruptly changes across the disk edge while for the double end-wall configuration, the

shear layer remains constant. However, this still does not explain why Hide & Titman

(1967) found similar Roc for positive and negative-Ro flows.

Since the depth of the fluid was found to be the critical factor in the differences
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between instabilities of the Stewartson layer, it seemed to suggest that potential vor-

ticity may be the key diagnostic used to understand the underlying physics of this

discrepancy. This is due to the conservative property of potential vorticity in inviscid

flows which incorporates a variable fluid depth (equation 1.5). However, the analyses

by Hollerbach (2003) involving potential vorticity proved inconclusive.

Hollerbach et al. (2004) extended the investigation by conducting physical exper-

iments to compliment their numerical results. The apparatus is of concentric spheres

with ri = 26.7 mm and ro = 40 mm, which is filled with a silicone oil with viscosity

of 3.3 × 10−6 m2/s. The Ekman numbers achieved experimentally were larger than

those in Hollerbach (2003) but were nevertheless considered small enough to create

well-defined Stewartson layers. The focus of their study was on the nonlinear regime

of positive Ro. The linear onset and the nonlinear equilibrium were obtained numer-

ically with strong experimental agreement. The unstable azimuthal wavenumber was

seen to decrease with increasing Ro and decreasing E . Decreasing Ro and increasing

E displayed the opposite trend, though the observed wavenumbers were different due

to hysteresis effects. A steady-state flow was achieved by allowing the flow to settle

for 10-15 minutes after changing the inner sphere rotation. Azimuthal wavenumbers

ranging from 3-6 were produced in the experimental parameter space of 0.2 6 Ro 6 0.8

and 8× 10−4 6 E 6 3× 10−3.

Recall that these azimuthal wavenumbers reported by Hollerbach et al. (2004) cor-

respond to the number of sides of a polygon. That is, the initially circular Stewartson

layer may become distorted into a triangle (k = 3), square (k = 4), pentagon (k = 5),

etc. The spatial structures of these unstable flows were visualised in the r-θ plane using

the streamfunction of the vertically integrated horizontal flow and vertical velocity from

the numerical results, and photographs of the experimental flow. Visualisation with alu-

minium flakes revealed sharp, defined and robust polygonal structures, and the edges

were more distinct for higher-wavenumber structures. This may be attributed to the

shear magnitude in the Stewartson layer. It was found that the shear remains relatively

constant throughout the axisymmetric regime. However, as soon as non-axisymmet-

ric modes were established, the magnitude of shear decreased quite dramatically. It

continued to decrease with decreasing wavenumber (i.e. increasing Ro). However, this

diagnostic alone does not explain the why the wavenumber transitions occur since a

given amount of shear is not unique to a particular wavenumber.
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In regards to discrepancy between positive and negative-Ro structures, Hollerbach

(2003) suggested additional testing to reinforce his conclusion about the changes in

depth across the shear layer. It was noted that the abrupt change in depth with

increasing radius is positive when negative-Ro flows are anomalous. Thus, it is ques-

tioned whether positive-Ro flows would be the anomalous case if dh/dr < 0. This can

be achieved by increasing the disk thickness in the double end-wall rotation configu-

ration. Other variations of depth variation across the shear layer induced by linear

and non-monotonic topography were proposed. Thus dh/dr switches between positive

and negative values. Aguiar (2008) investigated cases with various bottom topogra-

phy configurations in a rotating cylindrical tank with differential disk forcing. Details

of the study can be found in § 2.4.3. Although no anomalous cases were observed,

the suggested criterion of dh/dr → ∞ at r = R being the cause of the anomaly was

discredited.

Aguiar (2008) also investigated rotating disks at the caps of a spheroid to observe

the effect of instability onset with varying disk spacing. A linear dependence of the

critical Rossby number with disk spacing was obtained, with negative Ro revealing a

higher Roc threshold when compared to positive Ro. The difference in Roc between the

two directions of forcing became more apparent as the disks approached one another.

Unfortunately, due to the complex geometry, the structures of the flow were unable to

be visually captured. The range of azimuthal wavenumbers for each sign of Ro could

not be determined to confirm whether the anomaly observed by Hide & Titman (1967)

existed.

Schaeffer & Cardin (2005) developed a quasi-geostrophic model which enforces mass

conversation, includes Ekman friction, and is able to handle finite slopes at the end-

walls. Four configurations were studied numerically; a flat cylindrical container, an

exponential base with a constant β = −1, a split sphere (with differentially rotating

polar end caps) and a sphere with flat disks placed at the polar regions. Experimental

set-ups involved a sphere with flat disks instead of polar caps and a spherical shell

geometry (such as that in figure 2.20). Their primary focus was validating the quasi-

geostrophic model at very small Ekman number flows. The smallest E considered was

E = 1× 10−10.

Asymptotic analysis of the quasi-geostrophic equation revealed several scalings for

the onset of the instability and critical azimuthal wavenumbers. It was assumed that
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(a) Positive Ro (b) Negative Ro

Figure 2.23: Top-down views of the radial velocity for the first unstable mode at E = 10−6

in various geometries for (a) Ro > 0 and (b) Ro < 0. Clockwise from the top left quadrant, the

geometries are of the split-sphere, a constant β = −1, flat container (β = 0) and spherical case

with flat disks. The dotted circle represents the split radius. Red, blue and green contours

represent positive, negative and zero values, respectively. Figure courtesy of Dr. Nathanaël

Schaeffer and is a colour version of that produced in Schaeffer & Cardin (2005).

the wavenumber of the perturbation is comparable to the thickness of the shear layer

at the stability threshold. That is, k ∼ δ−1 ∼ E−1 where δ represents the Stewartson

E 1/4 layer. Thus, a balance between the nonlinear forcing and the viscous damping

for the f-plane configuration yields Roc ∼ E 3/4. This is in agreement with the linear

theory of Busse (1968). Through the same analysis with an incorporated β-effect, the

stability threshold was determined to be

Roc ∼ 2βE 1/2. (2.18)

Furthermore, the critical frequency was found to scale with E 1/2 for flat topography

while it scales with 2β/k when a β-plane is considered. The latter relationship follows a

Rossby wave dispersion. It is noted that these frequency scales have not been reported

in previous investigations as it may be difficult to distinguish the critical frequency

from those of advection which have comparable amplitudes.

For the split-sphere case, the model considers a spherical container filled with fluid,

which has a split radius at r = r0. For r < r0, the end caps rotate differentially at Ω±ω
while for r > r0, the boundary rotates at Ω. The instability threshold was obtained as

a function of Ro for 1× 10−10 6 E 6 1× 10−5. The onset of instability agrees against

Roc ∝ E 1/2. However, negative-Ro flows demonstrated a stronger stability compared

81



to positive-Ro flows with negative Roc being approximately three times greater than

positive Roc. The trend is reversed for wavenumbers, in that the unstable wavenumber

is higher for positive Ro compared to negative Ro. It is noted that the critical Rossby

wave develops mainly outside of r0 when Ro > 0, as illustrated in figure 2.23. This is

explained by considering the conservation of potential vorticity (§ 1.3.2). For β > 0

and Ro > 0, the Stewartson layer is a layer of negative vorticity which implies that

the perturbations will be damped with increasing radius (increasing H) as the relative

vorticity will be increased. The opposite is true for Ro < 0. For β < 0 and Ro >

0, perturbations will be amplified by the decrease in vorticity with increasing radius

(decreasing H). As the value of β is always negative in the split-sphere case, the

instability is promoted in the larger region (r > r0) which may explain why k is greater

for positive Ro.

The perturbation was found to exhibit spiraling vorticity cells which extend from

the origin of the shear layer to the outer boundaries in the spherical configurations

(split-sphere and sphere with flat disks as seen in panels (a) and (d) of figure 2.23).

This spiral structure is a prograde Rossby wave and is a consequence of the variable

β with increasing radius. This is only seen for positive Ro. While not observed by

Aguiar (2008), it has been noted that these structures do exist in thermal convection

of spherical shells (Cardin & Olson 1994). It is surprising to note that the study of

Hollerbach et al. (2004) did not observe any of these spiral patterns in their numerical

work after imposing z-independent solutions onto a full sphere. When Ro < 0, the

spherical configurations demonstrated instabilities growing towards the centre instead

which were not spiral in appearance. Non-spiralling vorticity cells which extend to the

outer boundaries were obtained for Ro > 0 and a constant negative β (figure 2.23(b)).

The numerical work by Hollerbach (2003) was complimented by the experimental

results of the differentially rotating spherical shell in the study by Schaeffer & Cardin

(2005). Good agreement was obtained in the results of the critical wavenumbers and

the critical Rossby number. The |Roc| for negative-Ro flows was approximately three

times larger than that of positive-Ro flows. This difference can be explained by the

strength of the Rossby waves. It was stated that for Ro > 0, the waves are stronger

on either side of the shear layer as the depth decreases when moving away from this

tangent cylinder. The region of r > r0 is favoured due to the influence of the larger

|β| compared to the |β| in r < r0. However, there is no deeper region around the shear
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layer for Ro < 0, and therefore the instability is damped radially away from the shear

layer. Thus a stronger forcing is needed to induce instability in Ro < 0 flow.

The numerical simulations of the f-plane found that there were no differences be-

tween positive and negative-Ro flows. The models of their flat case followed those of

Niino & Misawa (1984) and Früh & Read (1999). Their numerical results showed pleas-

ing agreement with experimental results from Niino & Misawa (1984) in relation to the

critical Rossby number and critical wavenumber for various Ekman numbers. However,

the Roc values they obtain were about half that of Früh & Read (1999) even though

the critical wavenumber was in agreement. This lower Roc was argued to be as a conse-

quence of the missing E 1/3 layer in the quasi-geostrophic model. The spatial structure

of the instability did not show any preferred direction of growth with vortical structures

originating at the shear radius. This can be seen in figure 2.23(c). The numerically

determined critical wavenumbers scaled with the asymptotic result of E−1/4.

The quasi-geostrophic modelling of the sphere with disk end-walls did not show

good agreement with Roc, though it does appear to scale with E 1/2. It was stated

that the onset was determined visually by various independent people. Similar to other

spherical experiments, the visualisation of these instabilities have made it difficult to

determine the actual azimuthal wavenumber and frequencies. The determination of the

instability onset found that the numerical quasi-geostrophic results were a factor of 2

less than the experimental results for Ro < 0 and less by a factor of 3 for Ro > 0.

In conclusion, Schaeffer & Cardin (2005) found that the geometrical effects hy-

pothesised by Hollerbach (2003) are due to symmetry breaking in the Rossby wave

propagation mechanism, rather than any abrupt changes to the depth derivatives asso-

ciated with the geometry. That is, depending on the sign of Ro and β, the instability

will develop on one side of the shear layer and this symmetry breaking is independent

of whether there are abrupt changes in the height of the container. If this is the case,

the discrepancies in spatial structures between positive and negative Ro investigated

by Hide & Titman (1967) remains unexplained as Rossby waves are not sustained in

flat containers.

2.4.6 Keplerian flow

The majority of the studies described in this chapter have focused on creating the Stew-

artson layer and studying its stability. However, there is also interest in investigating

83



whether the effects of the Stewartson layer or the layer itself can be avoided. An on-

going debate in astrophysics concerns the nonlinear stability of astrophysical disks that

adopt a Keplerian rotation, namely Ω ∝ r−3/2. In order for accretion in astrophysical

disks to occur, the loss of momentum from mass gravitating towards the disk centre

must be balanced by outward angular momentum transfer (Avila 2012). However, the

Keplerian velocity profile is linearly stable according to the Rayleigh–Kuo criterion (de-

scribed in § 1.5.1) and the laminar aspect of the flow is not sufficient to cause accretion.

Thus, the observed rates of angular momentum transport may be related to a nonlin-

ear mechanism of the flow. Hence there is great interest in determining the nonlinear

stability of Keplerian flows.

It has been proposed that the Keplerian profile could be reproduced in Taylor–

Couette type configurations. One such configuration involves using multiple split-rings

for the end plates, each rotating independently. Provided enough rings are used, a

smooth angular velocity profile can be obtained as each Stewartson layer merges to fill

the entire tank and a Keplerian flow can be forced by supplying appropriate boundary

rotations. A numerical study by Hollerbach & Fournier (2004) at small Ro flow sug-

gested that the influence of the Stewartson layers at each split disk and the end effects

would be too significant and practically unavoidable for small E . These results are

supported by the numerical work of Avila (2012), who also state that current split-ring

configurations used to approximate profiles from accretion disks demonstrate turbulent

flow at moderate Reynolds numbers. Recent experiments (Paoletti & Lathrop 2011;

Paoletti et al. 2012) demonstrated finite-amplitude instabilities in a container with in-

dependent rotating cylinders. This is in conflict to the prior experimental results of

Ji et al. (2006) and Schartman et al. (2012), who were not able to observe any such

instabilities even at very large Reynolds numbers and argue that the end-walls used by

Paoletti & Lathrop (2011) were insufficiently designed. Thus, there still remains the

question on whether a truly Keplerian flow would be nonlinearly unstable or not.

2.5 Review summary

Various configurations that have been able to produce vortical structures resembling

large-scale polar vortices have been discussed in this chapter. A common feature in-

volved in all the configurations is rotation. For a large rotation rate of a base with

stationary side walls, hollow vortex cores were produced. Primarily, the intersection
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between the base and the fluid’s free surface demonstrated polygonal patterns. For

fluid-filled containers of small fluid flux or small differential rotations, a ring of vortices

bounding a interior polygon was observed. These flows are highly two-dimensional due

to the Taylor–Proudman theorem which make them particularly favored for investiga-

tion.

The general trend is that with increasing dominance of the inertial forces (increasing

Ro and Re), the flow transitions from an axisymmetric stable state to a non-axisym-

metric state. Experiments typically observed azimuthal wavenumbers ranging from 6-8

at the onset of transition which decreases with increasing Re down to a wavenumber of

2. The internal Reynolds number has been found to provide an accurate indication of

where the transition from the stable to unstable regime occurs. However, it does not

describe the wavenumber transitions. Also, it does not entirely describe the instability

onset for flows in a β-plane. Thus, both the Rossby and Ekman numbers are required

in order to describe the state of these flows. It should be noted that due to the vari-

ous configurations studied by many authors, the definitions of Ro, Re and E are not

universal. The definitions often vary in terms of the length and velocity scales they

employ. Thus, care must be taken when comparing quantitative results between the

different systems.

Many similarities have been demonstrated between the experiments and nature,

despite the quantitative differences in the range of governing parameters. The velocity

and vorticity profiles have shown similarities with spacecraft measurements (Aguiar

et al. 2010), along with the resulting structures. All visualisations from experimental

investigations appear to show a chain of vortices at the polygon boundary. However,

Aguiar et al. (2010) find that their vorticity and dye-visualisation demonstrate vortices

at the boundary while the velocity field does not display any strong presence. Thus, the

vortex elucidation would be significant in such a case. On Saturn, no satellite vortices

have been observed. Whether or not these vortices are very thin or do not exist is still

unknown.

Although not detailed in this thesis, there exists studies of barotropic vortices in

rotating systems which have used vortex creation techniques different to that of source-

sink and differential-rotation forcing. An overview of the methods can be found in van

Heijst & Clercx (2009) with detailed results in the references within Kloosterziel & van

Heijst (1991), Hopfinger & van Heijst (1993) and Beckers & van Heijst (1998).
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2.6 Hypotheses and testing

A number of questions arise from the literature which require answering in order to

further understand the fundamental processes in these shear dominant rotating flows.

Several hypotheses are listed below.

1. The vertical structure of the flow transitions from depth-independent to depth-

dependent flow as |Ro| increases. Successive transitions involve time-dependent

flows.

2. Flow conditions in the proximity of the instability threshold are dominated by

linear instabilities and its preferential azimuthal wavenumber can accurately be

determined by a linear stability analysis. Moving away from the instability thresh-

old either by increasing Ro or decreasing E causes a larger difference between the

azimuthal wavenumber predicted by the linear stability analysis and that of three-

dimensional direct numerical simulation.

3. Varying the aspect ratio of the container will result in different preferential az-

imuthal wavenumbers.

4. The preferential wavenumbers determined by linear stability analysis on a two-di-

mensional model are agreeable with those determined by linear stability analysis

on a quasi-two-dimensional model.

The following studies will be conducted in this thesis to test these hypotheses.

1. Solutions for the axisymmetric base flows will be obtained for a wide range of flow

conditions characterised by Ro and E . The vertical structure of the flow will be

examined for both steady-state and time-dependent flows. Differences between

the positive and negative-Ro regime will be examined. In addition, the effect of

varying the aspect ratio and the topography will be investigated.

2. Linear stability analysis will be conducted on the steady-state axisymmetric base

flows. The onset of instability and the transitions between the preferred az-

imuthal wavenumbers will be determined. Various instability types will be re-

vealed through the growth rate data as a function of azimuthal wavenumber.

3. Three-dimensional direct numerical simulation will be performed for selected
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cases. The non-axisymmetric flow structures revealed in these solutions will be

compared to their linear stability analysis counterparts.

4. Flows modelled by quasi-two-dimensional equations are simulated on a quasi-

one-dimensional domain. The stability of the flow will be determined through

linear stability analysis and computations on a two-dimensional r-θ plane will

demonstrate non-axisymmetric structures.

In essence, progress of the results chapters are as follows: steady-state basic flows are

obtained for a wide range of flow conditions including positive and negative Ro for the

double-disk differential-rotation configuration. The vertical flow structure, shear-layer

measurements and its time dependence are examined in Chapter 4. Linear stability

analysis is performed on these basic flows to characterise their linear stability. The

onset of linear instability and the trends of the preferential azimuthal wavenumbers as

functions of Ro and E are established in Chapter 5. Three-dimensional direct num-

erical simulation is used to resolve any nonlinear instabilities and deduce any effects

they may have in comparison to their linear counterparts. These results are reported in

Chapter 6. Similar analyses from chapters 4-6 are performed on quasi-two-dimensional

flows. The differences in flow structure and stability between three-dimensional and

quasi-two-dimensional flow are explored in Chapter 7.
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Chapter 3

Numerical methodology

This chapter provides an overview of the various governing flow approximations and

the numerical techniques used to solve them in this thesis. § 3.1 and § 3.2 covers the

general governing equations of the rotating flows investigated. The spectral-element

technique employed for spatial discretisation and time integration is introduced in § 3.3.

A background into linear stability analysis and three-dimensional direct numerical sim-

ulation techniques are provided in § 3.4 and § 3.5, respectively. Following this, a

Stuart–Landau model used to investigate weakly nonlinear dynamics in the vicinity of

a bifurcation point is presented in § 3.6. It should be noted that the focus of the thesis

is not on the development of the computational techniques used throughout the study,

rather, they serve as a tool to investigate these research problems.

Flows within a differential-disk configuration with two rotating end-walls are pri-

marily investigated. Descriptions of the axisymmetric and quasi-two-dimensional differ-

ential-disk models are provided in § 3.7. In addition, the governing equations, reference

scales and the boundary conditions implemented in this study are detailed. A descrip-

tion of the validation methods used to ensure sufficient spatial and temporal resolution

conclude this chapter with the results detailed in the chapters to follow.

3.1 Governing equations

Several assumptions are made in forming the governing equations describing the flows

studied in this thesis. It is assumed that the fluid is a continuum with length scales

that are sufficiently larger than the molecule size. The fluid itself is considered to be

Newtonian, having a direct proportionality between the viscous stresses and the strain
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rate. This relationship is given by

τ = µ
du

dy
, (3.1)

where τ represents the shear stress, µ is the dynamic viscosity of the fluid and u is the

velocity component parallel to the direction of shear. Many common liquids and gases

such as air and water behave as Newtonian fluids, while other fluids including polymer

melts, blood, paint and toothpaste exhibit non-Newtonian behaviour (see Deshpande

et al. 2010, and references therein).

The rotating flows investigated here are assumed to remain well below the threshold

Mach number beyond which compressibility effects become significant (Ma ≃ 0.3), and

so will be treated as being incompressible (Anderson 2007). The Mach number is a

dimensionless quantity that represents the ratio between a specified speed to the local

speed of sound (usound = 340.3 m/s in air at Standard Sea Level conditions).

Taking these assumptions into consideration, the governing equations are described

by the time-dependent incompressible Navier–Stokes equations. In an inertial frame of

reference, the equations are written in vector form as

∂u

∂t
+ (u · ∇)u = −∇P + ν∇2u, (3.2)

∇ · u = 0, (3.3)

where u is the velocity field, P = p/ρ is the kinematic pressure, p is the pressure, ρ

the fluid density and ν = µ/ρ is the fluid kinematic viscosity. These equations are

respectively derived from the principles of conservation of momentum and mass. From

left to right, the terms in equation 3.2 represent the unsteady acceleration, advection,

pressure gradient and diffusion contributions. The terms on the left side of the equation

are known as convective terms, which are responsible for the physical transport of

properties through an ordered bulk motion. This is in contrast to the diffusion term

on the right which disperses fluid properties in all directions. It should also be noted

that the advection term is a nonlinear quantity. The continuity equation 3.3 states that

there is no net flux of mass.

3.2 Quasi-geostrophic model

For very small-Ekman-number flows, the shear and boundary layers, which scale with

Ekman number, are very thin. This is most true of the Ekman layers at the confining
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end-walls, for which the thickness scales with E 1/2, whereas other shear layers identified

in these flows scale with the less aggressive E 1/3 and E 1/4 scaling. Thus resolving such

structures in a full three-dimensional domain is computationally expensive. Therefore,

a simpler flow model is required in order to study flows that are described by small E .

This is achieved by making several assumptions. A popular model used in the literature

is the two-dimensional quasi-geostrophic model, which enforces depth independence by

assuming flow conditions of small E and small Ro. That is, quasi-geostrophic flow is

computed on a two-dimensional domain.

In a three-dimensional rotational flow, there are regions described by geostrophic

and ageostrophic features. Boundary and shear layers are ageostrophic while the bulk

interior is characterised by geostrophic motion. For small E and Ro, the flow is depth-

independent according to the Taylor–Proudman theorem. Therefore, modelling the

mid-depth of a three-dimensional domain alone will neglect the effects of any end-walls.

Thus the justification for the use of a quasi-geostrophic model involves the addition of

an external forcing term which mimics the frictional effects resulting from the boundary

and detached shear layers; specifically, the frictional effects from the Ekman layers. The

modified governing momentum equation takes the form

∂u

∂t
+ (u · ∇)u = −∇P + ν∇2

u+ F+Gu, (3.4)

where F and G are external forcing terms. These terms are used to describe an averaged

frictional effect imposed by the boundaries at a particular distance from the mid-depth.

These terms represent the Ekman friction as it describes the decrease or increase in

azimuthal velocity due to the Ekman layers. The quasi-two-dimensional model has been

developed based on the Ekman solution (Appendix A). Interestingly, the same model

can be derived based on an analogous magnetohydrodynamic flow. Both approaches

are described in the following sections.

3.2.1 Effect of the Ekman layer

Consider a solid-body rotating flow in a cylindrical container. A sufficient rotation

causes the flow to suppress any variation in the direction along the rotation axis as

stated by the Taylor–Proudman theorem. Any differential forcing in rotation of the base

or lid of the container causes Ekman layers to form, which in turn causes the velocity

of the flow to match those at the boundaries. Thus, there is a variation in velocity

along the depth of the tank. Within the boundary layer, the profile is assumed to be
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exponential while it remains constant in the interior of the flow. This depth-independent

velocity only occurs in cylinders which have a large height to radius aspect ratio. For

small aspect ratios, the flow is dominated by the boundary layers and therefore the

velocity profile is assumed to take on a parabolic profile which is characteristic of

Poiseuille flow between two plates. This parabolic profile has been adopted in quasi-

two-dimensional models previously by Chomaz et al. (1988) and Bergeron et al. (2000).

The exponential assumption is based on the steady solution of the Ekman boundary

layer flow which is an exact solution of the Navier–Stokes equations. The Ekman flow

belongs to a family of flows over an infinite disk that includes the Bödewadt and von

Kármán flows (see Schlichting 1979; del Arco et al. 2005; Lopez et al. 2009). In addition,

consider the flow being forced at u = U∞ sufficiently far above an infinite stationary

flat plate in a rotating reference frame. An Ekman layer develops on the plate to

accommodate the transition of the flow velocity to zero at the plate. This general

geostrophic Ekman layer problem has a dimensional velocity field solution given by

u = U∞(1− e−z/δ cos(z/δ)), (3.5)

v = U∞e
−z/δ sin(z/δ), (3.6)

where δ represents the Ekman layer thickness δ =
√

ν/Ω, u and v represents the

horizontal and tangential velocity components, respectively, and z is the vertical direc-

tional component. As z → ∞, the velocity components exponentially approaches the

geostrophic velocity (u → U∞ and v → 0). However, within the boundary layer, there

is a flow that is transverse to the interior flow. A plot of u against v as a function of

z/δ would demonstrate the Ekman spiral which suggests that for small z/δ the flow is

approximately 45 degrees to the left of the interior velocity. Thus, the region which is

affected by viscosity is of the O(δ). Furthermore, the vertical velocity induced by the

disk in a geostrophic flow is given by

wd = −
√

E
2

∂U∞

∂y
. (3.7)

A more detailed derivation can be found in Appendix A following Pedlosky (1987).

Similarly, the velocity solutions can be determined for a quasi-geostrophic flow be-

tween two parallel plates located at z = 0 and z = 1 with boundary conditions of

ubc = (ubc, vbc, 0). The non-dimensional velocity field for the top boundary layer is
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given by

uT = u0(x, y) + e
1−z√

E

[

(ubc,T − u0) cos

(

1− z√
E

)

+ (vbc,T − v0) sin

(

1− z√
E

)]

, (3.8)

vT = v0(x, y) + e
1−z√

E

[

(vbc,T − v0) cos

(

1− z√
E

)

− (ubc,T − u0) sin

(

1− z√
E

)]

, (3.9)

where the ‘bc, T ’ subscript represents velocity boundary condition of the top boundary,

and the ‘0’ subscript represents the first order term of the Taylor expansion of the

velocity components. For example, the velocity component w is expanded in powers of

the Rossby number such that w = w0 + Row1 + Ro2w2 + .... That is, retaining only

the 0 subscript terms results in the quasi-geostrophic equations. Similarly, the velocity

solution for the bottom boundary layer is given by

uB = u0(x, y) + e
z√
E

[

(ubc,B − u0) cos

(

z√
E

)

+ (vbc,B − v0) sin

(

z√
E

)]

, (3.10)

vB = v0(x, y) + e
z√
E

[

(vbc,B − v0) cos

(

z√
E

)

− (ubc,B − u0) sin

(

z√
E

)]

, (3.11)

where the subscript ‘bc,B’ subscript represents velocity boundary condition of the bot-

tom boundary. Note that with the appropriate initial conditions (v0 = 0), boundary

conditions (ubc = vbc = 0) and scalings, equations 3.10 and 3.11 are the same as equa-

tions 3.5 and 3.6, respectively. This can be seen by scaling the axial coordinate with

z∗ = zH, where the asterisk denotes a dimensional variable. More importantly, inclu-

sion of quasi-geostrophic effects by retaining terms of O(Ro) yields a vertical velocity

induced by the Ekman layer on the top and bottom surfaces given by

w1(x, y, 1) =

√
E

2Ro
(ωz,bc − ωz,0) , (3.12)

w1(x, y, 0) =

√
E

2Ro
(ωz,0 − ωz,bc) , (3.13)

respectively, where ω represents the vorticity. Hence, the non-dimensional governing

vorticity equation is given by

∂ωz,0

∂t
+ (u · ∇)ωz,0 =

√
E

Ro
(ωz,bc − ωz,0) +

1

Re
∇2ω. (3.14)

Equation 3.14 states that the total rate of change of the relative vorticity is due to the

vortex tube stretching induced by the Ekman layers ∂w/∂z, and the horizontal diffusion

of vorticity Re−1∇2ωz,0. Equation 3.14 is identical to the governing equation used by

Früh & Nielsen (2003) in studying quasi-two-dimensional rotating flows. Indeed, this
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equation can be recast in terms of the velocity components such that the first two

terms on the right hand side respectively correspond to the last two forcing terms in

equation 3.4. Consequently, the three-dimensional problem has been reduced to a two-

dimensional problem, and simultaneously the need to resolve the thinnest structure in

the flow (the Ekman layers) has been eliminated.

3.2.2 Magnetohydrodynamic flow analogy

A somewhat analogous flow to rotating flow between two parallel plates is that of mag-

netohydrodynamic flow between two plates subjected to a strong transverse magnetic

field. The magnetic field acts to suppress motions along the field direction similar to

that of rotation in the hydrodynamic case. The velocity profile in the magnetohydrody-

namic case also exhibits exponential behaviour in the boundary layers and is constant

in the interior (Sommeria & Moreau 1982; Pothérat et al. 2000, 2005). Boundary and

shear layers in these flows are known as Hartmann and Shercliff layers, which are analo-

gous to Ekman and Stewartson layers, respectively. The same dilemma arises in that for

high Hartmann number (Ha ) flows, the Hartmann layer becomes very thin as it scales

reciprocally with the Ha . The Hartmann number is the ratio of electromagnetic to vis-

cous forces. To overcome the computational requirements in simulating high Ha flow,

quasi-two-dimensional models have been developed. The non-dimensional governing

equations derived by Sommeria & Moreau (1982) is given by

∂u

∂t
+ (u · ∇)u = −∇P +

N

Ha 2
∇2

u+
N

Ha
(u0 − nu⊥), (3.15)

where N = σB2H/(ρU) is the interaction parameter, B the vertical magnetic compo-

nent, H the spacing between parallel plates, ρ the fluid density, U a typical velocity,

Ha = HB
√

σ/ρν, σ the electrical conductivity, ν the kinematic viscosity, u is the

velocity field, u0 is the forcing velocity due to electrical conduction through the out-

of-plane walls, u⊥ is the interior velocity field relative to the boundary velocity and n

represents the number of Hartmann layers. The last term on the right hand side of

the equation is known as the Hartmann friction term. The scaling follows u
∗ = uU ,

t∗ = tH/U , P ∗ = pU and ∇∗ = ∇/H where variables with asterisk superscripts repre-

sent dimensional variables. Hence, the dimensional equation is defined as

∂u∗

∂t∗
+ (u∗ · ∇∗)u∗ = −∇P ∗ + ν∇∗2

u
∗ + Ha

ν

H2
[u∗

0 − nu∗
⊥]. (3.16)
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In recognising the similarities in the velocity profile between magnetohydrodynamic flow

and rotating hydrodynamic flow, a relationship for the Ekman friction can be derived.

The thickness of the boundary layer in magnetohydrodynamic flow and hydrodynamic

flow is given by δHa = H/Ha and δE =
√

EH, respectively. Equating the dimen-

sional thickness expressions and substituting, the dimensional quasi-two-dimensional

for rotating flows can be written as

∂u∗

∂t∗
+ (u∗ · ∇)u∗ = −∇P ∗ + ν∇∗2

u
∗ +

1√
E

ν

H2
[n(u∗

b − u
∗)], (3.17)

where u
∗ is the velocity field, u∗

b is the velocity at the boundaries, and n is the number

of friction (Ekman) layers. Note that there is no additional forcing term which is

comparable to u
∗
0 in the hydrodynamic case and that the friction is modelled solely on

the difference in rotation between the boundary and the interior velocity. The last term

on the right side of the equation represents the Ekman friction term, which becomes

more pronounced with an increasing number of Ekman layers. Equation 3.14 can be

obtained by scaling equation 3.62 with u
∗ = uRω, ∇∗ = 2∇/R, t∗ = t/(2ω) and

p∗ = R2ω2p for flow between two parallel plates (n = 2). Comparing equations 3.4 and

3.17, the external forcing terms are given by F = (
√

E /Ro)u∗ and G =
√
E/Ro.

Thus, rotating flows influenced by the presence of Ekman layers can be computed

on a two-dimensional domain if described by quasi-geostrophic equations. Although the

geostrophic model captures the frictional effects of the Ekman layer, the model itself

still does not directly involve vertical velocities. Hence, the quasi-geostrophic model

can only model the thicker E 1/4 layer and not the E 1/3 layer. The significance of the

E 1/3 layer is still not clearly known although several authors have typically attributed

discrepancies between numerical and experiments to this exclusion (Schaeffer & Cardin

2005). Despite this omission, the numerical results have been found to be qualitatively

accurate and have proven that the quasi-two-dimensional model is a valuable tool.

3.3 Spectral-element method

The governing equations are discretised and solved via a spectral-element method (Kar-

niadakis et al. 1991; Karniadakis & Sherwin 2005). Similar to finite-element methods,

the domain space is discretised into macro elements which are then further discretised

into Np×Np nodes through basis functions. However, spectral-element methods employ

high-order Lagrangian interpolants which allows a higher convergence rate and higher
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accuracy. The method can be thought of as a high-order finite-element method which

adopts geometric flexibility from finite elements and the spectral convergence acquired

from spectral methods.

The software used to discretise and solve the governing equations throughout the

study is an in-house formulation that has been developed by Associate Professor Gre-

gory J. Sheard. The software exists in an Open Multiprocessing (OpenMP) and a

Message Passing Interface (MPI) environment, namely Viper and Vmpir, respectively.

The code has been validated in prior studies (e.g. Sheard et al. 2005; Sheard & Ryan

2007; Sheard 2009) and the techniques of the spectral-element method are reviewed in

the following sections. Further details of the techniques can be found in Karniadakis

et al. (1991) and Karniadakis & Sherwin (2005).

3.3.1 Spatial discretisation

The two-dimensional computational domain is discretised into quadrilateral elements.

The elements are able to adopt curvilinear sides through parametric mapping but are

required to respect quadrilateral properties. Consequently, no element corner is allowed

to have an inner angle equal to or larger than 180◦. A refinement of the flow solution is

achieved by increasing the interpolating polynomial degree imposed within each of the

elements or increasing the number of elements. The former is known as a p-refinement

technique and the latter as an h-refinement technique. Depending on the geometry of

the domain, a pure h- or p-refinement of the mesh may be inappropriate as dense ele-

ments may be generated unnecessarily in regions of small velocity gradients. Therefore,

a combination of both refinement techniques is used to balance solution accuracy and

computational expense, which is known as the h-p method (Karniadakis & Sherwin

2005).

The Lagrange polynomials are defined as

Li(ξ) =

N
∏

j=0,j 6=i

(ξ − ξj)

(ξi − ξj)
, (3.18)

where ξ is the spatial coordinate, i and j represent the spatial indices of the data points

and N is the total number of data points.

Within each element, the Gauss–Lobatto–Legendre quadrature is employed for in-

tegration. The Gauss–Lobatto–Legendre quadrature points include points fixed at the

element edges to facilitate a continuous solution between adjoining elements. In one
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dimension, the Gauss–Lobatto–Legendre quadrature is exact for polynomials of degree

2Np − 3. In addition, the Gauss–Lobatto–Legendre quadrature points are the roots of

the equation

(1− ξ)(1 + ξ)P ′
m(ξ) = 0 with − 1 ≤ ξ ≤ 1, (3.19)

where Pm is the Legendre polynomial. Using Rodriguez’s formula, the polynomial can

be written as

Pm =
1

2mm!

dm

dξm
(ξ2 − 1)m where m = 0, 1, 2, . . . . (3.20)

Galerkin weighted residual methods are used to form equations for the flow solution

at the nodal points in the domain. A nodal weight function is used to multiply the

nodal equations and are integrated in space. The weighting functions are non-zero

only within the local element, and therefore the integral is only dependent on the local

and immediate neighbouring nodal points. The weighting coefficients of the Gauss–

Lobatto–Legendre quadrature are given by

wj =
2

m(m+ 1)

1

[Pm(xj)]2
where j = 0, 1, 2, . . . ,m, (3.21)

and in combination with the quadrature points, the integrals can be determined using

Gauss–Lobatto–Legendre quadrature in two dimensions.

3.3.2 Time discretisation

A backwards differentiation scheme is used to time integrate the equations, where the

momentum equation is evaluated at the future time step (n+1) while the time derivative

term is replaced by a backward differentiation formula, such that

α0u
(n+1) −∑J

q=1 αqu
(n−q+1)

∆t
=

−[(u · ∇)u](n+1) −∇P (n+1) + ν∇2
u
(n+1) + F

(n+1) +Gu(n+1),

(3.22)

where F is a forcing term, G is the coefficient of the forcing term linear with the velocity

field, J denotes the order of the scheme and α are the corresponding coefficients. In this

study, a third-order backwards differentiation scheme is used which adopt coefficients

provided in Table 3.1.

An operator-splitting method involving a three-step splitting scheme is used to

temporally discretise the Navier–Stokes equations. The splitting scheme integrates

each term on the right hand side of equation 3.22 separately over one time step. The
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Coefficient Value

α0 11/6
α1 −3
α2 3/2
α3 −1/3
β0 3
β1 −3
β2 1

Table 3.1: Coefficients for the third-order backwards multi-step scheme.

three substeps are referred to here as the advection, pressure and diffusion substeps.

This three-step splitting scheme has been described in Karniadakis et al. (1991) and

has been used widely thereafter (e.g. Barkley et al. 2002; Carmo & Meneghini 2006;

Blackburn et al. 2008; Blackburn & Sheard 2010). The solution to the Navier–Stokes

equations can be obtained by solving the pressure and velocity fields through these

substeps.

The first substep involves the advection term that is evaluated through

u
∗ −

∑J
q=1 αqu

(n−q+1)

∆t
= −[(u · ∇)u](n+1) + F

(n+1) +Gu(n+1), (3.23)

where u
∗ is the intermediate velocity field. It is not convenient to solve equation 3.23

implicitly due to the nonlinear term on the right hand side of the equation. Instead,

this term is replaced by an explicit projection from previous time steps. Hence, u∗ is

obtained from

u
∗ −

∑J
q=1 αqu

(n−q+1)

∆t
=

J−1
∑

q=0

βq[−(u · ∇)u+ F+Gu](n−q), (3.24)

where β are coefficients, as provided in Table 3.1.

The second sub-step solves

u
∗∗ − u

∗

∆t
= −∇P (n+1), (3.25)

where u
∗∗ is the second intermediate field. The pressure is obtained through a Poisson

equation which is derived by taking the divergence of equation 3.25 and enforcing the

divergence-free condition on the second intermediate velocity field. With the appro-

priate boundary conditions for the pressure field, the pressure field can be obtained

through

∇2P (n+1) =
1

∆t
∇ · u∗, (3.26)
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which may then be used with equation 3.25 to calculate u
∗∗.

The third sub-step known as the diffusion sub-step calculates the effects of viscous

diffusion and the forcing terms through the means of a Helmholtz equation on which

the velocity boundary conditions are imposed on the u
(n+1) field,

α0u
(n+1) − u

∗∗

∆t
= ν∇2

u
(n+1). (3.27)

Thus, the calculated pressure and velocity fields at the time step (n+ 1) are obtained,

and the procedure is repeated as necessary to advance the flow.

3.4 Linear stability analysis

The growth or decay of three-dimensional perturbations introduced into steady-state or

periodic solutions of the base flow can be obtained through a linear stability analysis.

The adopted method follows Barkley & Henderson (1996) and Sheard (2011), and has

been successfully implemented in both Cartesian and cylindrical coordinate systems

(e.g. Sheard et al. 2005; Blackburn & Sheard 2010; Cogan et al. 2011). The present

implementation is described in the following sections, specifically for the task of de-

termining the stability of an axisymmetric base flow to infinitesimal non-axisymmetric

(∂/∂θ 6= 0) disturbances.

3.4.1 Base flow

In assuming that the base flow is axisymmetric (r-z plane), the derivative terms in

the azimuthal direction are zero. To compute these flows, an initial condition of solid-

body rotation with a rate matching that of the outer tank walls is imposed together

with appropriate boundary conditions. The flow is evolved through time-stepping until

steady-state or time periodic conditions are reached. Flows are considered to be steady

state once the maximum change in velocity magnitude in the solution decreased below

1×10−12. The majority of the axisymmetric flows investigated herein reached a steady

state.

3.4.2 Linear perturbations

The linear stability analysis formulation begins by decomposing the flow variables into

the sum of the axisymmetric base flow and an arbitrarily small three-dimensional dis-

turbance, u = U(x, y, t) + δu′(x, y, z, t), where δ is a small positive constant. Note
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that U is two-dimensional and u
′ is three-dimensional. Substitution of these decom-

positions into equations 3.2 and 3.3, and retaining terms of O(δ) (terms of O(δ2) may

be neglected as they are negligible for small u
′) yields the linearised Navier–Stokes

equations,

∂u′

∂t
+ (U · ∇)u′ + (u′ · ∇)U = −∇P ′ + ν∇2

u
′,

∇ · u′ = 0.
(3.28)

The linearised equations are similar to the full Navier–Stokes flow except for the dual

advection term. If instead terms of O(1) are retained, one recovers the Navier–Stokes

equations for the axisymmetric base flow,

∂U

∂t
+ (U · ∇)U = −∇P + ν∇2

U,

∇ ·U = 0.
(3.29)

It is noted that equations 3.29 do not depend on the perturbation field.

As the geometry of the system is homogeneous in θ, it is convenient to represent

the three-dimensional perturbation as a Fourier series. That is, the perturbation is

comprised of a series of complex sine waves. The series is given by

u
′
k(z, r, θ, t) =

∞
∑

k=−∞

û
′
k(z, r, t)e

ikθ, (3.30)

where û
′ represents the complex Fourier coefficients, k the azimuthal wavenumber,

θ the azimuthal direction and i is the imaginary unit. It is imperative due to the

presence of non-zero azimuthal velocities in the base flows computed in this study that

the complex Fourier coefficients be retained to correctly capture azimuthal precession

of the perturbation fields on the swirling base flows. The wavenumber is related to

the wavelength, λ, through k = 2π/λ, where λ is normalised by an appropriate length

scale. In a planar Cartesian flow, the wavelengths in the out-of-plane direction can take

any real number. However, in a cylindrical coordinate system, the wave perturbation

is restricted to integer azimuthal wavenumbers since it must conform to the azimuthal

symmetry of the geometry. Given that equation 3.28 is linear in u
′, azimuthal Fourier

modes are only dependent on the base flow and not on other Fourier modes. Thus, each

azimuthal Fourier mode can be computed individually and independently. In addition,

as the Fourier coefficients are two-dimensional for a single Fourier mode, they can be

computed on the same two-dimensional domain used in computing the base flow.

100



3.4.3 Mode stability

The evolution of a single Fourier mode can be determined by time integrating in Fourier

space (that is, replacing velocities u
′ by Fourier coefficients û

′). The evolution of the

perturbation field over a time period is obtained by operating on its current state,

characterised by

û
′
k(t+ τ) = A(τ)û′

k(t), (3.31)

where τ is the time period and A is the linear time integration operator. The stability

of the flow may be determined by casting the evolution of the perturbation field as an

eigenmode problem,

A(τ)û′
k = µk ˆ̂u

′
k, (3.32)

where µk and ˆ̂u′
k are the eigenvalues and eigenvectors of the system, respectively. Stabil-

ity is dictated by the eigenmode with the largest eigenvalue magnitude. The eigenvalue

can either be real or complex. A positive real eigenvalue characterises the instability

mode as synchronous, which retains its structure and sign but can grow or decay over

time. An instability mode defined by a real negative eigenvalue is of a subharmonic

nature, which undergoes a change in amplitude and sign attenuation but preserves its

structure. In fact, the period of the perturbation field is twice that of the base flow.

Lastly, an instability mode described by a complex eigenvalue is quasi-periodic which

contributes an incommensurate frequency into the flow. This frequency results in a per-

turbation field period that is incommensurate with the base flow period. For rotating

flows, the leading eigenvalues are typically complex for azimuthal wave perturbations

due to the precession of the perturbation around the swirling base flow. Further details

of instability mode classifications can be found in Elston et al. (2004), Sheard et al.

(2005) and Blackburn & Sheard (2010).

Operator A is an extremely large matrix made up of N × N elements where N is

quantified as being 3 times the number of mesh nodes (one for each velocity compo-

nent). As an example, a mesh comprised of 500 node points would result in operator

A having 225 million elements. Therefore, for most practical problems A is impractical

to compute and construct explicitly.

A flow problem can contain numerous pairs of eigenvalues and eigenvectors. How-

ever, the leading eigenmode is of primary interest as it is either the fastest growing

or slowest decaying mode. The leading eigenvalue can be determined using a number
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of methods, including the power iteration and Arnoldi methods. These methods are

iterative in that they rely on repeated time integration over τ to resolve the leading one

(power iteration) or more (Arnoldi iteration) eigenvalues. The power method continues

through this process until it isolates the largest eigenvalue magnitude, representative

of the fastest growing mode. The Arnoldi method constructs a Krylov subspace and

resolves a requested number of the complex leading eigenvalues. The stability analy-

sis technique adopted here uses the implicitly restarted Arnoldi method implemented

through the ARPACK package (Lehoucq et al. 1989; Blackburn & Sheard 2010; Sheard

2011).

For a steady-state or periodic base flow, the eigenvalues correspond to the amplifica-

tion factors from one time period to the next. These amplification factors are known as

Floquet multipliers, µ. 1 The amplitude of the leading Floquet multiplier provides an

indication of the stability of the specified wavenumber. For |µ| < 1, the mode is stable

as the mode amplitude will decrease over each period. Similarly, a mode is unstable if

|µ| > 1 and neutrally stable if |µ| = 1. According to Floquet theory, the perturbation

fields satisfy the relationship

g′(t+ τ) = e(στ)g′(t), (3.33)

where g′ represents either one of the velocity components (u′, v′, w′) or pressure (p′)

and σ is the complex growth rate. Thus, any growth or decay of a perturbation from

one period to the next is exponential. The complex growth rate is given by σ = σR+iω

where the subscript “R” denotes the real component of the growth rate and ω is the

angular frequency of the linear mode. The value of τ is arbitrarily chosen for steady-

state solutions while τ represents the period for periodic flows.

Steady-state base flows can also be frozen in time and thus do not need to be

evolved with the perturbation field, producing an increase in computational efficiency.

Since the Floquet multiplier is the periodic amplification factor, equation 3.33 can be

rewritten as

µk ≡ e(σR+iω)τ , (3.34)

which relates the growth rate, period and Floquet multiplier to each other. Stability

is determined only by the real part of the growth rate, which is evaluated from σR =

1Floquet theory is developed for time-periodic base flows, but it is used throughout to describe the

eigenvalues resulting from linear stability analysis of either steady-state or time-periodic base flows.
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log |µ|/τ . Since only the real component of the growth rate is considered throughout

this study, the subscript “R” is omitted hereafter.

In a typical study, the base flow is governed by at least one non-dimensional parame-

ter. For example, the flow in a pipe is characterised by the Reynolds number. Therefore,

the linear stability of the base flow would be characterised by the dependence of the

Floquet multiplier on the Reynolds number and the perturbation wavenumber. The di-

rection of the wavelength is in the out-of-plane direction to the two-dimensional plane

on which the base flow is computed. The onset of instability can be determined by

exploring µk over a wide range of Re and wavenumber. The critical Rec corresponds to

|µk| = 1 (or σ = 0), which represents neutral stability.

3.5 Spectral-element-Fourier method

The geometries considered in this thesis possesses an azimuthal homogeneity and there-

fore, an efficient approach to compute the non-axisymmetric flow in the geometry is

to use a spectral-element-Fourier method (Blackburn & Sherwin 2004). The same

spectral-element method described in previous sections is used to discretise the flow in

the two-dimensional r-z plane. The third dimension is constructed through a Fourier

expansion of the velocity and pressure fields. In cylindrical coordinates, the two-di-

mensional r-z plane is expanded in the azimuthal θ direction. The number of Fourier

modes represents the spatial resolution in the third dimension. Details of the spectral-

element-Fourier technique can be found in Karniadakis (1990), Blackburn & Sherwin

(2004) and Karniadakis & Sherwin (2005). A brief overview of the method is described

here.

The velocity and pressure fields are decomposed with a Fourier expansion in θ, such

that














u(z, r, θ, t)
v(z, r, θ, t)
w(z, r, θ, t)
p(z, r, θ, t)















=
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∑
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uj(z, r, t)
vj(z, r, t)
wj(z, r, t)
pj(z, r, t)















eikjθ, (3.35)

where J is the number of azimuthal Fourier planes considered in the non-axisymmet-

ric computation and k is the azimuthal wavenumber of the θ-periodic domain. For

the cylindrical formulation employed in this thesis, the smallest possible azimuthal

wavenumber number is 1, corresponding to an azimuthal wavelength of 2π (λ = 2π/k).

Substitution of equation 3.35 into the governing Navier–Stokes equations (3.2) and
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expressed in cylindrical coordinates yields

∂uj
∂t

= Fj [−(u · ∇)u]z −
∂Pj

∂z
+ ν

(

∇2
rz −

k2j2

r2

)

uj , (3.36)

∂vj
∂t

= Fj [−(u · ∇)u]r −
∂Pj

∂r
+ ν

[(

∇2
rz −

k2j2 + 1

r2

)

vj −
2ikj

r2
wj

]

, (3.37)

∂wj

∂t
= Fj [−(u · ∇)u]θ −

ikj

r
Pj + ν

[(

∇2
rz −

k2j2 + 1

r2

)

wj −
2ikj

r2
vj

]

, (3.38)

where F is a Fourier transform in the azimuthal direction. The Laplacian operator in

cylindrical coordinates is defined as

∇2
rz =

∂2

∂z2
+

1

r

∂

∂r

(

r
∂

∂r

)

+
1

r2
∂2

∂θ2
=

∂2

∂z2
+

1

r

∂

∂r

(

r
∂

∂r

)

− k2j2

r2
(3.39)

and the nonlinear terms are expressed as

[−(u · ∇)u]z = Fj

[

−u
(

∂u

∂z
+
∂v

∂r
+

ikjw

r

)]

, (3.40)

[−(u · ∇)u]r = Fj

[

−v
(

∂u

∂z
+
∂v

∂r
+

ikjw

r

)]

, (3.41)

[−(u · ∇)u]θ = Fj

[

−w
(

∂u

∂z
+
∂v

∂r
+

ikjw

r

)]

. (3.42)

A set of complex transformations on the velocity fields are required in order to decouple

equations 3.36 to 3.38. Following Tomboulides & Orszag (2000) and Blackburn &

Sherwin (2004), the change of variables are given by

ṽj = vj + iwj , (3.43)

w̃j = vj − iwj . (3.44)

Applying this transformation yields a set of equations that are linear in uj , ṽj and w̃j

except in the nonlinear terms for which there is a coupling. The equations are given by

∂uj
∂t

= Fj [−(u · ∇)u]z −
∂pj
∂z

+

(

∇2
rz −

k2j2

r2

)

uj, (3.45)

∂ṽj
∂t

= F̃j [−(u · ∇)u]r −
(

∂

∂r
− kj

r

)

pj +

(

∇2
rz −

(kj + 1)2

r2

)

ṽj, (3.46)

∂w̃j

∂t
= F̃j [−(u · ∇)u]θ −

(

∂

∂r
+
kj

r

)

pj +

(

∇2
rz −

(kj − 1)2

r2

)

w̃j , (3.47)

with the Fourier-transformed nonlinear terms undergoing a change of variables. The

θ-derivatives are evaluated using the property ∂u/∂θ = F
−1 [ikjF{u}] while the r and

z-derivatives are evaluated on the spectral-element plane in the standard fashion. The

104



same time integration method described earlier in § 3.3.2 is used in this solver. The

velocity fields are transformed to real space to evaluate the nonlinear terms, while the

remainder of the time step is evaluated in Fourier space. To stabilise the computation,

the inverse transform during the nonlinear solve is projected onto a higher-resolution

space, with the option of one additional Fourier mode, or numerous additional modes to

satisfy the two-thirds antialiasing rule being facilitated. The latter option is employed

throughout this thesis, such that a simulation of 48 Fourier modes for pressure and

diffusion corresponds to 71 Fourier modes used for antialiasing of the advection terms.

3.6 Stuart–Landau modelling

A Stuart–Landau model is used to investigate the weakly nonlinear dynamics in the

vicinity of a bifurcation point. The Stuart–Landau equation describes the time variance

of the complex amplitude A of an unstable mode which is related to the growth rate

σ of that particular mode and can be used to establish the nature of non-axisymmet-

ric transitions. That is, whether the transitions are supercritical or subcritical. The

Stuart–Landau equation is defined as

dA

dt
= (σ + iω)A− l(1 + ic)|A|2A+ . . . , (3.48)

where ω, l, and c are all real. Here, ω is the angular oscillation frequency during

the linear growth regime and c is the Landau constant, which is a non-dimensional

parameter. The quantity l is dimensional and its sign can be used to categorise whether

a transition is supercritical or subcritical. Supercritical and subcritical transitions are

also known as non-hysteretic and hysteretic transitions, respectively, as it describes

the hysteretic nature in the vicinity of the critical transition. The term on the left of

equation 3.48 represents the change in complex amplitude over time while the terms

on the right represents the series expansion. If the first term from the expansion is the

only term retained, then exponential behaviour is predicted by linear stability analysis

such that A grows or decays monotonically. If the second term is retained and l is

positive, then a saturated solution is described with |A| = (σ/l)1/2. This corresponds

to a supercritical transition as |A| > 0 is only possible for σ > 0 (i.e. beyond neutral

stability). If l is negative, then higher terms are required to describe the saturation of

the flow, and the possibility of bi-stability (|A| = 0 or |A| > 0 possible for some σ < 0).

This corresponds to subcritical behaviour.

105



The Stuart–Landau model has been used extensively in the investigations of bluff-

body wake transitions and have been detailed and applied to stability analyses (Provansal

et al. 1987; Le Gal et al. 2001; Sheard et al. 2004; Thompson & Le Gal 2004). How-

ever, this type of modelling has also been used for instabilities in any weakly nonlinear

rotating flow similar to those studied here (van de Konijnenberg et al. 1999; Bergeron

et al. 2000). Thus, a brief overview of its application will be provided here.

It is proposed that the complex amplitude takes the form of

A(t) = ρ(t)eiφ(t), (3.49)

where ρ is the real and non-negative amplitude of A, and φ is its phase. Substituting

this expression into equation 3.48 and splitting the Stuart–Landau equation into the

real and imaginary parts yields

d log(ρ)

dt
= σ − lρ2 + . . . , (3.50)

dφ

dt
= ω − lcρ2 + . . . . (3.51)

It should be noted that for steady-state transitions, only the real components of the

Stuart–Landau equation need to be considered, whereas for time-periodic flows, the

imaginary components are required. Given that |A| = (σ/l)1/2 at saturation, the real

amplitude does not change in time and can be written as ρsat = (σ/l)1/2. Also at

saturation, the flow solution reaches a time-periodic state which has a constant angular

oscillation frequency ωsat. This value is given by ωsat = ω−lcρ2sat = ω−σc. The term σc

represents the shift in angular frequency in relation to that of its linear growth regime.

This expression can be rearranged such that the Landau constant can be determined

from numerical computations. This is given by

c =
ω − ωsat

σ
. (3.52)

Equation 3.50 takes on a linear function of ρ2 that is directly related to |A|. Therefore,

it is possible to apply this Stuart–Landau model to numerical results that measure |A|.
To do this, the amplitude variable |A| must first be specified. In applying the Stuart–

Landau model, |A| has been defined as different parameters in different studies. Such

parameters include various velocity components measured at a particular point in the

flow, and the L2 norm. In this study, the L2 norm is adopted such that the amplitude
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is computed from

|A| =
[

∫

V
u
2dV

]1/2

, (3.53)

where V is the volume of the computational domain.

By observing a plot of d log |A|/dt against |A|2, the values of σ and l are given

by the vertical axis intercept and the gradient at the vertical intercept, respectively.

This is valid for times where |A| is sufficiently small. Therefore, l is determined close

to the vertical axis. Assuming that the amplitude of the mode is initially small and

saturates at a future time, the plot should demonstrate an initial point starting on the

vertical axis with an end point on the horizontal axis. A positive slope (negative l) at

the vertical axis indicates that the transition is subcritical, whereas a negative slope

(positive l) indicates a supercritical transition.

3.7 Geometric model

The following section describes the differential-disk models used to investigate the sta-

bility of shear layers produced by differential rotation. The governing equations, pa-

rameters, reference scaling and boundary conditions are described. Validation of the

spatial resolution for all numerical models used throughout this project can be found

in the preliminary sections of their respective chapters.

3.7.1 Differential-disk configuration

A number of differential-disk rotating configurations have been used experimentally,

which have been covered in § 2.4. In this study, the double-disk geometry used by

Früh & Read (1999) has been adopted. A closed cylindrical tank of radius Rt, and

height H, has disks of radius Rd attached to its boundaries. The circular disks sit flush

with the top and bottom boundaries with axes aligned with the axis of rotation of the

tank. The tank and disks rotate independently at angular speeds of Ω and Ω + ω,

respectively, relative to a stationary reference frame. The proportions of the tank are

scaled to match the set-up employed by Früh & Read (1999), which had Rt = 30 cm,

Rd = 15 cm and H = 10 cm. A schematic diagram of the model is given in figure 3.1.

The tank is entirely filled with a working fluid that is assumed to be incompressible

and Newtonian and characterised by the kinematic viscosity ν = µ/ρ, where µ is the

dynamic viscosity and ρ is the fluid density.
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Figure 3.1: A schematic diagram of the f-plane differential rotating disk set-up under in-

vestigation. The key dimensions are the disk radius Rd, tank radius Rt, and tank height H .

The disks and tank rotate about the central axis (dashed line) at a rate of Ω + ω and Ω,

respectively.

3.7.1.1 Governing equations and parameters

The flow is governed by the time-dependent incompressible Navier–Stokes equations

(3.2 and 3.3). Scaling lengths by Rd, velocity by RdΩ, time by Ω−1 and pressure by

ρ(RdΩ)
2 yields the dimensionless equations governing momentum and mass conserva-

tion given as
∂u

∂t
+ (u · ∇)u = −∇P +

EA2

1−ARo
∇2

u,

∇ · u = 0,
(3.54)

where u = (uz , ur, uθ) is the velocity vector, P is the kinematic pressure, and the aspect

ratio of the shear layer is given by A = H/Rd. The Rossby and Ekman numbers are

defined respectively as

Ro =
Rdω

2ΩH
, (3.55)

E =
ν

ΩH2
, (3.56)

where Ω = Ω + ω/2 is the appropriate mean rotation rate following Früh & Read

(1999) and Aguiar (2008). The parameter Ω calculated from averaging the rotation

rate prescribed in each quadrant in the r-z plane (i.e. Ω = (2Ω + 2(Ω + ω))/4). This

method has also been adopted by Aguiar et al. (2010) with Ω = Ω + ω/4 describing

the mean rotation rate of the flow in a differential-ring configuration whereby only one

disk is differentially forced.

Remarkably, different mathematical forms of the diffusion coefficient are achieved

depending on the choice of reference quantities, the choice of which have implications

for the numerical tractability of the system. That is, mathematical singularities ex-
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Reference quantity Parameter

Length Rd

Velocity RdΩ
Time 1/Ω
Pressure RdΩ

2ρ
Diffusion coefficient EA2/(1−ARo)
Normalised disk rotation (ARo + 1)/(1−ARo)
Normalised tank rotation 1
Available Ro range Ro < 1/A

Table 3.2: Reference quantities employed throughout this study and the associated limita-

tions in the available Ro range.

ist due to the denominator of the diffusion coefficient (which must also be positive),

which limits the available Ro range that can be investigated. Table 3.2 summarises the

reference quantities employed and the Ro range available throughout this study. As

indicated in Table 3.2, negative-Ro flows are best investigated using reference quanti-

ties based on the tank rotation rate. Similarly, positive-Ro flows are best investigated

using reference quantities based on the disk rotation rate (see Appendix B). In this

study, the denominator of the diffusion coefficient limits studies to be in the range of

ARo < 1. It is possible to explain this constraint by taking the limit of ARo → 1, such

that

ARo = 1,

ω

2Ω + ω
= 1,

ω/Ω

2 + ω/Ω
= 1,

ω

Ω
= 2 +

ω

Ω
. (3.57)

Dividing equation 3.57 through by ω/Ω yields

1 =
2

ω/Ω
+ 1,

2

ω/Ω
= 0,

ω

Ω
= ∞, (3.58)

Thus, ARo = 1 is the limit as ω → ∞ for a constant Ω. Therefore, the constraints

on computable Ro is not purely attributed to the reference scales used, rather it is the

unique definition of Ω used in Ro, which produces these singularities.
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The Rossby and Ekman number are used to characterise the flow conditions in this

configuration. In addition, a Reynolds number for the shear layer can be defined based

on the azimuthal velocity difference across the layer (Rdω) and a suitable length scale.

Using a length scale of H yields a parameter known as the external Reynolds number,

which can be expressed in terms of Ro and E and is defined as

Re =
RdωL

ν
=

2Ro
E

, (3.59)

following Früh & Read (1999). It should be restated that the choice of length and

velocity scales has varied between studies (see § 2.4.3). Using a length scale of L =

(E /4)1/4H yields an internal Reynolds number defined as

Rei =
RdωL

ν
=

√
2Ro

E 3/4
. (3.60)

This parameter is particularly significant in describing the onset of instability on an

f-plane (see Niino & Misawa 1984; Früh & Read 1999). The same non-dimensional pa-

rameter definitions are also applicable to the β-plane case. However, an extra parameter

is required, known as the β parameter, and is defined as

β =
2Ω tan θ

H
, (3.61)

with Ω = Ω+ ω/2, following Aguiar et al. (2010). The height H used in equation 3.61

represents the height of the shear layer at the disk-tank interface, rather than the full

height of the tank.

3.7.1.2 Domain and boundary conditions

The flow is computed on an axisymmetric meridional semi-plane that has been discre-

tised into quadrilateral elements (as shown in figure 3.2). The boundaries of the domain

are solid and impermeable with the exception of the axis of symmetry (at the left of

the frames in figure 3.2). The boundary condition treatment of the symmetry of axis

is as per Blackburn & Sherwin (2004); zero radial and azimuthal velocities are exactly

enforced as a Dirichlet boundary condition, whereas a zero Neumann condition is im-

posed on the axial velocity. The remaining boundaries have azimuthal velocity profiles

imposed on them to induce a split-disk forcing. A single component of velocity in the

azimuthal direction of uθ = r(Ω+ω) is imposed on the disks while uθ = rΩ is imposed

on the tank walls. A high order Neumann boundary condition is also imposed for the

pressure following Karniadakis et al. (1991). The mesh density is concentrated in areas
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(a) (b)

Figure 3.2: The spatially discretised semi-meridional mesh used in the numerical simulations

is illustrated for (a) the f-plane and (b) the β-plane with an angled sloping bottom of angle

θ. The disks (grey) and tank (black) rotate about the central axis (dashed line) at a rate of

Ω + ω and Ω, respectively.

where shear layers are expected to emerge and evolve. An initial field of u = (0, 0, rΩ)

is imposed as an initial condition at time t = 0.

3.7.2 The quasi-geostrophic model

An efficient alternative to the full non-axisymmetric simulations is the employment of

a two-dimensional quasi-geostrophic model to compute the flow on a horizontal plane.

The model integrates out the vertical direction for which the frictional effects are instead

modelled by external forcing terms. Thus, the model only simulates the flow in the r

and θ dimensions. In using the length and time scales adopted in table 3.2, the two-

dimensional quasi-geostrophic equation (3.17) can be written in dimensionless vector

form as

∂u

∂t
+ (u · ∇)u = −∇P +

A2E
1−ARo

∇2
u+

2
√
E

1−ARo
(ub − u). (3.62)

The last term on the right hand side of the equation is a forcing term describing the

Ekman friction from the boundary layers on the horizontal boundaries.

For axisymmetric flows, only the r dimension is required to be simulated since there

is no variation in the θ and z directions. Therefore, it is possible to compute the flow

on a one-dimensional domain. With the axisymmetric solver described in § 3.3, the

one-dimensionality is achieved by adopting a quasi-one-dimensional domain. That is,

the height of the domain is much smaller than the radial length of the domain such

that the aspect ratio of the mesh is A = 0.01/2 = 0.005. It is emphasised that the

aspect ratio of the mesh is not representative of the aspect ratio of the tank under

investigation, which is given by A = H/Rd. Instead, the mesh is a representative slice
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of the axial-invariant flow which can be used to model flow for any A. An aspect ratio

of A = 2/3 is considered for the quasi-two-dimensional model (Chapter 7). In addition,

a zero axial velocity is imposed on the horizontal boundaries while the tank’s rotation

rate is applied to the tank wall. As normal, the left-hand boundary represents the axis

of rotation and symmetry. Here, the boundary condition incorporated in the external

forcing term is given by

ub =







(Ω + ω)r

ΩRd
for r/Rd ≤ 1

r/Rd for r/Rd > 1

(3.63)

This boundary condition expresses a rotation rate corresponding to the disk for radii

less than the disk radius Rd while a tank rotation is set for radii greater than Rd. Thus,

the boundary condition is discontinuous across Rd. This is the same condition set on

the two-dimensional axisymmetric mesh described in the previous section.

For non-axisymmetric flows, the r-θ domain is mapped to a two-dimensional Carte-

sian grid. The mesh used for these simulations is shown in figure 3.3. The solver used

throughout this study only accepts quadrilateral elements. Thus, it is inevitable that

the mesh adopts a four-fold symmetry. This was found to present problems for tra-

ditional boundary conditions which include a discontinuous azimuthal velocity forcing

across the radius at the disk-tank interface. The discontinuity exacerbates the four-

fold symmetry of the mesh and feeds energy into wavenumbers which are harmonics of

wavenumber 2. Hence the resulting simulations did not reliably capture the azimuthal

wavenumber once the flow saturates. To circumvent this issue, a smoothing to the

forcing is applied through the use of a hyperbolic tangent function over the transition

zone. Hence, the boundary condition in equation 3.63 is replaced by

ub =

Ωr +
r

2

[

1− tanh

(

r −Rd

δ

)]

ω

ΩRd
,

(3.64)

for all r, where δ represents the thickness of the E 1/4 Stewartson layer. Following

the length scale used in determining the internal Reynolds number (equation 3.60), the

thickness is given by δ = (E /4)1/4H. An advantage in using a hyperbolic tangent profile

is that the derivative of any order is continuous (Bergeron et al. 2000). This exact type

of smoothing has been previously applied by van de Konijnenberg et al. (1999) and

Früh & Read (1999). An initial condition corresponding to a flow characterised by ub

is prescribed for the axisymmetric and non-axisymmetric flows.
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Figure 3.3: The spatially discretised semi-meridional mesh used for quasi-two-dimensional

numerical simulations. Macro elements are shown in the r-θ plane.

Limitations of the present approach are that it is inconvenient to track the modal

energies of each wavenumber. Also, a direct comparison cannot be made with the full

non-axisymmetric solutions since the forcing conditions imposed here are smoothed and

not discontinuous.

3.7.3 Spatial and temporal resolution refinement

The Navier–Stokes equations are solved in cylindrical coordinates using a nodal spectral-

element discretisation in space and a third-order time-integration scheme based on back-

ward differentiation (Karniadakis et al. 1991). Imposed upon each macro element are

Lagrangian tensor-product polynomial shape functions. The polynomial degree Np is

varied to control spatial resolution and is interpolated at the Gauss–Lobatto–Legendre

quadrature points. Thus, a higher Np results in a finer grid. The cylindrical formula-

tion of the solver employed here has been validated in previous studies (Sheard & Ryan

2007; Sheard 2009).

A grid independence study for each mesh have been performed and the results are

presented in the preliminary sections of each respective chapter (§ 4.1 and § 7.1). An

error threshold between 0.1% . ε . 1% is achieved to ensure temporal and spatial ac-

curacy of the flow field solutions. The quantities used to measure solution convergence

include norms, several integrated variables, leading eigenvalues of the most unstable

wavenumber determined from a linear stability analysis and monitored parameters at
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specific points in the flow. It is emphasised that although these quantities do not

directly measure error, the differences between their values at different levels of reso-

lution can be used to quantify the uncertainty due to the finite resolution used in the

simulations.

The L2 norm is an integral of the velocity magnitude throughout the entire computa-

tional domain. Given that it captures the global velocity field, it is a useful parameter

for monitoring solution convergence. Another global quantity this study employs to

monitor convergence is the volume integral of the azimuthal velocity relative to the

tank rotation. Since the flows studied here are dominant in rotation, the relative az-

imuthal velocity can capture subtle changes in the solution with varying resolution that

may be occluded by the strong background rotation dominating a traditional L2 norm.

A third global parameter used herein is the leading eigenvalues of a specific azimuthal

wavenumber obtained via linear stability analysis performed on the base flow. The

linear stability analysis technique was described in § 3.4. In addition, the components

of velocity and vorticity have been monitored at specific points in the flow to provide

an indication of solution convergence with grid resolution. Measurements have been

obtained both inside and outside of the shear and boundary layers.

The number of azimuthal Fourier modes, and therefore the azimuthal resolution re-

quired to obtain accurate solutions in three-dimensional direct numerical simulations is

largely dependent on the flow conditions. Generally, either increasing Ro or decreasing

E requires an increase in the number of Fourier modes as increases in Rei typically

present smaller scale structures. For several flow conditions, test cases with several

different numbers of Fourier modes have been computed to ensure that the solutions

are accurate. The solutions corresponding to the optimal amount of Fourier modes for

each case is presented in this thesis as it illustrates the furthest time-integrated flow

state.

3.8 Chapter summary

Numerical methods used throughout this thesis have been described in this chapter.

The general governing equations of three-dimensional and quasi-two-dimensional flow

have been presented. The spectral-element method has been established to investigate

two-dimensional base flows while a linear stability analysis method is used to examine

the flows’ stability to three-dimensional perturbations. A formulation of the spectral-
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element-Fourier method used for non-axisymmetric flow simulation and a description

of the Stuart–Landau model have also been covered.

The differential-disk configurations have been illustrated and detailed, which in-

cludes the f-plane, β-plane and the quasi-two-dimensional model. The flow parameters,

reference scales and governing equations used throughout the thesis have been discussed.

Interestingly, the choice of scales for length, velocity and time can have numerical limi-

tations on the range of flow conditions available. The boundary conditions imposed on

the axisymmetric r-z mesh and the r-θ mesh have been provided.

Finally, quantitative measures adopted to monitor solution convergence with varying

spatial resolution have been described. These measures have been used in the grid

resolution studies for each differential-disk model. The results of the grid independence

study for each model can be found in their respective results sections (§ 4.1 and § 7.1).

The next chapter highlights the flow structures of axisymmetric base flows in a

differential-disk rotating configuration with dimensions matching those studied by Früh

& Read (1999). Both the positive and negative-Ro regimes are explored. In addition,

the effect of varying the aspect ratio on the flow structure is examined. Differences

between the flows produced on an f-plane and the β-plane are also highlighted.
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Chapter 4

Axisymmetric flow in a

differential-disk rotating system

The experiments carried out by Früh & Read (1999) focused on the number of vortices

present for a specific flow condition and with the assumption of the vertical structure

being axially-independent for small-Ro flows. The Taylor–Proudman theorem becomes

invalid at larger Ro, and therefore the flow loses its depth independence. Previous

experiments have monitored only flow in horizontal planes, and past numerical sim-

ulations have primarily solved the two-dimensional quasi-geostrophic equations where

there is no depth dependence by definition. In order to gain a deeper understanding

of the structures in these rotating flows, the full three-dimensional motions must be

simulated to elucidate the vertical structures of the flow.

This chapter presents axisymmetric computations of the basic flow states for a vari-

ety of flow conditions in a cylindrical differentially-disk rotating system. The validation

of the mesh used throughout this chapter is presented in § 4.1. § 4.2 highlights flow

characteristics in a container of the same aspect ratio studied by Früh & Read (1999),

namely A = 2/3, and discusses the flow structures evident upon the breaking of axial

independence and the onset of time-dependent flows. Measurements for the shear layers

are conducted and time periodic flows are also presented in this section. In § 4.3, a sim-

ilar analysis is performed on containers of aspect ratios ranging between 1/6 6 A 6 2 to

investigate the effect of varying the aspect ratio. Finally, in § 4.4 a comparison between

structures produced on the f-plane and β-plane is presented.

Various results from this chapter have been published in Vo et al. (2014).
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4.1 Grid independence study

The flows reported in this chapter have been computed on semi-meridional domains.

The geometries of the f-plane and β-plane meshes have been described earlier in § 3.7.1.

The mesh describing an A = 2/3 domain encompasses 800 mesh elements (20 axial

elements and 40 radial elements). The number of elements stated here refer to the macro

elements, and does not include the collocation points within elements. The mesh adopts

bi-exponent profiles for the element vertex distribution on the horizontal boundaries

either side of r = 1 and on the side boundaries. The dimensions of the smallest macro

element is 0.0215 × 0.02325 (axial × radial), which resides at the intersection of the

horizontal boundary layer and the vertical shear layer. For other aspect ratio meshes,

the number of elements in the axial direction is changed while the number of elements

in the radial direction remains constant since the radial length of the domain does not

change. These meshes assume the same ratio of the mesh height to the number of axial

elements (i.e. (2/3)/(20)=1/30). That is, an aspect ratio of A = 2 has 60 axial elements

and 40 radial elements with the smallest element having dimensions of 0.0147×0.02325

(axial × radial). All angles of the β-plane mesh adopt the same number of elements

and distribution as the A = 2/3 f-plane mesh.

To ensure grid independence, the convergence of several global parameters with

increasing element polynomial order has been computed. A reference case featuring

a small E = 8.33 × 10−5 and a constant Ro = −0.833 is considered. This case is at

the more challenging end of the parameter range covered by this thesis, as smaller E

produces thinner shear layers, and thus requiring higher resolution. Therefore achieving

grid independence for this case ensures solution accuracy for larger E cases.

Three measures for convergence are adopted: the volume integral of the azimuthal

velocity relative to the tank (uθ,rel = uθ−Ωr) across the domain, the leading eigenvalue

magnitude obtained by the linear stability analysis of a perturbation with azimuthal

wavenumber k = 12, and the L2 norm taken as the integral of the velocity magnitude

throughout the domain. The values are obtained once the flow has reached a steady

state. The relative percentage error ε against a high-resolution reference case with

element polynomial degree Np = 14 is plotted in figure 4.1. The results demonstrate a

decreasing error with increasing Np. The relatively larger errors of the linear stability

analysis eigenvalue reflect the fact that higher resolution is typically required to capture

the smaller-scale features of the instability mode structure. A threshold criterion of
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Figure 4.1: The relative percentage error ε in the global variables of the integral of the

relative azimuthal velocity (�), L2 norm (⊲) and the leading eigenvalue magnitude (✸) of the

case study (Ro,E )=(−0.833, 8.33 × 10−5). A decreasing trend with increasing polynomial

degree Np is seen with all variables. An error of ε = 0.1% is marked by the horizontal dashed

line.

O(0.1%) is sought to ensure that solution error due to finite spatial resolution is much

smaller than likely laboratory sources of error. This is approximately satisfied with

Np = 11, which is used hereafter.

4.2 Simulating the configuration used by Früh & Read

Früh & Read (1999) considered a double end-wall differentially-rotating configuration

with a disk radius of Rd = 15 cm and a tank height of H = 10 cm. This corresponds

to a container aspect ratio of A = 2/3. This section highlights the numerical results of

this configuration and aspect ratio.

Steady-state solutions were obtained on the meridional semi-plane for a variety of

flow conditions. Time-evolved solutions are taken to have reached steady-state when

velocity variations are less than 10−12 between successive time steps. Simulations have

been performed for Rossby numbers between −4.0 < Ro < 0.6 and Ekman numbers

between 5 × 10−5 < E < 3 × 10−3. Negative and positive Ro correspond to the inner

disks rotating slower and faster than the tank, respectively. Counter-rotation between
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the disks and tank is described when ω < −Ω, corresponding to Ro < −Rd/H = −1/A.

Different characteristics of the flow were observed for small and large-Ro flows for both

positive and negative-Ro regimes. The transition of these characteristics for positive

and negative Ro occur at significantly different onset values. A description of these

distinct features are divided into positive and negative Ro at small and large Ro.

4.2.1 Steady-state axisymmetric flow structure

Typical contours of the axial velocity uz and axial vorticity ωz for various positive-Ro

flows at E = 3 × 10−4 are shown in figure 4.2. Ekman pumping is observed at the

disk-tank interface (r = 1) where fluid is drawn radially towards the interface in the

Ekman layer and is ejected axially into the interior. To replace the fluid along the

horizontal boundaries, fluid from the interior is directed back into the Ekman layer

on either side of the pumping region to complete the circulation. Provided that Ro is

small, the contours of axial velocity demonstrate reflective symmetry about the mid-

plane, where the two axial jets within the Stewartson layer meet. That is, the point

(r/Rt, z/H)≈(0.5, 0.5) exhibits features similar to a hyperbolic equilibrium point. The

plane of z/H = 0.5 can also be thought of as an imaginary boundary upon which axial

jets are impinging on either side.

Interesting dynamics are also demonstrated at r ≈ 1 in the contours of ωz. For

the smaller positive-Ro cases (e.g. figure 4.2(a)), the concentrated vorticity portrays

significant depth independence, which is surrounded by uniform vorticity. The interior

of the flow is dominated by a depth-independent azimuthal velocity field. Thus the base

flow is highly two-dimensional away from the lid and base and portrays characteristics

consistent with a barotropic flow. The characteristics of the base flow at small Ro are

in agreement with the Taylor–Proudman theorem. Large changes in E are required to

induce the same effect to the flow structure in comparison to Ro variations. Increasing

E causes a larger shear-layer region to develop and also promotes depth independence,

similar to decreasing Ro. In contrast, thin detached shear layers are present at very

small E .

As the positive Rossby number is increased in magnitude, the flow begins to lose

its reflective symmetry about the horizontal mid-plane. The negative-vorticity regions

located at the disk-tank interface grow into strands, which are initially symmetric about

the mid-depth. Eventually, the strands elongate into the flow interior and the flow loses
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Axial velocity, uz Axial vorticity, ωz

(a) Ro = 0.05

(b) Ro = 0.1

(c) Ro = 0.3

(d) Ro = 0.5

Figure 4.2: Structure of the axisymmetric flows visualised on the semi-meridional r-z plane.

Axial velocity (left) and axial vorticity (right) are shown for E = 3× 10−4 at (a) Ro = 0.05,

(b) Ro = 0.1, (c) Ro = 0.3, and (d) Ro = 0.5. For the axial velocity plots, equi-spaced contour

levels are plotted between ±0.1 |Ro| (Ω + ω), while for the axial vorticity plots, equi-spaced

contour levels are plotted between 2Ω±10ω. Blue and red contour shading represent low and

high values, respectively, while solid and dashed contour lines identify positive and negative

contour levels, respectively. The domain shown represents the entire semi-meridional plane

with 0 ≤ r ≤ 2 and 0 ≤ z ≤ 2/3. Images are to scale.

reflective symmetry about the mid-depth. This behaviour is shown in figure 4.2(d).

Further increases to Ro cause “hooks” to develop at the tips of the negative vortical

strands. These are represented by a strand branching back towards the horizontal

boundaries from the tip of the strand. This flow feature has only been observed in

small E flows, which form thin detached shear layers. At larger E and sufficient Ro

forcing, a detached negative-vorticity region is instead present at mid-depth in the

shear-layer region. These distinct features which are observed through the progression

of increasing Ro, affect the linear stability of the flow. The linear stability of this flow
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is discussed in the next chapter (Chapter 5).

The breaking of the initially vertical band of axial vorticity into diagonal strands

may be explained by the dynamics exhibited through the contours of axial velocity.

The breaking of the mid-plane reflective symmetry is illustrated in the contours of

figure 4.2(d), such that the vertical jets fed by axial pumping from each disk now bypass

each other (compare figure 4.2(a) to (d)). It is suspected that the hyperbolic point in

the flow is lost due to the axial velocity within the shear layer exceeding some threshold

value. As Ro is increased, the axial pumping velocity is also increased in magnitude.

Thus, with sufficient forcing, the axial jets are free to bypass each other. A similar

transition has been observed in flows with jets impinging on a horizontal boundary (e.g.

Chiriac & Ortega 2002; Hsieh et al. 2006). In such studies for small Reynolds numbers,

the flow is steady and symmetric about the centreline of the impinging jet. However,

as the Reynolds number is increased, the flow becomes unsteady as represented by the

distortion of the jet. In addition, vortices are expelled on both sides of the jet in a

alternating fashion, induced by a lateral “flapping” of the jet.

Contours of axial velocity and axial vorticity for various negative-Ro flows at E =

3× 10−4 are reproduced in figure 4.3. Unlike positive-Ro flows, increases to the magni-

tude of Rossby number in the negative-Ro regime have a lesser effect on the base flow

over a wide range of Ro values. The flow preserves its reflective symmetry about the

mid-plane for the majority of flow conditions computed in this study. This is portrayed

in the contours of Ro = −1.0 and E = 3 × 10−4 (figure 4.3(b)). Despite having a

significantly larger Ro magnitude compared to figure 4.2(d), the flow still retains its

reflective symmetry in the horizontal mid-plane.

The ability for the flow to retain its reflective symmetry about the mid-plane may be

explained by the sign of the vorticity generated at the disk tank interface. For positive-

Ro flows, the decrease in angular velocity from the disk to the tank at the disk-tank

interface introduces a region of negative vorticity, which develops at larger Ro. This

is not observed for negative Ro, as the increase in angular velocity at the disk-tank

interface produces positive axial vorticity in the vicinity. As this region is surrounded

by the same-signed vorticity, it is not encouraged to grow into the interior. If this

explanation holds true, the two-dimensionality of the flow is expected to break if the

disk and tank rotate in opposite directions. This occurs when ω ≤ −Ω or, equivalently,

Ro ≤ −1/A (Ro ≤ −1.5 in the present system). Alternatively, this explanation can be
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Axial velocity, uz Axial vorticity, ωz

(a) Ro = −0.5

(b) Ro = −1.0

(c) Ro = −1.7

(d) Ro = −2.0

Figure 4.3: Structure of the axisymmetric flows visualised on the semi-meridional r-z plane.

Axial velocity (left) and axial vorticity (right) are shown for E = 3× 10−4 at (a) Ro = −0.5,

(b) Ro = −1.0, (c) Ro = −1.7, and (d) Ro = −2.0. Contour levels are as per figure 4.2. The

domain shown represents the entire semi-meridional plane with 0 ≤ r ≤ 2 and 0 ≤ z ≤ 2/3.

Images are to scale.

referenced to the axial pumping invoked by the disks and the stability of the hyperbolic

point at z/H = 0.5 and r = 1.

The axial velocity and axial vorticity contours for a Rossby number flow with op-

posing disk and tank rotations are illustrated in panels (c) and (d) of figure 4.3. For

these counter-rotating cases, distinct features are seen in regions enclosed by the disks

(r ≤ 1). In addition to the vertical column of axial vorticity around r = 1, there

are vorticity patches and strands angled towards the axis of rotation and the interior

flow originating from a point along the disk boundary. The vorticity strand is posi-

tive while the patch adjacent to it and the horizontal boundary is negative. As the

negative Rossby number increases in magnitude, the negative-vorticity patch enlarges,
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which forces the positive-vorticity strand to incline more towards the vertical shear

layer. With regards to the axial velocity, an extra circulation is seen towards the centre

of the tank. However, there still remains a reflectional symmetry about z/H = 0.5,

which is broken in the positive-Ro regime. Recall that large negative-Ro flows may

demonstrate a strong Ekman pumping. Thus, following the earlier explanation of the

hyperbolic point, the reflective symmetry about the mid-plane may be broken if the

Rossby number is sufficiently decreased in the negative regime.

4.2.2 Vertical shear-layer profile and thickness

Profiles of the relative azimuthal velocity extracted at mid-depth are shown in fig-

ure 4.4(a). The profiles consistently feature three distinct regions. The two regions

of linearly increasing and zero relative azimuthal velocity outside of the shear layer

around r = 1 typify the rotation rates of the disk and tank, while the region inside

the shear layer represents an interface zone over which the profiles smoothly vary from

the disk to the outer tank profiles. As |Ro| increases, the amplitude of the velocities

increases, with the location of the peak remaining relatively constant for all |Ro| < 0.1

investigated. The radial position of the peak relative azimuthal velocity for larger Ro

shifts closer towards the centre of the tank due to the breaking of reflective symmetry

in the flow. Decreasing E induces the same effect although the changes are less pro-

nounced compared to Ro variations. For |Ro| < 0.1 the profiles of azimuthal velocity

are identical at other depths, excluding the vicinity of boundary layers.

The mid-depth axial vorticity profiles corresponding to the cases in figure 4.4(a) are

shown in figure 4.4(b). A minimum in axial vorticity is observed at r = 1 for Ro < 0.1,

with constant vorticity on either side. At the higher magnitudes of positive Ro, the

vorticity profile demonstrates multiple troughs. Indeed, at these higher |Ro| flows, the

profiles are no longer depth-independent.

The radial gradients of axial vorticity for positive-Ro cases are calculated and shown

in figure 4.4(c), which demonstrates ∂ωz/∂r changing sign at least once within the

domain. The common root observed in all cases appears at r = 1 where the vorticity

gradient changes sign, whereas it approaches zero when moving away from r = 1. This

suggests the possibility of barotropic instability developing at the radial location of

the disk-tank interface due to the Rayleigh–Kuo criterion (described in § 1.5.1), which

is explored in detail in Chapter 5. Additional intersections of the horizontal axis are
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Figure 4.4: (a) Azimuthal velocity relative to the rotating tank against radius extracted

at z/H = 0.5 for E = 3 × 10−4 at various Ro. Curves above and below the zero-line axis

correspond to positive and negative Ro, respectively. (b) The axial vorticity profiles and

(c) its radial gradient as a function of radius for various positive Ro only (negative-Ro data

have been omitted for clarity). Root crossings of dωz/dr are observed at r = 1.

evident at higher positive Ro. Similar trends are observed for negative-Ro flows, though

they are not included in the plot for clarity. The vorticity gradient consistently changes

sign at r = 1 for small Ro, while multiple root crossings are observed at larger negative

Ro.

From figure 4.4, it is clear that the profiles of azimuthal velocity and axial vor-

ticity remain continuous across the disk-tank interface. The discontinuity imposed by
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Figure 4.5: The techniques used to measure the thicknesses of (a) the shear-layer associated

with azimuthal velocity and (b) the shear layer associated with axial vorticity. (a) The

relative azimuthal velocity uθ−rel plotted against r. Here ∆uθ−rel is the difference between the

maximum and minimum values obtained by the velocity profile at mid-depth. The thickness

δvel is taken as the absolute value of the difference between the radial locations where uθ−rel

first reaches within 5% of the maximum and minimum uθ−rel values moving away from

the disk-tank interface (|r − 1| increasing from zero). (b) The radial derivative of the axial

vorticity plotted against r. The thickness δvort is taken as the absolute value of the difference

between the radial locations of the maximum and minimum values of dωz/dr bracketing the

disk-tank interface at r = 1.

the boundary at this interface is smoothed out via the vertical detached shear layers.

Indeed, this is the role of the Stewartson layers. Theoretical analysis by Stewartson

(1957) identified two nested shear layers of thicknesses scaling with E 1/3 and E 1/4 for

infinitesimal Ro. The function of the thinner E 1/3 layer is to complete the meridional

circulation of the Ekman pumping/suction, which in turn removes the vorticity singu-

larity, while the role of the thicker E 1/4 layer serves to smooth out the discontinuity

in angular velocity between the inner and outer sections (Smith 1984; Vooren 1992;

Schaeffer & Cardin 2005).

Aside from theoretical analysis, the only experimental investigation that has been

able to retrieve a thickness scaling of the shear layers was conducted by Baker (1967).

The range of Rossby numbers that Baker investigated was very small, ranging over

0.0041 < Ro < 0.038. The scalings of the thick and thin layers determined in that

study were proportional to E 0.25±0.02 and E 0.4±0.1, respectively. Those scalings were

determined by measuring the shear-layer thickness from azimuthal and axial velocity
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(a)

(b)

Figure 4.6: Contours of the base-10 logarithm of vertical shear-layer thickness plotted on

axes of log10 (E ) against Ro. Contours plots of (a) log10 δvel and (b) log10 δvort, respectively,

with thicknesses as defined in figure 4.5. In both plots, small to large thickness is represented

by blue to red contours, respectively, and thickness values take the same contour shading in

both plots. Contour line intervals are 1/4 and 1/3 of the vertical axis scale in panels (a)

and (b), respectively. This follows the respective expected shear-layer scalings of E 1/4 and

E 1/3. The data agree with these scalings when the vertical contour line spacing matches the

vertical axis tick mark spacing. A vertical dash-dotted line corresponds to the Stewartson

limit of |Ro| → 0, demonstrating that a finite-shear-layer thickness is produced in this limit.
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profiles measured using electrodes, respectively, though the precise criterion used to

define the edges of the shear layer was not made clear. The issue of an ill-defined

shear-layer edge may be the cause of a lack of numerical validation, and is further

exacerbated by the frequent use of a quasi-geostrophic model which neglects the axial

flow producing the E 1/3 layer. Additionally, there has been no mention in the literature

of how the shear-layer thickness scales at higher Ro. It is evident from figure 4.2 that

the thin barotropic shear layer obtained for small |Ro| breaks down at large |Ro|, so

presumably this would affect the thickness scalings.

Since the functions of the E 1/4 and E 1/3 layers are to smooth out the azimuthal

velocity and axial vorticity discontinuities, respectively, it is proposed that their re-

spective thicknesses can be determined from the profiles of the azimuthal velocity and

the radial gradient of axial vorticity from the axisymmetric base flow. The techniques

used to measure the thicknesses are illustrated in figure 4.5, where δvel represents the

thickness of the E 1/4 layer and δvort represents the E 1/3 thickness. The thickness δvel is

taken as the absolute value of the difference between the radial locations of where uθ−rel

first reaches within 5% of the maximum and minimum uθ−rel values on either side of the

disk-tank interface (r = 1). Although this 5% threshold has been chosen arbitrarily,

it has been determined that the relevant results obtained through this approach are

quite insensitive to the threshold value used provided that it is small (e.g. < 10%). The

thickness δvort is determined by the absolute difference between the radial positions of

the minimum and maximum values of dωz/dr.

Figure 4.6 maps log10(δvel) and log10(δvort) on axes of log10(E ) and Ro. In each

case a regular increase in thickness with Ekman number is observed, and additionally

a continuous increase in thickness with Rossby number through both the negative and

positive-Rossby-number ranges is found. These plots confirm that the Stewartson layers

adopt a finite thickness in the limit as |Ro| → 0. This feature is not without precedent in

fluid mechanics. For instance, it is well known (Schlichting 1979) that at a stagnation

point in plane flow (Hiemenz flow) the boundary layer has a finite thickness at the

stagnation point, despite the velocity differential across the boundary layer going to

zero.

For all negative Rossby numbers (and small positive Rossby numbers), an approx-

imately uniform vertical spacing between contour levels in both plots in figure 4.6

is seen. The contour-level spacing further indicates that the shear-layer scalings are
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Figure 4.7: The thickness based on the axial velocity profile as a function of E . The Rossby

number examined is close to zero at Ro = 0.01.

approximately consistent with their theoretical E 1/4 and E 1/3 values. For example,

power-law fits of δvel and δvort against Ekman number for a very small Rossby number

(Ro = 0.005) yields δvel = 1.31E 0.22 and δvort = 1.26E 0.31, respectively. The exponents

of E are in good agreement with those predicted by theory.

So why is it that an E1/3 scaling is detected from the axial vorticity profile when

Baker (1967) used the axial velocity profile to measure the E1/3 layer? Within the

Stewartson layers, fluid circulates axially towards mid-depth at positive Rossby num-

bers, and towards the horizontal boundaries at negative Rossby numbers. Recirculation

is therefore confined to one vertical half of the enclosure, and near to mid-depth, the

fluid pumped axially through the E 1/3 layer migrates horizontally near the mid-plane

to complete its meridional circulation away from the Stewartson layers. The change in

angular momentum as this fluid migrates radially inwards or outwards at mid-depth

then modifies the axial vorticity profile, which is believed to drive the detection of

an E 1/3 scaling in the shear-layer thickness measured from the radial profile of axial

vorticity in figure 4.6(b). Moreover, a similar analysis conducted on the axial velocity

profiles yields an E exponent comparable to that of δvort, namely 0.319. The data for

the thickness derived from the axial velocity profile for Ro = 0.01 are illustrated in
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figure 4.7.

Another feature observable in figure 4.6 is that, at larger positive Rossby numbers,

the measured thicknesses begin to lose their dependence on the Ekman number (con-

tours of constant thickness approach the vertical). This Ekman-number-independent

behaviour also manifests itself in the stability of the flow to azimuthal perturbations dis-

cussed later in Chapter 5. By inspection of the axisymmetric flows shown in figure 4.2

(and similar plots at other (Ro, E ) pairs not shown here), it becomes apparent that this

Ekman-number-independent regime corresponds to the symmetry-broken axisymmetric

flows (see figure 4.2(d)).

Across the negative-Rossby number range, the thicknesses change gradually. As

Rossby numbers approach zero and increase through the range of positive values, thick-

ness increases at an accelerating rate. This behaviour can be explained by the nonlinear

relationship between differential angular velocity (ω) and Ro. While ω appears directly

in the numerator of the Rossby number definition (equation 3.55), it also enters in the

denominator through the definition of Ω. Rearranging equation 3.55 for the normalised

differential rotation gives

ω

Ω
=

2Ro
1/A− Ro

, (4.1)

which has an asymptotic minimum ω/Ω = −2 as Ro → −∞, and an asymptotic max-

imum ω/Ω = ∞ as Ro → 1/A (which corresponds to Ro → 1.5 with the enclosure di-

mensions adopted in the present section). The similarity in Rossby number dependence

between the relationship described by equation 4.1 and the thickness measurements in

figure 4.6 highlights ω/Ω as an important parameter in describing the dependence of

the shear-layer thickness against Rossby number.

Universal relationships for the shear-layer thicknesses are now developed. As es-

tablished from figure 4.6, δvel/E 1/4 and δvort/E 1/3 are approximately constant. When

plotted against ω/Ω, approximately linear trends were found for these normalised thick-

ness quantities for Ro . 0. Least-squares fits to the data obtained the trends displayed

in figure 4.8. These trends hold well for all negative Rossby numbers and positive

Rossby numbers exhibiting reflective symmetry about the mid-plane in the axisymmet-

ric flows. Once the symmetry is broken, the measured shear layer becomes thicker than

the universal curve, which results from the widening of the shear layer away from the

lid and base (this effect can be seen when comparing panels (d) to (a) in figure 4.2).

This is observed in figure 4.8 in the upward departure of measured thickness data from
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the universal relationships.

4.2.3 Time-dependent axisymmetric flow structure

It has been described that with increasing |Ro| magnitude, the flow transitions from

reflectively symmetric to symmetry-broken flow. For positive-Ro flow, the depth de-

pendence is characterised by the diagonal strands of negative vorticity that stem from

the disk-tank interface. In contrast, negative-Ro flows illustrate the development of

negative-vorticity patches adjacent to the horizontal boundary and the vertical positive-

vorticity band at the disk-tank interface when axial invariance of the axial vorticity is

broken. It has been observed that further increases to |Ro| causes the axisymmetric

flow to become time-dependent. Details of the time-dependent flow structures in the

positive and negative-Ro regimes are described separately in the following sections.
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t = 0.05 t = 12

t = 3 t = 15

t = 6 t = 18

t = 9 t = 21

Figure 4.9: Snapshots of axial vorticity during the start up of the flow with conditions

Ro = 0.924 and E = 1 × 10−3. Sequence begins from top to bottom and left to right.

Contour levels are as per figure 4.2.

4.2.3.1 Unsteady flow in the positive-Rossby-number regime

A representative flow condition that illustrates time-dependent flow is characterised

by (Ro,E ) = (0.924, 1 × 10−3). This flow is analysed in detail here, describing the

developments of the flow from solid-body rotation at the tank’s angular rate through

to time-dependent flow.

Snapshots of axial vorticity contours at the startup of the flow (solid-body rotation)

to the near-onset of time-periodic flow are illustrated in figure 4.9. Initially, a small

zone of negative axial vorticity is generated at the disk-tank interface, while a thin

layer of positive axial vorticity forms on the disk boundaries (t = 0.05). The fluid

bound between the two differentially rotating disks develops positive axial vorticity

while the localised negative-vorticity zones at the disk-tank interface grow into strands.

These negative-vorticity strands initially extend horizontally, but then progressively
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Figure 4.10: (a) The integral of the azimuthal velocity relative to the tank and (b) the L2

norm of the flow with conditions Ro = 0.924 and E = 1× 10−3 measured over time.

shift towards the vertical as the flow develops. The flow reaches a fully developed state

marking the end of the transient startup phase of the simulation at t = 21. After this

time, the strands begin to divert away from the vertical in a similar manner to the

flow shown in figure 4.2(d). However, due to the higher Ro here, the flow is unable to

remain steady and develops an instability. The unsteadiness manifests as an oscillation

of the negative-vorticity strands which begin to flap past each other twice per cycle.

In addition, the axial vorticity contours reflect the fact that the strands are aligned

with jets of axial velocity from the top and bottom boundaries. Thus, the instability

develops as a breaking of the hyperbolic zone at the point where the jets meet. It turns

out here that the unsteadiness saturates to a perfect periodicity.

The periodicity of the flow is easily identifiable through profiles of the integral of

azimuthal velocity relative to the tank and the L2 norm over time. These profiles

are illustrated in figure 4.10. For clarity, only 60 ≤ t ≤ 200 is shown. Both profiles

demonstrate strong periodicity beyond approximately t = 100. The measured periods

from the integral measure and the L2 norm are Tint = 2.8406 and TL2
= 5.6812,

respectively. These periods differ by a factor of exactly 2. The L2 norm yields a

longer period as it incorporates all three velocity components for its measure. Since the

integral measure of the azimuthal velocity considers only one component, it is possible

that the energy in that integral is repeated throughout half of the actual flow period.

In addition, the complete period of T = 5.6812 corresponds to a frequency of f = 0.176,
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which is less than twice the frequency of the background flow, namely f = 0.768 (1/Ω).

Thus, inertial waves in the form of shear layers may be present (see Lopez & Marques

(2014) and references therein). However, it would be difficult to identify inertial waves

since the oscillation of the flow occurs over a large region rather than a localised point.

Therefore, the inertial waves would likely be a disturbance that does not prorogate at

a constant angle to the rotation axis, rather a distorted wave due to the motion of the

vorticity strands.

The structure of the axisymmetric base flow over a complete period (T = 5.6812)

is illustrated in figure 4.11 through axial vorticity contours. The top centred panel is

a reference frame at t = t∗ and successive panels are snapshots through time equally

spaced at intervals of T/8. Throughout a complete period, the negative axial vorticity

strands flap past each other twice. A similar motion is exhibited in the azimuthal

component of vorticity whereby the positive and negative-vorticity strands oscillates

about r = 1. This feature is demonstrated in figure 4.12. Similar to the structure of

the steady-state base flows, there exists a dominant layer of azimuthal vorticity on the

horizontal boundaries of the disks and tank that varies slightly throughout the period.

These layers are generated through the radial pumping (inwards) of fluid due to the

Ekman layer dynamics.

4.2.3.2 Unsteady flow in the negative-Rossby-number regime

Periodic flows were not observable at large |Ro| in the negative-Ro regime. The integral

of the azimuthal velocity relative to the tank and the L2 norm data are shown in

figure 4.13 with flow conditions Ro = −3.0 and E = 3 × 10−4. The flow has been

allowed to develop over a long time period. It is evident from both plots that a periodic

state is not established. Between 400 . t . 1000, the flow appears to begin exhibiting

periodic-like features, where the measured variables oscillate regularly. However, even

in this region the oscillation is not perfectly periodic. During this time, the positive

diagonal vorticity bands on the inner side of the primary vertical strand elongate and

contract very slightly, and the flow maintains reflective symmetry about the axial mid-

plane. Contours of axial velocity and axial vorticity at an instant in this regime are

shown in figure 4.14. At the same time, the negative vorticity (dotted line) close to the

axis of rotation also expands and contracts, although over a larger region. Similarly,

the regions of positive and negative axial velocity near the axis of rotation shrink and
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t = t∗

t = t∗ + 0.125T t = t∗ + 0.625T
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t = t∗ + 0.375T t = t∗ + 0.875T

t = t∗ + 0.5T t = t∗ + T

Figure 4.11: Snapshots of axial vorticity throughout a complete period with flow with

conditions Ro = 0.924 and E = 1×10−3. The top centred panel represents the reference flow

condition at t = t∗. The period of the flow is given by T = 5.6812. Contour levels are as per

figure 4.2.

grow over time while the axial velocity strands at the disk-tank interface elongate

and contract. These modulations are the cause of the nearly-periodic behaviour over

400 . t . 1000. Beyond t ≃ 1000, the measured variables begin to demonstrate chaotic

behaviour.

The flow beyond t ≃ 1000 begins to illustrate greater spatial changes within the

flow, especially those involving the axial vorticity strands at the disk-tank interface. The

diagonal vorticity strands oscillate over a larger region and their tips expel a packet of
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t = t∗

t = t∗ + 0.125T t = t∗ + 0.625T

t = t∗ + 0.25T t = t∗ + 0.75T

t = t∗ + 0.375T t = t∗ + 0.875T

t = t∗ + 0.5T t = t∗ + T

Figure 4.12: Snapshots of azimuthal vorticity throughout a complete period with flow with

conditions Ro = 0.924 and E = 1 × 10−3. The time of these panels correspond directly to

those in figure 4.11. Contour levels are as per the axial vorticity contours in figure 4.2.

positive vorticity that convects towards the axis of rotation. Interestingly, this packet

of positive vorticity is accompanied by a packet of negative vorticity of a similar size.

The negative vorticity is generated from the high negative vorticity produced across

the disk-tank interface beneath the positive-vorticity strand. Therefore during this flow

phase, a pair of positive and negative vortices is produced from the persistent structures

at r = 1 which then migrates towards the axis of rotation. They are carried on the

returning flow expelled radially inward from the vertical jests within the remnants of

the Stewartson layer. As this is a high negative-Ro flow, the Ekman layer on the disks
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Figure 4.13: (a) The integral of the azimuthal velocity relative to the tank and (b) the L2

norm of the flow with conditions Ro = −3.0 and E = 3× 10−4 measured over time.

Figure 4.14: Contours of axial velocity (left) and axial vorticity (right) at t = 600 with flow

conditions of Ro = −3.0 and E = 3× 10−4. Contour levels are as per figure 4.2.

express strong fluid pumping into the interior flow.

Despite the profiles of figure 4.13, the qualitative features of the flow are somewhat

periodic. This vortex pair shedding motion is very similar to that of the wake of flow

over a cylinder (e.g. Sheard et al. 2005; Rao et al. 2013). An illustration of these vortex

pairs can be seen in figure 4.15. The production of a vortex pair alternates between

the bottom positive vortex strand and the top negative vortex patch (t = 3898), and

the top positive strand and the bottom negative patch (t = 3910). As the vortex pair

travels towards r = 0, it deforms and elongates with the occasional coalescence with the

existing, previously generated vortex pair in the flow. The vortices eventually weaken

and decay prior to reaching the axis of rotation, as the returning radial flow diverts

vertically towards the top and bottom boundaries to complete the circulation.

Stronger chaotic features are exhibited as the magnitude of the Rossby number is
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t = 3894 t = 3910

t = 3898 t = 3914

t = 3902 t = 3918

t = 3906 t = 3922

Figure 4.15: Snapshots of axial vorticity throughout 3894 6 t 6 3922 for Ro = −3.0 and

E = 3 × 10−4. Contour levels are between −2Ω 6 ωz 6 2Ω with red and blue contours

representing positive and negative values, respectively.

(a) t = 4550 (b) t = 5850

Figure 4.16: Axial vorticity contours at (a) t = 4550 and (b) t = 5850 demonstrating

the flow features present in chaotic-like flow. The flow conditions are of Ro = −5 and

E = 3 × 10−4. Contour levels are between −2Ω 6 ωz 6 2Ω with red and blue contours

representing positive and negative values, respectively.
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Figure 4.17: The integral of the azimuthal velocity relative to the tank for flow conditions

at Ro = −2.5 and E = 3× 10−4 measured over time.

increased to Ro = −5. At this flow condition, the reflective spatio-temporal symmetry

about the mid-plane is lost since one of the positive-vorticity strands dominates and

elongates further into the interior. The strand which dominates alternates irregularly

over time. An illustration of this is shown in figure 4.16 at t = 4550 and t = 5850.

The production of vortex pairs is still seen to originate from bands extending from

the disk-tank interface. However, since the bands are of unequal length, the patches

of vorticity does not primarily travel along the mid-plane, rather many of the vortical

motions occur near to a horizontal boundary. That is, the interface between the two

bands is no longer centred at the mid-plane. As expected based on this observed flow

behaviour, the integrals of the relative azimuthal velocity and the L2 norm demonstrate

erratic behaviour over this region (not shown).

The transition from steady-state axisymmetric base flows to this irregular time-

dependent flows in the negative-Ro regime is not instantaneous. An interesting flow

condition at Ro = −2.5 and E = 3 × 10−4 exhibited both steady-state and time-

dependent behaviour. Eventually, the flow saturated to a steady state. The integral

of relative azimuthal velocity for this case is shown in figure 4.17. Initially, steady-

state behaviour is demonstrated whereby the change in velocities between each time

step consistently decreases over time. This is observed for t . 2000. However, beyond

this time, the velocity fluctuations increase rapidly and a state of quasi-periodicity is

established over a large time frame (4000 . t . 8000). During this time, motions

similar to those illustrated in figure 4.15 are observed. After t & 10000, changes in the
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flow begin to decrease, eventually saturating towards a steady-state. This axisymmetric

steady-state condition illustrate structures similar to those demonstrated in figure 4.3.

4.2.4 Smoothed velocity profile forcing

The previous sections have presented solutions which have had discontinuous boundary

conditions imposed. That is, the disk rotates at a rate of Ω+ ω while the tank rotates

at Ω, and the interface between the two boundaries share a single element edge. The

physical set-up of this system requires a finite gap between the disk and the tank in

order for the two boundaries to rotate independently. Hence, the transition from the

disk’s angular velocity to the tank’s angular velocity occurs smoothly over a finite

radial distance. This transition has been modelled using various functions in previous

quasi-two-dimensional models (see § 3.7.2). The smoothed angular velocity boundary

condition used here is given by

ub = Ωr +
r

2

[

1− tanh

(

r −Rd

δ

)]

ω, (4.2)

where δ = (E /4)1/4H represents the thickness of the E 1/4 Stewartson layer.

Figure 4.18 highlights the differences between the steady-state solutions obtained

using discontinuous and smoothed boundary conditions via axial vorticity contours.

Minor differences are observed between the contours, most of which are present around

r = 1. It should be noted that the contour levels used are exactly the same for both

the discontinuous and smoothed solutions. For Ro = 0.1, the solutions portray very

similar features with the discontinuous case exhibiting a lower value of vorticity around

r = 1. This is expected as the smoothing of the angular velocity assists in evening out

the vorticity across the interface. As the Ro magnitude is increased to Ro = 0.5, the

symmetry-breaking of the flow is seen in both the discontinuous and the smoothed cases

where the negative-vorticity strands stemming from the disk-tank interface elongate

into the interior. This suggests that the negative-vorticity strands which were first

observed in the solutions with discontinuous forcing are not artifacts of insufficient

numerical discretisation (due to the discontinuous boundary condition). However, the

effect of the angular velocity smoothing appears to have truncated the negative-vorticity

strands. Indeed, increasing the Ro magnitude for the smoothed boundary condition case

causes the flow structure to become more like its discontinuous counterpart such that

the strands become elongated at a greater angle to the vertical. That is, smoothing

of the angular velocity boundary condition acts to delay the onset of transition from
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(a) Positive Ro
(i) Ro = 0.1

(ii) Ro = 0.5

(b) Negative Ro
(i) Ro = −0.1

(ii) Ro = −1.0

Figure 4.18: Structure of the axisymmetric flows visualised on the semi-meridional r-z

plane. Steady-state portrayed through axial vorticity for the discontinuous boundary condi-

tion (left) and smoothed condition (right) for E = 5× 10−4 at (a)(i) Ro = 0.1, (ii) Ro = 0.5

and (b)(i) Ro = −0.1, (ii) Ro = −1.0. Contour levels are as per figure 4.2 with the same

number of contour levels used between the two forcing cases.

reflectively symmetric to symmetry-broken flow. The same delay effect is observed for

flow conditions in the negative-Ro regime.

4.3 Varying the aspect ratio

The effect of varying the aspect ratio is numerically investigated by varying the height

of the tank while keeping the disk radius constant. The motivation for this origi-

nates from the definition of the Stewartson layer thickness, which scales linearly with

height (i.e. δvel ∝ E 1/4H). The height of the container can be expressed through the

non-dimensional parameter A, and therefore the effect of varying A in relation to the
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Stewartson layer can be determined.

In unpublished experiments conducted by a colleague, Dr. Luca Montabone, a dif-

ferent differential-disk configuration with a large aspect ratio was studied. They were

not able to observe a variety of polygonal shapes throughout their entire Ro-E param-

eter space. Instead, only oval shaped vortices were produced. Despite the difference in

the experimental configuration, it was hypothesised that the large aspect ratio of the

apparatus was responsible for the formation of the oval shapes since polygonal shapes

returned when the aspect ratio was decreased. The reasoning was that the Stewartson

layer was either not produced or was disrupted in large aspect ratio containers, and

therefore no barotropic instability exists. To investigate the effect of varying the aspect

ratio, the flow structures produced in five other aspect ratios have been examined in

addition to the reference aspect ratio of A = 2/3 which has been presented in the pre-

vious sections. The other four aspect ratios are A = 1/6, 1/3, 4/3 and 2. In all cases,

the radius of the disk is kept constant while the height of the container is changed.

4.3.1 Axisymmetric flow structure

Containers characterised by aspect ratios both lower and higher than the reference case

exhibit flow structures similar to that of the reference case, except that they are scaled

to their respective tank height. The contours of axial velocity and axial vorticity of the

axisymmetric steady-state base flows for a variety of A are illustrated in figure 4.19.

The contours of axial velocity demonstrate a pair of meridional circulation on each

horizontal boundary for all A investigated, while the axial vorticity contours display

a column of vorticity at r = 1. For small A (small H), the flow is largely confined

and the axial vorticity is strongly concentrated as a column. As the aspect ratio is

increased, the meridional circulation and the vorticity column broadens. At larger A,

the reflective symmetry about mid-depth in the axial velocity contours is maintained.

It is apparent that at sufficiently large aspect ratios, the symmetry axis and side-walls

begin to confine the flow. Presumably this will act to limit the Stewartson layer scaling

with H (and A). It is surprising that the column of axial vorticity does not demonstrate

a weakening in regions of the interior as was suggested in the experiments. That is, the

Stewartson layer appears to exist even at large aspect ratios. These characteristics are

consistent through a wide range of E and Ro conditions.
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Axial velocity, uz Axial vorticity, ωz

A = 1/6

A = 2/3

A = 4/3

A = 2

Figure 4.19: Structure of the axisymmetric flows visualised on the semi-meridional r-z

plane. Axial velocities (left) and axial vorticity (right) are shown for Ro = 0.3 and E =

7 × 10−4 with A = 1/6, 2/3, 4/3 and A = 2. The images are to scale. Contour levels are as

per figure 4.2.
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4.3.2 Vertical shear-layer profile and thickness

Despite the visual similarities in the solutions for the various A, the profiles of axial

vorticity for the smallest and largest A illustrate vast differences. For a sufficiently

large A, the minimum and maximum axial vorticity values are no longer bounded by

approximately ωz,tank = 2Ω and ωz,disk = 2(Ω+ω), respectively. A comparison between

the axial vorticity profiles of a small and large A is illustrated in figure 4.20(a,b). For

A = 1/6, the flow outside of the shear layer exhibits values consistent with ωz,tank = 2

and ωz,disk = 2.21. Inside the shear-layer region, the axial vorticity profile demon-

strates a dip across r = 1 as it decreases and then increases with increasing radius.

However, the profile obtained from the A = 2 configuration does not exhibit vorticity

values consistent with the theoretical values of ωz,tank = 2 and ωz,disk = 8, nor does

it demonstrate any large range of a constant value. There is a small range between

1.7 6 r 6 2 which displays a constant vorticity value of ωz = 1.9, which is lower than

the vorticity attributed by the tank. Therefore, with increasing A, the magnitude of

vorticity increases near the axis of rotation while it decreases at the disk-tank interface

and beyond (r > 1).

This trend is observable in figure 4.20(c) which provides a collapse of the axial

vorticity profiles for a variety of A. The horizontal axis has been rescaled to (r −
1)/A such that the zero value represents the disk-tank interface. The magnitude of

axial vorticity is seen to increase with increasing A for negative values of (r − 1)/A

values while it decreases with increasing A for positive values of (r − 1)/A. For this

particular flow condition, the flow is seen to deviate at A = 4/3. The similarity of

the dip in the vorticity profile is apparent in the vicinity of the disk radius at all A,

demonstrating strong scaling with 1/A. However, the local minimum of each curve is

shifted slightly towards the tank wall with increasing A. This is due to the asymmetry

in the recirculation on either side of the axial jet produced at the disk-tank interface.

Figure 4.20(d) shows a plot of the axial velocity profiles extracted at z/H = 0.9 (z/H =

0.1 reveals the same trends) for A = 1/6 and A = 2. The profile of A = 1/6 is almost

symmetric about the disk radius ((r− 1)/A = 0) with the circulations on either side of

the jet exhibiting a similar strength. However, for A = 2, the jet has shifted slightly

towards the tank wall in order to compensate for the stronger circulation displayed on

the side closer to the axis of rotation.

An increase in Ro also reveals the same trend attributed to increasing A, although
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Figure 4.20: Profiles of axial vorticity for Ro = 0.3 and E = 7 × 10−4 for (a) A = 1/6

and (b) A = 2 extracted at z/H = 0.5. (c) A collapse of ωz for various A as a function of

(r − 1)/A. (d) The axial velocity profiles extracted at z/H = 0.9 for A = 1/6 and A = 2.

The axial velocities have been scaled by their relative maximums.

the changes are not as pronounced. This is likely due to the increased Stewartson layer

thickness caused by increasing Ro (see figure 4.6). The effects are not as prominent

because the Stewartson layer in the flow conditions studied under A = 2/3 did not

become large enough to experience the effects of the confining side-walls and axis of

symmetry.

The shear-layer thicknesses of δvel and δvort have been measured following the same

procedures described earlier in § 4.2.2. The shear-layer thicknesses were obtained for

various Ekman number at a small Rossby number close to zero (Ro = 0.005) for A = 1/6
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Figure 4.21: The thickness based on the (a) relative azimuthal velocity and (b) based on

the axial vorticity as a function of E . Data for A = 1/6 (�) and A = 2 (△) are shown while

the fit for A = 2/3 is shown with a black solid line. The Rossby number examined is close to

zero at Ro = 0.005.

and A = 2. Power-law fits of the shear-layer thicknesses as a function of E are shown

in figure 4.21. For A = 1/6, δvort and δvel are demonstrated to scale with 0.34E 0.32 and

0.37E 0.22, respectively. For A = 2, δvort and δvel is demonstrated to scale with 4.31E 0.32

and 3E 0.2, respectively. For reference, it was determined that δvort = 1.26E 0.31 and

δvel = 1.31E 0.22 for A = 2/3. At small A, the exponent for δvort and δvel displays a

strong agreement with the theoretical 1/3 and 1/4 values, respectively. In fact, the

exponents for both shear-layer thicknesses are comparable for A = 1/6 and A = 2/3.

This suggests that the Stewartson layer is present in both these aspect ratio containers.

In contrast, the exponent for δvel decreases as A increases. Surprisingly, the exponent

of 1/3 is still maintained for δvort at this large A. Since these thickness measurements

were performed at Ro = 0.005, the profiles of axial vorticity and azimuthal velocity

exhibit distinct shear-layer regions such as those shown in figure 4.5, as compared to

figure 4.20(b) for which the measurements may have no physical significance. It is

noted that the E exponent of δvort across 1/6 6 A 6 2 remains fairly constant at the

theoretical prediction of 1/3. This may suggest that the E 1/3 Stewartson layer may

be persistent throughout a large range of A. This would not be surprising since the

E 1/3 layer functions to smooth out the discontinuity of the vorticity generated at the

disk-tank interface and is thinner than the E 1/4 layer.
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For the range of E applicable to this study (E ≪ 1), empirical fits for the shear-

layer thicknesses suggest that the Stewartson layers become thicker with increasing A.

In turn, it is expected that the shear layer then becomes more stable as for a constant

Ro, increases in E and therefore the Stewartson layer thickness has demonstrated flow

approaching stability (Früh & Read 1999). According to prior studies, an unstable

flow transitions from a high-wavenumber polygonal configuration to a low-wavenumber

structure as the forcing is increased. The thicker Stewartson layer with the larger

aspect ratio is therefore counter-intuitive to what was expressed by Dr. Luca Montabone

(personal communication) in that unstable oval shapes were only obtained with large A

containers. Results of a linear stability analysis conducted on flows produced in large

aspect ratio containers explain this result and are examined later in § 5.2.

4.3.3 Time-dependent axisymmetric flow structure

Simulations at higher Rossby numbers in an A = 1/6 container have achieved time-

dependent solutions. Firstly, results at E = 1 × 10−3 are discussed followed by E =

5 × 10−4. The former Ekman number case reveals aperiodic and periodic flows while

the latter case demonstrates an additional type of periodic flow. For a constant E ,

the onset of these time-dependent flow features are characterised by the increase in Ro.

A comment on flows within the A = 2/3 container relating to these time-dependent

phenomena is provided.

A periodic flow is obtained at Ro = 1 and E = 1 × 10−3. The integral of the

azimuthal velocity relative to the tank and the L2 norm of this flow condition is por-

trayed in figure 4.22. The periods extracted from both measures provide the same

value of T = 37.29. This corresponds to a frequency of f = 0.0268, which is less than

twice the frequency of the background flow (f = 0.9549). The flow structure exhibits

similar motions to that of Ro = 0.924 and E = 1 × 10−3 for A = 2/3 (figure 4.11),

where the vorticity strands stemming from the disk-tank interfaces bypass each other

twice throughout a single period. Decreasing the Rossby number to Ro = 0.9 achieves a

chaotic-like profile for the integral of azimuthal velocity, as shown in figure 4.23(a). The

axial vorticity contours for this case are illustrated in figure 4.23(b). In this case, the

contours of axial vorticity display the tip of the strands fluctuating in the interior with

occasional bypasses with the opposing vorticity strand. Between 1955 < t < 1960, the

vorticity strands are seen to bypass each other and adopt a preference of the opposing
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Figure 4.22: (a) The integral of the azimuthal velocity relative to the tank and (b) the L2

norm of the flow with conditions Ro = 1 and E = 1 × 10−3 with A = 1/6 measured over

time.

side. At t = 1965, the strands are aligned vertically with the tips of the strands coin-

ciding at r = 1. However, the strands do not flap past each other, rather they return

to their respective sides. The next bypassing of the strands occurs before t = 1980.

Throughout the development of the flow, the event of the strands meeting at r = 1 but

not bypassing is not observed more than once consecutively. Decreasing the Rossby

number further to Ro = 0.8 corresponds to steady-state flow conditions. Thus, the

flow of Ro = 0.9 and E = 1× 10−3 portrays an aperiodic state which exists between a

steady and periodic regime.

For E = 5 × 10−4, a steady-state flow is achieved for Ro = 0.65 while periodic

flow is seen at Ro = 0.85. An aperiodic state is observed at Ro = 0.8. Interestingly,

decreasing Ro below Ro = 0.8 but remaining above Ro = 0.65 reveals a different type

of periodic flow (e.g. at Ro = 0.7). The integrals of azimuthal velocity for Ro = 0.7,

0.8 and 0.85 are shown in figure 4.24. It is seen that with increasing Ro, the flow

transitions from steady-state conditions to periodic, then to aperiodic, and back to

periodic. Chaotic flows are expected at very large |Ro|. It is surprising that this type

of rotating flow is able to recover time-periodic properties once it is lost by increasing

the forcing magnitude. A period of T = 6.992 is determined from two integral measures

(relative azimuthal velocity and L2 norm) for Ro = 0.7. A significantly larger period of
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Figure 4.23: Flow conditions of Ro = 0.9 and E = 1× 10−3 for A = 1/6. (a) The integral

of the azimuthal velocity relative to the tank measured over time. (b) Snapshots of axial

vorticity for the same flow conditions throughout 1950 6 t 6 1995 with intervals of ∆t = 5.

A partial domain is shown with 0.5 6 r 6 1.5 and 0 6 z 6 1/6. Contour levels are as per

figure 4.2.
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(a) Ro = 0.7, E = 5× 10−4 (b) Ro = 0.8, E = 5× 10−4
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(c) Ro = 0.85, E = 5× 10−4
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Figure 4.24: The integral of the azimuthal velocity relative to the tank measured over

time for flow conditions of (a) (Ro,E )=(0.7, 5 × 10−4), (b) (Ro,E )=(0.8, 5 × 10−4) and

(c) (Ro,E )=(0.85, 5× 10−4) with A = 1/6. The flow in panels (a) and (c) exhibit periods of

T = 6.992 and T = 31.453, respectively.

T = 31.453 is exhibited from both integral measures at Ro = 0.85. Both flow cases of

Ro = 0.7 and Ro = 0.85 demonstrate an oscillation frequency which is less than twice

their background rotation frequency. At Ro = 0.85, the flow features are very similar

to that of flow conditions (Ro, E )=(0.924, 1× 10−3) (figure 4.11), such that the axial

vorticity strands bypass one another twice per period. The other type of periodic flow

observed at Ro = 0.7 demonstrates unsteady negative-vorticity strands at the disk-tank

interface which favour different sides of the r = 1 line similar to that of Ro = 0.5 and
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Figure 4.25: Snapshots of axial vorticity throughout a complete period with flow with

conditions Ro = 0.8 and E = 1 × 10−3 for A = 2/3. The top centred panel represents

the reference flow condition at t = t∗. The period of the flow is given by T = 17.011.

Contour levels are as per figure 4.2.

E = 3 × 10−4 in the A = 2/3 container (figure 4.2(d)). However, the length of the

strands are not equivalent and the tips of the strands are angled differently; the top

strand is more inclined away from the vertical while the bottom strand is largely vertical.

The tips of these strands fluctuate over time but does not cross r = 1 nor bypass each

other as was seen in figure 4.11 of flow conditions Ro = 0.924 and E = 1× 10−3.

Referring back to the A = 2/3 configuration, a closer investigation of E = 1× 10−3

has now also revealed the periodic → aperiodic→ periodic type of transition for Ro =
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0.8 → 0.85 → 0.9. That is, the flow at Ro = 0.8 demonstrates the first type of periodic

flow such that there are slight fluctuations in the tips of the vorticity strands and they

do not bypass each other at r = 1. This is observed in figure 4.25. At Ro = 0.85, an

aperiodic flow is achieved whereby the flow illustrates irregular bypasses of the vorticity

strands (see figure 4.23). For Ro = 0.9 exhibits a periodic flow which involves flapping

of the strands past each other twice per period (see figure 4.11). It is emphasised that

although these are the only flow cases where this phenomena has been observed in

our parameter space, it is possible that it could be found at other Ekman and Rossby

numbers and aspect ratios.

4.3.4 Universal regime diagram

A pair of non-dimensional parameters independent of height is obtained by grouping

the Rossby and Ekman number with the aspect ratio. Substitution of H = ARd into

the definitions of Ro and E and seeking a group of variables independent of height

yields

Ro =
ω

2ΩA
,

ARo =
ω

2Ω
, (4.3)

E =
ν

ΩA2R2
d

,

EA2 =
ν

ΩR2
d

. (4.4)

The non-dimensional groupings of ARo and EA2 appear, incidentally, in the coefficient

of diffusion in the dimensionless governing equations, namely EA2/(1 − ARo). Thus,

the effect of the height dependence of the flow is examined through ARo and EA2.

The height dependence of the flow has been visually characterised into two categories

as determined through contours of axial velocity. The categories and their associated

axial velocity contours are shown in figure 4.26 with both cases belonging to the positive-

Ro regime. Category 1 demonstrates a reflective symmetry about the mid-plane while

category 2 portrays a breaking of this symmetry. With category 2, cases displayed

two orientations of the primary fluid pumping and suction strands. In some instances,

pumping is induced on the right side of the stronger fluid suction branch while in other

instances pumping is induced on the left side of the fluid suction branch. However,

both cases are the same solution, merely reflected about the horizontal mid-plane.
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(a) Category 1

(b) Category 2

(c) Category 2

Figure 4.26: The three types of axial velocity contours used to characterise the height

dependence of the flow. Characterisation is determined for steady-state axisymmetric flows.

Category 1 is reflectively symmetric about the mid-plane while category 2 breaks the mid-

plane symmetry. Examples of both category 2 orientations are shown in panels (b) and (c).

The flow conditions are of (a) (Ro,E )=(9.97× 10−3, 2.99× 10−3), (b) (Ro,E )=(0.692, 2.31×
10−3) and (c) (Ro,E )=(0.9, 2× 10−3).

Thus, category 1 and 2 represent reflectively symmetric and symmetry-broken flows,

respectively.

The solution of the flow condition combined with the aspect ratio have been charac-

terised as either category 1 or 2. A plot of ARo and EA2 and its respective category is

shown in figure 4.27. The data are characterised by the shape and colour of the symbols

used. The colour illustrates the categories while the symbol shape represents the aspect

ratio. It is seen that for small ARo, the regime is dominated by category 1 type flows.

The flow transitions to category 2 with increasing ARo. Thus, the plot illustrates a

strong transition from reflectively symmetric to symmetry-broken flow with increasing

ARo.

A transition between reflectively symmetric (category 1) and symmetry-broken flow

(category 2) has been estimated, as shown by a solid line in figure 4.27. As the data are

plotted as functions of ARo and EA2 and has demonstrated great conformity to the

respective categories, it is assumed that the transition line is a function of A, Ro and E .
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Figure 4.27: A plot ofARo against EA2 and its respective category. The categories are color

coded such that category 1 is represented by blue and category 2 by red. Aspect ratios of A =

1/6 (△), A = 1/3 (▽), A = 2/3 (�), A = 4/3 (✸) and A = 2 (©) are represented by different

symbols. The solid line represents the transition between reflectively symmetric (category 1)

and symmetry-broken (category 2) flow, which is governed by Roc1−c2 = 13.35E 0.5.

An initial empirical fit of the transitional line was given by ARoc1−c2 = 13.35(EA2)0.483

which yields a relationship for Roc1−c2 = 13.35A−0.034E 0.483. Interestingly, the expo-

nents of A and E are very close to zero and 0.5, respectively, and it is emphasised

that the line has been fitted roughly by eye which can certainly be tweaked. Thus, the

refined transition may be described by Roc1−c2 ∼ 13.35E 0.5, which has no dependence

on the aspect ratio (solid line in figure 4.27). This suggests that the symmetry-breaking

threshold can be described by a constant governed by Ro/
√

E . This parameter group

can be expressed in terms of the forcing parameters through

Ro√
E

=
Rdω

2
√
Ων

. (4.5)

Furthermore, the presence of the E 1/2 seems to suggest that the breaking of reflective

symmetry may be related to the Ekman layer, or its thickness, which scales with E 1/2.

By adopting a length scale of L = E 1/2H and a velocity scale of U = Rω, a Reynolds
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Figure 4.28: A plot of the category number as a function of ReE . Aspect ratios of A = 1/6

(△), A = 1/3 (▽), A = 2/3 (�), A = 4/3 (✸) and A = 2 (©) are represented by different

symbols. The solid line represents the transition between reflectively symmetric (category 1)

and symmetry-broken (category 2) flow, which is governed by ReE = 26.7. The grey region

bounded by the solid line and the dashed line represents a transition zone which exhibits

either category. The dashed line describes ReE = 56.4.

number based on the Ekman layer thickness can be defined as

ReE =
UL

ν
=

2Ro
E 1/2

. (4.6)

Thus, combining the threshold equation of Roc1−c2 ∼ 13.35E 0.5 and equation 4.6 yields

a constant ReE ∼ 26.7.

Plotting the category number as a function of the external Reynolds number, which

considers H as the reference length, does not display any strong trends even for a

constant A. The internal Reynolds number also does not exhibit any trends. This is

due to the exponent of E in the symmetry breaking parameter revealing a value of a

1/2, which is not equivalent to the Ekman number scales for the Re and Rei, namely 1

and 3/4, respectively. Thus the category number as a function of the Reynolds number

based on the Ekman layer thickness is reproduced in figure 4.28. The different symbols

correspond to the various aspect ratios investigated. The solid line represents the

transition between reflectively symmetric and symmetry-broken flow, as determined to

be ReE ∼ 26.7. Evidently, flow conditions for ReE > 26.7 still demonstrate category 1
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(a) (b)

Figure 4.29: Axial velocity contours of (a) Ro = −0.3 and (b) Ro = −2 for E = 3× 10−4.

features. However, the data displays an upper bound to the category 1 flows described

by ReE ∼ 56.4 and is shown by a dashed line. It is noted that this limit is present

for all A in this region. Thus, the regime between 26.7 < ReE < 56.4 (shaded grey)

may represent a transitional regime whereby both categories are present (i.e. both

reflectively symmetric and symmetry-broken flows).

All of the axisymmetric steady-state flows in the negative-Ro regime demonstrated

reflective symmetry about the mid-plane in the axial velocity contours. The axial ve-

locity contours for a small and large negative-Ro flow are shown in figure 4.29. As

expected, the small-Ro flow with Ro = −0.3 demonstrates Ekman pumping and suc-

tion on the horizontal boundaries that is reflectively symmetric about the mid-plane,

similar to that of the small-positive-Ro cases. Increasing |Ro| in the negative-Ro regime

causes a deviation from this typical structure such that an extra circulation is cre-

ated at the inner side of the fluid pumping and suction zone. However, this altered

structure still exhibits reflective symmetry about the mid-plane in the axial velocity

contours. Thus, in considering only axisymmetric steady-state flows, the negative-ARo

regime is characterised only by category 1 flow. Recall that at sufficiently large |Ro| in

the negative-Ro regime, periodic and chaotic states demonstrate a breaking of height

independence of the flow (e.g. figure 4.16). In the positive-ARo regime, the flow con-

ditions are limited by ARo = 1 which corresponds to ω → ∞. This constraint has been

described in § 3.7.1.1.

4.4 Flow on the β-plane

The previous sections considered flow computed on an f-plane which behaves with a

constant planetary vorticity of 2Ω. In this section, the influence of a varying plane-

tary vorticity on the flow is investigated through the use of a linearly varying bottom

topography. In theory, the lateral variation of the planetary vorticity is required for
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phenomena such as Rossby waves to exist. Thus, it would not be surprising if the flow

structures on the f-plane and the β-plane were different. The same methodology of the

previous sections have been adopted here.

4.4.1 Axisymmetric flow structure

Steady-state solutions were obtained on the meridional semi-plane for selected cases

such that comparisons against the respective f-plane counterpart can be made. Four

different bottom topographic angles of θ = 2.5◦, 5◦, 7.5◦, 10◦ have been investigated.

The topographic β effect is defined by β = 2Ω tan θ/H (equation 3.61).

Comparisons between the f-plane and β-plane cases are shown in figure 4.30 through

contours of axial velocity and axial vorticity with Ro = 0.3 and E = 7 × 10−4. At

these flow conditions, the flow structures in the f-plane are reflectively symmetric as

illustrated by contours of velocity and vorticity. It should be noted that the contour

levels are the same in each panel of their respective column. The structure of the shear

layer remains seemingly unchanged in the axial vorticity contours as the angle with the

bottom horizontal increases. The major difference is observed in the region of r < 1

where the fluid exhibits high vorticity in the f-plane and decreases as θ is increased.

Differences in the axial velocity contours are not obvious. There is a slight asymmetry

in the circulation at the top horizontal boundary where the magnitude of the axial

velocity on the deeper side is larger than that on the shallower side. This is not evident

on the bottom boundary as the mid-plane separating the top and bottom circulations

adopts an angle of θ. In addition, the axial velocity in the shear layer loses symmetry

for β > 0 where the downward jet from the top boundary inclines inward while the

upward jet inclines outward.

Essentially, very little difference in the flow structure has been observed between the

f-plane and the largest β-plane case for this particular flow condition. This trend is seen

throughout all of the flow conditions examined, even for those which have broken height

independence in the f-plane case. An example of this is demonstrated in figure 4.31

where similar velocity circulations and vorticity strands are seen between θ = 0◦ and

θ = 10◦. Larger cases of θ were not examined due to numerical stability constraints

induced by the required quadrilateral elements used in discretising the spatial domain.

That is, the number of element vertices on the left and right boundaries must be

equal which causes a dense cluster of elements near the axis of rotation. Despite this
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Axial velocity, uz Axial vorticity, ωz

(a) θ = 0◦ / β = 0

(b) θ = 2.5◦ / β = 0.1637

(c) θ = 5◦ / β = 0.3281

(d) θ = 7.5◦ / β = 0.4937

(e) θ = 10◦ / β = 0.6612

Figure 4.30: Structure of the axisymmetric flows visualised on the semi-meridional r-z

plane. Axial velocity (left) and axial vorticity (right) are shown for Ro = 0.3 and E = 7×10−4

in containers of θ = 0◦, 2.5◦, 5◦, 7.5◦ and 10◦. Contour levels are as per figure 4.2. The same

number of contour levels are used for each θ case.

limitation, it is expected that higher θ angles would not produce any structures that

are largely different to those obtained in a flat container especially if the flow reaches

a steady state. This is because the effect of vortex stretching on a fluid column caused

by the change in fluid depth is only triggered by motions in the radial direction. Thus,

differences between the cases are expected to be seen through linear stability analy-

sis where the perturbations will stimulate the vorticity changes. Results of the linear
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Axial velocity, uz Axial vorticity, ωz

(a) θ = 0◦ / β = 0

(b) θ = 10◦ / β = 0.7935

Figure 4.31: Structure of the axisymmetric flows visualised on the semi-meridional r-z

plane. Axial velocity (left) and axial vorticity (right) are shown for Ro = 0.5 and E = 7×10−4

in containers of (a) θ = 0◦ and (b) θ = 10◦. Contour levels are as per figure 4.2. The same

number of contour levels are used for each θ case.

stability analysis on β-plane flows are covered in § 5.3.

4.5 Summary

The structure of the axisymmetric base flows produced by differential rotation in a

cylindrical container have been examined numerically. The dimensions of the primary

model are based on the laboratory apparatus used in Früh & Read (1999), which has

an aspect ratio of A = 2/3. In addition, other aspect ratios ranging from 1/6 6 A 6 2

were explored.

A variety of axisymmetric steady-state base flows characterised by the governing

parameters of Rossby and Ekman number were obtained. Results of both positive and

negative forcing revealed several distinct base flow features. For small values of |Ro|, the

flow remained highly two-dimensional following predictions from the Taylor–Proudman

theorem. The height-independent velocity and vorticity profiles were analysed to de-

termine the relationships and thickness scalings of the Stewartson layers. The results

agree well with theoretical predictions in the limit of small-Ro. Universal relationships

for the δ/E 1/3 and δ/E 1/4 have been developed and demonstrate an approximately

linear dependence against (ω/Ω) for negative and small-positive-Ro flows. As |Ro| is

increased, negative-vorticity strands are seen stemming from the disk-tank interface

which demonstrates a disruption to the two-dimensionality of the flow. This breaking
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of two-dimensionality occurs at a much lower |Ro| for positive Ro compared to nega-

tive Ro. A likely explanation for this may be given by the sign of the axial vorticity

generated at the disk-tank interface and hence, the strength and direction of the axial

jets induced by the Ekman layers.

With sufficient forcing in the positive-Ro regime, the steady-state condition of the

axisymmetric flow is lost and a periodic flow is observed. In a number of cases, a

state of aperiodic flow between steady-state and time-periodic flow was encountered

whereby the integral of the relative azimuthal velocity and the L2 norm exhibited

chaotic-like features. This aperiodic state was also found between two different types

of periodic flow. The first involves minor fluctuations in the axial vorticity strands

and occurs at lower Ro than those describing the aperiodic regime. The second type

exhibits stronger oscillations where the strands of vorticity bypass each other twice

over a single period. This occurs at higher Rossby numbers. A pure periodic state

was not observed in the negative-Ro regime, although periodic features in the flow

structures were demonstrated. This includes minor oscillations of the positive axial

vorticity strands and the shedding of vortex pairs towards the axis of rotation.

The effect of a large aspect ratio container yielded a broadening of the shear layer

while a more concentrated shear layer is obtained for small aspect ratio containers.

Although the structure of the flow did not vary greatly throughout the various aspect

ratios, it is expected that the linear stability of the flow will illustrate greater differ-

ences due to the change in the shear-layer structure. The analysis of the shear-layer

thickness across the different aspect ratios revealed Ekman number exponents close to

1/3 for δvort. Thus, the thin E 1/3 is expected to exist even though the thicker E 1/4

is disrupted at larger A. A universal diagram governed by log10(EA
2) and log10(ARo)

was produced to determine the effect of the aspect ratio on the height dependence of

the flow. A clear segregation between reflectively symmetric and symmetry-broken flow

was observed, and the empirical fit of the transition line yielded no dependence on A,

namely Roc1−c2 ∼ 13.35E 0.5.

The axisymmetric steady-state flows on a β-plane illustrated minor differences to

the f-plane flows. It is proposed that this structural similarity is due to the lack of radial

motions, which is required to induce vorticity changes across the varying depth. Thus,

similar to the flows obtained across the different aspect ratios, the major differences

are expected to be seen in the results of the linear stability analysis.
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The next chapter will investigate the linear stability of the axisymmetric steady-

state flows reported in this chapter.
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Chapter 5

Linear instability of flow in a

differential-disk rotating system

In this chapter, a linear stability analysis is used to predict the fastest-growing three-di-

mensional azimuthal wavenumbers that develop on the underlying axisymmetric steady-

state flow, for a wide range of Ro and E . The azimuthal wavenumber is defined by k =

2π/λ, where λ is the angular wavelength of the instability. The zeroth wavenumber is

omitted, as it has a synchronous nature that was found always to be stable. In contrast,

the eigenvalues of non-zero wavenumbers are consistently complex, which correspond to

quasi-periodic instability modes, where the instability introduces an incommensurate

frequency into the flow (Blackburn et al. 2005; Blackburn & Sheard 2010). In other

words, the instability invokes a Hopf bifurcation from a steady axisymmetric state to

an unsteady non-axisymmetric state. This analysis predicts that flows become linearly

unstable under certain combinations of Ro and E . Distinct stability characteristics are

observed between positive and negative-Ro flows.

§ 5.1 continues investigating the configuration used by Früh & Read (1999) through

a linear stability analysis on the axisymmetric base flows obtained in the previous

chapter (§ 4.2). The results at positive and negative-Ro flows are detailed in § 5.1.1

and § 5.1.2, respectively, which includes growth rate data, instability mode shapes in

isolation and in combination with the base flow, and the preferred linear azimuthal

wavenumbers complimented by several observable trends. The same analyses are then

performed for flows in containers with different aspect ratios, which are described in

§ 5.2. The last section § 5.3 examines the linear stability of flows on a β-plane.

Various results from this chapter have been published in Vo et al. (2014).
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Figure 5.1: Growth rate σ as a function of azimuthal wavenumber k for various E at a

small Ro = 0.05. The dashed line represents neutral stability where points above and below

symbolise unstable and stable modes, respectively.

5.1 Simulating the configuration used by Früh & Read

Früh & Read (1999) considered a double end-wall differentially-rotating configuration

with a disk radius of Rd = 15 cm and a tank height of H = 10 cm. This corresponds

to a container aspect ratio of A = 2/3. This section highlights the numerical results of

this configuration and aspect ratio for positive and negative-Ro flows separately.

5.1.1 Positive-Rossby-number regime

5.1.1.1 Growth rates

The growth rates for a range of azimuthal wavenumbers were obtained for numerous Ro-

E combinations. The fastest-growing wavenumber was established in each case, with

peak unstable azimuthal wavenumbers ranging primarily from 2 to 9 in the positive-Ro

regime. As a comparison, unstable nonlinear azimuthal modes with wavenumbers of

2 to 8 were typically observed in laboratory experiments (Früh & Read 1999; Aguiar

et al. 2010).

The growth rate as a function of wavenumber for a small Ro = 0.05 and several E

is shown in figure 5.1. A single maximum can be seen in the σ-k relationship. Local

maxima typically represent distinct instability modes (e.g. Barkley & Henderson 1996).

For wavenumbers beyond this maximum, the growth rate decreases monotonically. This

behaviour is consistent with the progressively stronger viscous damping of shorter-
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Figure 5.2: Growth rate σ as a function of wavenumber k for (a) various E at Ro =

0.395 and (b) (Ro,E ) = (0.5, 3 × 10−4). Two mode peaks of σ are present at low and high

wavenumbers denoted by mode I and II, respectively in panel (a). A third mode peak,

mode III, is illustrated in panel (b). The dashed line represents neutral stability where points

above and below symbolise unstable and stable modes, respectively.

wavelength disturbances at higher wavenumbers. At large Ekman numbers, this peak

is still present despite the growth rates always remaining negative (stable flow). The

flow is only unstable for small E (E < 3 × 10−4) at Ro = 0.05. Several trends can

be observed from this figure. The growth rates and the most unstable wavenumber

increases with decreasing E . Also, the profiles do not change significantly with varying

E , though the range of wavenumbers over which the mode branches are detected to

increase with decreasing E . For example, the mode branch covers 1 6 k 6 8 for

E = 7× 10−4 while a larger range of 1 6 k 6 14 is seen for E = 2× 10−4.

Figure 5.2(a) illustrates the growth rate as a function of wavenumber at constant

Ro = 0.395 for varying E . Similarly, with small-Ro flows, only a single mode peak

comprising small wavenumbers exists for large E . This first mode peak is shown for E =

3.16×10−3 in figure 5.2(a), with the most unstable wavenumber predicted as kpeak = 3.

However, unlike small-Ro flows, a second mode peak emerges at higher wavenumbers

as E decreases. In fact, the emergence of the second mode peak is dependent on both

Ro and E , which is discussed later in this section (figure 5.3). Eventually, the growth

rates of these higher wavenumbers become larger than those of the first mode peak.

The dominance of the second peak is shown for the case of E = 5.26× 10−4, where the
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predicted linearly unstable wavenumber is kpeak = 29. These small-wavenumber and

high-wavenumber modes will hereafter be referred to as modes I and II, respectively.

A third mode peak (mode III) has also been observed, which comprises intermediate

wavenumbers between modes I and II, as shown in figure 5.2(b). This third peak arises

by further decreasing E or increasing Ro, and in a small number of small-E /high-Ro

cases it was seen to achieve growth rates exceeding those of mode I.

The emergence of these three mode peaks may be related to the features exhibited

in the base flow. Base flows on which mode I dominates are typically reflectively sym-

metric about the horizontal mid-plane. This is reflective of small-Ro and high-E flows,

which is in agreement with the trends seen on growth rate against wavenumber plots.

Thus, depth-independent contours of axial vorticity usually demonstrate dominance of

the mode I instability. Ascendency of mode II is characterised by the elongation of the

negative-vorticity strands and the symmetry breaking of the base flow. Further elon-

gation and development of the “hooks” at the tip of the vorticity strands is associated

with the emergence of mode III. It may well be possible for mode III to become the

most dominant mode by sufficiently increasing Ro or decreasing E , though this has not

been observed in our parameter space.

Figure 5.3 is a regime diagram depicting the dominance of either the mode I or

mode II instability for specific flow conditions. It is stressed that the data represents

flows for which the dominant mode is either a mode I or II, and not merely of the pres-

ence of mode I or II wavebands in the growth rate against wavenumber data. Actually,

the mode I instability is always present when the mode II instability exists. There is a

clear transition from flows that exhibit larger growth rates associated with the mode I

instability to flows that exhibit larger growth rates from wavelengths belonging to the

mode II instability. The conditions for this transition are similar to those observed with

the onset of the mid-plane symmetry-broken flow such that it occurs with increasing Ro

and/or decreasing E . However, the relationships are not the same. The thick line repre-

sents the transition between mode I and mode II dominated flows, which is dictated by

RoI−II = 5.3E 0.35±0.4. It is noted that the line has been fitted visually and that there

exists a range of exponents of E that fit to the available data. That is, the exponent

lies somewhere between 0.31 and 0.4. Interestingly, this range includes the 1/3 value,

which may be related to the thin E 1/3 Stewartson layer. This equation is a refinement

to the relationship that was postulated in Vo et al. (2014), namely RoI−II = 5.44E 0.35.
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Figure 5.3: A regime diagram depicting the dominance of either the mode I (�) or mode II

(△) linear instability. The thick line represents the transition line from mode I dominated

flows to mode II dominated flows. The empirical relationship of the line is described by

RoI−II = 5.3E 0.35±0.4.

It was established in § 4.3.4 that the mid-plane symmetry breaking of the axisym-

metric base flow is likely related to the axial pumping induced by the Ekman layers

and can be described by a constant ReE . However, the presence of axial pumping also

induces the E 1/3 layer to complete meridional circulations. Hence, the two layers are

related. Thus, from a physical point of view, as Ro is increased or E is decreased, the

axial jets become stronger leading to the breaking of the reflective symmetry of the flow.

Consequently, the secondary motions become stronger, which creates an unstable E 1/3

Stewartson layer exhibiting linear growth rates larger than those associated with the

E 1/4 Stewartson layer. Therefore, this proposition suggests that the mode II instability

is a manifestation of the thin Stewartson layer.

As it turns out, the onset of this instability dominance cannot be described by a

Reynolds number based on a length scale of L = E 1/3H. Following the adaptation in

defining Re as previously described in § 3.7.1.1 and § 4.3.4, this particular proposed

Reynolds number can be defined as

Re
E 1/3 =

UL

ν
=

2Ro
E 2/3

. (5.1)
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Figure 5.4: Contours of axial vorticity of the three-dimensional perturbation field of Ro =

0.05 for E = 2× 10−4 depicted on the r-z plane. The most unstable azimuthal wavenumber

k = 6 is shown here. Given the arbitrary scaling of linearised eigenvector fields, equi-spaced

contour levels are plotted between ±(|ωz,min| + |ωz,max|)/2. Dark (blue) and light (yellow)

flooded contours represent negative and positive values, along with dashed and solid contour

lines, respectively.

Thus, combining the threshold equation of RoI−II ∝ E 0.33 and equation 5.1 would not

yield a constant. However, as stated earlier, the threshold represents the dominance of

the linear instability modes and not their presence in the growth rate data (i.e. when

mode II first arises despite having growth rates smaller than mode I). If the onset of

the mode II instability is described by RoII ∝ E 2/3, then this would suggest that this

transition can be described by a constant Re
E 1/3 and that the instability may be closely

linked to the E 1/3 Stewartson layer. The transition describing the first occurrences of

the mode II instability remains unexplored due to the high computational cost required,

which was beyond that available to this study.

5.1.1.2 Global instability mode shapes

The three-dimensional perturbation fields have also demonstrated axial invariance in

the axial vorticity contours similar to its base flow counterpart for small-Ro flows.

Axial vorticity contours of the kpeak = 6 perturbation associated with conditions of

Ro = 0.05 and E = 2 × 10−4 are illustrated in figure 5.4. A pair of vertical vorticity

strands are shown around r = 1, which extends throughout the depth of the flow. In

the faster-rotating region (r < 1), positive axial vorticity is generated, while negative

axial vorticity is seen in the slower rotating region (r > 1). It is also noted that the pair

of vorticity strands is joined together closely all the way along the disk-tank interface.

The pair is surrounded by weaker positive vorticity.

The joining of the positive and negative-vorticity strands is divided at higher-Ro

flows. An example of this is illustrated in figure 5.5, where a gap of fluid with an

axial vorticity value similar to that of the surrounding flow is seen in between the pair
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Mode I Mode II

(a) E = 9.47× 10−4

(b) E = 5.26× 10−4

Figure 5.5: Contours of axial vorticity of the three-dimensional perturbation field of a given

azimuthal wavenumber depicted on the r-z plane. The left and right columns illustrate the

most unstable wavenumber from mode I and II peaks, respectively. The perturbation fields

are obtained at Ro = 0.395 for (a) E = 9.47× 10−4 and (b) E = 5.26× 10−4. Contour levels

are as per figure 5.4.

of vorticity strands. Figure 5.5 presents the three-dimensional perturbation fields of

mode I and II. Even when the base flow is no longer reflectively symmetric about the

horizontal mid-plane, the unstable wavenumbers stemming from mode I still exhibit

two strands of negative and positive perturbed vorticity. These strands encompass a

region of positive axial vorticity, with the end of the strands connecting at the horizontal

boundaries. Perturbation fields belonging to mode II display highly localised distur-

bances around the periphery of the ring. On each disk, a negative and positive-vorticity

strand is sandwiched between contrasting vorticity patches. The strands do not extend

into the interior to connect with the disturbances from the opposite disk. As such, the

axial vorticity contours of mode II are not depth-independent. This is expected as the

growth of the mode II instability only becomes apparent when the depth independence

of the base flow is broken. The structures of the mode I and mode II instabilities do

not differ significantly in these figures even though the flows are dominated by different

instabilities. The similarity arises from the comparable growth rates between kpeak of

modes I and II in figure 5.5(b).

When growth rates of wavenumbers from mode II are orders of magnitude greater

than those of mode I, the structure of the perturbation field is altered. The perturbation

fields are shown in figure 5.6. For the mode I waveband, the vorticity strands, which
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Mode I Mode II

Figure 5.6: Contours of axial vorticity of the three-dimensional perturbation field of a given

azimuthal wavenumber depicted on the r-z plane. Perturbation fields of the most unstable

wavenumbers from mode I (left) and mode II (right) for conditions of (Ro,E ) = (0.273, 5.45×
10−5). The mode II disturbances are localised at the top horizontal boundary, in this flow

and only the domain of 0.65 6 r 6 1.35 and 0.65 6 z/H 6 1 is shown. The dashed line

represents a depth level of z/H = 0.7. Contour levels are as per figure 5.4.

Figure 5.7: Contours of axial vorticity of the three-dimensional perturbation field of k = 9

for Ro = 0.5 and E = 3 × 10−4. The wavenumber 9 structure belongs to the mode III

waveband as seen in figure 5.2. Contour levels are as per figure 5.4.

would otherwise extend over the entire depth, become truncated and extend diagonally

into the interior. A similar trend is shown in the vorticity contours observed in the

base flows (see figure 4.3(d)). However, a coupling of both positive and negative-

vorticity strands stems from r = 1. For the mode II waveband, the instabilities are

only encouraged to grow at the top disk-tank interface (note that mode II in figure 5.6

only represents a third of the flow depth). No structures are evident in the interior or

bottom of the flow.

In the event of the mode III instability emerging and overtaking the mode I, axial

vorticity in the perturbation field exhibits both signed vorticity strands arising at r = 1

from the top and bottom boundaries, and extending all the way into the interior.

However, the interior does not feature a clear depth-independent zone, instead adopting

a complex structure comprising an amalgamation of negative and positive vorticity. An

example of this is illustrated in figure 5.7.

A Floquet analysis has also been performed on a periodic flow case characterised by
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(a) k = 3 (b) k = 23

Figure 5.8: Contours of axial vorticity of the three-dimensional perturbation field of (a) k =

3 and (b) k = 23 for Ro = 0.924 and E = 1× 10−3. Contour levels are as per figure 5.4.

Ro = 0.924 and E = 1 × 10−3. This particular case reveals a wavenumber 3 structure

being the most unstable in the first instability waveband (mode I). For steady-state

flows, this waveband corresponds to a mode I instability. However, a different type

of instability is expected for time-periodic flows, since the E 1/4 Stewartson layer is

seemingly broken, as is illustrated in the perturbation field shown in figure 5.8(a). The

axial vorticity contours do not depict a pair of positive and negative vertical vorticity

band about r = 1, rather the strands are broken about the mid-depth adopting a

similar outline of the low vorticity strands originating at the disk-tank interface in

the axisymmetric base flow (see figure 4.9). Thus, this type of instability is unlikely

associated with the E 1/4 Stewartson layer (mode I). A strong pair of opposing vorticity

is evident at r ≈ 0.66 on the lower boundary, which is generated from a strong axial

vorticity present at r ≈ 0.66 in the axisymmetric base flow (see figure 4.9). Additional

wavebands similar to mode II and III are also evident at higher wavenumbers for this

case, which exhibit greater growth rates. An illustration of the perturbation field from

one of these other wavebands is shown in figure 5.8(b) for k = 23. The vorticity

contours display alternating bands of vorticity at the disk-tank interface for both the

upper and lower horizontal boundaries, similar to the mode II instability. However, the

strands elongate further into the flow interior. Thus, time-periodic and steady-state

axisymmetric base flows are unstable to different types of linear instabilities.

5.1.1.3 Visualising the linear instability modes on horizontal planes

In order to visualise the non-axisymmetric structure of the predicted linear instability

modes, the leading eigenmodes are superimposed onto their respective axisymmetric

base flow fields. Slices are then extracted in the r-θ plane for visualisation in a top-down

sense. These slices do not depict the actual three-dimensional flow structure that would

be observed in an experiment as nonlinear effects during the growth of the instability
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Figure 5.9: An r-θ slice taken at mid-depth in z is extracted from a linear axisymmetric

flow approximation constructed by superposing the axisymmetric base flow and the leading

instability mode with azimuthal wavenumber 6. This flow field is not representative of the

three-dimensional non-axisymmetric flow since nonlinear effects are omitted here. The case

shown had Ro = 0.05 and E = 2 × 10−4. Contours of axial vorticity are plotted, with equi-

spaced contour levels between 2Ω ± 10ω. Blue and red contour shading represent low and

high values, respectively, while solid and dashed contour lines identify positive and negative

contour levels, respectively. The orientation is such that the positive Ro causes the central

region to rotate clockwise faster than the outer region.

are bound to alter the flow structure. Rather, these fields demonstrate the type of

distortions that these linear instabilities can induce on the axisymmetric base flow.

Furthermore, it is stressed that only the leading instability eigenmode is superimposed

onto the axisymmetric base state. In a real-case situation a growing perturbation is

likely to include a combination of several eigenmodes. The base flow and most unstable

perturbation field (shown in figure 5.4) of Ro = 0.05 and E = 2 × 10−4 have been

superimposed to generate figure 5.9. This method gives a qualitative illustration of

the azimuthal distortion incited by the instability, but because it does not capture

nonlinear effects, the visualisation should not be mistaken for the actual three-dimen-

sional modes that would be observed in practice. This flow condition has only the

mode I linear instability associated with it (figure 5.1). The mode I instability exhibits

an axial vorticity field which features a regular central polygon coupled with a strand

of lower vorticity around the polygon border. The border is located approximately

at the disk-tank interface. Here, the wavenumber 6 instability is represented by an
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interior hexagon of high vorticity, which is surrounded by lower vorticity around the

perimeter. This strand of lower vorticity is thin, with its borders forming a hexagonal

shape. Outside of this hexagonal structure, there are intermediate levels of vorticity

attributed from the rotation of the tank (base flow). A ring of satellite vorticity patches

in lieu of a thin strand around the interior polygon is observed if the amplitude of the

perturbation field is excessively large compared to the amplitude of the base flow prior

to the superposition.

Several more resultant flows from superimposing the perturbation fields with their

respective flows are shown in figure 5.10. The perturbation fields correspond to those

illustrated in figure 5.5. For wavenumbers belonging to mode II, the central vortex is

circular in shape and is surrounded by a ring of vorticity patches near the horizontal

boundaries, where the number of vortices corresponds to the wavenumber of the insta-

bility. The mid-plane does not exhibit any noticeable disturbances. With increasing

wavenumber, the size of the vortices decreases in order to fit into the circumference at

r = 1.

The leading instability wavenumber of the first unstable waveband for the time-

periodic flow of Ro = 0.924 and E = 1 × 10−3 was determined to be k = 3. The per-

turbation field demonstrated features that differ to that of the mode I linear instability

(figure 5.8). The results of superimposing the perturbation field onto its axisymmetric

flow is reproduced in figure 5.11. A top-down view of the k = 3 structure at mid-depth

does not illustrate a triangular configuration, rather a circular structure with alter-

nating rings of axial vorticity. Unlike a typical mode I instability, the resultant flow

is not reflectively symmetric about the mid-depth and the axial vorticity contours do

not demonstrate depth independence. The vertical structure of the resultant flow is

depicted in figure 5.11(b). Since the contours of axial vorticity in the perturbation field

closely follow the silhouette of the major structures in the axisymmetric base flow, the

superposition of the two fields demonstrates features very similar to the axisymmetric

base flow.

5.1.1.4 Preferred azimuthal wavenumbers

The most unstable wavenumbers for various Ro and E pairings have been mapped

onto an Ro-E regime diagram. The resultant regime diagram is shown in figure 5.12.

Fractional peak wavenumbers and the corresponding peak growth rates were obtained
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(a) E = 9.47× 10−4

(b) E = 5.26× 10−4

Figure 5.10: Slices of non-axisymmetric flows constructed by superposition of the base flow

and the linear instability mode as per figure 5.9. These flow fields are not representative of

the three-dimensional non-axisymmetric flow since nonlinear effects are omitted here. These

cases show Ro = 0.395 at Ekman numbers (a) E = 9.47 × 10−4 and (b) E = 5.26 × 10−4.

Left: the mode I instability is visualised on a slice extracted at mid-depth (z/H = 0.5).

Right: the mode II instability is shown at z/H = 0.85 (near the top of the container). These

cases correspond to the meridional semi-plane views of the perturbation fields from figure 5.5.

Contour levels and the sense of rotation are as per figure 5.9.
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(a)

(b)

Figure 5.11: Flow case characterised by Ro = 0.924 and E = 1×10−3. (a) An r-θ slice taken

at mid-depth in z and (b) an r-z extraction from a linear non-axisymmetric flow approxima-

tion constructed by superposing the axisymmetric base flow and the leading instability mode

with azimuthal wavenumber 6. This flow field is not representative of the three-dimensional

non-axisymmetric flow since nonlinear effects are omitted here. Contour levels and the sense

of rotation are as per figure 5.9.

via the local maximum of a parabolic fitting of the peak and the adjacent wavenumbers

from the σ-k data obtained via a linear stability analysis. These data points were

used to generate a contour map of preferred wavenumber for mode I over the Ro-E

space, allowing an accurate depiction of wavenumber segregation. As a result of using

fractional peak wavenumbers, the wavenumber in the regime diagram represents a range

of wavenumbers. For example, the contour band of 5 on the regime diagram represents

the most unstable wavenumbers ranging from 4.5 6 k < 5.5. Only peak wavenumbers

from the mode I instability have been used to construct this regime diagram, even if

wavenumbers from other mode peaks have higher growth rates. The purpose of this is to

illustrate the preferential wavenumbers attributed by the mode I instability (acting on

the E 1/4 Stewartson layer) for specific flow conditions as this instability is of interest

in the context of polar vortex instability motivating this thesis. The map depicts a

decrease in unstable wavenumber with increasing E at lower Ro. At higher Ro, the

preferred wavenumber becomes independent of the Ekman number, with wavenumbers
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decreasing with increasing Ro. These trends differ from those obtained experimentally.

In Früh & Read (1999), their experimental trends depict a stronger dependence on Ro

compared to E . However, the experimental observations are of the saturated nonlinear

flows, which are likely to differ in wavenumber from the linear predictions. The general

trend is that either increasing Ro or decreasing E leads to a decreasing wavenumber

state. These trends were also observed by Aguiar et al. (2010) using differential rings

instead of disks.

The dominance of either a mode I or II for each flow has previously been mapped

onto an Ro-E parameter space (figure 5.3) with the transition represented by a thick-

dashed line in figure 5.12. This transition is given by RoI-II = 5.3E 0.35. In addition,

the “highly irregular” and “period-doubled” threshold flow regimes from Früh & Read

(1999) are overlaid on the regime diagram as black regions and a solid line, respectively.

The overlap between the mode II instability found numerically and the time-dependent

flows observed experimentally suggests that flows with a mode II dominance may be

promoting this time dependence. Although the mode I-II threshold differs in exponent

from the experimental non-modal flows, all of these flow regimes are seen to occur at

higher Ro and lower E . In the same region of the parameter space, Aguiar et al. (2010)

also found time-dependent flows which they denote as “chaotic” flows. Moreover, the

transition from reflectively symmetric to symmetry-broken flows described by Roc1−c2 ∼
13.35E 0.5 is represented by a dotted line, beyond which encompasses the experimental

time-dependent flow regimes. It is evident that this line and the RoI−II intersects at

E ≈ 2.1× 10−3. This suggests that these relationships are only valid for a finite range

of E .

The empirical relationship of the critical Rossby number as a function of Ekman

number determined by Früh & Read (1999) is given by |Roc| ≈ 27E 0.72. This rela-

tionship was obtained using both positive and negative-Ro data, as the experimental

study found little differences between the positive and negative Roc. This similarity

was predicted by the asymptotic analysis conducted by Busse (1968), who found that

|Roc| scales with E 3/4. The numerical investigation here yields the threshold of stabil-

ity to be Roc = 16.877E 0.758 when considering positive-Ro data only. The threshold

equation is given by |Roc| = 18.11E 0.767 when using both positive and negative-Ro

data. It should also be noted that the threshold obtained by Hide & Titman (1967) of

|Roc| = 16.8E 0.568 is shifted even further to the right with a differing slope (not shown
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Figure 5.12: The regime diagram of the most unstable linear wavenumber as a function of

E and positive Ro for A = 2/3. The short-dashed lines represent the transition between one

wavenumber and another, denoted by the wavenumber of the instability shown within the

band. The solid boundary lines represents the range of triangulation. The left thick boundary

line represents the stability threshold, which is given by Roc ∝ E 0.767 (using positive and

negative-Ro data). The thick dashed line is a visual fit, separating flow conditions which

are mode I and II dominant dictated by RoI−II ∝ E 0.35. The PD line and black regions

are extracted from Früh & Read (1999) and represent period-doubled solutions and highly

irregular flow, respectively. The dash-dotted line represents the stability threshold obtained

by Früh & Read (1999), given by |Roc| = 27E 0.72. The dotted line represents the transition

from reflectively symmetric to symmetry-broken flow, defined as Roc1−c2 ∼ 13.35E 0.5.
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in the regime diagram).

There is a quantitative mismatch in the leading coefficient between the numerical

result and the experimental empirical fit, although the exponent of E is in good agree-

ment, both to the asymptotic result of 3/4 (Busse 1968) and to experimental results

suggesting a 0.72 scaling. The higher coefficient causes a horizontal shift of the thresh-

old line towards higher Ro, given that the exponent is similar. This can be seen in

figure 5.12 between the solid line (numerical) and the dash-dotted line (experimental).

The horizontal shifting to the right may be due to difficulty detecting instabilities at

very small amplitudes due to limitations of the experimental measurements. This is

revisited later in § 5.1.3 and § 6.2.2. Linear stability analysis is able to pinpoint the

stability threshold via the growth rate but does not provide any information about the

saturated amplitudes of the instabilities. However, the mode transition was experimen-

tally determined to be supercritical (see Früh & Read (1999), Bergeron et al. (2000) and

§ 3.6), and therefore it is expected that the structures will be weak near to the onset

of the stability threshold. The difference in coefficients causes a significant difference

in the critical internal Reynolds number (equation 3.60).

To summarise, the differences in preferential wavenumber trends between numeri-

cal and laboratory results may be attributed to geometric differences, nonlinear effects,

experimental observation and measurement techniques, and time dependence of flow

states. The centre of the tank used in the laboratory contains a vertical rod used to

drive the two horizontal disks. The addition of this rod may introduce perturbations

into the flow that interact with the unstable shear layers and therefore alter the sta-

bility. Vortices were observed to shed from the central rod in simulations conducted

by Früh & Nielsen (2003) and Bergeron et al. (2000). Nonlinear effects may also en-

courage competition between instability modes that cause the flow to undergo various

wavenumber transitions. During this process, hysteresis effects are present, and there-

fore the resulting structure is highly dependent on the flow’s history. In addition, the

sharp changes in the contour lines of figure 5.12 are due to a number of factors, in-

cluding the scatter of the data points used to construct the map and the method used

to determine the peak wavenumbers. A quadratic fit to the three closest points to the

local peak in the σ-k data is used to determine the peak growth rate and wavenum-

bers. Preferential wavenumbers associated with mode I were obtained for more than

100 different positive-Ro flow conditions, which is used to construct the positive Ro-E
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regime diagram in figure 5.12.

5.1.2 Negative-Rossby-number regime

5.1.2.1 Growth rates

A stability analysis was conducted on negatively forced flows in a similar fashion to

that conducted for the positive-Ro regime. Many similarities were observed and will be

briefly noted but emphasis will be placed on distinct features of the negative-Ro regime

that distinguish it from the positive-Ro regime. Unstable wavenumbers ranging from 3

to 13 were observed for the range of Ro ≥ −4.0. This implies that negative-Ro flows are

more sensitive to higher wavenumbers compared to positive-Ro flows. In comparison,

experimental observations obtained azimuthal wavenumbers ranging from 2 to 8 for

Ro > −0.4 (Früh & Read 1999).

As observed in the results of negative-Ro base flows, a larger range of Ro demon-

strates reflective symmetry about the horizontal mid-plane. Thus, it is expected that

the mode I instability will dominate a large parameter space in this negative regime.

Mode II is also expected to arise, as depth-dependent flows were observed for Ro <

−1/A. Similar to the positive regime, the breaking of depth dependence is a function

of both Ro and E . Thus, counter-rotating flows are not expected to become mode II

dominant instantly at Ro = −1/A.

Growth rates for wavenumbers beyond the mode I branch illustrate a gradual de-

crease like that of positive-Ro flows. These features are illustrated in figure 5.13 for two

different Ro values. At a small Ro = −0.167 and a large E = 4× 10−4, the flow is lin-

early stable. As E decreases, the growth rates increase and the peak wavenumber shifts

to higher wavenumbers as well as increasing the bandwidth of unstable wavenumbers.

The shift in peak wavenumber with decreasing E is much more evident in the negative-

Ro regime compared to the positive-Ro regime. As the base flows for the majority

of the negative-Ro regime explored do not break its depth independence, this mode

peak is reflective of the mode I instability. This observation supports the hypothesis

that the other mode peaks emerge due to the departure of highly vertical-independent

motion. Growth rates of a higher-magnitude Ro = −1.46 (relative to the positive-Ro

regime) shown in figure 5.13(b) exhibit only the mode I instability even for small E .

The growth rates associated with k > 30 have been obtained and exhibit a monotonic

decrease with increasing wavenumber within the mode I waveband, although they are
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Figure 5.13: Growth rate σ as a function of wavenumber k for various E at (a) Ro =

−0.167 and (b) Ro = −1.46. A single maximum is seen for each E case. The dashed

line represents neutral stability where points above and below symbolise unstable and stable

modes, respectively.

not shown here.

Linear stability analysis results for a constant E = 2 × 10−3 with varying Ro are

illustrated in figure 5.14. Two maxima in the σ-k data are evident. At small Rossby

numbers, only mode I is present, which is consistent with previous findings in the

positive-Ro regime. For cases with Ro 6 −1/A, mode II appears and eventually dom-

inates at sufficiently large |Ro|. This can be seen for Ro = −3.0 and Ro = −4.0.

Negative Rossby numbers with larger magnitude have not been investigated, so it is

unknown whether additional instability modes exist (e.g. mode III).

5.1.2.2 Linear instability modes and visualisation on horizontal planes

An illustration of the perturbation field structure is shown in figure 5.15(a) for Ro =

−0.167 and E = 4 × 10−4, which was most unstable to a wavenumber k = 6 (fig-

ure 5.13(a)). This flow condition only exhibits the mode I instability. The perturba-

tions are largely vertical, with a pairing of positive and negative strands of vorticity. It

should be noted that an r-z plane at an arbitrary angle θ is shown, and that may not

represent flow structures at other azimuthal phase angles due to the non-axisymmetric

mode structure. Further elucidation of the azimuthal mode structure is provided by

superimposing this linear perturbation field onto the axisymmetric base flow (shown in
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Figure 5.14: Growth rate σ as a function of wavenumber k for various Ro at (a) E =

2 × 10−3. Mode I and mode II branches are present. The dashed line represents neutral

stability where points above and below symbolise unstable and stable modes, respectively.

figure 5.15(b)). Similar to figures 5.9 and 5.10, the purpose of this field is to demon-

strate any flow alterations that occur as a result of the linear instability. A central

hexagonal structure is present, surrounded by six closed contours of vorticity. The ring

of vorticity containing the six vorticity patches contains the highest vorticity in the

flow. The lowest vorticity is situated in the central region.

The instability structures of modes I and II differ between positive and negative-Ro

regimes. Contour plots of axial vorticity in the perturbation fields for Ro = −3.0 and

E = 2 × 10−3 are shown in figure 5.16. For mode I, a pair of positive and negative

vertical vorticity strands still exist and remain bonded (even for Ro = −4.0). This is

different from its positive counterpart, as a region of neutral vorticity grows between the

strands with increasing Ro magnitude (figure 5.5). In addition to the vertical strands

there are positive-vorticity strands angled towards the interior. The angle is similar

to that observed in the base flow. The mode II structure also comprises of a pair of

positive and negative vorticity, except that it does not extend the entire depth and is

localised to the horizontal boundaries. This localisation was observed for positive-Ro

flows also. These strands are also angled in a similar nature to that of mode I and the

base flow (figure 4.2(b)(ii)).
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(a)

(b)

Figure 5.15: Axial vorticity contours of the dominant linear instability mode with azimuthal

wavenumber k = 6 at Ro = −0.167 and E = 4 × 10−4. (a) The perturbation field of the

instability mode is plotted in the r-z plane, with contour levels as per figure 5.4. (b) A linear

non-axisymmetric flow constructed by superposing the axisymmetric base flow and the az-

imuthal linear instability wavenumber as per figure 5.9. This flow field is not representative

of the three-dimensional non-axisymmetric flow since nonlinear effects are omitted here. The

slice shown was extracted at mid-depth, with contour levels as per figure 5.9, and the orien-

tation is such that the negative Ro causes the central region to rotate anti-clockwise faster

than the outer region.

Mode I Mode II

Figure 5.16: Contours of axial vorticity of the three-dimensional perturbation field of a

given azimuthal wavenumber depicted on the r-z plane. Perturbation fields of the most

unstable wavenumbers from mode I (left) and mode II (right) for conditions of (Ro,E ) =

(−3.0, 2× 10−3). Contour levels are as per figure 5.4.
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Figure 5.17: The same as figure 5.12 except for negative Ro.

5.1.2.3 Preferred azimuthal wavenumbers

Figure 5.17 shows the Ro-E regime diagram of the linearly unstable azimuthal wave-

numbers for negative Ro. Like figure 5.12, this diagram is also constructed only from

mode I wavenumbers, even if a flow is predicted to be dominated by a mode II linear

instability. The figure presents an overview of the linear stability results and suggests a

decrease in unstable wavenumbers for decreasing Ro or increasing E . This is in contrast

to the trend observed for the positive-Ro regime, where the preferential wavenumber

is dependent on both Ro and E in specific regions. In considering just the mode I

dominant region, the negative and positive-Ro regimes are comparable. The unstable

azimuthal wavenumbers have a greater dependence on E rather than Ro, with no shift

in parameter dependence.

Building upon the earlier assumption that mode II instabilities promote time-dep-
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endent flows, this type of flow would not be observed unless the disks and tank were

counter-rotating whereby Ekman pumping on the disks produce jets that may become

unstable. However, experimental work by Früh & Read (1999) described irregular and

period-doubled flows for flows with disks rotating slower than the tank (not shown in

figure 5.17). Irregular flows were primarily located at very low values of E < 5× 10−5.

The flow conditions numerically investigated here do not cover this lower-E space so

no direct comparisons can be made. However, there are no signs in any of the σ-k

data obtained in this study to indicate the presence of other instability mode types.

While the linear stability analysis conducted here implicitly considers only azimuthal

Fourier modes, other instabilities such as Taylor vortices on the r-z plane would be

observable in the axisymmetric base flows. No indications of such structures were

observed in the simulations reported, despite being seen experimentally (Früh & Read

1999). Preferential wavenumbers associated with mode I were obtained for more than

100 different negative-Ro flow conditions from which the negative Ro-E regime diagram

was constructed.

Empirically fitting Ro and E data points corresponding to zero growth yields the

relationship |Roc| = 19.8E 0.777 for negative-Ro data. Referring back to the asymp-

totic result of |Roc| ∝ E 3/4 and experimental result of |Roc| ∝ E 0.72, the numerical

relationship is quite similar. Again, the higher coefficient is due to the horizontal shift-

ing of the threshold line towards higher Ro given that the exponent does not differ

greatly. A possible explanation was given in the positive-Ro results section (§ 5.1.1.4).

Despite the difference in exponents of E for the instability threshold between positive

and negative-Ro regimes (Roc = 16.9E 0.758 and |Roc| = 19.8E 0.777, respectively), the

lines are indistinguishable on the log-log plot. Therefore, a stability threshold has been

determined that uses both positive and negative-Ro data. This concept is supported

by experiments of Hide & Titman (1967) and Früh & Read (1999), which could not

detect a difference in the onset of instability between positive and negative-Ro flows.

The threshold using both regimes is given by |Roc| = 18.1E 0.767. As can be seen in

both regime diagrams (figures 5.12 & 5.17), this threshold line fits the positive and

negative-Ro data very well.
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Study Rei,c Rei,c/(Ro/E 3/4) Critical

Ro/E 3/4

Niino & Misawa (1984) 11.7 1/
√
2 16.5

van de Konijnenberg et al. (1999) 16.6 1 16.6

Früh & Read (1999) 10.9 (lowest point) 1/
√
2 15.4

Present study 22.4± 0.8
√
2 15.8± 0.57

Table 5.1: Critical internal Reynolds numbers quoted by various studies, the factors by

which each definition of Rei differ, and the corresponding critical value of Ro/E 3/4 found in

each study.

5.1.3 The internal Reynolds number and characterisation of the pre-

ferred wavenumber regime diagrams

The internal Reynolds number is known to play an important role in characterising the

stability of the Stewartson layers generated in this and similar previous studies (e.g.

Niino & Misawa 1984; Früh & Read 1999). The various definitions of internal Reynolds

number appearing in the literature share a common dependence between Rossby and

Ekman number, namely Ro/E 3/4, differing only by constant factors arising from the

choice of characteristic length and velocity scales (e.g. whether half or the full velocity

differential across the shear layer, etc.). Unraveling the quoted critical internal Reynolds

numbers from the literature shows a striking consistency. The theoretical analysis of

Niino & Misawa (1984) yields a critical internal Reynolds number of 11.7, while from

experiments, van de Konijnenberg et al. (1999) determined Rei,c = 16.6. The line of

best fit that Früh & Read (1999) employed to determine a critical internal Reynolds

number yielded approximately 24, though their figure 8 demonstrates that they found

unstable flows down to Rei ≈ 10.9. The linear stability analysis conducted in this study

returns a critical internal Reynolds number of 22.4 ± 0.8 across the considered range

of Ekman numbers. However, dividing each of these values through by the respective

prefactors to Ro/E 3/4 employed in each definition of Rei yields the critical values listed

in table 5.1. As can be seen, these show a remarkable consistency across the analytical,

experimental and numerical methods employed in the studies, all producing a critical

threshold within the range 15.4 6 Ro/E 3/4 6 16.6. Note that the difference between the

critical Ro/E 3/4 = 15.8 and the coefficient of 18.1 in the Roc relationship (figure 5.12

& 5.17) is due to the difference in powers of Ekman number (namely E 3/4 and E 0.767

in the respective relations).

185



(a) (b)

log10(|Ro|/E 2)

lo
g 10

(λ
θ)

4 5 6 7 8

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

λθ = 11.4(|Ro|/E 2)-0.167

log10(ω /Ω)
lo

g 10
(λ

θ)
-0.6 -0.4 -0.2 0 0.2

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

λθ = 1.97(ω /Ω)0.497

Figure 5.18: Regressions of the preferred azimuthal wavelength of the mode I instability.

(a) Plot of the log10 (λθ) against log10
(

|Ro| /E 2
)

. The data are shaded by Rei, with dark

shading showing Rei . 49. This captures the regime of axisymmetric flows that depict depth-

independent axial vorticity contours, and a linear collapse of the data is seen. (b) Plot of

log10 (λθ) against log10 (ω/Ω). Here dark shading identifies Rei & 194, which captures the

regime of Ekman-number-independent instability wavelengths at large Ro and small E . The

expressions obtained by least-squares power-law fitting to the data are included in each plot.

Revisiting figure 5.12 in the context of the importance of Rei on the shear layer,

it can be seen that the lines of constant preferred azimuthal wavenumber respond to

changes in Rei. For instance, the preferred wavenumbers exhibit a steady increase with

increasing Reynolds number to Rei ≈ 49, beyond which the contours turn downwards.

Eventually (beyond Rei & 194), the lines of constant azimuthal wavenumber are ap-

proximately vertical, demonstrating that the stability of the flow (at least in terms of

the dominant azimuthal wavenumbers of the instabilities) is independent of the Ekman

number. Hence the flow can be divided into three regimes: Rei . 49 for reflectively

symmetric flows; 49 . Rei . 194, representing a transitional zone; and Rei & 194 an

Ekman-number-independent regime. These are not precise threshold criteria; rather,

they are determined approximately by inspection.

It turns out that the preferred wavenumbers obtained in the depth-independent

positive-Ro regime for Rei . 49 are consistent with those obtained in the negative-Ro

regime (i.e. figure 5.17) if the data are plotted against |Ro|. This motivated a search for

a grouping of |Ro| and E that might universally collapse the data onto a single curve.
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Recasting the preferred azimuthal wavenumbers k as azimuthal wavelengths λθ = 2π/k,

an optimisation procedure was used to maximise the correlation coefficient (r2) of a

power-law fit to the data when plotted against |Ro|α E β, where exponents α and β

were variables in the optimisation process. A highly optimal pair of exponents giving a

correlation coefficient r2 = 0.989 was found to be α = 1 and β = −2. Using |Ro| /E 2 as

an independent variable, the universal power-law fit describing the preferred azimuthal

wavelength of the mode I instability is given by

λθ = 11.4
(

|Ro| /E 2
)−0.167

, (5.2)

and this universal fit is plotted in figure 5.18(a). Interestingly, the exponent in this

expression is almost precisely −1/6, which if substituted produces λθ ∼ E 1/3/ |Ro|1/6

through a rearrangement of equation 5.2. Given the appearance of E 1/3 in this expres-

sion, it is possible that the instability wavelength scales with the E 1/3 Stewartson layer.

This may have implications for the validity of quasi-geostrophic models of these flows,

which do not capture the E 1/3 layer. Results of the quasi-two-dimensional model are

later described in Chapter 7.

In the Ekman-number-independent stability regime, the preferred azimuthal wave-

lengths vary only with Rossby number. Our analysis determined that a convenient

universal collapse of the data in this regime could be obtained by adopting ω/Ω as the

independent variable. The resulting best fit of a power-law relationship to the data

with Rei > 194 was found to be

λθ = 1.97 (ω/Ω)0.497 , (5.3)

which is plotted in figure 5.18(b). This fit achieved a correlation coefficient of r2 =

0.976. The 0.497 exponent is within 0.6% of the exponent describing a square-root

relationship. Therefore, in this regime it is proposed that the preferred azimuthal

wavelengths follow λθ ∼
√

ω/Ω.

It is stressed that the relationships developed here for the preferred azimuthal wave-

lengths of the shear-layer instability are based on a linear stability analysis of the axi-

symmetric shear-layer solutions. It is expected that nonlinear effects will play a role in

modifying the eventual azimuthal wavenumbers that would be seen in a physical exper-

iment after the instability grows sufficiently to break into a ring of well-defined vortices

(Früh & Read 1999; Aguiar 2008; Aguiar et al. 2010). A numerical investigation into

nonlinear effects are discussed later in Chapter 6.

187



5.2 Varying the aspect ratio

The same analysis presented in the previous section has been performed here for other

aspect ratios. The steady-state axisymmetric base flows provided very slight differences

in the contour structure of the flow through 1/6 6 A 6 2 as described previously in

§ 4.3.1. This section highlights the differences in the linear stability of the flow by

examining the growth rates over a wide range of azimuthal wavelengths and therefore

the most unstable wavenumber. The leading eigenvalues from the analysis are still

described by complex conjugates which signify quasi-periodic instability modes.

5.2.1 Growth rates

The growth rates for a range of azimuthal wavenumbers have been determined via a lin-

ear stability analysis performed on steady-state axisymmetric base flows. In considering

a single aspect ratio, the effect of varying the Rossby and Ekman number on the growth

rate as a function of azimuthal wavenumber demonstrate the same trends observed for

A = 2/3. That is, increasing the Rossby number invokes larger growth rates in the

perturbations and causes a preference towards higher azimuthal wavenumbers. Plots

of the growth rates as a function of wavenumber for A = 1/6 with E = 7 × 10−4

and varying Ro, and Ro = 0.1 with varying E , are portrayed in figure 5.19. The peak

wavenumbers for Ro = 0.05, 0.1, 0.2 and 0.3 are determined to be kpeak = 12.6, 14.9, 15.7

and 14.7, respectively, for E = 7 × 10−4. Noticeably, there is a decrease in peak

wavenumber from Ro = 0.2 to 0.3. It is proposed that this decrease may be due to

the near-onset of symmetry-broken flow. The transition between reflectively symmetric

and symmetry-broken flow occurs at Roc1−c2 = 0.353 for E = 7 × 10−4 (see § 4.3.4).

In the previous section which considered A = 2/3, the transition line was indicative of

where the contour lines of preferred wavenumber becomes independent of the Ekman

number. However, the transition to this Ekman-number-independent regime is not

abrupt whereby the contour lines gradually become vertical prior to the Roc1−c2 line.

Thus, as Ro = 0.3 is near the critical value of Roc1−c2 = 0.353, it is suspected that

the linear stability of the flow has started to become more dependent on the Rossby

number. An example of this particular trend can be observed in figure 5.12 by moving

horizontally at any constant Ekman number. Decreasing the Ekman number causes

the flow to shift its linear stability preference towards higher azimuthal wavenumbers

with increased growth rates, as was seen with A = 2/3.
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Figure 5.19: Growth rate σ as a function of azimuthal wavenumber k for A = 1/6 and

(a) E = 7 × 10−4 for various Ro and (b) Ro = 0.1 for various E . The dashed line repre-

sents neutral stability where points above and below symbolise unstable and stable modes,

respectively.

Similarly, negative-Ro flows display a parabolic-like profile in the growth rate data

as a function of azimuthal wavenumber. A typical illustration of the data is shown in

figure 5.20 for Ro = −1.0, E = 7×10−4 and A = 1/6. The shape of the profile suggests

that the instabilities within the waveband shown are mode I. The same trends exist in

that increasing the Rossby number magnitude yields an increase in both growth rate

and the peak azimuthal wavenumber. Decreasing the Ekman number demonstrates the

same behaviour.

Typical profiles of growth rates against wavenumber for various A are shown in

figure 5.21(a), with flow conditions of Ro = 0.1 and E = 7 × 10−4. The reference

aspect ratio of A = 2/3 described in the previous section demonstrates a single peak

in the profile associated with the mode I instability, with a corresponding integer peak

wavenumber of kpeak = 4. By decreasing A, the stability of the flow is seen to shift

its preference towards higher azimuthal wavenumbers and the waveband of mode I

increases. For A = 2/3 this waveband ranges between 1 6 k 6 9 while for A = 1/3,

this waveband ranges between 1 6 k 6 18. For A = 1/6, a single local maxima in

the profile is observed for k > 2 with the integer peak wavenumber corresponding to

kpeak = 15. The preceding wavenumbers k = 1 and k = 2 demonstrate a gradual
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Figure 5.20: Growth rate σ as a function of azimuthal wavenumber k for Ro = −1.0,

E = 7× 10−4 and A = 1/6. The dashed line represents neutral stability where points above

and below symbolise unstable and stable modes, respectively.

decrease that do not appear to be associated with the mode I waveband. A major

difference in growth rate is also observed for the case of A = 2. Although it appears that

the mode I profile is maintained and demonstrates an inclination towards low azimuthal

wavenumber structures, the growth rates are smaller than those associated with A 6

2/3. The growth rates portray a stable flow to all non-axisymmetric disturbances with

the slowest decaying wavenumber characterised by kpeak = 2. The negative growth

rates conveyed by all wavenumbers in this case demonstrates the increased stability of

the flow, which is in agreement with what was expressed in § 4.3.2, namely a thicker

shear layer produced by a larger A results in a more stable flow. Thus, increasing

the aspect ratio decreases the observed azimuthal wavenumber, which is in agreement

with the unpublished experiments of Dr. Luca Montabone who only observed oval

shapes in large A containers. The trend of increasing A causing the flow to favour

lower wavenumbers is seen not only for this flow condition but throughout the large

parameter space covered. The profile of the growth rate data further suggests that the

instability associated with the Stewartson layer is weak due to the reduction of the

velocity gradients across the shear layer, as was observed in the radial profiles of axial

vorticity (see figure 4.20).

The peak growth rates between A = 1/6 and A = 2/3 are comparable. In fact, the

peak growth rates for cases of A 6 2/3 in figure 5.21(a) are similar. This suggests that
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Figure 5.21: Growth rate σ as a function of (a) azimuthal wavenumber k and (b) scaled

azimuthal wavenumber kA, for Ro = 0.1 and E = 7 × 10−4 for various aspect ratios. (c) A

closeup of panel (b). The dashed line represents neutral stability where points above and

below symbolise unstable and stable modes, respectively.

there is a maximum growth rate associated with a specific flow condition, for which

aspect ratios under a particular threshold will exhibit. In other words, the stability of

the shear layer corresponding to a particular flow is independent of the aspect ratio,

provided that the shear layer is not greatly affected by the confinement. The theoretical

shear-layer thickness δ = (E /4)1/4H suggests that the thickness is scaled with the

enclosure height. If the dominant wavenumber scales with the thickness, then this

suggests that the wavenumber can be rescaled by A, such that a universal collapse of
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Figure 5.22: Growth rate σ as a function of (a) azimuthal wavenumber k and (b) scaled

azimuthal wavenumber kA, for Ro = 0.1 and E = 3 × 10−4 for various aspect ratios. The

dashed line represents neutral stability where points above and below symbolise unstable and

stable modes, respectively.

the data is achieved for σ as a function of kA. This is illustrated in figure 5.21(b) with

figure 5.21(c) providing a close-up image of the peak growth rates. The collapse for

cases A 6 2/3 demonstrate strong agreement with each other. This can be explained

by the similar profiles exhibited in the scaled axial vorticity throughout the shear layer,

which is the unstable part of the flow (see figure 4.20). This also explains why the

growth rate profile for A = 2 does not conform with the lower aspect ratios since at

this aspect ratio the E 1/4 Stewartson layer is strongly affected by the confinement.

Another example of this universal collapse is demonstrated for Ro = 0.1 and E =

3 × 10−4 in figure 5.22. Again, the growth rates of the wavenumbers associated with

the mode I instability in the A = 2 container is lower and bounded by A . 2/3 due to

the Stewartson E 1/4 layer being disrupted by the confining walls.

An axisymmetric base flow characterised by Ro = 0.3 and E = 3 × 10−4, which

describes a mode II instability of comparable growth rate to that of mode I instability

is now considered. The axisymmetric base flow structure is reflectively symmetric

for this case. The growth rates as a function of azimuthal wavenumber for this flow

condition are illustrated in figure 5.23. Recall that the flows at A = 2 demonstrated the

existence of a E 1/3 Stewartson layer in the thickness measurements (see figure 4.21).
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Figure 5.23: Growth rate σ as a function of (a) azimuthal wavenumber k and (b) scaled

azimuthal wavenumber kA, for Ro = 0.3 and E = 3 × 10−4 for various aspect ratios. The

dashed line represents neutral stability where points above and below symbolise unstable and

stable modes, respectively.

Despite this, the growth rates associated with the mode II instability do not appear

to follow the aspect ratio scaling. This is observed in figure 5.23(b) where the growth

rates of wavenumbers from A = 2 are no longer bound by the growth rates of A . 2/3.

In fact, the growth rates of both the mode I and mode II structures in the larger

container are now greater than those for A . 2/3. In addition, the maximum growth

rates attributed from the mode I and mode II instability for A = 2/3 and A = 1/6 are

no longer similar. Also, the scaled wavenumbers do not conform to each other. This

difference is explained by the instability of the E 1/3 layer and may be affected by the

onset of symmetry-breaking flow, and therefore affecting the E 1/4 Stewartson layer.

5.2.2 Linear instability modes and visualisation on horizontal planes

The three-dimensional perturbation fields of the most unstable wavenumber have been

obtained through a linear stability analysis. A comparison between the leading eigen-

modes for Ro = 0.1 and E = 7 × 10−4, with A = 1/6, 2/3 and 2 is portrayed in

figure 5.24. The contours of axial vorticity for each A demonstrates a strong pair of

opposing vorticity bands at the disk-tank interface, which is indicative of the mode I

instability. This is not surprising since the growth rate data (figure 5.21) illustrates a

single maxima that is representative of the mode I instability. Visually, there are slight
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A = 1/6

A = 2/3

A = 2

Figure 5.24: Contours of axial vorticity of the three-dimensional perturbation field of a given

azimuthal wavenumber depicted on the semi-meridional r-z plane for various aspect ratios.

The flow conditions are of (Ro,E ) = (0.1, 7× 10−4). Contour levels are as per figure 5.4.

differences in A = 1/6 and A = 2 compared to the reference aspect ratio (A = 2/3)

in the region of r < 1 which may be due to the azimuthal angle at which this r-z

plane is examined. In addition, the structure may be as a result of the weaker growth

rates. Despite the visual differences in the structure, the contours also demonstrate

that growth in the disturbances are more localised for lower A. Thus, the region that

is susceptible to instability increases as A increases.

Recall that for a sufficiently small A, the smallest azimuthal wavenumbers do not

appear to be a part of the mode I waveband. This is observed with k = 1 for Ro = 0.1

and E = 7 × 10−4 with A = 1/6 in figure 5.21. This particular wavenumber does

not exhibit a pair of axial vorticity bands at r = 1, rather the growth and decay of

perturbations are localised along the axis of rotation. The perturbation contours for

k = 2 exhibits growth throughout the entire domain while k = 3 is localised at r = 1.

Thus wavenumbers 1 and 2 are not associated with mode I, but perhaps may be closely
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(a) A = 1/6, k = 15 (b) A = 2/3, k = 4

(c) A = 2, k = 2

Figure 5.25: Linear non-axisymmetric flows constructed by superimposing the axisymmetric

base flow and the most unstable azimuthal linear instability wavenumber, with flow conditions

of Ro = 0.1 and E = 7 × 10−4. The aspect ratios and corresponding peak wavenumber are

described by (a) A = 1/6, k = 15 and (b) A = 2/3, k = 4 and (c) A = 2 and k = 2. Contours

levels as per figure 5.9.

related with the axisymmetric mode.

The perturbation field associated with the most unstable azimuthal wavenumber

has been superimposed onto its respective base flow for visualisation purposes. The

resultant contours of axial vorticity for cases in figure 5.24 are illustrated in figure 5.25.

For each wavenumber associated with mode I, the flow demonstrates a polygonal con-

figuration bordering r = 1. Similar to the structures obtained in A = 2/3, the ring of

vorticity is comprised of very low vorticity surrounded by higher axial vorticity.
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Figure 5.26: The same as figure 5.12 except for A = 1/6. The short-dashed lines represent

the transition between one wavenumber and another, denoted by the wavenumber of the

instability shown within the band. The azimuthal wavenumber of unlabelled contour bands

can be determined by referencing a labelled contour band and incrementing by 1. The solid

boundary lines represents the range of triangulation. The left thick boundary line represents

the stability threshold, which is given by Roc ∝ E 0.756 (using positive data only). The

dotted line represents the transition from reflectively symmetric flow to symmetry-broken

flow, defined as Roc1−c2 ∼ 13.35E 0.5.

5.2.3 Preferred azimuthal wavenumbers

A regime diagram of the most unstable wavenumber as a function of both Ro and E

has been generated for A = 1/6 as shown in figure 5.26. A wide range of unstable

azimuthal wavenumbers between 7 6 k 6 35 is seen throughout the computed param-

eter space. This range is much greater than those obtained for A = 2/3 (2 6 k 6 9).

However, taking into consideration the aspect ratio, the scaled wavenumbers range

between 1 6 kA 6 6 for both A = 1/6 and A = 2/3. A pair of dashed lines encom-

196



passes a single azimuthal wavenumber that is denoted by a label. The increment in

azimuthal wavenumber is 1 and therefore other wavenumbers can be determined from

labelled contoured bands (e.g. k = 15, 20, 25 . . . ). In the low-Ro regime, the preferred

azimuthal wavenumbers increase with either increasing Ro or decreasing E , which is

the same trend exhibited by the regime diagram for A = 2/3 (figure 5.12). In addition,

in the large-Ro regime, the contours of preferred wavenumbers become largely indepen-

dent of E . The contour lines become vertical approximately after the transition from

reflectively symmetric flow to symmetry-broken flow, which is in itself independent of

the aspect ratio. Thus, this feature is also exhibited for flows contained in the A = 2/3

geometry.

The instability threshold for A = 1/6 was determined to be Roc = 16E 0.756, which

is comparable to that obtained for A = 2/3 (Roc = 18.1E 0.767). This is expected since

the maximum growth rates associated with the mode I instability appeared to have no

dependence on the aspect ratio (§ 5.2.1), provided the shear layer is not affected by

the container walls. In fact, the cases of A = 1/6 demonstrated slightly higher growth

rates as compared to A = 2/3, which suggests that the E 1/4 Stewartson layer is the

most unstable in configurations of A . 2/3. Thus, the instability threshold of A = 1/6

would be more representative of a pure E 1/4 Stewartson layer becoming unstable. This

explanation is reinforced by the exponent of E demonstrating an almost identical value

to the theoretical prediction of 3/4. This also explains the slight deviation of the Ekman

number exponent from the theoretical 3/4 value and that predicted for A = 2/3. That

is, the E 1/4 Stewartson layer is slightly affected by the confinement in A = 2/3 and

therefore the instabilities are not able to grow to the maximum potential associated

with the flow conditions (a pairing of Ro and E ). The instability threshold for A =

1/6 corresponds to Rei,c ≈ 22.6, which importantly equates to a critical Ro/E 3/4 of

approximately 16. This critical value is the average value determined by prior studies

(see table 5.1).

It was established that for a sufficiently small A (A . 2/3), the growth rate data can

be universally described by scaling the azimuthal wavenumber by A. Thus, a regime

diagram of the scaled parameter kA can be produced as a function of Ro and E . This

is illustrated in figure 5.27. The solid lines represent an integer value result of kA while

the short-dashed lines represent the increments of 0.1 in kA. Therefore, this regime

diagram is universal such that the linearly predicted azimuthal wavenumber can be
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Figure 5.27: The same as figure 5.12 except kA is plotted instead of k generated from the

A = 1/6 data. This regime diagram is universal such that the linearly predicted azimuthal

wavenumber can be determined by dividing the kA value by the aspect ratio considered. The

solid lines denote an integer result of kA while the short-dashed lines represent a decimal

value with increments of 0.1.

determined by dividing the value by the aspect ratio. That is, the regime diagram

for A = 2/3 as seen in figure 5.12 (and for any other aspect ratio A < 2/3) can be

reproduced by using figure 5.27 and multiplying the values by 1/A.

A fit of the preferred azimuthal wavelengths (λθ = 2π/k) of the mode I instability

as a function of Ro and E has been determined using the same optimisation process

described in earlier in § 5.1.3. A power-law fit of the azimuthal wavelength against

RoαE β, where α = 1 and β = −2, demonstrates the relationship

λθ = 4.95
(

Ro/E 2
)−1/5

, (5.4)

and is illustrated in figure 5.28. The shaded data represents cases described by Rei . 49,
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Figure 5.28: Regressions of the preferred azimuthal wavelength of the mode I instability

for A = 1/6. Plot of the log
10

(λθ) against log
10

(

|Ro| /E 2
)

. The data are shaded by Rei,

with dark shading showing Rei . 49. This captures the regime of axisymmetric flows that

depict depth-independent axial vorticity contours, and a linear collapse of the data is seen.

The expressions obtained by least-squares power-law fitting to the data are included in each

plot.

which is the same range of values used in the earlier azimuthal wavelength analysis for

A = 2/3. The wavelength relationship simplifies to λθ ∼ E 2/5/Ro1/5, which differs to

that obtained for the A = 2/3 configuration, namely λθ ∼ E 1/3/Ro1/6. This difference

suggests that the 1/3 exponent observed for A = 2/3 flows is not related to the E 1/3

Stewartson layer. In addition, if the scaled azimuthal wavelength kA is instead used, the

fitted relationship would only differ in the coefficient of Ro/E 2 and not the exponent.

However, it must be noted that only positive-Ro data have been used in this analysis and

the addition of negative-Ro may affect the exponent of Ro/E 2. In fact, in considering

only the positive-Ro data for A = 2/3 changes the exponent from −0.167 to −0.178.

Further discussion on the appearance of the 1/3 exponent in E relating to the quasi-

two-dimensional model is presented later in § 7.3.4.

5.3 Linear stability of flow on a β-plane

The axisymmetric base flow structures of the f-plane and the β-plane exhibited very

little differences in their axisymmetric base flow structures. A linear stability analysis

has been conducted to deduce the differences in their linear stability.
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Figure 5.29: (a) Growth rate σ as a function of azimuthal wavenumber k for Ro = 0.3 and

E = 1×10−3 for various angles of θ. (b) The same plot as (a) except it is represented through

the aspect ratio parameter with additional cases illustrated. (c) The growth rate data as a

function of the scaled azimuthal wavenumber kA. The dashed line represents neutral stability

where points above and below symbolise unstable and stable modes, respectively.

The growth rate against azimuthal wavenumber for Ro = 0.3 and E = 1× 10−3 for

various angles of θ is demonstrated in figure 5.29(a). Minor differences in the growth

rate magnitudes and the profile shapes are observed between the f-plane (θ = 0◦) and

θ = 2.5◦. Both cases illustrate a preference to an unstable wavenumber of k = 5.

The flow shifts its preference to larger azimuthal wavenumbers as θ increases while

maintaining a similar peak growth rate magnitude. Thus, the trend of increasing θ is the
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(a) θ = 0◦

(b) θ = 2.5◦

(c) θ = 10◦

Figure 5.30: Contours of axial vorticity of the three-dimensional perturbation field of a

given azimuthal wavenumber depicted on the semi-meridional r-z plane for the (a) f-plane

and (b, c) β-plane cases. The flow conditions are of (Ro,E ) = (0.3, 1× 10−3). Contour levels

are as per figure 5.4.

same as that observed by decreasing A in § 5.2.1. Hence, the same plot of figure 5.29(a)

has been reproduced in figure 5.29(b) as a function of the aspect ratio with additional

cases to illustrate this trend more clearly. The aspect ratio is defined as the ratio of

the disk radius to the depth of the fluid at the disk-tank interface (r = 1), such that

increasing θ corresponds to decreasing A (H = 2/3 − Rd tan θ). It is evident that the

maximum growth rates between all of the cases except for A = 2 are comparable, which

eludes to the possibility that a universal relationship can be obtained by scaling the

azimuthal wavenumber by the aspect ratio (as observed previously). The scaling for

this set of data are shown in figure 5.29(c), which demonstrates strong agreement for

A < 2/3. Thus, the growth rate data suggests that performing flows on a β-plane is

equivalent to performing flows on an f-plane of an equivalent aspect ratio based on the

radius of the disk and the height of the container at the disk-tank radius.

This suggestion is further reinforced by observing the perturbation fields both in

isolation and with its superposition onto its respective axisymmetric base flow. The

three-dimensional perturbation fields of the most unstable wavenumber for the various

β-plane cases are shown in figure 5.30. The most prominent structure in the perturba-
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(a) θ = 2.5◦, k = 4 (b) θ = 10◦, k = 5

Figure 5.31: Linear non-axisymmetric flows constructed by superimposing the axisymmetric

base flow and the most unstable azimuthal linear instability wavenumber, with flow conditions

characterised by Ro = 0.3 and E = 1 × 10−3. The β-plane configurations are (a) θ = 2.5◦

with k = 4 and (b) θ = 10◦ with k = 5. The horizontal plane shown is at z = 1/3 (equivalent

to z/H = 0.5 in the A = 2/3 f-plane case) with contour levels as per figure 5.9.

tion fields is the pair of vertical axial vorticity bands at the disk-tank interface, which

is representative of a mode I instability mode. The contours of axial vorticity demon-

strate depth independence except near the tank wall boundaries. The superposition of

the perturbation fields onto their respective axisymmetric base flows are illustrated in

figure 5.31. The horizontal planes have been extracted at mid-depth in relation to the

sidewall tank height (z/Htank = 0.5). Thus the white solid circle at r = 0 represents

the conical extension attributed by the sloping bottom of the β-plane. The resulting

structures portray a ring of vorticity arranged into a polygon at the periphery of the

disk. This type of deformation was observed for flows on an f-plane and the structure

does not change throughout the majority of the fluid depth. Since the amplitudes of

the perturbation fields used are arbitrary, it is not possible to clarify whether or not

the presence of the changing bottom topography causes the polygonal ring of vortices

to become sharper as was observed by Aguiar et al. (2010).

5.4 Summary

The reflective symmetry breaking of the axisymmetric base flow was seen to affect

the nature of its linear stability. For base flows illustrating depth-dependent and/or
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reflective symmetric features, a single mode peak was present that is associated with

the mode I instability. When superimposed onto the base flow, the leading unstable

wavenumber for mode I demonstrated vorticity-forming polygonal structures such as

triangles, pentagons and hexagons. The combination of several instability modes and

nonlinear effects are likely to alter such linear patterns in real-world cases. A second

and third mode peak were also observed at large Ro and small E ; the same conditions

where symmetry-broken flow is observed. Modes II and III exhibited highly localised

and irregular instabilities, respectively, which are atypical of the depth independence

exhibited by the mode I instability. These instability modes also favored higher wave-

numbers. A compilation of the results corresponding to mode I were used to construct

Ro-E regime diagrams.

The empirical relationship of the stability threshold for negative and positive-Ro

flows with A = 2/3 was obtained. Both were in good agreement with the asymptotic

predicted exponents obtained by Busse (1968) and little differences were observed be-

tween the threshold of positive and negative-Ro flows. Consequently, the exponent for

the relationship between |Ro| and E correspond to a constant |Rei|. Although the sta-

bility of the flow can be described by |Rei,c| alone, the prediction of the preferential

wavenumber requires both |Ro| and E to be known. An empirical fit of the preferential

azimuthal wavenumber as functions of (|Ro|/E 2) and (ω/Ω) have been determined for

depth-independent (Rei . 49) and depth-dependent flows (Rei & 194), respectively.

In comparison to the stability threshold obtained by Früh & Read (1999), similari-

ties were observed in the exponent with differences seen in the leading coefficient. This

is caused by the stability onset occurring at higher Ro values, and therefore at higher

Rei. This dissimilarity may be explained by experimental observation limitations. In

addition, the discrepancy observed between the values of Rei,c determined in previous

literature and this study is due to the different length and velocity scales used. Com-

pensating for these differences, consistent threshold values of 15.4 . Ro/E 3/4 . 16.6

are found across the theoretical, laboratory and numerical studies of Niino & Mis-

awa (1984), van de Konijnenberg et al. (1999), Früh & Read (1999) and the present

simulations. The Ro-E regime diagrams depict a different trend to those obtained ex-

perimentally by Früh & Read (1999) and Aguiar et al. (2010). The primary reason for

the differences in trends may be explained by the nonlinearity associated with these

experimental flows.
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The linear stability analysis results for other aspect ratios revealed that beyond a

certain A, the Stewartson E 1/4 layer becomes weaker and shifts its preference towards

low azimuthal wavenumbers. In contrast, given a sufficiently small A whereby the Stew-

artson layer is unhindered by the confining walls, the growth rates demonstrate the same

maximum. As such, the threshold of instability was determined to be Roc ∝ E 0.756 for

A = 1/6, which is comparable to that obtained for A = 2/3 (Roc ∝ E 0.767). However,

a difference of results is seen in the corresponding peak azimuthal wavenumber. That

is, decreasing A causes a more unstable azimuthal wavenumber to develop. Though it

was determined that the data can be universally scaled by the aspect ratio. Growth

rates associated with flows on a β-plane also adopt this universal scaling as the effect

of increasing θ demonstrated similar trends to that attributed by decreasing A. The

resulting structures from this type of instability are polygonal rings of vortices, repre-

sentative of the mode I instability. Thus, from a linear stability standpoint, flows on a

β-plane are identical to flows on a f-plane given that the aspect ratios are equivalent.

The next chapter is devoted to the study of nonlinear shear-layer instability and

comparisons to the linear stability results presented in this chapter.
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Chapter 6

Non-axisymmetric flow in a

differential-disk rotating system

With guidance from the linear stability analysis results presented in the previous chap-

ter (Chapter 5), three-dimensional direct numerical simulations have been performed

at various flow conditions throughout the positive-Ro regime for the A = 2/3 enclosure.

These specific flow conditions have been selected to demonstrate the three-dimensional

behaviour that manifests at parameters where the axisymmetric base flows are domi-

nated either by the mode I or mode II linear instability. That is, flows which exhibit

instability modes that are either reflectively symmetric about the mid-depth or localised

near the bottom or top of the shear layer at the disk-tank interface. The selected flow

conditions also serve to demonstrate nonlinear mode evolution and interactions. It is

predicted that nonlinear effects become significant when flow conditions are forced well

beyond the onset of instability. Thus, a flow case near the stability threshold is explored

initially in § 6.1, which acts as reference case for this chapter. Flows conditions well

beyond the instability onset are achieved by either increasing Ro or decreasing E , and

this is investigated in § 6.2. This is followed by examining the effect of varying the

Rossby number in the large and small-Ekman-number regimes, as presented in § 6.3.

The sensitivity to initial conditions and hysteresis effects are explored in § 6.4 with

results of a bifurcation analysis presented in § 6.5.

The threshold of instability has been determined previously in § 5.1.1.4 to be Roc =

18.1E 0.767 from a linear stability analysis for A = 2/3. Figure 6.1 is a reproduction of

the regime diagram of the linearly preferred azimuthal wavenumber as a function of Ro

and E (figure 5.12), with additional symbols marking the referenced flow conditions

investigated in this chapter. The shapes and colours of the symbols are grouped into

205



Figure 6.1: A regime diagram of the preferred linear wavenumber in the positive Ro-E pa-

rameter space. The numerical labels on the diagram represent the unstable linear wavenumber

associated with the mode I instability. Similar shaped data points and colours are generally

grouped as part of a specific section which are represented by the labels Sx, where x denotes

the relevant section. The long dashed line represents ReE = 26.7. A transitional regime

exists between 26.7 6 ReE < 56.4 where both reflectively symmetric and symmetry-broken

flow are exhibited.

their respective sections. The thick dashed line represents the transition from base

flows that are reflectively symmetric about the horizontal mid-plane and those that are

not, defined by ReE = 26.7. The reflective symmetry is important as it corresponds

to flows that possess a strong depth independence of azimuthal velocity and axial

vorticity through the interior of the tank. However, there exists a transitional regime

(26.7 6 ReE < 56.4) that encompasses both reflectively symmetric and symmetry-

broken flows. Thus, flow conditions just beyond ReE = 26.7 are not certain to be

reflectively symmetric about the horizontal mid-plane.
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6.1 In the vicinity of instability onset

A flow having a moderate Ekman number and a small Rossby number described by

(Ro,E )=(0.05, 3 × 10−4) is investigated. For this particular E , the linear stability

analysis predicts a critical Rossby number of Roc = 0.036. Hence, this condition is near

the onset of linear instability and will be taken as the reference flow condition used

for comparison throughout this chapter. Additionally, the internal Reynolds number

is given by Rei ≈ 31 (Rei,c ≈ 22.4). Firstly, three-dimensional direct numerical sim-

ulation results at this reference flow case are presented in this section. The following

sections describe two cases characterised by an increase in Ro and a decrease in E to

this reference case, respectively. These flow conditions are marked by solid black circles

in figure 6.1. It is expected that flow conditions in the vicinity of instability will be

relatively weak, and would then be well-predicted by linear stability analysis. This

is supported by experimental evidence that the instability bifurcation is supercritical

(Früh & Read 1999; van de Konijnenberg et al. 1999; Bergeron et al. 2000). In contrast,

flow conditions sufficiently far from the instability onset are expected to be altered by

nonlinear effects, and therefore the resulting wavenumber may shift from the linearly

predicted wavenumber.

For Ro = 0.05 and E = 3× 10−4, the most unstable wavenumber is predicted to be

k = 5 according to the linear stability analysis. The linear growth rates as a function of

wavenumber and the axial vorticity contours for k = 5 are illustrated in figure 6.2. The

axial vorticity contours are only a depiction of the linear instabilities which have been

arbitrarily amplified to finite amplitudes. Since k = 5 is associated with the mode I

waveband, the structure of the mode is reflectively symmetric about the mid-depth.

Thus, the structure has a pentagonal appearance that extends throughout the depth of

the tank.

A three-dimensional direct numerical simulation has been performed for the same

flow conditions (Ro = 0.05 and E = 3 × 10−4). This simulation is initialised from the

steady-state axisymmetric base flow solution seeded with white noise. This technique

has been described in § 3.5. For this simulation, 24 Fourier modes have been used in

the construction of the three-dimensional flow to ensure sufficient spatial resolution.

Typically, increasing Rei requires additional Fourier modes to accurately capture the

small scale structures present, which has also been described in § 3.7.3. Implementing

additional Fourier modes demonstrates no changes to the observed structure as larger
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Figure 6.2: (a) The growth rates for a range of wavenumbers obtained through linear sta-

bility analysis for a flow condition of Ro = 0.05 and E = 3×10−4. The dashed line represents

neutral stability where points above and below symbolise unstable and stable wavenumbers,

respectively. (b) Representative axial vorticity contours of linear instabilities of finite am-

plitude superimposed onto its respective base flow shown at z/H = 0.5. Nonlinear effects

have been neglected. Contours of axial vorticity are plotted, with equi-spaced contour levels

between 2Ω± 10ω. Blue and red contour shading represent low and high values, respectively,

while solid and dashed contour lines identify positive and negative contour levels, respectively.

The orientation is such that the positive Ro causes the central region to rotate clockwise faster

than the outer region.

wavenumbers are effectively harmonics of the developing flow exhibiting lower energies.

The purpose of the white noise is to add energy into all of the non-zero azimuthal

Fourier modes to accelerate the development of any instabilities in the flow. In the

linear regime at long times, wavelengths that are unstable will increase in energy over

time while stable wavelengths will lose its energy. However, it is also possible that non-

modal transient effects may briefly grow a linearly stable Fourier mode when nonlinear

effects are considered (Blackburn et al. 2008). A time sequence of mode evolution from

the initial white noise seeding is shown in figure 6.3 with contours of axial vorticity

plotted on the horizontal mid-plane of the three-dimensional domain. The energies in

the non-zero wavenumber structures are very small compared to the energy contained

in the base flow during the initial developments. Thus, viewing the entire flow solution

will only reveal an axisymmetric flow. Hence, axial vorticity contours of the pertur-

bation field are shown in isolation. That is, the fundamental mode (zeroth azimuthal
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Figure 6.3: A flow condition of Ro = 0.05 and E = 3 × 10−4. Time evolution of axial

vorticity of the perturbation field alone. The initial base flow is seeded with white noise

which eventually evolves into a wavenumber 5 structure. From left to right, the snapshots of

axial vorticity are taken at t = 10, 20, 30 and 100. Equi-spaced contour levels are plotted

between ±(|ωz,min| + |ωz,max|)/2. Blue and red flooded contours represent negative and

positive values, along with dashed and solid contour lines, respectively.

wavenumber) has been subtracted from the full flow solution. As expected, the flow

portrays a chaotic appearance near the start of the simulation (t = 0) since noise is

distributed randomly across all Fourier modes in the simulation. As the flow evolves,

the dominant instability emerges, developing into a sinusoidal structure concentrated

at a radial position consistent with the disk edge. The eventual instability forms a

wavenumber 5 structure which is seen at t = 100. This is in agreement with the predic-

tion from the linear stability analysis. Since the instability adopts a sinusoidal form, a

pairing of positive and negative vorticity represents a single wavelength of the distur-

bance. Hence, the frame at t = 100 illustrates two disturbance rings representative of

a wavenumber 5 structure.

For three-dimensional flows that involve modal interactions, measurements of modal

parameters are typically used as an indicator in demonstrating the most dominant mode

in time. Examples of modal parameters include the kinetic energy (e.g. Henderson 1997;

Lopez & Marques 2011), the amplitude (e.g. Sheard et al. 2003; Carmo et al. 2010) and

the enstrophy (e.g. Bergeron et al. 2000; Früh & Nielsen 2003) in each Fourier mode.

Here, the kinetic energy measure is adopted. The energy contained in each azimuthal

wavenumber over time for Ro = 0.05 and E = 3 × 10−4 is displayed in figure 6.4.

The zeroth wavenumber is omitted in all energy plots since changes to the axisym-

metric mode energy are small in comparison to its absolute value. Indeed, the zeroth

wavenumber contains the highest energy in the flow due to the large azimuthal velocities

arising from the tank rotation. Initially there is a rapid energy decrease due to the

decay of the white noise belonging to stable wavenumbers. Then unstable wavelengths
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are seen to gain energy at an exponential rate in the linear regime (t . 450). As

the modes grow in amplitude, nonlinear effects become significant and the exponential

growth of the wavelengths becomes inhibited with the dominant wavelength usually

expressing saturation. It is seen that k = 5 is dominant in the linear regime and remains

stable as the dominant wavenumber throughout the nonlinear regime. Harmonics of

the dominant wavenumber are also seen to plateau after sufficient time. Non-harmonic

wavenumbers are seen to decay at varying rates with each demonstrating particular

oscillations. In fact, the oscillations appear to be shared by a group of wavenumbers.

That is, a wavenumber belonging to a particular group illustrates oscillations in energy

over time that are synchronised with the other wavenumbers belonging to the same

group. For example, wavenumbers 3, 8, 13, 18 and 23 all demonstrate the same energy

frequencies over time, as is seen in figure 6.4(b). Similarly, wavenumbers 4, 9, 14 and

19 illustrate similar oscillations amongst each other. Thus, wavenumbers k + kpeakn

share similar oscillations in their energy over time data, where kpeak represents the

dominant wavenumber at a particular time, n is an integer (n > 0) and k is an integer

azimuthal wavenumber (1 6 k 6 kpeak). This relationship can be explained by the most

dominant wavenumber imposing its symmetry onto all other wavelength structures.

The hierarchy of these wavenumbers in terms of the energy is typically described by

the lowest wavenumber containing the highest energy which then cascades down to

higher-wavenumber structures.

On the horizontal plane at saturation of the instability mode, contours of axial

vorticity display a pentagon-shaped interior of high vorticity that is bordered by a ring

of lower vorticity. This is portrayed in figure 6.5(a) at two different heights, z/H = 0.1

and z/H = 0.5. Consistent with the underlying axisymmetric base flow solution, the

flow is reflectively symmetric about z/H = 0.5. The ring of lower vorticity surrounding

the inner pentagon also outlines the shape of a pentagon. This vortical structure extends

throughout the entire depth with little variability except in the vicinity of the horizontal

boundaries (figure 6.5(b)). From a top-down view, the structure precesses clockwise

while the wave oscillates about r = 1. This nonlinear flow structure is very similar to

that predicted by the linear stability analysis (figure 6.2(b)). Thus, the expectation

that nonlinear effects would have little effect in the vicinity of the stability threshold

is supported. In addition, the velocity and vorticity flow contours in the r-z plane

illustrate very similar features to those obtained via the axisymmetric model.
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Figure 6.4: Energy time history of the energies contained in each azimuthal wavenumber

for a flow condition of Ro = 0.05 and E = 3 × 10−4. Energies of the first 23 non-zero

wavenumbers are shown. (a) The bold lines represent the energies in wavenumber 5 and its

harmonics. The bold lines in (b) represent the energies in wavenumbers k = 3, 8, 13 . . . ,

while the bold lines in (c) represent the energies in wavenumbers k = 4, 9, 14 . . . .

The depth independence of the wavenumber 5 configuration is illustrated in an iso-

surface of axial vorticity, as shown in figure 6.5(b). The pentagonal organisation extends

throughout the entire depth and rotates about the axis at a frequency of f = 0.162. The

period of the polygonal structure is slightly larger than the period of the background

flow (T = 6.2 compared to T = 6.07, respectively). Thus, the frequency is less than

twice the background frequency (f = 0.329), which suggests that inertial waves are

possible in the interior flow. The appearance of the distinct circular impression at the

top of the iso-surface at r = 1 is associated with the discontinuous boundary conditions
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(a)
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(b)

Figure 6.5: (a) Contours of axial vorticity at 2 different heights of (i) z/H = 0.1 and (ii) 0.5

for a flow condition of Ro = 0.05 and E = 3 × 10−4. These snapshots are taken at t = 910.

The flow is reflectively symmetric about the z/H = 0.5. Contour levels are as per figure 6.2.

(b) An isometric view of axial vorticity iso-surface of the saturated flow state at t = 2060. A

single iso-surface of ωz = 1.96 is shown.

imposed across the disk-tank interface. Although this resulting structure is observed at

t = 2060, the structures at earlier times in both the linear and nonlinear regime are very

similar to this. Despite the interactions between other wavenumbers in the nonlinear

regime (figure 6.4), their amplitudes are not large enough to significantly affect the

primary structure. In fact, all non-harmonic wavenumbers are seen to continually lose

energy over time. The only wavenumbers which gain energy over time are those that

are harmonics of the dominant wavenumber 5, which are observed to be approaching
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Figure 6.6: (a) Time series of the modal energies for a flow condition of Ro = 0.08738 and

E = 6.8 × 10−4. Energies of the first 23 non-zero wavenumbers are shown. (b) Contours of

axial vorticity at mid-depth at t = 1250 is shown. The wavenumber 4 structure is the most

dominant wavenumber at this time. Contour levels are as per figure 6.2.

asymptotic values at t→ ∞ in figure 6.4.

The features exhibited at Ro = 0.05 and E = 3 × 10−4, which is close to the

instability threshold, are also evident at other flow conditions just beyond the onset of

linear instability. An example case of this occurs at Ro = 0.08738 and E = 6.8× 10−4,

corresponding to Rei ≈ 29. According to the empirical equation of threshold instability

(§ 5.1.1.4), the critical Rossby number for this Ekman number is given by Roc = 0.0673

and is most unstable to a linear k = 4 structure.

This flow condition has also been computed with 24 Fourier modes. The energy

time history of the first 23 non-zero wavenumbers are shown in figure 6.6(a). The

lines are highlighted such that each colour denotes a group of wavenumbers that share

similar energy oscillations. The dominant wavenumber upon flow saturation is k = 4.

However, this wavenumber is not the most stable configuration throughout the initial

flow development. In the linear regime (0 . t . 450), a k = 5 structure is seen to exhibit

larger energy compared to k = 4 before becoming superseded. Despite the linear sta-

bility analysis predicting a k = 4 structure, the random amount of energy distributed

to each wavenumber upon the start up of the simulation does not guarantee that the

leading k = 4 eigenmode contains the highest energy. For this particular simulation,
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a growing eigenmode with k = 5 was seeded with more energy than the leading k = 4

mode, and therefore is seen to be dominant between 20 . t . 300. However, this does

not change the preference of the flow as is demonstrated in the growth and eventual

saturation of a k = 4 structure in the flow. This saturated flow solution is illustrated in

figure 6.6(b) through contours of axial vorticity on the horizontal mid-plane. A ring of

low vorticity is seen comprising a square configuration encompassing an interior region

of higher vorticity.

6.2 Flow conditions further beyond the instability onset

6.2.1 Increasing the Rossby number

A flow characterised by a higher Ro and an E similar to that of the reference case

is now examined. A higher Ro was selected to ensure that the flow is significantly

further beyond the instability onset than the reference case. It is anticipated, in part

due to the difference between experimental observations (Früh & Read 1999) and the

wavenumbers predicted in Chapter 5, that nonlinear effects will be predominant in this

region of the Ro-E parameter space, producing a deviation from the linear solution.

The nonlinear effects will primarily encourage the interaction and coalescence between

vortices, which will in turn result in a larger wavelength structure. A flow condition

of Ro = 0.17 and E = 2.5 × 10−4 is studied, and is marked by a solid black circle

in figure 6.1. The corresponding internal Reynolds number is given by Rei ≈ 120.92,

which is well beyond the critical value of Rei,c ≈ 22.4.

The linear stability analysis predicts a wavenumber 5 configuration to be the most

unstable structure at this flow condition. Note that although the predicted linearly

unstable integer wavenumber has not changed from the reference case, the peak wave-

number is very close to k = 5.5 (k = 6 dashed boundary). This suggests that the growth

rates of the dominant instabilities with k = 5 and k = 6 exhibit similar magnitudes.

This can be identified in the plot of the growth rate as a function of wavenumber which

is shown in figure 6.7. In addition, the axial vorticity contours of the flow superposed

with the leading instability at an arbitrarily large amplitude are illustrated.

The growth rate of k = 5 in this case has increased by an order of magnitude

compared to the reference case and the instability mode is still characterised by mode I.

Thus, the resulting deformed structure caused by the linear instability is the similar to

that shown in figure 6.2(b). That is, a polygonal ring of low axial vorticity at r = 1
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Figure 6.7: (a) The growth rates for a range of wavenumbers obtained through linear stabil-

ity analysis for a flow condition of Ro = 0.17 and E = 2.5× 10−4. The dashed line represents

neutral stability where points above and below symbolise unstable and stable wavenumbers,

respectively. (b) Representative axial vorticity contours of linear instabilities of finite ampli-

tude superimposed onto its respective base flow shown at z/H = 0.5. Nonlinear effects have

been neglected. Contour levels are as per figure 6.2.

encompasses a region of high vorticity. This is expected since the wavenumbers are

independent of each other in the linear stability analysis. Any differences between the

two figures would be attributed to the arbitrary scaling used on the perturbation field

before it is superimposed onto the axisymmetric base flow.

The three-dimensional flow has been computed using 40 Fourier modes in the az-

imuthal direction. It is anticipated that large increases in Ro or decreases in E (in-

creasing Rei) will increasingly deform the shear layer. Thus, a greater spatial resolution

is required to capture any time-dependent changes of the shear layer and therefore 40

Fourier modes is used here instead of the 24 implemented for the reference case. It

should be noted that this flow case has also been computed using 24 Fourier modes,

which described a very similar saturated solution to the case computed using 40 Fourier

modes. The energy time history of the non-zero wavenumbers is shown in figure 6.8.

Again, the flow is initialised with the axisymmetric base flow solution perturbed by

white noise. A wavenumber 5 structure arises during the initial stages of the flow.

However, the governance of the flow by the k = 5 structure is short-lived as the energy

in wavenumber 2 becomes larger in comparison at approximately t = 80. Beyond the
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Figure 6.8: Time series of the modal energies for a flow condition of Ro = 0.17 and E =

2.5× 10−4. Energies of the first 39 non-zero modes are shown. (a) Azimuthal wavenumbers

1, 2 and 5 are highlighted. (b) Even-wavenumber energies are highlighted.

peaking of energy in the wavenumber 2 structure, the energy in k = 2 and its harmonics

plateaus over time while the energies of the odd wavenumbers decrease. At t ≃ 200 the

energies of the odd wavenumbers begin to increase again and plateau with comparable

amplitudes to the even wavenumbers. Eventually, the flow saturates to a state which

is dominated by k = 2 distorted by a wavenumber 1 structure. It is also noted that

the energy oscillation of a wavenumber and its k + kpeakn associates no longer demon-

strates a very strong similarity as compared to the cases near the instability threshold

described in the previous section.

The flow development represented through axial vorticity contours at mid-depth is

illustrated in figure 6.9. The steady-state axisymmetric base flow solution is observed

in the first frame at t = 5. A non-axisymmetric structure begins to evolve around the

disk periphery at r = 1 as the dominant wavelengths increase in amplitude. At t = 35, 4

vortices are seen to form on one half of the initially axisymmetric shear layer. As time is

evolved, the vortices grow larger in size and the remaining semi-circle becomes distorted.

Eventually, 6 vortices are observed at t = 45 that are arranged irregularly, with the

two vortices at the bottom of the frame being clustered close together. This pair of

vortices coalesce at a future time and the structure adopts a pentagonal configuration.

This initial process is reflected in the energy time history plots shown in figure 6.8.
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Figure 6.9: Flow condition of Ro = 0.17 and E = 2.5 × 10−4. Time evolution of axial

vorticity of the three-dimensional flow. Time increases from left to right and continues in

the bottom row. The times are given by t = 5, 30, 35, 40, 45, 50, 145 and 1175, respectively.

The starting axisymmetric base flow is seeded with white noise. Contour levels are as per

figure 6.2.

That is, a pentagonal structure is expected during the exponential growth regime. It is

noted that the wavenumber 5 structure at t = 50 is an asymmetric pentagon, and that

a standard pentagon was not observable at other time steps. This is due to the time

dependence of the flow as the energies in many of the wavelengths are still varying at

comparable amplitude. The vorticity contained within the polygon is seen to remain

constant until the interior region is no longer completely contained by the low axial

vorticity ring.

According to figure 6.8, a dipolar structure (k = 2) is predicted once nonlinear

effects become significant. This is observed at t = 145 where two vortices exhibit-

ing low vorticity surround a higher-vorticity oval-shaped interior. The energy of the

wavenumber 1 structure continually increases and eventually becomes comparable to

the dominant wavenumber 2 pattern. This results in an asymmetric dipolar structure

as seen at t = 1175. This structure is characterised by a strong vortex which has a

trailing tail of vorticity that is connected to a weaker opposing vortex. This solution is

representative of the stable saturated flow state.

Alternating weak and strong bands of axial vorticity are observable in the panels

at t = 145 and t = 1175. A similar feature is observable in the interior region where

alternating bands of high and mean values of vorticity are exhibited. Examination of
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the discretised domain underlying the axial vorticity contours demonstrated that these

waves are significantly larger than the radial and azimuthal grid spacings. Thus, it is

proposed that the alternating band structures are a physical feature of the flow. It

may be possible that this feature is related to inertial waves, which was described in

§ 4.2.3. The validity of the spatial resolution is further reinforced by the smoothness

of the contours of axial velocity and azimuthal vorticity shown in figure 6.10. This is

particularly the case for azimuthal vorticity contours since it is comprised of very small

values (O(10−7)) as compared to axial vorticity (O(100)). Therefore, demonstrating

similar structures to those in figure 6.9 (last panel) ensures that the structures are

accurately captured. In addition, a simulation at a lower azimuthal resolution (24

Fourier modes) yielded a similar energy time history plot and the same contours of

axial vorticity. It is expected that such spiral structures would be very difficult to

capture experimentally using laboratory techniques such as laser Doppler velocimetry

and particle image velocimetry since the azimuthal vorticity values are so much smaller

than the values of axial vorticity in the flow. Additionally, the dipolar prediction by

the direct numerical simulation is in agreement with the results of Früh & Read (1999).

Their regime diagram suggests that they observed wavenumbers 2 to 4 for Ro = 0.17

and E = 2.5 × 10−4.

Despite the complex patterns observed in the r-θ plane, the saturated flow still

reveals depth-independent features. Figure 6.11(a) shows contours of the axial velocity

and axial vorticity on the vertical mid-plane of the tank. These solutions are illustrated

at an arbitrary azimuthal angle and are non-axisymmetric. Reflective symmetry about

mid-depth is observed in the contours of axial velocity. The primary Ekman pumping

is observed at the disk-tank interface in addition to recirculation zones on either side.

Fluid is observed migrating from the bottom boundary and up along the tank side wall

while no recirculation is present near the axis of rotation. The strong axial pumping

at the disk-tank interface on the right induces a strong vertical band of axial vorticity.

Furthermore, the interface between the regions of high and low values of axial vorticity

demonstrates a strong degree of depth independence. An iso-surface of axial vorticity

is illustrated in figure 6.11(b).

Increasing the Rossby number sufficiently beyond the instability onset has displayed

azimuthal structures that are lower than those predicted by the linear stability analy-

sis. This is due to the nonlinear effects that invoke competition between multiple
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(a) (b)

Figure 6.10: Contours of (a) axial velocity and (b) azimuthal vorticity for a flow condition

of Ro = 0.17 and E = 2.5 × 10−4. The mid-depth is illustrated at t = 1175. Contour levels

are as per figure 6.2 for the axial velocity. Azimuthal vorticity contours are plotted between

ωθ = ±|ωθ, max|.

wavenumbers of comparable energies. This nonlinear mode interaction was observed

in figure 6.8(a) whereby the flow transitioned from a k = 5 to a k = 2 structure.

At saturation, the secondary mode was observed to be a result of the k = 2 (and its

harmonics) and k = 5 interaction (i.e. k = 5− (2×2) = 1). The resultant wavenumber

observed is in agreement with the wavenumbers reported by the experiments of Früh

& Read (1999). The next section also investigates a flow condition that is sufficiently

beyond the onset of instability, although this is achieved instead by decreasing the

Ekman number of the reference flow case, rather than increasing the Rossby number.

6.2.2 Decreasing the Ekman number

The effect of decreasing the Ekman number to increase Rei is examined with flow con-

ditions of Ro = 0.05 and E = 8×10−5. This flow condition is also marked in figure 6.1.

The decrease in E causes the investigated point to be at an internal Reynolds number

of Rei = 83.59, significantly beyond the instability threshold at Rei,c ≈ 22.4. There-

fore, it is expected that as with the previous section, the unstable wavenumber from

the three-dimensional simulations will be different to the predicted wavenumber from

the linear stability analysis due to nonlinear effects. More specifically, the nonlinear

state will adopt a lower azimuthal wavenumber than its linear prediction.
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Figure 6.11: Flow condition of Ro = 0.17 and E = 2.5 × 10−4 at t = 1629. Contours of

(a)(i) axial velocity and (ii) axial vorticity is displayed on the entire r-z plane. Contour

levels are as per figure 6.2. (b) An isometric view of an axial vorticity iso-surface of ωz = 1.88

is shown.

As indicated in the regime diagram, the linear preferred wavenumber increases with

decreasing Ekman number at small Rossby numbers. The predicted wavenumber here

has changed from a wavenumber 5 (reference case) to a wavenumber 8. A plot of the

growth rate as a function of wavenumber and the axial vorticity contours of the most

unstable wavenumber at mid-depth are shown in figure 6.12. The contours depict a

central octagon exhibiting high values of vorticity with a thin ring of lower vorticity

surrounding it.

For this simulation, 128 azimuthal Fourier modes have been implemented to resolve

the flow. The energy history of each non-zero wavenumber is shown in figure 6.13(a).
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Figure 6.12: (a) The growth rates for a range of wavenumbers obtained through linear

stability analysis for a flow condition of Ro = 0.05 and E = 8 × 10−5. The dashed line

represents neutral stability where points above and below symbolise unstable and stable

wavenumbers, respectively. (b) Representative axial vorticity contours of the k = 8 linear

instability of finite amplitude superimposed onto its respective base flow shown at z/H = 0.5.

Nonlinear effects have been neglected. Contour levels are as per figure 6.2.

(a) (b)

t

E
ne

rg
y

0 100 200 300 400
10-32

10-27

10-22

10-17

10-12

10-7

10-2

k = 2, 5, 8...
k = 3, 6, 9...

6

8

3

t

k*

0 100 200 300 400
1

2

3

4

5

6

7

8

9

10

11

12

Figure 6.13: Flow conditions of Ro = 0.05 and E = 8×10−5. Time series of (a) the energies

contained in the first 127 azimuthal wavenumbers and (b) the averaged wavenumber weighted

by energy. The dominant wavenumber transitions from k = 8 → 6 → 3 over time represented

by bold lines. The dashed lines enclosing 2.5 6 k∗ < 3.5 and 7.5 6 k∗ < 8.5 represent integer

wavenumbers 3 and 8, respectively.
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The three-dimensional solution has been initialised with the axisymmetric base flow

solution perturbed with white noise. It can be seen that the energies contained in the

wavenumber 6 and 8 structures are initially the highest throughout the linear growth

regime. In fact, the energy in k = 6 is the largest until it becomes surpassed by k = 8

at t ≈ 80. However, the energy in k = 8 is superseded soon after at t ≈ 100. Again,

it is not surprising that the wavenumber 6 structure is observed in the linear regime

rather than the linearly predicted k = 8. This is because there is little difference in the

linear growth rates between k = 8 and its neighbouring wavenumbers. The difference

between the growth rate of k = 6 and k = 8 is less than 5%. For this particular

simulation, the white noise has become more favourable to the k = 6 wavelength. The

competition between k = 6 and k = 8 structures weaken beyond t ≈ 100 as nonlinear

effects become significant. At this time, the energy in k = 8 begins to decrease as the

energy in k = 6 continues to increase. At approximately t = 160, the energy in k = 3

dominates and saturates as the stable wavenumber. The difference in energy between

the two most energetic wavenumbers, k = 3 and k = 6, is of an order of magnitude.

Thus, an undisrupted triangular structure is predicted in the three-dimensional flow.

An alternative interpretation of the energy time history is achieved by considering

the average wavenumber weighted by energy over time. Figure 6.13(b) illustrates the

average wavenumber weighted by energy over time, which is calculated as

k∗ =

∑N
k=1Ekk
∑N

k=1Ek

, (6.1)

where k is an integer azimuthal wavenumber, N is the number of Fourier modes used

in the simulation and Ek is the energy contained in the kth wavenumber. The energy

associated with the base flow (k = 0) is omitted in calculating k∗. The purpose of this

quantity is to identify the dominant wavenumber that would be observed in the flow

at a specific time, provided the amplitudes are not so small as to be swamped by the

base flow. This parameter also helps to illustrate the wavenumber vacillation process

when there are multiple wavenumbers competing with very large energies. The plot

demonstrates a brief saturation of a wavenumber 8 structure (7.5 6 k∗ < 8.5) between

35 . t . 100. As the nonlinear effects become significant, the apparent wavenumber

decreases towards k∗ = 3 (2.5 6 k∗ < 3.5) and is sustained for t & 220. Thus, a

triangular configuration is predicted in the three-dimensional direct numerical simul-

ation for this flow condition. These vacillation trends are consistent with the energies

demonstrated in figure 6.13(a).
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Figure 6.14: Flow condition of Ro = 0.05 and E = 8 × 10−5 at t = 469. (a) Contours

of axial vorticity at 2 different heights of (i) z/H = 0.1 and (ii) z/H = 0.5. The flow is

reflectively symmetric about the z/H = 0.5. Contour levels are as per figure 6.2. (b) An

isometric view of an axial vorticity iso-surface of ωz = 1.96 is shown.

The three-dimensional wavenumber 3 structure achieved at saturation is represented

in the contours of axial vorticity at two different depths, as shown figure 6.14(a). The

structure at z/H = 0.5 is observed over a wide range of depths as its axial vorticity

is largely depth-independent. The structure is comprised of three concentrated regions

of low vorticity migrating around the r = 1 circumference. As described earlier, the

contours near the horizontal boundary (z/H = 0.1) illustrate a circular ring of low

vorticity attributed by the discontinuity at the disk-tank interface. Also, the spirals of

low and high vorticity are evident in the interior and satellite vortices. It is speculated

223



that these spirals may be a physical feature of the flow related to inertial waves, which

was also observed in the previous flow condition of Ro = 0.17 and E = 2.5× 10−4 (see

figure 6.9). An iso-surface of axial vorticity at t = 469 is illustrated in figure 6.14(c).

The iso-surface illustrates three vortices arranged in a triangle extending the entire

depth of the tank.

The resultant wavenumber 3 structure from direct numerical simulation is not in

agreement with the experimental results of Früh & Read (1999). The flow condition

of Ro = 0.05 and E = 8 × 10−5 displayed wavenumbers 6 to 8 in the experimental

environment. A possible explanation for this discrepancy may be due to the consistent

change in Ro or E over time implemented in the experiments. That is, one parameter

was kept constant while the other was slowly scanned. It was reported that a typical

scan lasted approximately 7 to 12 hours. However, as will be observed later in § 6.4.2,

slightly changing the forcing conditions of an established flow requires very long time

periods for the flow to equilibrate to a new saturated state. This is particularly true for

flow conditions just beyond the onset of instability. Additionally, a viscous time unit

(R2
t /ν) in their experiments corresponds to 25 hours. This suggests that the scans in

the experiments were not performed at a low enough rate to allow the slow interactions

to occur and the flow to saturate, as the time taken to scan through an entire parameter

is less than that typically required for a constant flow condition to reach equilibrium

(one or more viscous time units (e.g. Lopez & Marques 2011). This could be an

additional reason for why their instability threshold is further to the right (i.e. a

larger Rei is needed for instability). The linear stability analysis growth rates that are

very small just beyond the instability threshold and therefore suggests that large time

periods are required for the instability to grow to a noticeable amplitude. Adopting the

dimensionless timescale used here to the physical scales of the set-up used by Früh &

Read (1999) (Ω = 4× 10−4 rad/s and ν = 1× 10−6 m2/s) would suggest that it would

take approximately 174 hours (t = 250) to exhibit a wavenumber 3 structure. This

is approximately 7 viscous time units. The entire time integration of the simulation

corresponds approximately to 347 hours (t = 500). In addition, it is worth noting that

this simulation has been initialised from its steady-state axisymmetric base flow and

assisted by the introduction of white noise. Thus, this simulation suggests that the rate

of consistent change in forcing was not low enough in the experiments, though it should

be stated that there would be sources of experimental error which would accelerate to
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a degree, the growth of any instabilities present.

Decreasing the Ekman number far beyond the instability onset has exhibited similar

flow behaviour to that resulting from increasing the Rossby number well beyond the

onset. That is, the structures of the stable flow state displays azimuthal structures that

are different (lower wavenumber) than those predicted by the linear stability analysis.

The comparable energy in each azimuthal wavenumber structure exacerbates nonlin-

ear effects, which causes unstable structures of varying wavelengths to compete and

interact.

6.3 Varying the Rossby number

In this section, the effect of varying the Rossby number in relation to nonlinearity

is investigated in both the small and large-Ekman number regimes. A progression of

Rossby numbers lower and higher than the reference case (Ro = 0.05 and E = 3×10−4)

is explored. Although this section studies the effect of varying the Rossby number, the

available data has minor variations in the Ekman number, which are considered to be

negligible. The results of the small and large-E regimes are highlighted separately in

the following sections.

6.3.1 Large-Ekman-number regime

The previous section examined flows which were well beyond the onset of linear in-

stability. However, those flow conditions described axisymmetric base flows that are

reflectively symmetric about the mid-depth. This section investigates increases to the

Rossby number through to flows that have broken this reflective symmetry. The tran-

sition from reflectively symmetric to symmetry-broken axisymmetric base flows have

been observed to be broken at large Ro and small E (equivalent to large Rei), and is

represented by a thick dashed line in figure 6.1. The determination of this line has been

described in § 5.1.1.4. An initial case of Ro = 0.147 and E = 1.06 × 10−3 is investi-

gated with supplementary cases of increasing Ro at a similar Ekman number. These

additional cases are characterised by (Ro,E ) = (0.278, 1 × 10−3), (0.395, 9.47 × 10−4),

(0.5, 1 × 10−3) and (0.77, 1 × 10−3), and have been marked by solid white squares in

figure 6.1. For these flow conditions, the linear stability analysis predicts a preferential

azimuthal wavenumber of either k = 3 or k = 4 and their respectively axisymmetric

base flows are reflectively symmetric characterised by ReE < 31.6. The regime that
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encompasses both reflectively symmetric and symmetry-broken flow was determined to

be 26.7 < ReE < 56.4 (see § 4.3.4).

The energy of the first 31 non-zero azimuthal wavenumbers over time for Ro = 0.147

and E = 1.06× 10−3 is illustrated in figure 6.15(a). For this particular flow condition,

the linear stability analysis predicts a wavenumber 4 structure as most unstable. It

is clear from the energy plot that the flow stabilises with a wavenumber 3 structure

in both the linear and nonlinear regimes. The linearly predicted k = 4 structure

is not observed in the linear regime due to the white noise favouring k = 3 during

initialisation. For this flow, there is a 7% growth rate difference between k = 3 and

k = 4 while a the growth rate between k = 4 and k = 5 demonstrates a 25% difference.

Thus, given the low amplitude white noise used in these simulations, it is unlikely that

a wavenumber 5 would be favoured throughout the linear regime. Despite this, the

wavenumber 4 structure still exhibits a larger growth rate compared to k = 3 in the

linear regime, which is in agreement with the linear stability analysis. The amplitude

of the structures become large and nonlinear effects become apparent before the energy

in k = 4 has an opportunity to surpass k = 3.

Figure 6.15(b, c, d) are the supplementary flow conditions to panel (a) whereby

each successive case is characterised by an increase in Rossby number. The axisym-

metric base flow at these conditions are reflectively symmetric about the mid-depth.

The flow condition in panel (b) is predicted to be unstable to k = 4 by linear stability

analysis while flow conditions in panels (c, d) are predicted to be unstable to k = 3.

As nonlinear effects begin to manifest, a wavenumber 3 structure and its harmonics are

seen to plateau over time, while all of the other wavenumbers decay at exponential rates.

This is true for all four flow conditions. Also, the energies in the wavenumber groups of

k + kpeakn demonstrate similar oscillations over time even though the majority of the

flows are beyond the onset of instability. Thus, it is in contrast with figure 6.8, which

displayed a major difference in energy oscillations at t ≈ 550. However, there is a point

of difference in that the primary wavenumbers are not comparable or in competition at

any time, which may be a possible explanation for this discrepancy.

The contours of axial vorticity at mid-depth for Ro = 0.147 and E = 1.06 × 10−3

at t = 450 are shown in figure 6.16(a). An interior triangular configuration is ob-

served with three satellite vortices exhibiting low vorticity. The appearance of the flow

does not change at other depths except near the horizontal boundaries where the neg-

226



(a) Ro = 0.147,E = 1.06× 10−3 (b) Ro = 0.278,E = 1× 10−3
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(c) Ro = 0.395,E = 9.47× 10−4 (d) Ro = 0.5,E = 1× 10−3
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Figure 6.15: The energy time histories for flow conditions of (Ro,E ) = (a) (0.147, 1.06×
10−3), (b) (0.278, 1 × 10−3), (c) (0.395, 9.47 × 10−4) and (d) (0.5, 1 × 10−3). Flows (a, b,

c) have been simulated using 32 Fourier modes and flow (d) has been computed using 40

Fourier modes. Linear stability analysis predicts a an azimuthal wavenumber 4 for flows (a)

and (b), and a wavenumber 3 for flows (c) and (d). All of these flows have been initialized

with the axisymmetric base flow and seeded random noise.
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(a) (b)

Figure 6.16: Saturated flow conditions of Ro = 0.147 and E = 1.06 × 10−3 at t = 450.

(a) Contours of axial vorticity contours viewed at z/H = 0.5. Contour levels are as per

figure 6.2. (b) An isometric view of an axial vorticity iso-surface characterised by ωz = 1.86

is shown.

ative vorticity produced at the disk-tank interface feeds energy into the axisymmetric

structure. That is, a circular ring of very low vorticity is observed in addition to the

three outer vortices. An iso-surface for the same flow is illustrated in figure 6.16(b),

which elucidates a highly depth-independent structure throughout the interior with

three vortices encircling the centre at r = 1. These figures are typical of all the other

wavenumber 3 stable flows in figure 6.15. This is surprising since flows with Ro > 0.278

and E = 1× 10−3 are well beyond instability onset, and therefore nonlinear effects are

expected to become significant such that multiple wavenumbers are in competition.

Now Rossby numbers that are further increased into the symmetry-broken regime

where the base flow exhibits symmetry-broken behaviour will be considered. The tran-

sition from reflectively symmetric to symmetry-broken axisymmetric base flows have

been described earlier in 4.2.1. The symmetry-breaking property of the flow is typi-

cally identified by the two diagonal strands of axial vorticity generated at the disk-tank

interface, and occurs for the flow condition of Ro = 0.77 and E = 1× 10−3. This flow

condition corresponds to ReE = 48.7 and Rei = 193.64, and has been marked in fig-

ure 6.1 with a solid white square. At this condition the linear stability analysis predicts

an azimuthal wavenumber of k = 3 as the most unstable mode I instability and k = 28

as the most unstable mode II instability. The regime diagram does not encompass this
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Figure 6.17: Flow conditions of Ro = 0.77 and E = 1×10−3. Time series of (a) the energies

contained in the first 39 non-zero azimuthal wavenumbers and (b) the axial vorticity contours

extracted at t = 300 for z/H = 0.5. (c) Contours of axial vorticity in the full meridional r-z

plane. Contour levels are as per figure 6.2.

region because limited data has been obtained in this parameter space.

The energy in each azimuthal wavenumber has been computed and is shown in fig-

ure 6.17(a). Although it is not clear from the figure, the energies in k = 25, 26 and

28 (wavenumbers consistent with the mode II instability) are comparable and are the

most dominant during the linear regime of the flow. However, these larger-wavenumber

modes quickly weaken as nonlinear effects are realised. This suggests that the mode II

instability has a negligible effect on the saturated flow state. Thus, the saturated stable

wavenumber is lower than the predicted linear wavenumber. In the nonlinear regime,

the wavenumber 2 structure becomes the primary mode and the wavenumber dominance

cascades through k = 2, 4, 6 . . . , while the energies of the odd wavenumbers quickly de-

cay over time. In addition, the energy time history of each non-zero wavenumber except

for the dominant wavenumber illustrates minor oscillations for even wavenumbers and

large oscillations for odd wavenumbers. Since the energy in k = 2 is several orders

of magnitude above k = 4, a dipolar structure is expected to appear with no distor-

tions induced by other wavenumbers. The mid-depth axial vorticity contours of the
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flow at t = 300 is reproduced in figure 6.17(b). Two vortices are observed revolving

around a central oval-shaped interior vortex. This structure resembles an undisturbed

wavenumber 2 structure which is different to that of a competing wavenumber 2 con-

figuration previously shown in figure 6.9. The vortices are large and fill the majority

of the container, which is in contrast to the thinner characteristic ring of vortices ob-

served previously. Despite the depth dependence of the axisymmetric base flow, the

axial vorticity contours illustrated by the direct numerical simulation are typical at

other heights except in the vicinity of the horizontal boundaries. The contours of axial

vorticity in an entire r-z plane is illustrated in figure 6.17(c). The diagonal vorticity

strands are still evident at the disk-tank interface except that both strands now favour

the same inward direction. In addition, the strands do not elongate far into the interior

of the flow but is rather truncated and limited to the horizontal boundaries. Hence

it appears that the developments of non-axisymmetric structures reverts the flow to a

reflectively symmetric state about the horizontal mid-plane.

A flow condition described by an even greater Ro, which describes a time-dependent

axisymmetric base flow, has been simulated via a three-dimensional direct numerical

simulation. The flow is characterised by Ro = 0.924 and E = 1×10−3 with the structure

of its axisymmetric base flow described in § 4.2.3. The linear stability analysis described

in § 3.4 was performed over the exact period of the time-periodic flow state (known

as Floquet analysis), which demonstrates a preference to a linear k = 3 arrangement

for the mode I instability. Mode II and mode III instabilities exist with growth rates

larger than those associated with mode I. However, as portrayed earlier in the previous

flow condition, only wavelengths associated with the mode I instability are significant

in the nonlinear regime. As such, the flow was initialised only with 24 Fourier modes.

The energy time history of this flow is reproduced in figure 6.18(a). An additional 24

Fourier modes was added at t = 500 to confirm the negligible contribution of smaller

mode II instability wavelengths in the nonlinear regime: the energies of the higher

wavenumbers were seen to decay over time. Due to figure clarity reasons, the energies

in these wavenumbers have not been shown though the flow has been simulated up to

t = 1060. A wavenumber 19 associated with the mode II instability is seen dominating

the linear regime while nonlinear effects are seen to encourage the stabilisation of a

wavenumber 2 configuration. The energy time history for each azimuthal wavenumber

demonstrates irregular increases and decreases in energy. This fluctuation in energy
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(ii) t = 1050

(iii) t = 1060

Figure 6.18: Flow conditions of Ro = 0.924 and E = 1 × 10−3. Time series of (a) the

energies contained in the first 39 non-zero azimuthal wavenumbers and (b) the axial vorticity

contours extracted at t = 1143 for z/H = 0.5. (c) Contours of axial vorticity in the full

meridional r-z plane at (i) t = 1040, (ii) t = 1050 and (iii) t = 1060. Contour levels are as

per figure 6.2.

was also observed for Ro = 0.77, although it is more prominent at this higher Rossby

number case.

The axial vorticity contours extracted at mid-depth at t = 1060 is illustrated in

figure 6.18(b). From a top-down view, the axial vorticity contours portray a circular

interior of high vorticity surrounded by low vorticity. The structure comprising the

low vorticity illustrates two overlapping ellipses which is bounded by higher vorticity

with values ranging in between that exhibited by the circular and the ellipse struc-

tures. Multiple patches of varying vorticity exists predominantly in the off-axis ellipses
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which suggests that the flow structure is not coherent in time and is not reflectively

symmetric about the mid-plane. The full meridional r-z plane shown at various times

in figure 6.18(c) reveals the symmetry-broken vertical structure of the flow. The low

vorticity strands originating from the disk-tank interface have elongated further into

the interior flow as compared to the Ro = 0.77 case. The axial vorticity contours of the

interior circular structure illustrate a region of greater depth independence.

6.3.2 Small-Ekman-number regime

The previous section investigated the effect of varying the Rossby number with pro-

gression into depth-dependent and time-periodic flows at large Ekman numbers. This

section highlights the effect of decreasing the Rossby number towards the instabil-

ity threshold in the small-Ekman-number regime. The previously investigated case of

Ro = 0.05 and E = 8× 10−5 in § 6.2.2 serves as a reference case here. Four additional

flows of Ro = 0.04125, 0.0325, 0.02375 and 0.015 at E = 8 × 10−5 are examined. The

predicted unstable azimuthal wavenumbers are k = 8, 8, 7 and 7, respectively. These

flow conditions have been marked in figure 6.1 as solid white and blue circles.

The energy time histories for the four investigated cases are shown in figure 6.19 with

the reference case (Ro = 0.05 and E = 8 × 10−5) illustrated earlier in figure 6.13. For

Ro = 0.04125, the linear regime of the flow development is dictated by a wavenumber 8

structure, which is in agreement with the predicted unstable linear wavenumber. The

energy in k = 7 briefly becomes dominant with the onset of nonlinear effects. The

flow eventually saturates to a stable wavenumber 3 at t ≈ 1400. This is the same

wavenumber preferred at the higher Ro = 0.05 case. Decreasing Ro demonstrates

an increase in saturated wavenumber which is in agreement with experimental trends

(Früh & Read 1999; Aguiar et al. 2010) such that the observed structures are described

by k = 4, 5 and 6 at Ro = 0.0325, 0.02375 and 0.015, respectively. For the smallest

Ro case (equivalently smallest Rei case) of Ro = 0.015 (figure 6.19(d)), the direct

numerical simulation yields a stable wavenumber throughout the linear and nonlinear

regime that is in agreement with the linear stability analysis results. This reinforces

the trends established in the vicinity of instability onset (§ 6.1). It is clear that as the

Rossby number is decreased towards the onset of instability, the nonlinear effects are

less evident whereby the energies in each azimuthal wavenumber are not as comparable

and the number of sides of the observed stable polygon is increased.
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(a) Ro = 0.04125, E = 8× 10−5 (b) Ro = 0.0325, E = 8× 10−5
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(c) Ro = 0.02375, E = 8× 10−5 (d) Ro = 0.015, E = 8× 10−5
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Figure 6.19: The energy time histories for flow conditions of (a) Ro = 0.04125, (b) Ro =

0.0325, (c) Ro = 0.02375 and (d) Ro = 0.015 at E = 8 × 10−5. The first 40, 40, 32 and 32

non-zero wavenumbers are shown for each flow, respectively.

The contours of axial vorticity of the flows described in figure 6.19 are illustrated

in figure 6.20. For Ro = 0.04125, a triangular configuration is observed with spiral-like

disturbances of alternating low and high vorticity in the interior and satellite vortices.

At this flow condition, the internal Reynolds number is characterised by Rei = 69.

Decreases to the Rossby number demonstrate a weakening to the strength and presence

of the spirals and a thinning of the low vorticity ring bordering the interior polygon.

Figure 6.21 presents a regime diagram of the most unstable linear and nonlinear

wavenumbers, and illustrates the trends established in the previous sections. Near the
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(a) Ro = 0.04125, E = 8× 10−5 (b) Ro = 0.0325, E = 8× 10−5

(c) Ro = 0.02375, E = 8× 10−5 (d) Ro = 0.015, E = 8× 10−5

Figure 6.20: The mid-depth contours of axial vorticity for (a) Ro = 0.04125, (b) Ro =

0.0325, (c) Ro = 0.02375 and (d) Ro = 0.015 and E = 8× 10−5. The contours are shown at

t = 2800, 3450, 5900 and 5995, respectively. Contour levels are as per figure 6.2.

threshold of instability, the flow is dominated by linear instabilities and portrays a

polygonal configuration characterised by the wavenumber predicted by the linear sta-

bility analysis. As the flow conditions deviate away from the instability threshold,

nonlinear effects cause the satellite vortices to interact and coalesce and hence, demon-

strate a lower stable wavenumber than that linear predicted wavenumber. The lowest

wavenumber observed in the nonlinear dominant regime was a wavenumber 2 structure

coupled with a wavenumber 1 disturbance, labelled as ‘1/2’ on the regime diagram.
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Figure 6.21: A regime diagram of the preferred linear wavenumber in the positive Ro-

E parameter space. The solid grey numerical labels on the diagram represent the unstable

linear wavenumber associated with the mode I instability while the solid black labels represent

the nonlinear preferred wavenumber. The long dashed line represents the transition from

reflectively symmetric to symmetry-broken flow defined as ReE = 26.7.

6.4 Flow sensitivity

The sensitivity of the three-dimensional flow is investigated in this section under two

different studies. The first considers initialising the simulation with various initial

conditions at constant Ro and E to examine the variation of the stable azimuthal

wavenumbers observed upon saturation. The second considers changing the Rossby

number of a saturated three-dimensional flow to investigate hysteresis effects which

have been observed experimentally (e.g. Früh & Read 1999).

235



6.4.1 Perturbing the axisymmetric solution

The saturated three-dimensional flows observed in the previous sections were initialised

from the evolved axisymmetric steady-state solution perturbed with white noise. Since

many of the prior energy time histories demonstrated a single stable azimuthal wave-

number of very large energy compared to the other wavenumbers, it is expected that

different initial conditions of the same flow condition will achieve the same stable so-

lution. In this section, the simulations are initially seeded with various unstable linear

mode solutions, with and without white noise.

A flow characterised by Ro = 0.5 and E = 3× 10−3 is considered for investigation.

This flow condition is marked by a solid black square in figure 6.1. According to the

linear stability analysis, the most unstable wavenumber is predicted to be k = 3. The

structure of this linear instability and its related growth rates are shown in figure 6.22(b,

c). A three-dimensional direct numerical simulation has been initialised with its steady-

state axisymmetric base flow and white noise, as per previous direct numerical simul-

ation cases. The energies contained in each azimuthal wavenumber over time for the

first 23 non-zero wavenumbers are shown in figure 6.22(c). The three-dimensional

solution agrees with the linear prediction as the energy in the wavenumber 3 structure

is dominant during the initial stages of the flow development. The structures of the

linear and nonlinear wavenumber 3 are very much similar in appearance. As nonlinear

effects become apparent, the even wavenumbers slowly increase in energy over time and

eventually surpass the wavenumber 3 structure to become the dominant wavenumber.

Thereafter, the wavenumber 2 state is stable. Meanwhile, the energies in the odd-

wavenumber structures decay exponentially.

To examine the effect of a different initial condition, the steady-state axisymmetric

base flow is seeded with the leading wavenumber 3 instability mode with no additional

white noise. Thus, the energies of the wavenumber 3 structure and its harmonics are

expected to be the highest during the initial developments of the flow. This is observed

in the left panel of figure 6.23(a). The other azimuthal wavenumbers exhibit very

low energies likely as a disturbance at the limit of machine precision, which grows

exponentially over time. The slow growth is attributed to the small linear growth

rate that is predicted via the linear stability analysis. Although the simulation has

not reached a saturated state over the computed time domain, it is expected that

energies in wavenumbers 2 and its harmonics will eventually grow to levels consistent
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Figure 6.22: (a) The growth rates for a range of wavenumbers obtained through linear

stability analysis for a flow condition of Ro = 0.5 and E = 3 × 10−3. The dashed line

represents neutral stability where points above and below symbolise unstable and stable

wavenumbers, respectively. (b) Representative axial vorticity contours of linear instabilities

of finite amplitude superimposed onto its respective base flow shown at z/H = 0.5. Nonlinear

effects have been neglected. Contour levels are as per figure 6.2. (c) Energies of the first 23

non-zero wavenumbers over time.

237



with the dominant wavenumber 3 mode. At this point, it would be expected that

nonlinear interactions similar to those seen in figure 6.22(c) would ultimately result

in wavenumber 2 becoming the dominant stable state. To confirm this, the same case

was investigated with the addition of white noise at initialisation. The purpose of the

white noise is to provide all of the wavenumbers with finite energy at a level higher than

machine error and significantly below nonlinear amplitudes. This accelerates the growth

of any unstable wavelengths and greatly reduces the required evolution time to reach a

saturated state. This particular case is illustrated in the right panel of figure 6.23(a).

As expected, a stable wavenumber 2 structure is achieved at saturation whereby the

energies of wavenumber 2 and its harmonics become dominant. The energy of k = 3

and its harmonics have been made bold in the plots to illustrate the dominance of the

seeded eigenmode in the starting phases of the flow development. It is clear that the

energies of wavenumbers in their respective groups (k = 1, 4, 7 . . . , k = 2, 5, 8 . . . and

k = 3, 6, 9 . . . ) follow a similar growth trend. However, this trend is broken once the

dominant wavenumber is changed. Since the primary wavenumber is shifted to k = 2

at t & 840, the initial three groupings of wavenumbers become two groups formed by

odd and even wavenumbers. The bolding of odd and even wavenumber energy lines

would therefore demonstrate a decay and plateau of energy, respectively, after t ≈ 840.

The decay of energies in odd-wavenumber structures is also demonstrated for the

case where a linearly unstable wavenumber 2 is seeded at the start of the simulation.

Since it is expected that the flow saturates towards a wavenumber 2 mode, the energies

of the even wavenumbers should remain dominant while the energies of the odd wave-

numbers should remain very low or decay depending on whether or not white noise is

seeded. The energy time histories of these are demonstrated in figure 6.23(b). In the

left panel where white noise is not introduced, the energies of odd-wavenumber struc-

tures initially express values near the limit of machine precision and are not inclined to

grow. Even with the injection of energy into the odd-wavenumber configurations from

white noise, the energy time history still demonstrates a decay to machine error over

time.

To ensure that the flow is strongly insensitive to initial conditions, several other

linear unstable wavenumber solutions (e.g. k = 4, 5, 6) have been added to the axi-

symmetric base flow. After a sufficient time, the wavenumber 2 and its harmonics are

the only wavenumbers which contain finite energy. A typical structure of the satu-
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Figure 6.23: Energies of various non-zero wavenumbers over time for Ro = 0.5 and E =

3 × 10−3 initialised with (a) a wavenumber 3 eigenmode solution and (b) a wavenumber 2

eigenmode solution. The left and right columns are flows seeded with the most unstable

linear eigenmode only and the eigenmode with white noise, respectively.

rated flow is depicted in figure 6.24. This structure resembles the linear solution of a

wavenumber 2 structure. Other flow conditions have been tested for their sensitivity

to initial conditions and have all shown the same insensitivity characteristics, although

not shown here. This type of insensitivity has also been observed by Bergmann et al.

(2011) who studied a different type of rotating flow. In that study, the sensitivity of the

flow was examined through various initial conditions involving a flow starting from rest,
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Figure 6.24: Contours of axial vorticity at z/H = 0.5 for flow conditions of Ro = 0.5 and

E = 3× 10−3. This flow state is representative of the saturated flow regardless of the initial

conditions. Contour levels are as per figure 6.2.

initialisation by manually disrupting a developed triangular structure and commencing

with a high rotation rate such that the flow was axisymmetric. The resultant flow for

all three cases exhibited a “dry” triangle which suggests that the flow was insensitive

to initial conditions.

6.4.2 Hysteresis effects

The effect of hysteresis was investigated by changing the forcing conditions of a sat-

urated flow. Two saturated flow conditions of Ro = 0.0325 and Ro = 0.02375 at

E = 8 × 10−5 have been interchanged between each other. The Rossby number is

changed instantly from Ro = 0.0325 → Ro = 0.02375 and vice versa at an arbitrary

time that describes a stable saturated flow. These flow conditions are represented by

solid blue circles in figure 6.1. The energy time histories of these saturated flow solu-

tions have been depicted in figure 6.19(b) and 6.19(c). Stable wavenumbers 4 and 5

are exhibited in the saturated state for Ro = 0.0325 and Ro = 0.02375, respectively.

The solution of Ro = 0.0325 and E = 8×10−5 at t = 2350 is used as the initial con-

dition. Although this time does not coincide with the cessation of the simulation shown

in figure 6.19(b) (t = 3450), the axial vorticity structure between these two times are

very similar. At t = 2350, the flow is dominated by a wavenumber 4 structure with the

energy in its harmonics saturating over time while all other wavelengths are decaying.
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Figure 6.25: The Rossby number is changed from (a) Ro = 0.0325 → Ro = 0.02375 and

(b) Ro = 0.02375 → Ro = 0.0325 with E = 8 × 10−5. (i) Energies of various non-zero

wavenumbers over time with the change in Ro occurring instantaneous at t = 2350 and

t = 3500, respectively, which has been marked by a vertical dashed line. (ii) The axial

vorticity contours extracted at z/H = 0.5 at t = 3750 and t = 9150, respectively.
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As the Rossby number is decreased to Ro = 0.02375, the energies in each azimuthal

wavenumber drop gradually over a short time period. This time is marked by a vertical

dashed line as shown in figure 6.25(a). The energies in each wavenumber demonstrates

the same trends established before t = 2350. That is, a stable square configuration is

observed and the harmonics of k = 5 approach a plateau. The wavenumber 5 struc-

ture, which was determined to be most unstable mode for Ro = 0.02375 (see § 6.3.2),

continues to decay. Thus, hysteresis is evident for the flow condition of Ro = 0.02375

and E = 8 × 10−5. The contours of axial vorticity at z/H = 0.5 are illustrated in

figure 6.25(a)(ii). The vortices precess at a constant frequency of f ≈ 0.1613 which

is less than twice the frequency of the background flow (f = 0.3254). Thus, inertial

waves may be present and explain the alternating bands of vorticity in the structure.

The reverse case of increasing the Rossby number from Ro = 0.02375 to Ro = 0.0325

at E = 8 × 10−5 was also investigated. The energy time history plot is shown in

figure 6.25(b) with the change in flow conditions marked by a vertical dashed line

at t = 3500. The increase in Ro causes a sharp increase in energy for all of the

azimuthal wavenumbers. The flow continues to sustain the wavenumber 5 structure over

a long period of time with energies from k = 4 gradually decreasing. At approximately

t = 8000, the energies in k = 4 increases and eventually becomes dominant at t = 8450.

Thus, the stable configuration observed is the same as that obtained from initialising the

flow from the steady-state axisymmetric base flow with a flow condition of Ro = 0.0325

and E = 8×10−5. That is, no major hysteresis effects have been observed for this case.

It should be noted that changing the flow from Ro = 0.02375 to Ro = 0.0325

takes 4500 time units for it to adjust to the new preferred state. This corresponds

approximately to 3125 hours (≈ 130 days) based on the maximum rotation rate of

Ω = 4 × 10−4 rad/s considered by Früh & Read (1999), which is a staggering amount

of time given the change in the disk speed was only of a couple of percent (Ω + ω =

1.0322 → 1.0442). Thus, in an experimental setting, the rate of change of the continuous

forcing must be extremely low, impractically so, to allow the flow to adapt and develop

the most stable wavenumber. This is particularly true for flow conditions near the onset

of instability since the growth rate of the instability is very small. Keeping the forcing

at a constant flow condition would also require long time periods for a stable azimuthal

wavenumber to emerge. It is acknowledged that it would be difficult to visually detect or

gauge any variables in relation to whether or not the flow has reached a truly saturated
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state in the experiments. This is because the flow is still able to exhibit the wavenumber

observed prior to the Ro change for long time periods. For this particular flow, a

pentagonal structure is still demonstrated up until t = 8150. In addition, the remnants

of the dye may display a structure that is different to the underlying evolving structure.

Aguiar (2008) and Aguiar et al. (2010) performed experiments at constant forcing for

approximately 30 minutes, which was self-reported by the latter study to be insufficient

in reaching a stable flow state for some cases. This is expected to be true mostly at small

Rei due to the low growth rates. This may further explain the discrepancy observed in

the small Rei regime between the direct numerical simulation results presented in this

chapter and the experimentally generated regime diagrams from Früh & Read (1999).

That is, the experimental flows may not have been allowed enough time to saturate

(vortex coalescence) and therefore higher stable wavenumber structures were reported

instead.

6.5 Bifurcation analysis

The hysteretic nature of the three different linear instability transitions, namely the

mode I, II and III have been investigated. The Stuart–Landau model has been applied

to the most unstable linear wavenumber and its harmonics. The nonlinear behaviour

is determined through the sign of the l parameter. The Stuart–Landau model has been

described previously in § 3.6. The restriction of simulating a particular wavelength and

its harmonics is achieved numerically through a truncation of the azimuthal range of the

domain to exactly fit the wavelength of interest. As a consequence of the axisymmetry of

the domain, only the considered wavenumber and its harmonics are able to fit perfectly

in the truncated domain. Each numerical study has been initiated with the axisym-

metric base flow solution seeded with the most unstable eigenmode with very small

amplitudes.

6.5.1 The mode I transition

The transitional behaviour of the mode I instability of Ro = 0.05 and E = 3× 10−4 is

investigated. This flow point corresponds to the reference flow condition and is marked

by a solid black circle in figure 6.1. A plot of the growth rate against wavenumber is

shown in figure 6.2, which illustrates the existence of only the mode I instability and is

most unstable to a wavenumber 5 configuration.
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Figure 6.26: Flow conditions described by Ro = 0.05 and E = 3 × 10−4. (a) Amplitude

of the most unstable isolated mode corresponding to wavenumber 5 against time. (b) The

rate of change in amplitude over time against the square of the amplitude. A negative linear

gradient at the vertical axis indicates that the transition is supercritical.

The mode transition is determined to be supercritical, which can be illustrated

through figure 6.26. The plots are of log |A| over time and d log |A|/dt against |A|2

for the k = 5 instability. Initially, the amplitude of the wavenumber 5 instability is

small and grows exponentially in time until it saturates at approximately t = 440. This

exponential trend is representative of the linear regime, which is required to obtain an

accurate gradient near the vertical axis in figure 6.26(b). The gradient at the vertical

axis corresponds to the l parameter in the Stuart–Landau equation. The slope is

calculated to be l = 4.55 × 10−6, which corresponds to a negative slope (the negative

sign in front of l is inherited from the Stuart–Landau equation). This indicates that the

mode transition is supercritical and is in agreement with the results of Früh & Read

(1999), van de Konijnenberg et al. (1999) and Bergeron et al. (2000). The d log |A|/dt
curve terminates on the horizontal axis as the mode saturates. The intercept of the

vertical axis has a value of 0.0187, representing the growth rate of the linear instability

mode. This growth rate value is identical to that determined by the linear stability

analysis (see figure 6.2(a)).

A range of other flow conditions that are dominated by the mode I instability have

also been investigated. The same analysis using the Stuart–Landau model determined
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the transition of the mode I instability to be supercritical consistently. Also, the growth

rate predicted by the linear stability analysis demonstrates a strong agreement with

those calculated from the Stuart–Landau model.

6.5.2 The mode II, III and β-plane transition

A flow condition of Ro = 0.395 and E = 5.26 × 10−4 is investigated to study the

transitional behaviour of the mode II linear instability. This flow point is marked by a

solid grey circle in figure 6.1. The most unstable wavenumbers associated with modes I

and II predicted by the linear stability analysis are k = 3 and k = 29, respectively.

The growth rate associated with wavenumber 29 is greater than that of wavenumber 3.

That is, this flow condition is dominated by a mode II linear instability mode. In this

particular case, the transition of the mode I and II instabilities are also determined

to be supercritical. Plots of log |A| over time and d log |A|/dt against |A|2 for k = 29

are shown in figure 6.26. The energy contained within the wavenumber 29 structure

increases exponentially from initialisation at t = 0 to t = 18, and plateaus over time.

This results in an initial negative gradient in figure 6.26(b), which indicates that the

instability is supercritical. Here, l = 2.46 × 10−4 and the intercept of the vertical axis

has a value of d log |A|/dt = σ = 0.459. The growth rate of wavenumber 29 predicted

by the linear stability analysis is determined to be σ = 0.458.

The same features are observed for the mode III instability. This is investigated

for the flow condition of Ro = 0.5 and E = 3 × 10−4, which is most linearly unstable

(highest growth rate) to a wavenumber that is associated with mode II. However, there

is an emergence of the mode III instability with growth rates that are comparable

to wavenumbers belonging to mode I (see figure 5.2). The k = 9 structure exhibits

the highest exponential growth rate of the mode III waveband with σ = 0.4807. The

value of the l parameter for this wavelength is determined to be l = 1.028× 10−5 with

the same growth rate predicted by the linear stability analysis. The positive constant

determines that the flow transition is supercritical.

The Stuart–Landau model has been applied to a variety of flow conditions that

encourages the growth of all the three different instability modes. The l parameter has

been determined to be positive in all flow cases, which suggest that the weakly nonlinear

mode evolution behaviour in this type of rotating flow is supercritical. In addition, the

flow transitions on a β-plane (0◦ < θ 6 10◦) also demonstrated the same bifurcation
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Figure 6.27: Flow conditions described by Ro = 0.395 and E = 5.26×10−4. (a) Amplitude

of the most unstable isolated mode corresponding to wavenumber 29 against time. (b) The

rate of change in amplitude over time against the square of the amplitude. A negative linear

gradient at the vertical axis indicates that the transition is supercritical.

characteristics. The Stuart–Landau model consistently described the growth rate very

well in comparison to the linear stability analysis technique employed. This confirms

and extends the experimentally determined supercritical behaviour detected for low-

wavenumber instability by Früh & Read (1999), van de Konijnenberg et al. (1999) and

Bergeron et al. (2000).

6.6 Chapter summary

The non-axisymmetric three-dimensional flows generated in a differential-disk rotating

system with an aspect ratio of A = 2/3 have been investigated in this chapter. The

primary purpose was to establish trends and draw comparisons with the results from the

linear stability analysis presented in the previous chapter as well as the experimental

trends. The energy in each azimuthal wavenumber was monitored during the flow

development. Typically, the energy time history of the flow illustrates exponential

growth in the initial stages of the flow (linear regime) and saturated growth in the later

stages (nonlinear regime). Only the positive-Ro regime was examined.

Flows characterised by small Rei near the onset of instability (Rei,c ≈ 22.4) were

firstly investigated to establish a reference case. In the linear regime, the wavenumber
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that contains the most energy usually corresponded to the most unstable wavenumber

predicted by the linear stability analysis. However, there were instances where the un-

stable wavenumber in the linear regime differed by a few wavenumbers. This is due to

the white noise seeded in the flow at initialisation, which feeds energy into every wave-

length. Thus, it is possible that a wavenumber that is not the most linearly unstable

by prediction of the linear stability analysis may be favoured in the initial develop-

ments of the flow. Despite this, linearly preferred wavenumber eventually dominates

and stabilises in the nonlinear regime. Thus, nonlinear effects are considered negligible

near the onset of instability. The structure of the resulting polygon is largely depth-

independent when viewed through axial vorticity contours, similar to those described

by the axisymmetric base flows in the same parameter regime.

Flows well beyond the onset of instability achieved by either increasing the Rossby

number or decreasing the Ekman number were investigated to examine nonlinear effects.

The dominant wavenumber in the linear regime was still agreeable with the results

from the linear stability analysis. However, with the onset of nonlinear effects, the

highest exhibited energy is quickly shifted to lower-wavenumber structures. This occurs

through the coalescence of vortices. In fact, the appearance of the flow structure at

the saturated state may be distorted as a result of multiple wavelengths of comparable

energy competing with each other. Therefore, flows at sufficiently large Rei portray

a preference to low-wavenumber structures, which is in agreement with experimental

studies (e.g. Früh & Read 1999; van de Konijnenberg et al. 1999; Aguiar et al. 2010).

In addition, the contours of axial vorticity displayed alternating bands of low and high

vorticity structures in the interior and satellite vortices. It is suggested that these

strands have been induced by another type of instability that is present throughout the

entire depth of the tank, possibly related to inertial waves.

The three-dimensional flows characterised by various Ro in the low and large E

regimes reinforced the trends observed in the prior sections. That is, decreasing Ro

towards the onset of instability yields a saturated wavenumber that is described by the

linear stability analysis while increasing Ro away from the onset of instability decreases

the resulting wavenumber. For flow conditions that describe depth-dependent axi-

symmetric base flows, the three-dimensional direct numerical simulation demonstrates

strong depth-independent features. Furthermore, the mode II linear instabilities ap-

peared to have no influence on the stable structure in the nonlinear regime. Despite
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their dominance throughout the linear regime, the energies of the wavenumbers asso-

ciated with the mode II instability quickly decayed as the amplitudes of the structures

became large.

The saturated flows demonstrated a strong insensitivity to initial conditions, pro-

vided the flow does not change its Rossby and Ekman number. The flows eventu-

ally developed the same stable azimuthal wavenumber despite the flow being initially

seeded with different unstable wavenumbers of large amplitude. However, changing the

Rossby and Ekman number during the development of a flow has exhibited hysteresis

effects such that a particular flow condition is associated with multiple stable azimuthal

wavenumbers. Lastly, the transition of the mode I, II and III linear instabilities were

determined to be supercritical on both the f-plane and β-plane configurations.

In general, the results of the three-dimensional direct numerical simulation revealed

the long time periods required for these rotating flows to reach a stable state. In

many cases, the corresponding physical time based on a maximum rotation rate of

Ω = 4 × 10−4 employed by Früh & Read (1999) was in the order of months! Thus,

these results suggest that the experimental results reported in the literature may not be

representative of the eventual stable state, especially those near the onset of instability.

It should also be stated that many of the numerical simulations presented in this chapter

have been computed over the time period of many physical months, some closing in on

a year.

The next chapter explores many of the aspects detailed in the last three chapters

using a quasi-two-dimensional model. Specifically, the axisymmetric base flows, their

linear stability, and the resulting non-axisymmetric flows are investigated. The sim-

ilarities and differences observed between the axisymmetric model, three-dimensional

model and the quasi-two-dimensional model are examined. In turn, the validity of the

quasi-two-dimensional model which has been the only model used to simulate these

flows in past numerical studies, is discussed.
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Chapter 7

Quasi-two-dimensional modelling

In the previous chapters, the flow inside a differential-disk rotating apparatus has been

numerically modelled using axisymmetric and three-dimensional simulations. Due to

high computation cost required to implement these models, particularly the three-

dimensional simulations, previous numerical studies have considered a more efficient

quasi-two-dimensional model to represent the flow. In this chapter, the flow in the

differential-disk rotation system described in the previous chapters is investigated using

a quasi-two-dimensional model. The flow is computed on a two-dimensional r-θ plane,

with friction from the Ekman layers on the horizontal boundaries being captured by a

linear friction term. That is, the flow is governed by the two-dimensional quasi-geostro-

phic equations (equation 3.62). Hence the axisymmetric flows described in Chapter 4

reduce to one-dimensional problems, while the non-axisymmetric flows described in

Chapter 6 reduce to two-dimensional problems, greatly reducing the computational

cost required to solve the flows.

A key objective of this chapter is to investigate the performance of the quasi-two-di-

mensional model in comparison with simulations of the full system. In particular, what

effect does the E 1/3 Stewartson layer have on the flow, given that it is excluded from

the quasi-two-dimensional model. A review of the differences between the quasi-two-

dimensional model and the axisymmetric model regarding the base flow structures are

demonstrated in § 7.2. The linear stability of the base flows are explored in § 7.3. § 7.4

reveals the effect of imposing a smoothed forcing condition which is also implemented

in the study of non-axisymmetric structures in § 7.5.
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7.1 Grid independence study

The axisymmetric quasi-two-dimensional flows are computed on a quasi-one-dimen-

sional domain. A bi-exponential profile is implemented for the radial discretisation of

21 vertices at the corner of elements, similar to that adopted by the two-dimensional

semi-meridional r-z domain, which achieved solution convergence (§ 4.1). The smallest

radial edge of an element is 0.0183. A different mesh is used to simulate the non-axi-

symmetric quasi-two-dimensional flows. These non-axisymmetric flows are computed

on a two-dimensional r-θ plane, as described in § 3.7.2. The mesh is comprised of

4000 elements with 56 element vertices along the radial direction. The radial element

vertices are densely populated around r = 1 to accurately capture the structure of the

shear layer with the smallest radial difference of 0.0172. The number of elements stated

here refer to the macro elements, which does not count the collocation points within

elements.

To ensure grid independence, the convergence of several global parameters have

been computed. A reference case featuring a small E = 5 × 10−5 and a large Ro =

0.3 is considered. This case is representative of where the flow remains quasi-two-

dimensional and encapsulates very thin shear layers. Thus, a high degree of spatial

resolution is required in order to capture the presence of the shear layers. Achieving

grid independence for this case ensures solution accuracy for higher E cases as well as

lower Ro. The aspect ratio considered in this chapter is the same as the Früh & Read

(1999) configuration, which was the primary aspect ratio investigated in the previous

chapters, namely A = 2/3.

Three measures for convergence have been adopted: the integral of the azimuthal

velocity relative to the tank (uθ,rel = uθ − Ωr) across the domain, the leading eigen-

value magnitude obtained by the linear stability analysis of a perturbation with peak

fractional azimuthal wavenumber k = 11.5, and the L2 norm taken as the integral of

the velocity magnitude throughout the domain. The values are obtained once the base

flow has reached steady-state conditions. The relative percentage error ε against a

high-resolution reference case with element polynomial degree Np = 14 is plotted in

figure 7.1. The results demonstrate a decreasing error with increasing Np. A threshold

criterion of O(1%) is sought to ensure that solution error due to finite spatial resolution

is much smaller than likely laboratory sources of error. This is approximately satisfied

with Np = 6, which is used hereafter. It should be noted that for this particular case, an
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Figure 7.1: The relative percentage error ε in the global variables of the integral of the

relative azimuthal velocity (�), L2 norm (⊲) and the leading eigenvalue magnitude (✸) of the

case study (Ro,E )=(0.3, 5 × 10−5). A decreasing trend with increasing polynomial degree

Np is seen with all variables. An error of ε = 1% is marked by the horizontal dashed line.

error of 4% (0.5/11.5) or higher is required at this fractional peak wavenumber in order

for the preferential wavenumber to shift in integer value. This is satisfied with Np = 6.

The thicknesses based on the axial vorticity and azimuthal velocity demonstrated no

change above Np = 4 and Np = 5, respectively.

7.2 Quasi-two-dimensional axisymmetric flow structure

A variety of flow conditions for A = 2/3 were obtained using the quasi-two-dimensional

model. Time-evolved solutions are taken to be steady-state when velocity variations

are less than 10−12 between successive time steps. Due to the employment of a two-

dimensional (quasi-one-dimensional) mesh used to capture the quasi-two-dimensional

solutions, a zero variance in the axial direction is not strictly enforced (further details

regarding the mesh can be found in § 3.7.2). Hence it was possible to use any loss of

depth independence as an indication that the result was invalid and should be discarded.

Such events were observed only at very large Ro and small E . It is further required that

the radial and axial velocities and the radial and azimuthal components of vorticity are

zero throughout the entire domain, which follows from the incompressible constraint and

the forcing conditions imposed on the flow. Simulations are predominantly performed
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for Rossby numbers between −1.0 ≤ Ro ≤ 0.6 and Ekman numbers between 3×10−5 ≤
E ≤ 3× 10−3.

Illustrations of the quasi-two-dimensional flow solutions are provided in figure 7.2(a),

with Ro = 0.5,−1.0 and −2.0 for E = 3 × 10−4. Contours of azimuthal velocity and

axial vorticity demonstrate perfect depth invariance as the one-dimensional solution is

projected across the z-direction for visualisation purposes. For Ro = 0.5, the flow re-

veals a strand of negative vorticity at r = 1 which corresponds to the radial location of

the disk-tank interface. The entire shear layer remains positive for the Ro = −1.0 case,

which reinforces the idea that the negative-vorticity strand is induced by the decrease

in angular velocity with increasing radius across the disk-tank interface. Negative axial

vorticity is produced on the entire inner side of the Stewartson shear layer (closer to

the axis of rotation) for Ro = −2.0 in addition to the negative azimuthal velocity across

the same radial extent.

The same flow conditions have been solved through the axisymmetric model and are

shown in figure 7.2(b) (partial reproduction of figures 4.2 and 4.3). It is seen that the

axial invariance of the flow is broken at Ro = 0.5 in the axisymmetric model through

the presence of the diagonal negative-vorticity strands originating from the disk-tank

interface. The negative-vorticity strands in this case do not extend the entire depth of

the tank and are not parallel to the axis of rotation. This illustrates a key difference

between the quasi-two-dimensional model and the axisymmetric model, as the former

cannot resolve depth-dependent flow features. Here the contour lines of azimuthal

velocity are not perfectly vertical, especially in the vicinity of the Stewartson layer.

For Ro = −1.0, the axial vorticity contours are largely depth-independent although

the effects of the Ekman layers cause depth-dependent features near the horizontal

boundaries. Another illustration of the difference in base flow structure between the

quasi-two-dimensional and the axisymmetric model is shown for the case of Ro = −2.0.

The axisymmetric flow solution presents negative patches of vorticity on the inner side

of the vertical shear layer in addition to the thin negative-vorticity boundary layer

along the horizontal. The interior region of r < 1 exhibits both positive and negative

axial vorticity. However, the quasi-two-dimensional flow exhibits only negative axial

vorticity for r < 1. The depth-dependent structure is also demonstrated through the

azimuthal velocity contour lines. It has been proposed in previous chapters (Chapters 4

and 5) that the breaking of the depth independence in the flow may be linked to the
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(a) Quasi-two-dimensional model
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Figure 7.2: Structure of the axisymmetric flows visualised on the semi-meridional r-z plane.

Azimuthal velocities (left) and axial vorticity (right) are shown for E = 3× 10−4 at (i) Ro =

0.5, (ii) Ro = −1.0 and (iii) Ro = −2.0. The flow solutions from the (a) quasi-two-di-

mensional model and (b) axisymmetric model are shown. For the azimuthal velocity plots,

equi-spaced contour levels are plotted between ±2 |Ro| (|Ω|+ |ω|), while for the axial vorticity

plots, equi-spaced contour levels are plotted between 2Ω ± 10|ω|. Blue and red contour

shading represent negative and positive values, respectively, while solid and dashed contour

lines identify positive and negative contour levels, respectively. The domain shown represents

the entire semi-meridional plane with 0 ≤ r ≤ 2. Images are not to scale.
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mode II linear instability. As depth independence is implicit in the quasi-two-dimen-

sional model, the mode II instability is not expected to emerge in the linear stability

analysis of the quasi-two-dimensional model.

7.2.1 Vertical shear-layer profile and thickness

Profiles of the azimuthal velocity relative to the tank and axial vorticity have been

extracted from the quasi-two-dimensional flow solutions. Typical profiles of these two

flow variables for E = 3× 10−4 are shown in figure 7.3. The profiles are also extracted

from the axisymmetric solutions for comparison. The relative azimuthal velocity profile

are very similar between the two models which is expected since the quasi-two-di-

mensional does not directly affect the azimuthal component of the flow. The profile

demonstrates solid body rotation at a rate higher than that of the tank for the majority

of r < 1 while the fluid rotates at the tank rate for r > 1.3. The transition from the

disk rotation rate to the tank rotation rate is achieved through the E 1/4 Stewartson

shear layer. Distinct differences between the two models are seen in the profiles of axial

vorticity (figure 7.3(b)). There is no smoothing of the axial vorticity in the quasi-two-di-

mensional model flows since there is no meridional circulation. Within the shear layer,

the axial vorticity either increases or decreases rapidly with a sharp change in gradient

at r = 1. This behaviour is not seen in the axisymmetric solution as the vorticity is

smoothed out via the E 1/3 shear layer. Thus, the minimum axial vorticity value from

the quasi-two-dimensional model is much lower compared to the axisymmetric solution.

The presence of the sharp turning point in axial vorticity profile suggests that the flow

may be susceptible to barotropic instability via the Rayleigh–Kuo criterion. That is,

the radial derivative of the absolute axial vorticity changes sign somewhere within the

domain.

Since there is no depth dependence in the quasi-two-dimensional modelling, there

cannot be any meridional circulation within the flow. Hence, the thin E 1/3 layer is not

resolved. Therefore, the only shear layer that exists in quasi-two-dimensional flows is

the E 1/4 layer which functions to smooth out the azimuthal velocity. The discontinuity

in velocity originates from the external forcing term employed to model the frictional

effects invoked by the Ekman layers. Measurements for the Stewartson layer thickness

were conducted using the same method performed for the axisymmetric two-dimensional

base flows (§ 4.2.2). That is, the E 1/4 layer thickness is defined as the difference in radial
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Figure 7.3: (a) Azimuthal velocity relative to the rotating tank against radius extracted at

z/H = 0.5 and (b) the axial vorticity profiles for E = 3× 10−4 at various Ro.

locations corresponding to (uθ−rel,max − 0.05∆uθ−rel) and (uθ−rel,min + 0.05∆uθ−rel),

where ∆uθ−rel is the difference between the maximum and minimum values of relative

azimuthal velocity. The empirical relationship between the thickness of the E 1/4 layer

δvel, and E , is determined as δvel = 1.32E 0.219 which considers both the positive and

negative-Ro data. It is noted that the thicknesses do not differ between the positive

and negative Rossby number of |Ro| = 0.005. Not surprisingly, this is extremely close

to the relationship obtained for the axisymmetric flow cases, which was found to be

δvel = 1.31E 0.22 when considering both positive and negative-Ro flows. Thus, for any
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Figure 7.4: Contours of the base-10 logarithm of vertical shear-layer thickness measured

from the relative azimuthal velocity, plotted on axes of log10(E ) against Ro.

E < 1, the quasi-two-dimensional model predicts a slightly thicker Stewartson layer.

An approximate percentage difference of 2% is obtained at the lowest considered value

of E = 3×10−5. The exact similarity in thickness values obtained between positive and

negative-Ro data in quasi-two-dimensional solutions was not seen in the axisymmetric

solutions (see figure 4.6). It is unclear why there would be a difference in thickness at

small Ro near zero, as the flows are highly depth-independent. A possible explanation

may be that the thickness of the Stewartson layer is highly sensitive to the presence

of meridional circulations, which is very weak at small Ro. This in turn may suggest

that the thickness of the E 1/4 layer may be affected by the presence of the E 1/3 layer.

Performing the thickness measurement procedures on the discontinuous axial vorticity

is meaningless and results in a constant thickness for all flow conditions.

The δvel has been calculated for every base flow condition throughout the parameter

space. A regime diagram depicting the thickness for each condition characterised by

Ro and E is illustrated in figure 7.4. The regime diagram is a plot of the log10(δvel)

as a function of log10(E ) and Ro. It is clear that the contour lines of log10(δvel) are

horizontal throughout both the positive and negative-Ro regime. Thus for quasi-two-

dimensional flows, the E 1/4 shear-layer thickness does not have any dependence on

Ro, unlike the axisymmetric flows. It is noted that consistent with the axisymmetric
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flow, the quasi-two-dimensional model also predicts a shear layer of finite thickness

at Ro = 0, which represents solid-body rotation. The contour lines deviate from the

horizontal at the large Ro and small E regime due to the linear triangulation used to

generate the regime diagram. The thickness of the shear layer is not measured beyond

this regime due to the limitations concerning the implementation of the quasi-two-di-

mensional model.

7.3 Linear stability analysis

The linear stability analysis solver used in Chapter 6 was adapted to interrogate the

stability of the quasi-two-dimensional model solutions to azimuthal disturbances. This

was achieved by replicating the linear forcing terms used for the one-dimensional base

flow in the linearised disturbance field evolution equations.

7.3.1 Growth rates

7.3.1.1 Positive-Rossby-number regime

The growth rates for a range of azimuthal wavenumbers were obtained throughout the

explored parameter space. The fastest growing wavenumber was determined for each

flow condition with unstable wavenumbers ranging from 3 ≤ k ≤ 12. As a comparison,

the axisymmetric base flows predict unstable wavenumbers ranging between 2 ≤ k ≤ 9.

This is partly explained by the smaller Ekman numbers computed, which have become

feasible through the implementation of the quasi-two-dimensional model. The smaller

Ekman numbers display a preference to smaller wavelengths structures.

The growth rates for flows of various E for Ro = 0.1 is shown in figure 7.5(a).

For large E , the base flow is not susceptible to linear instabilities as the growth rates

over the entire wavenumber spectrum are negative. This is seen for E = 3 × 10−3

with a peak azimuthal wavenumber of kpeak = 2.4 and an associated growth rate of

σpeak = −0.089. The peak wavenumber and associated growth rate are determined

through a parabolic fitting of the local peak in the σ-k data and its neighbouring data

points. The maximum of the fit describes kpeak and σpeak. All of the cases in figure 7.5

portray a single peak in the σ-k data which is representative of the mode I instability

described for the axisymmetric flows in § 5.1.1. The growth rates of the perturbations

introduced into the base flow are seen to increase with decreasing E . This is expected

as decreasing the Ekman number causes the Stewartson layers to become thinner which
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Figure 7.5: Growth rate σ as a function of azimuthal wavenumber k for (a) various E at

Ro = 0.1 and (b) various Ro at E = 3× 10−4. (c) The σ-k data for a large Rossby number of

Ro = 0.5 for E = 3 × 10−4. The dashed line represents neutral stability where points above

and below symbolise unstable and stable modes, respectively.

leads to greater susceptibility to instability. In addition, decreasing E corresponds to

a broadening of the instability waveband. A clear illustration of this can be observed

through the comparison between E = 3× 10−3 and E = 7× 10−5. It should be noted

that the plotted data for each E ranges over 2 whole wavenumbers with intervals of 0.25.

Furthermore, flows characterised by smaller E favours higher azimuthal wavenumbers.

This is seen for E = 7× 10−5, where the most unstable wavenumber and its associated

growth rate is given by kpeak = 9.3 and σpeak = 0.2156, respectively.
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Figure 7.5(b) illustrates the effect on the growth rates by varying the Rossby number

while keeping the Ekman number constant at E = 3×10−4. Hence, increasing Ro causes

a commensurate amplification of the growth rates, while the waveband of the instability

remains relatively unaffected. As a comparison between Ro = 0.1 and Ro = 0.5,

the most unstable modes are characterised by kpeak = 5.57 and σpeak = 0.0977, and

kpeak = 6.92 and σpeak = 1.1324, respectively. Thus, there is a shift in preference to

higher wavenumbers as Ro is increased. This is surprising since the preferred azimuthal

wavenumber of the instability is thought to be related to the thickness of the shear layer,

for which quasi-two-dimensional flows have shown no dependence on Ro (figure 7.4).

Thus, the most unstable azimuthal wavenumber is again a function of both Ro and E ,

as was shown with the axisymmetric results (§ 5.1.1.4).

Figure 7.5(c) demonstrates the extent of the mode I wavenumber band for a rel-

atively large Ro at E = 3 × 10−4. A single peak is observed to be associated to the

mode I instability with growth rates gradually decreasing beyond this wavenumber band

(k > 20). In contrast, the axisymmetric solution at this flow condition exhibits linear

modes II and III in addition to the mode I instability (figure 5.2). This observation

further reinforces the idea that the mode II and III arises from the breaking of depth

independence and reflective symmetry of the axisymmetric base flow.

A comparison between the linear stability analysis results obtained from the qua-

si-two-dimensional model and the axisymmetric flows is demonstrated in figure 7.6

for Ro = 0.395. For the axisymmetric flows, all cases shown except for E = 3.16 ×
10−4 exhibit the mode II instability for wavenumbers beyond the mode I wavenumber

waveband. All of the quasi-two-dimensional model solutions for this Rossby number

portray σ-k profiles that resemble the E = 3.16×10−4 case for the axisymmetric model:

a single peak is present and growth rates beyond the mode I waveband monotonically

decreases. This may be explained by the absence of depth-dependent structures in the

axisymmetric base flow which becomes susceptible to barotropic instability. Hence, the

additional peaks in growth rate associated with the mode II and III instabilities are not

present in the quasi-two-dimensional solutions. For a particular flow, the preferential

azimuthal wavenumber is observed to be higher in the quasi-two-dimensional model

compared to the axisymmetric simulations. The axisymmetric linear stability analysis

predicts an unstable wavenumber of k ≈ 3 for all of the E shown at this particular

Ro. In contrast, there is a shift in preferred wavenumber throughout the range of E in
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Figure 7.6: Growth rate σ as a function of wavenumber k for various E at Ro = 0.395

from the (a) quasi-two-dimensional model and the (b) three-dimensional model. The qua-

si-two-dimensional illustrates only the mode I instability while the three-dimensional model

demonstrates modes I and II. The dashed line represents neutral stability where points above

and below symbolise unstable and stable modes, respectively.

the quasi-two-dimensional flows. In addition, the results of the quasi-two-dimensional

flows demonstrate growth rates that are greater than those present in axisymmetric

base flows. This may suggest that the depth-dependent flow features that arise in the

axisymmetric flows causes a decay in the growth rate of the azimuthal instability mode.

7.3.1.2 Negative-Rossby-number regime

The growth rates for negative-Ro flows have been obtained for the same range of E

investigated in the positive-Ro regime. The range of negative Ro explored is larger

than that of the positive-Ro regime since large negative-Ro flows were less susceptible

to the breaking of axial independence in the present implementation. The growth rates

for the negative counterpart of the conditions illustrated in figure 7.5(a) are shown in

figure 7.7. The conditions depicted are for Ro = −0.1 at various E . It should be noted

that the range of wavenumbers for each E are not the same between the two figures.

The two plots demonstrate comparable growth rates for their common wavenumbers,

although the cases associated with negative Ro consistently displays lower growth rates.

This is true not only for the cases shown in figures 7.5(a) and 7.7 but also throughout

the parameter space of 0.01 ≤ |Ro| ≤ 0.5 and 3 × 10−5 ≤ E ≤ 3 × 10−3. The ratio
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Figure 7.7: Growth rate σ as a function of azimuthal wavenumber k for various E at Ro =

−0.1. The dashed line represents neutral stability where points above and below symbolise

unstable and stable modes, respectively.

between the growth rates associated with positive and negative-Ro flows is discussed in

detail later in this section. The other trends remain the same between the positive and

negative-Ro regime in that with decreasing E , the growth rates increase along with a

preference for higher-wavenumber structures.

Plots of the growth rate as a function of Rossby number for various Ekman numbers

and for azimuthal wavenumbers k = 1, 2 and 3 are illustrated in figure 7.8. An increase

in the |Ro| causes greater velocity gradients to exist at the disk edge. This results in a

base flow that is more susceptible to instability and therefore leads to a perturbation

field that exhibits a larger global growth rate. It is clear that the profiles of σ-Ro in

the negative and positive-Ro regime are not symmetric about Ro = 0 for any of the

wavenumbers. The positive and negative-Ro growth data appear to be described by

different functions. That is, the growth rates increase with an increasing gradient in

the positive-Ro regime while the growth rates increase with a decreasing gradient in the

negative-Ro regime. In taking the magnitude of the growth rates and assuming that

the curves adopt a power-type law of σ ∝ Roα, the negative and positive-Ro regime

would be expressed by α < 1 and α > 1, respectively. The magnitude of α becomes

progressively larger for decreasing E .

The corresponding Rossby number for the minimum growth rate of a particular E

is always characterised by Ro = 0 which describes solid-body rotating flow. This flow is
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Figure 7.8: Growth rate σ as a function of Ro for various E at various azimuthal wave-

numbers of (a) k = 2, (b) k = 3, and (c) k = 4. The dashed line represents neutral stability

where points above and below symbolise unstable and stable modes, respectively.

always stable and therefore will always portray negative growth rates for all azimuthal

wavenumbers. It is observed that the global linear stability analysis presents the zeroth

azimuthal wavenumber as being the most dominant for Ro = 0 over a wide range of

E cases. The second leading eigenmode is consistently shown to be k = 1 as seen in

figure 7.9. It should be noted that the difference in growth rates between k = 0 and

k = 1 is only of a few percent. Despite this small difference, the profiles of the growth

rate as a function of wavenumber demonstrate similarity. Also, the profile of the peak

growth rate and its neighbouring points do not represent a parabolic shape which has
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Figure 7.9: Growth rate σ as a function of k at Ro = 0 for various E . The flow state of

Ro = 0 characterises solid-body rotation.

been indicative of the mode I instability, rather the peak point is sharp. This is because

the solid-body rotating flow is unlikely to reveal a shear-layer instability and the most

unstable wavenumbers would be k = 0, the axisymmetric mode, and k = 1, an oval-

shaped distortion. All other azimuthal wavenumbers are less significant in terms of its

growth rate. Thus, the sharp peak instead of the parabolic shape in the σ-k profile may

be explained by the absence of the mode I instability due to the insufficient horizontal

shear present in solid-body rotating flows.

The ratio of the positive-Ro growth rate σpos Ro, to the negative-Ro growth rate

σneg Ro, for every azimuthal wavenumber was calculated throughout the parameter

space. A particular Rossby number demonstrates a ratio of growth rates that remain

constant with varying azimuthal wavenumber. In addition to this trend, the values of

the growth rate ratio also display an invariance to the Ekman number. Thus, the ratio

appears to be only as a function of Ro. In fact, this trend extends into the negative-Ro

regime. The ratio of the growth rates as a function of |Ro| is illustrated in figure 7.10.

The relationship is nonlinear, and upon closer inspection, is seen to adopt the equation

describing the normalised disk speed, which is given by

Ω+ ω =
1 +ARo
1−ARo

. (7.1)

Thus, the growth rates of negative-Ro flows can be obtained directly through the rela-

tionship of the disk rotation rate if the growth rates for the positive-Ro flow are known.
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Figure 7.10: The relationship of the ratio between growth rates obtained from positive and

negative-Ro flow as a function of |Ro|. The growth rates have been computed from the

quasi-two-dimensional model.

Similarly, positive-Ro growth rates can be obtained if growth rates for its negative-Ro

counterparts are known and provided that the magnitude of the Rossby number is used.

Thus, the physical meaning of the disk speed is lost in the latter case as the equation

no longer describes the disk speed. That is, the equation which describes the ratio

between positive and negative-Ro growth rates is given by

σpos Ro

σneg Ro

=
1 +A|Ro|
1−A|Ro| . (7.2)

It is emphasised that despite the differences in growth rates between positive and neg-

ative Ro, the most unstable wavelength remains the same between the two regimes.

The relationship of the ratio (equation 7.2) demonstrates an equality between the

growth rates of the positive and negative-Ro cases through

(1−A|Ro|)σpos Ro = (1 +A|Ro|)σneg Ro. (7.3)

It appears then that the growth rate may be related to the sign of Ro via (1 − ARo)

such that a negative Ro yields a prefactor of (1 + ARo) while a positive Ro yields a

(1−ARo) prefactor. The ratio of these results recovers the disk speed equation (equa-

tion 7.1). Plots of the (1−ARo)σ as a function of Ro for three different wavenumbers

are demonstrated in figure 7.11. It illustrates that the relationship in the positive and

negative-Ro parameter space are reflections of each other about the Ro = 0 line with the
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curves portraying an almost linear profile. This reflective symmetry is demonstrated

for k = 4 in figure 7.11(d) whereby the square and triangle symbols represent positive

and negative-Ro data, respectively. Thus this suggests that the product of (1−ARo)σ

is a function of |Ro|. The product (1− ARo)σ increases with decreasing E for a given

Ro as well as increasing with increasing |Ro|. Representing (1 − ARo)σ as a linear

function demonstrates a systematic variation of the horizontal and vertical intercepts

as well as the gradient of the curve with varying Ro and E .
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Figure 7.11: The product of (1−ARo) and σ as a function of Ro for both the positive and

negative-Ro regime. Each line represents a different Ekman number with data from azimuthal

wavenumbers (a) k = 2, (b) k = 3 and (c) k = 4 being plotted. (d) A reproduction of panel (c)

except that the magnitude of Ro is used to demonstrate the reflective symmetry about the

vertical axis between positive and negative-Ro data.
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It is noted that (1 − ARo) can be rewritten as Ω/Ω through the definition of the

Rossby number, Ro = ω/(2ΩA) (equation 3.55). The same ratio of Ω/Ω can be derived

from the Navier–Stokes equations (specifically the coefficient of the diffusion term,

EA2/(1 − ARo)) and the Ekman number definition, E = ν/(ΩH2) (equation 3.56).

Noting that the growth rate has physical dimensions of the reciprocal time scale (Ω),

the physical growth rate can be written as σphysical = Ωσ. This leads to

(1−ARo)σ =
σphysical

Ω
. (7.4)

Since (1− ARo)σ is a function of |Ro|, equation 7.4 suggests that the physical growth

rate normalised by the average rotation rate is also function of the Rossby number

magnitude. Thus Ω is the resulting variable used to normalise the growth rate in order

for it to be a function of |Ro|. This is surprising since the rotation of the tank itself

has been used to non-dimensionalise the governing equations. It is also interesting to

note that the function is invalid if Ω = 0 which corresponds to the differential rotation

of the disk defined by ω = −2Ω (i.e. Ro = ∞).

Several trends can be obtained by fitting the (1 − ARo)σ data against Ro with a

linear relationship. That is, the data can be expressed as (1−ARo)σ = mRo+ c where

m = d([1−ARo]σ)/dRo) represents the gradient and c = σRo=0 is the vertical intercept

which represents the growth rate at Ro = 0. Figure 7.12 illustrates the vertical intercept

and the gradient as a function of E for several azimuthal wavenumbers. The trends

between the positive and negative-Ro regime are expected to be the same according to

equation 7.3. However, there are differences between the two regimes due to the number

of data points used in each regime and also due to the range of |Ro| investigated. This

is most clearly illustrated in figure 7.12(a) where the growth rate of Ro = 0 (σRo=0)

of the positive (solid) and negative (dashed) lines does not collapse perfectly on each

other. Despite this, the trends are consistent throughout the regimes in that σRo=0

increases with decreasing E for a particular k. Similarly, the gradient of the linear fit

is observed to increase in magnitude with decreasing E for a constant k.

7.3.2 Global instability mode shapes and visualisation on horizontal

planes

The profile of the growth rate as a function of wavenumber has revealed only one type of

instability mode which is suspected to be the mode I instability. The non-axisymmetric

perturbation fields have been obtained and demonstrate axially invariant axial vorticity
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Figure 7.12: The (a) vertical-intercept and (b) the gradient of a linear fit through (1−ARo)

against Ro, as a function of E (figure 7.11). Each line represents a different wavenumber

with both positive (solid lines with filled symbols) and negative-Ro (dashed lines with hollow

symbols) data shown. The vertical-intercept represents the growth rate at Ro = 0.

structures. The axial vorticity contours of k = 3 and k = 7 for Ro = 0.5 and E =

3×10−4 are shown in figure 7.13. Again it should be noted that the vorticity plots shown

here are the quasi-two-dimensional solutions (functions of r and θ only) projected onto

the r-z plane. For k = 3, there are two dominant vertical strands of vorticity at the disk-

tank interface (r = 1) that is consistent with the mode I instability portrayed through

the axisymmetric solutions. Therefore, the wavenumbers composing the single branch

observed in the σ-k data are associated with E 1/4 shear-layer instability. A direct

comparison between the quasi-two-dimensional and the axisymmetric solutions cannot

be made since there is no mode I instability at this flow condition from the axisym-

metric modelling. That is, the base flow is sufficiently forced such that mode II and III

instabilities exhibit large growth rates. Therefore, even the lower wavenumbers ranging

between k = 1-3 demonstrate depth-dependent characteristics in the perturbation field.

The k = 7 perturbation field from the quasi-two-dimensional solution also illustrates a

pair of positive and negative vertical strands of vorticity around r = 1. However, the

azimuthal slice shown also reveals an extra negative-vorticity band of lower strength.

This is due to the visualisation being achieved at a slice taken at the arbitrary azimuthal

angle of a perturbation field which is non-axisymmetric. Thus another r-z slice at a
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(a) k = 3 (b) k = 7

Figure 7.13: Contours of axial vorticity of the three-dimensional perturbation field of Ro =

0.5 for E = 3 × 10−4 depicted on the r-z plane. The structures of (a) k = 3 and (b) k = 7

are shown. Given the arbitrary scaling of linearised eigenvector fields, equi-spaced contour

levels are plotted between ±(|ωz,min|+ |ωz,max|)/2. Blue and red flooded contours represent

negative and positive values, respectively.

different angle is likely to reproduce features similar to those in k = 3.

A visualisation of the non-axisymmetric structure predicted by the linear stability

analysis is obtained by superimposing the leading eigenmodes onto their respective axi-

symmetric base flows. Illustrations of these structures for the instability modes from

figure 7.13 are shown in figure 7.14. It is emphasised that these depictions in the r-θ

plane are not representations of the actual three-dimensional flow structure, rather they

are an illustration of the linear instability mode for which the amplitudes have been

arbitrarily scaled. Importantly, this type of visualisation reveals the type of distortions

on the base flow made capable by the most unstable azimuthal instability mode. For

both k = 3 and k = 7 which belong to the mode I branch, the flow is seen to favour a

polygon with the number of sides corresponding to that of the instability wavenumber.

That is that a triangle is observed for k = 3 while a heptagon is seen for k = 7. In these

examples, a thin layer of axial vorticity is present and forms the border of the polygonal

shape. This layer is weaker in comparison to both its interior and surrounding flow in

terms of its vorticity.

Negative-Rossby-number flows display the same features as their positive-Ro coun-

terpart. For Ro = −0.5 and E = 3 × 104, the linear stability results predict the same

preferred azimuthal wavenumber for that of Ro = 0.5 at the same Ekman number,

namely k = 7. The perturbation field and a visualisation of the resulting structure is

presented in figure 7.15. The only difference is that the pair of negative and positive-

vorticity strands around r = 1 are reversed with negative vorticity residing closer to

the tank side-wall while the positive vorticity is located closer to the axis of rotation.

Also, the ring of vorticity forming the perimeter of the polygonal shape around r = 1
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(a) k = 3 (b) k = 7

Figure 7.14: An r-θ slice of a z-independent flow with conditions Ro = 0.5 and E = 3×10−4

is extracted from a linear non-axisymmetric flow approximation constructed by superimposing

the axisymmetric base flow and the leading instability mode with azimuthal wavenumber

(a) k = 3 and (b) k = 7. This flow field is not representative of the three-dimensional non-

axisymmetric flow since nonlinear effects are omitted here. Contours of axial vorticity are

plotted, with levels as per figure 7.2. The orientation is such that the positive Ro causes the

central region to rotate clockwise faster than the outer region.

contains the highest axial vorticity in the domain.

The axial vorticity contours of the perturbation field and the resulting structures

from the superposition of the field onto the base flow does not present any major differ-

ences between the quasi-two-dimensional solutions and the axisymmetric simulations.

Since a direct comparison between quasi-two-dimensional and axisymmetric simulated

solutions cannot be made at the same flow conditions due to the presence of additional

instability mode types from the axisymmetric modelling, only qualitative judgements

can be made. The mode I instability deforms the shear layer into polygonal configura-

tions. This type of instability has also been observed in the axisymmetric base flows,

forming polygonal configurations with their perimeter coinciding approximately with

r = 1. All of these characteristics are indicative of the mode I instability.

7.3.3 Preferred azimuthal wavenumbers

Regimes diagrams for both the negative and positive-Ro regimes have been generated

and are illustrated in figure 7.16. Fractional peak wavenumbers and the corresponding
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(a)

(b)

Figure 7.15: Axial vorticity contours of the dominant linear instability mode with azimuthal

wavenumber k = 7 at Ro = −0.5 and E = 4 × 10−4. (a) The perturbation field of the

instability mode is plotted in the r-z plane, with contour levels as per figure 7.13. (b) A

linear non-axisymmetric flow constructed by superimposing the axisymmetric base flow and

the azimuthal linear instability wavenumber as per figure 7.14 with contours are per figure 7.2.

The orientation is such that the negative Ro causes the central region to rotate anti-clockwise

faster than the outer region.

peak growth rates were obtained via the local maximum of a parabolic fitting of the peak

and the adjacent wavenumbers from the σ-k data obtained via linear stability analysis.

Thus, the number depicted within the bands on the regime diagram represents a range

of fractional wavenumbers. For example, a contour band of 7 represents wavenumbers

ranging between 6.5 and 7.5. Data from over 100 different flow conditions each in the

positive and negative-Ro regime were used to produce these regime diagrams.

Since the linear stability analysis predicted the exact same peak wavenumbers be-

tween positive and negative-Ro flows, the regime diagrams look identical over the range

of computed values. The analysis predicts that the preferred azimuthal wavenumber in-

creases with increasing |Ro| and decreasing E . The trend of the preferred wavenumbers

depict trends similar to those observed from the axisymmetric model (see figures 5.12
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(a) Positive Ro

(b) Negative Ro

Figure 7.16: The regime diagram of the most unstable linear wavenumber as a function of

E and (a) positive Ro and (b) negative Ro. The short-dashed lines represents the transition

between one wavenumber to another, denoted by the wavenumber of the instability shown

within the band. The solid boundary lines represents the range of triangulation. The left

thick boundary line represents the stability threshold which is given by |Roc| ∝ E 0.769 (using

both positive and negative-Ro data).
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and 5.17). The lines of constant wavenumber illustrate comparable contour lines to

those in the barotropic regime from positive-Ro flows produced via axisymmetric simu-

lations. In comparison to the negative-Ro axisymmetric simulations, the contour lines

of the constant preferred wavenumbers from quasi-two-dimensional flows differ slightly

in that the lines become horizontal at large Ro whereas the axisymmetric flows begin

to display vertical contour lines. The deviation from the horizontal in the axisymmetric

cases may be due to the linear interpolation technique or the limited data of Ro < −4.5

used to construct the regime diagram.

The threshold line was determined by empirically fitting data points of Ro and

E that correspond to zero growth rates for both positive and negative-Ro flows. This

yields a relationship between Ro and E given by |Roc| = 18.7E 0.769. The exponent of E

is comparable to the relationship obtained from the axisymmetric model, namely 0.767,

and is in good agreement with the theoretical value of 3/4. This suggests that the E 1/3

shear layer does not significantly influence the stability of the base flow to three-dimen-

sional disturbances, particularly the onset of instability. Furthermore, the coefficient of

the Ekman number of the stability threshold between the quasi-two-dimensional model

and the axisymmetric simulations are comparable, namely 18.7 and 18.1, respectively.

This indicates that the onset of linear instability occurs at a slightly higher Ro in qua-

si-two-dimensional flows, though the differences in Roc are negligible when plotted on

the same regime diagram. A clearer comparison is seen through the internal Reynolds

number which is defined as Rei =
√
2Ro/E 3/4 (equation 3.60). This onset relationship

yields an equivalent critical internal Reynolds number of Rei,c = 22.8 ± 0.8 (compared

with Rei,c = 22.4±0.8 from the axisymmetric simulations). From figure 7.16, it is clear

that this constant Rei,c is not unique to a particular azimuthal wavenumber, rather

it encompasses a range of unstable azimuthal wavenumbers. Thus, similar to the axi-

symmetric solutions, both Ro and E are required in predicting the linearly unstable

azimuthal wavenumber while only Rei is required to characterise the onset of linear

instability.

7.3.4 The Rossby and Ekman numbers dependence on the preferred

azimuthal wavenumber and wavelength

It has been demonstrated that flows governed by the quasi-two-dimensional equations

do not exhibit any depth-dependent features and thereby do not exhibit any linear in-

stabilities apart from the mode I linear instability. The preferred azimuthal wavelength
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Figure 7.17: Regression of the preferred azimuthal wavelength of the mode I instability

through a plot of log10(λθ) against log10(|Ro|/E 2). The data points here correspond to flow

conditions of Rei . 924.

as a function of both the Rossby and Ekman number is sought after following the incon-

spicuous E 1/3 relationship obtained for azimuthal wavelength from the axisymmetric

solutions (λθ ∼ E 1/3/|Ro|1/6, § 5.1.3). Results from the quasi-two-dimensional simu-

lations are grouped as |Ro|αE β and correlated with λθ. The same coefficients used in

the previous procedure (§ 5.1.3) of α = 1 and β = −2 is used in this analysis.

A power law is employed to fit the independent variable |Ro/E 2|, and its corre-

sponding azimuthal wavelength λθ. The base-10 logarithm of both variables, |Ro/E 2|
and λθ, are plotted in figure 7.17. In the axisymmetric simulations, the maximum Rei

characterising an axisymmetric base flow exhibiting reflective symmetry about the mid-

depth was characterised by Rei . 49. The highest computed internal Reynolds number

for the quasi-two-dimensional model is Rei . 924. Despite the large difference in the

range of Rei, the universal law obtained for the azimuthal wavelength from the quasi-

two-dimensional flows is given by λθ = 11.6(|Ro|/E 2)−0.166, which is almost identical

to the relationship obtained from axisymmetric simulations (λθ = 11.4(|Ro|/E 2)−0.167).

It is noted that the exponent of −0.166 may be representative of an exact fraction of

−1/6 which expands the azimuthal wavelength expression to λθ ∼ E 1/3/|Ro|1/6. Thus,
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the E 1/3 term still emerges from the quasi-two-dimensional solutions, which implies

that the 1/3 exponent is not related to the Stewartson E 1/3 as it does not exist in

the quasi-two-dimensional model. This conclusively demonstrates that the E 1/3 Stew-

artson layer does not influence the linear stability of the E 1/4 Stewartson layer in the

reflectively-symmetric regime. The significance of the −1/6 exponent leading to the

E 1/3 scaling remains an open question.

7.4 Smoothing the imposed velocity profile

Many similarities have been observed between the quasi-two-dimensional model and

the axisymmetric simulations including the thickness of the Stewartson E 1/4 layer, the

linear stability of the shear layer and its preferred azimuthal wavenumbers. A num-

ber of previous studies that have employed quasi-two-dimensional models (e.g. van de

Konijnenberg et al. 1999; Bergeron et al. 2000; Früh & Nielsen 2003) implemented a

smoothed forcing profile across the disk-tank interface at r = 1. The effect of smooth-

ing the discontinuous velocity profile which has been imposed as forcing conditions in

previous sections, is investigated in this section.

A smoothed forcing function is achieved by smoothing the discontinuity at r = 1

through a hyperbolic tangent function as described in § 3.7.2. The azimuthal velocity

forcing is then given by

uθ = Ωr +
r

2

[

1− tanh

(

r −Rd

δ

)]

ω, (7.5)

where δ is the thickness approximated to be δ = (E /4)1/4H. Previous studies have

adopted smoothed forcing profiles due to the numerical complications arising from

discontinuous profiles (e.g. high spatial resolution and small time step requirements).

An investigation into the effect of employing the smoothed forcing profile for axisym-

metric flows has been detailed in § 4.2.4. The established trends in this section are a

precursor for the next section (§ 7.5), where non-axisymmetric structures are computed

with this smoothed forcing function.

7.4.1 The axisymmetric flow structure, vertical profile and shear-layer

thickness

The axisymmetric base flow for Ro = 0.5 and E = 3× 10−4 is obtained and illustrated

in figure 7.18(a). The same flow with discontinuous forcing imposed is shown in fig-

ure 7.2(a)(i). Using the same contour levels, the differences between the two imposed
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forcing conditions are seen near r = 1 where a wider region of negative axial vorticity

(dashed lines) is observed. Also, the darker contour colours at r = 1 indicates a larger

axial vorticity magnitude.

The axial vorticity profiles have been extracted from both flow solutions and dis-

played in figure 7.18(b). The steady-state solution exhibits a smaller magnitude of

axial vorticity at r = 1 with the smoothed forcing condition imposed. This is also true

for negative-Ro flows whereby the positive axial vorticity shear layer demonstrates a

smaller value in the smoothed forcing function solution compared to the discontinuous

velocity imposed solution. A similar trend is seen with the azimuthal velocity relative

to the tank where the peak velocity of the smoothed solution is lower than that of the

discontinuous solution. Also, there is a slight shift of the maximum towards the centre

of the tank. These factors result in a thicker measure of the E 1/4 Stewartson layer. For

the specific case of Ro = 0.5 and E = 3×10−4, the smoothed solution produces a shear

layer of thickness δvel = 0.277 compared to δvel = 0.224 obtained from its discontinuous

counterpart. A thicker shear layer has a similar effect of increasing the Ekman number

which in turn is expected to be unstable to a lower azimuthal wavenumber. A power-

law fit of the Stewartson E 1/4 layer thickness at Ro = 0.005 provides the relationship

δvel = 1.71E 0.226, which is larger than for the discontinuous solution, δvel = 1.32E 0.219.

In addition, the effect of Ro variation for the smoothed forcing condition does not af-

fect the thickness of the shear layer. This effect was also observed in the flows with

discontinuous velocity conditions imposed (see figure 7.4).

7.4.2 Linear instability and visualising global instability modes on

horizontal planes

A linear stability analysis was conducted on base flows obtained using the smoothed

forcing condition. The growth rates as a function of wavenumber for the smoothed

and discontinuous forcing conditions are shown in figure 7.19 for two flow conditions:

(Ro,E ) = (0.2, 1 × 10−3) and (Ro,E ) = (0.5, 3 × 10−4). The plots suggest that

the smoothed forcing condition yields an axisymmetric base flow which induces lower

growth rates and a preference to lower azimuthal wavenumbers. This reinforces the

expectation of the base flow being more susceptible to lower wavenumbers as a conse-

quence of the thicker shear layer produced. At smaller wavenumbers, the growth rates

predicted by the analysis between the two different forcing conditions are comparable.

The trends often depart at wavenumbers higher than the peak wavenumber associated
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Figure 7.18: (a) Contours of axial vorticity of the axisymmetric flow visualised on the semi-

meridional r-z plane with a smoothed forcing condition imposed. The flow condition is of

Ro = 0.5 and E = 3 × 10−4. Contours levels are as per figure 7.2. (b) The axial vorticity

profile against radius for Ro = 0.5 and E = 3 × 10−4 from the discontinuous (dashed) and

smoothed (solid) forcing conditions.

with the smoothed forcing profile case. This data suggests that instability onset will

occur at a slightly larger Rossby number for a constant Ekman number for smoothed

forcing flows.

The absolute difference between the growth rates from the discontinuous solutions

and the smoothed solutions have been plotted against the azimuthal wavenumber for

various Ekman number cases. An example typical of the curves obtained is shown in

figure 7.19(c) for flow conditions of Ro = 0.2 and E = 1×10−3. The data illustrates an

increase in the difference in growth rate with increasing azimuthal wavenumber. The

curves appear to exhibit a power-law like relationship. However, the exponent of the

wavenumber differs for each Ekman number, and the relationship indicates that there is

no difference between the growth rates for k = 0, which is the axisymmetric mode. The

varying exponent with varying Ekman number demonstrates that a more appropriate

fit would involve k, A, Ro, and E .

Since the linear instability mode has been determined to be the mode I instability,
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Figure 7.19: Growth rate as a function of wavenumber for (a) Ro = 0.2 and E = 1× 10−3

and (b) Ro = 0.5 and E = 3 × 10−4 obtained from axisymmetric base flow solutions based

on the smoothed and discontinuous forcing functions. The dashed line represents neutral

stability where points above and below symbolise unstable and stable modes, respectively.

(c) The absolute difference in growth rate between the smoothed and discontinuous forcing

solutions as a function of wavenumber for flow conditions of (a).
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(a)

(b)

Figure 7.20: Axial vorticity contours of the dominant linear instability mode with azimuthal

wavenumber k = 4 at Ro = 0.5 and E = 3×10−4. (a) The perturbation field of the instability

mode is plotted in the r-z plane, with contour levels as per figure 7.13. (b) A linear non-axi-

symmetric flow constructed by superimposing the axisymmetric base flow and the azimuthal

linear instability wavenumber as per figure 7.14 with contours are per figure 7.2.

it is expected that the perturbation field and the genesis of the instability on the base

flow will appear similar to that of figure 7.15 (provided the peak wavenumber is the

same). Shown in figure 7.20 are the axial vorticity contours of the perturbation field

of an azimuthal wavenumber k = 4 and the superposition on its respective base flow.

Two strong bands of opposite-signed vorticity appear around r = 1, which noticeably

encompasses a wider radial region compared to the solution derived with discontinuous

forcing conditions. It is believed that these perturbations evolve over a larger region

due to the greater availability on which the barotropic instability can be sustained.

That is, the Stewartson layer is thicker in this case. The k = 4 instability causes the

base flow to generate a four-sided polygon around the circumference of r = 1, which

is comprised of very low axial vorticity. In contrast, its interior is composed of the

highest vorticity in the entire domain. The ring of low vorticity which makes up the

polygonal border is not indicative of the shear-layer thickness since an arbitrary scale
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Figure 7.21: Flow conditions characterised by Ro = 0.05 and E = 3 × 10−4. (a) The L2

norm of the quasi-two-dimensional flow measured over time. (b) Axial vorticity contours of

the flow represented at t = 1500.

of the perturbations has been used for the superposition.

7.5 Non-axisymmetric flow structure

The non-axisymmetric structures that evolve from these rotating flows have been inves-

tigated to illustrate the significance of nonlinear effects. Unlike the previous simulations

of non-axisymmetric structures computed via three-dimensional direct numerical sim-

ulation, the non-axisymmetric flow computed for the quasi-two-dimensional model is

computed on a two-dimensional r-θ plane, and by definition there can be no depth

dependence. The forcing conditions used here are smoothed (previously described in

§ 3.7.2 and § 7.4) and are different to those employed in the three-dimensional direct

numerical simulation. The flows simulated in this section correspond to those computed

in Chapter 6, which investigated non-axisymmetric flow via three-dimensional direct

numerical simulation.

The three-dimensional flow described by Ro = 0.05 and E = 3× 10−4 was studied

in § 6.1, corresponding to the reference case in the vicinity of instability onset. The

direct numerical simulation illustrated a wavenumber 5 structure upon saturation. In

contrast, the quasi-two-dimensional solution for the same flow condition demonstrates

an axisymmetric stable state. The L2 norm measured over time and the axial vorticity
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contours of the saturated flow are shown in figure 7.21. The L2 norm data indicates

that the axisymmetric state observed in figure 7.21(b) is maintained from t & 100. The

axisymmetric structure is comprised of a ring exhibiting low vorticity encompassing a

circular region of high vorticity. This same structure is observed over 1500 time units,

which would correspond to 43 days based on a physical rotation rate of 4× 10−4 in the

laboratory rig used by Früh & Read (1999). The discrepancy in the observed states

between the three-dimensional and quasi-two-dimensional models is explained by the

smoothed forcing condition employed in the latter model. As revealed in the previous

section (§ 7.4.2), the effect of smoothing the forcing condition causes the base flow to

become more stable towards non-axisymmetric perturbations. Thus, as this condition

is already near the critical internal Reynolds number for instability in the three-dimen-

sional model, adopting a smoothed forcing has caused the flow to become stable in the

quasi-two-dimensional model.

The greater stability exhibited in the quasi-two-dimensional non-axisymmetric flows

as a result of the smoothed forcing condition imposed was also observed for other flow

conditions near the onset of instability. These cases include (Ro,E ) = (0.015, 8 ×
10−5), (0.02375, 8 × 10−5), (0.147, 1.06 × 10−3) and (0.08738, 6.8 × 10−4), for which

their saturated non-axisymmetric structures have been detailed previously in Chapter 6

(§ 6.1, § 6.3.1 and § 6.3.2). The L2 norm and the structure of these cases appear very

similar to those presented in figure 7.21(a).

Considering flow conditions further away from the instability threshold highlights

the excellent agreement in the qualitative results between the three-dimensional di-

rect numerical simulation and the quasi-two-dimensional flows. The flow characterised

by Ro = 0.17 and E = 2.5 × 10−4 demonstrated a wavenumber 2 consistently dis-

turbed by a wavenumber 1 structure in the three-dimensional solution. This structure

is portrayed in figure 7.22(a). The same resulting structure was observed in the quasi-

two-dimensional model. The L2 norm data and a time sequence of the evolving axial

vorticity structures from the quasi-two-dimensional model are shown in figure 7.22(b,

c), respectively. The L2 norm data displays several sharp decreases over time, which

is typically attributed to the vacillation of the evolving wavenumber structure. This

is most evident in the beginning 700 time units of the simulation whereby the initial

axisymmetric structure evolves to a wavenumber 4 structure, then a wavenumber 2

structure, and subsequently transforming into an unequal dipole structure. Between
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Figure 7.22: Flow condition of Ro = 0.17 and E = 2.5 × 10−4. (a) Contours of axial

vorticity at mid-depth computed from the three-dimensional direct numerical simulation at

t = 1629. Quasi-two-dimensional results of the (b) L2 norm and the (c) time evolution of

axial vorticity. Time increases from left to right and continues in the bottom row. The times

are given by t = 100, 200, 300, 400, 500, 700, 1000 and 2000, respectively. Equi-spaced axial

vorticity contour levels are plotted between 2Ω± 5ω. Blue and red contour shading represent

low and high values, respectively.
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t = 300 and t = 500, the two vortices forming the dipole structure appear to be of

the same strength and gain vorticity equally. However, as seen at t = 700, one of the

vortices decreases its axial vorticity to the state at t = 300 while the other vortex is

now elongated. This stable structure seems to persist indefinitely after t = 800 where

the L2 norm data exhibits a plateau. The qualitative agreement between figure 7.22(a)

and the last panel of figure 7.22(c) is remarkable. It should be noted that the simula-

tions of the two models have been computed using two different meshes. The only clear

difference is attributed to the ripples in the vorticity present in the three-dimensional

solution. This result reinforces the idea that these ripples may be related to inertial

waves, which would be suppressed in the quasi-two-dimensional simulations as they

propagate on the r-z plane oblique to a plane of constant z.

The qualitative agreement of the saturated structures between the two models has

also been observed for other flow conditions that are far beyond the instability onset.

A few examples are highlighted in figure 7.23. Again, the inertial-like waves are not

evident in the quasi-two-dimensional solutions. These non-axisymmetric results sug-

gests that the quasi-two-dimensional model is very capable of determining the eventual

stable mode at flow conditions that are well beyond the instability onset. Given a

mesh that does not adopt a four-fold symmetry, it is anticipated that the quasi-two-

dimensional model would be able to generate Ro-E regime diagrams of the observed

stable azimuthal wavenumbers similar to those produced via the three-dimensional di-

rect numerical simulations.

7.6 Chapter summary

In this chapter, the axisymmetric base flow, linear instability and non-axisymmetric

flow governed by quasi-two-dimensional equations have been examined in detail. There

has not yet been a direct comparison between the axisymmetric solutions and the quasi-

two-dimensional solutions. The primary difference in these flows is that the meridional

circulation is not present in the quasi-two-dimensional solutions as depth independence

is strictly enforced. Most importantly, this means that the Stewartson E 1/3 layer is

not produced in these flows, which has had thought to have implications for the linear

stability of the flow.

Flows with Rossby numbers ranging between −1.0 ≤ Ro ≤ 0.6 and Ekman numbers

between 3 × 10−5 ≤ E ≤ 3 × 10−3 were investigated. The same flow features were
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Three-dimensional solution Quasi-two-dimensional solution
(a) Ro = 0.5, E = 3× 10−3

(b) Ro = 0.5, E = 1× 10−3

(c) Ro = 0.05, E = 8× 10−5

Figure 7.23: Flow conditions of (a) (Ro,E )=(0.5, 3 × 10−3), (b) (Ro,E )=(0.5, 1 × 10−3)

and (c) (Ro,E )=(0.05, 8× 10−5). Axial vorticity contours of the saturated flow states from

the three-dimensional direct numerical simulation and quasi-two-dimensional solutions are

illustrated in the left and right columns, respectively. Contour levels as per figure 7.22.
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obtained between the axisymmetric and quasi-two-dimensional models for small |Ro|
with differences observed at large |Ro|. A shear layer is produced at the disk-tank

interface for positive-Ro flows, which is exhibited by a negative axial vorticity band. For

negative-Ro flows, the axisymmetric simulations exhibit negative axial vorticity patches

on the inner side of the Stewartson layer. This feature is represented by a vertical strand

of negative vorticity on the inner side of the E 1/4 layer due to the depth independence

imposed. The profiles of relative azimuthal vorticity displayed little differences between

the two models. In contrast, the absence of secondary motions in the quasi-two-dimen-

sional model caused a sharp turning point in the axial vorticity profile, which exhibits a

greater magnitude. The similarity in the azimuthal velocity is reflected in the measured

E 1/4 thickness whereby the axisymmetric and the quasi-two-dimensional solutions yield

δvel = 1.31E 0.22 and δvel = 1.32E 0.219, respectively. It is interesting to note that the

thickness relationship for the quasi-two-dimensional model is independent of Ro, rather

than being limited to Ro → 0.

Despite the independence of Ro for the shear-layer thickness, the azimuthal wave-

number preference for the linear instability of the flow remains dependent on both Ro

and E . The growth rate as a function of wavenumber demonstrates the usual trend

of increasing growth rate and corresponding azimuthal wavenumber with increasing Ro

and decreasing E . More importantly, the results only reveal the mode I instability

branch which is associated with the depth independence and reflective symmetry of the

flow. The absence of the mode II and III instabilities reinforce the argument that these

instabilities are generated as a consequence of the breaking of depth independence in the

axisymmetric base flow proposed in Chapter 5. The ratio between the growth rate of

the positive and negative Ro was found to be σpos Ro/σneg Ro = (1+A|Ro|)/(1−A|Ro|).
For positive Ro, this relationship exactly describes the rotation rate of the disk. In

relation to the preferred azimuthal wavenumber, no difference was observed between

positive and negative Ro. The superposition of the axisymmetric base flow and the

perturbation field highlighted the resulting deformed structures which were consistent

with the mode I instability. That is, various polygon shapes were observed with its

borders coinciding with the disk-tank interface. A fit of the azimuthal wavelength as a

function of |Ro|/E 2 suggested that λθ scales with E 1/3/|Ro|1/6. Although it is unknown

whether the 1/3 exponent has any real significance, it is clear that it is not related to

the E 1/3 layer. The same relationship was obtained for the axisymmetric solutions
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which suggest that the E 1/3 has little or no effect on the linear stability of the base

flow.

The effect of smoothing out the imposed velocity forcing was examined, since pre-

vious studies have only considered smoothed forcing profiles. This demonstrated little

influence on the features observed in the axisymmetric base flow. The major observable

difference is seen in the shear-layer thickness. This is reinforced numerically through

the relationship δvel = 1.71E 0.226, which produces a larger thickness for a given E , as

compared to the discontinuous forcing. As a consequence, the thicker Stewartson layer

stabilises the base flow. That is, lower growth rates for the wavenumbers are achieved

along with smaller peak wavenumbers.

The smoothed forcing function was also employed in the non-axisymmetric quasi-

two-dimensional simulations. Consequently, flow conditions near the onset of instability

were found instead to be stable resulting in an axisymmetric flow (due to the thicker

shear layer). In contrast, flow conditions well beyond the instability threshold demon-

strated strong qualitative agreement between the quasi-two-dimensional model and the

three-dimensional direct numerical simulation. Overall, similar trends were seen be-

tween the quasi-two-dimensional simulations and the three-dimensional direct numeric-

al simulations in that increasing Rei causes a shift to lower wavenumbers. These trends

differ to that of the linear stability analysis and are attributed to nonlinear effects. It

was also observed that without the addition of random noise at the initialisation of the

quasi-two-dimensional simulations, the flows required long time periods to produce and

sustain stable polygonal vortex structures.
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Chapter 8

Conclusions and direction for

future research

The flow in a differentially rotating cylindrical container has been numerically investi-

gated. The flow is differentially forced by two disks located flush with the base and lid

of the container. This rotating flow is characterised primarily by two non-dimensional

parameters described by the Rossby and Ekman number. The parameter space largely

investigated in this thesis includes Rossby numbers between −4.0 6 Ro 6 1, and Ek-

man numbers ranging between 5 × 10−5 6 E 6 3 × 10−3. In addition, aspect ratios

ranging between 1/6 6 A 6 2 have been explored. Previous studies relating to the

stability of the flow have predominantly been conducted experimentally with past nu-

merical studies limited to quasi-two-dimensional models only. Thus, the studies have

been limited to investigating only the nonlinear aspects of the unstable flow and largely

in a horizontal plane. The present study delivers the first elucidation of the three-di-

mensional flow including its vertical structure, and the first linear stability analysis of

the axisymmetric base flow to non-axisymmetric disturbances. Furthermore, flow so-

lutions from three-dimensional direct numerical simulation and quasi-two-dimensional

modelling have provided significant insight relating to reported experimental results

and the validity of the simple quasi-two-dimensional model.

The key conclusions from this study are outlined in the following sections in addition

to suggestions for future research. The majority of the results are original and have not

been realised in the literature.
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8.1 Key results from axisymmetric base flow simulations

8.1.1 The vertical structure of the flow and universality of the aspect

ratio

The structures of the axisymmetric base flows produced by a differential rotation in a

cylindrical container have been examined numerically. Distinct features have been ob-

served and have been determined to be dependent primarily on the sign and magnitude

of Ro. For small-|Ro| flows in the positive and negative-Rossby-number regime, the ax-

ial vorticity contours of the flow are depth-independent following the Taylor–Proudman

theorem. The resultant flow illustrates a vertical band of vorticity originating from the

disk-tank interface. As the magnitude of the Rossby number increases in the positive

regime, the negative vorticity band is broken yielding diagonal strands originating from

each disk-tank interface. Thus, the reflective symmetry about mid-depth is broken.

In contrast, sufficiently large-|Ro| flows in the negative regime maintains the reflective

symmetry and demonstrates a pair of positive and negative vorticity structures adja-

cent to the vertical positive axial vorticity band. The breaking of reflective symmetry

is likely a consequence of the axial pumping induced by the Ekman layers over Ro > 0

and Ro < 1/A. That is, the hyperbolic point on the r-z plane at mid-depth becomes

unstable at sufficiently large opposing axial velocities.

The same features were observable throughout the entire range of A. The results

revealed a transition line between reflectively symmetric and symmetry-broken flow,

which is scaled by a ratio of Ro/E 1/2. Equivalently, this corresponds to a Reynolds

number based on the Ekman layer thickness, and the threshold was determined as

ReE ∼ 26.7. Moreover, the relationship is independent of the aspect ratio. A tran-

sitional regime was determined between 26.7 . ReE . 56.4, which encompasses both

reflectively symmetric and symmetry-broken flow.

8.1.2 Scaling of the Stewartson layer thickness

The thicknesses of the Stewartson layers have been determined from the velocity and

vorticity profiles extracted from the flow. The thicker E 1/4 layer was established from

the relative azimuthal velocity profile while the thinner E 1/3 layer was determined from

the axial vorticity profile. For flows characterised by a very small Ro close to zero, the

exponents of the Ekman number was found to be in agreement with the theoretically

predicted exponents. As the Rossby number magnitude is increased, the thickness
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of the Stewartson layer also increases and becomes predominantly dependent on the

Rossby number. In contrast, decreasing the Rossby number yields a thinner shear layer

and becomes dependent primarily on the Ekman number.

The shear-layer thickness as Ro → 0 is also described by δvel ∝ E 1/4 and δvort ∝
E 1/3. However, as the aspect ratio is increased sufficiently, the shear layer becomes

affected by the confining walls. According to the thickness measurements, the shear

layer responsible for smoothing out the angular velocity no longer adopts a thickness

that scales with E 1/4 at A = 2. Interestingly at the same aspect ratio, the thinner

Stewartson layer is still well defined as represented through an Ekman number exponent

of 1/3.

8.1.3 Time-dependent flow structure

Time-dependent flows have been realised at large positive Rossby numbers. With in-

creasing Ro, the axisymmetric base flow transitions from steady-state → periodic →
aperiodic (mixed) state → periodic. The onset of periodic flow originates from the

instability of the axial jets induced by the Ekman layer. The periodic flows before and

after the aperiodic mixed state are different. The periodic flow described by the lower

Ro illustrates negative vorticity strand tips that fluctuate slightly in the radial direction

within a period. Also, the strands do not fluctuate past r = 1 and therefore does not

bypass each other. This is in contrast to the periodic flow characterised by the higher

Ro whereby the strands bypass each other twice per period.

8.2 Key results from the linear stability analysis

8.2.1 Mode I and II linear instabilities

A linear stability analysis revealed two dominant types of linear instabilities, namely

mode I and mode II. The former is associated with the instability of the E 1/4 layer,

while the latter is suggested to be related to the instability of the E 1/3 layer. The two

instability modes are identified by their respective local maxima in the growth rate

data: mode I favours low wavenumbers while mode II has a preference towards higher

wavenumbers. The flow initially becomes unstable to mode I and with increasing Ro or

decreasing E , the growth rate of the mode II wavelengths eventually exhibit the largest

values. The presence of the mode II instability develops from the breaking of depth

independence and reflective symmetry about the horizontal mid-plane in the flow. Both
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instabilities have the similar effect on the axisymmetric base flow such that the shear

layers deform into a chain of vortices in a polygonal arrangement.

8.2.2 Scaling the azimuthal wavenumber against the aspect ratio

It was determined that the thickness of the shear layer at the disk-tank interface was

affected by the confining walls through axisymmetric simulations. This result was also

reflected in the linear stability analysis whereby the larger aspect ratio produced flows

that exhibit small growth rates. In contrast, flows of aspect ratios ranging A . 2/3

generated linear modes that were similar in peak magnitude, despite the corresponding

azimuthal wavenumber being different. This difference could be accounted for by scaling

the azimuthal wavenumber against the aspect ratio (i.e. kA). Thus, given growth-rate

data for a particular flow condition, the growth rates and corresponding azimuthal

wavenumbers can be determined for flows which generate a shear layer unhindered by

the confinement (A . 2/3).

8.2.3 Scaling of the unstable azimuthal wavelength

The preferred azimuthal wavenumbers associated with the mode I instability where

reflective symmetry is exhibited in the axisymmetric base flow are consistent with

those obtained in the negative-Ro regime if the magnitude of Ro is considered. That

is, at low Rei, the predicted linear wavenumber is the same for both the positive and

negative-Ro regime. The preferred azimuthal wavelength of the mode I instability is

described by λθ ∼ E 1/3/|Ro|1/6 for A = 2/3. It is determined that the E 1/3 parameter

is not associated with the E 1/3 Stewartson layer as an almost identical relationship is

obtained from the quasi-two-dimensional model, which does not capture the E 1/3 layer.

8.2.4 The critical Ro/E 3/4 parameter

The threshold of instability was determined to be Roc = 18.1E 0.767 for A = 2/3, which

is in agreement with the theoretical scaling of Roc ∝ E 3/4 and the experimental determi-

nation of Roc ∝ E 0.72 (Früh & Read 1999). The determined relationship corresponds

to a constant Reynolds number whose length scale is based on the thickness of the

Stewartson E 1/4 layer. Hence, the onset of instability is equivalently characterised by

Rei,c = 22.4±0.8. However, since a number of different length, time and velocity scales

have been used to define the governing parameters across the literature, the reported

internal Reynolds numbers have varied. A more consistent comparison was achieved
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by instead considering the critical Ro/E 3/4 parameter. The results from the linear

stability analysis dictate a critical Ro/E 3/4 = 15.8 ± 0.57, which lies in between the

determined values from literature of 15.4 and 16.6. A better indication of the threshold

was determined using a smaller aspect ratio of A = 1/6, which yielded Rei,c ≈ 22.6

corresponding to Ro/E 3/4 = 16.

8.3 Key results from three-dimensional direct numerical

simulation

8.3.1 Significance of nonlinear effects

Flow conditions just beyond the onset of instability have demonstrated a very strong

dominance of linear instability. Thus, the preferred azimuthal wavenumber of these

flow conditions can be accurately predicted by a linear stability analysis. However,

nonlinear effects become significant as the Rossby number is increased or the Ekman

number is decreased further beyond the stability threshold. As a consequence, the

vortices are encouraged to interact and coalesce leading to a larger wavelength structure.

This trend has also been observed in the experiments. Furthermore, flow conditions

that predict a dominant mode II instability via a linear stability analysis revealed the

insignificant contributions from the wavelengths associated with the mode II waveband

in the nonlinear regime. That is, the nonlinear effects always revealed a decay in

the growth of mode II wavelengths. In addition, these rotating flows demonstrated a

high insensitivity to initial conditions. However, hysteresis effects were evident in that

multiple states existed for a single flow condition. This occurred when a flow condition

was changed with an existing saturated flow state being used as the initial flow state.

8.3.2 Experimental implications and limitations

The three-dimensional direct numerical simulation results have demonstrated unstable

growth comprised of two stages: exponential growth and saturation. The exponential

growth phase is accurately predicted by the linear solution obtained via the linear sta-

bility analysis, which describes very small growth rates. Thus, the amplitudes of the

instability are very small and would be very difficult to detect in an experimental set-

ting. This explains why the experimentally determined instability threshold occurs at a

higher Rei as compared to the numerical prediction. In addition, the three-dimension-

al direct numerical simulation results have also demonstrated very small growth rate
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instabilities in the nonlinear regime, which would require an extreme amount of time

for the flow to saturate towards the ultimate stable state in an experiment. This sug-

gests that experimental results reported in the literature thus far may not necessarily

be representative of the eventual stable state. This also explains the discrepancy be-

tween the numerically predicted azimuthal wavenumbers and the observed wavenumber

structures in the laboratory, especially in the vicinity of the onset of instability.

8.4 Key results from quasi-two-dimensional modelling

8.4.1 The vertical flow structure and E
1/4 layer thickness

A direct comparison between the flows modelled by the axisymmetric and the quasi-two-

dimensional model was conducted. The two models exhibited similar flow structures at

small Ro with differences observed at large Ro. This is due to the depth independence

breaking of the flow in the axisymmetric model as compared to the depth independence

is enforced by the quasi-two-dimensional model. Thus, the differences reside at the disk-

tank interface where a column of vorticity was seen in the quasi-two-dimensional model

while the column of vorticity is broken into two diagonal strands the axisymmetric

model. The similarity between the two models is reflected in the measured E 1/4 layer

as Ro → 0, with both displaying very similar coefficients and exponents of E . However,

the thickness of the E 1/4 layer does not vary with Ro in quasi-two-dimensional flows.

This is likely explained by the presence of meridional circulations produced by the

Ekman layers in the axisymmetric simulations.

8.4.2 Significance of |Ro| in describing positive and negative-Rossby-

number growth rates and the preferred azimuthal wavenumbers

The growth rates of non-axisymmetric disturbances on the base flows were obtained

using a linear stability analysis. The growth rate as a function of azimuthal wavenumber

demonstrates the usual trend of increasing growth rate and corresponding azimuthal

wavenumber with increasing Ro and decreasing E . Also, the results only reveal the

mode I instability since the base flows always exhibit reflective symmetry about the

mid-plane, due to the depth independence enforced by the model. Interestingly, the

ratio between positive and negative growth rates for a particular flow can be described

by the disk speed Ω+ ω, provided that the magnitude of Ro is used.

Despite the constant Stewartson layer thickness across Ro, the preferred azimuthal
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wavenumbers predicted by linear stability analysis varies with Ro. In fact, the predicted

wavenumbers between the axisymmetric and quasi-two-dimensional models are exactly

the same. Thus, the quasi-two-dimensional model can be used to accurately describe

the predicted linear instability wavenumber structure associated with the E 1/4 layer.

The corresponding unstable wavelengths are described by λθ ∼ E 1/3/|Ro|1/6, which

is identical in exponents compared to that obtained for the axisymmetric simulations.

Thus, the E 1/3 result is determined not to be related to E 1/3 layer as it is absent in

the quasi-two-dimensional model. In addition, the threshold of linear instability is the

same in both the positive and negative-Ro regimes, namely |Roc| = 18.7E 0.769, which

is comparable to the axisymmetric simulations.

8.4.3 Non-axisymmetric flow structure

Comparisons between the non-axisymmetric structures observed in the three-dimen-

sional and quasi-two-dimensional solutions were performed to elucidate the differences

and the validity of the quasi-two-dimensional model. In using smoothed forcing con-

ditions for the quasi-two-dimensional simulations, the qualitative results demonstrated

strong agreement in the observed stable azimuthal wavenumber provided that the flow

conditions were well beyond the instability threshold. Flow conditions described near

the onset of instability displayed axisymmetric structures with the L2 data providing

no indication of structural change for extremely long time periods. In addition, the

spatial structure between the two models are almost identical with the exception that

inertial-like waves are present in the three-dimensional solution, for which the quasi-

two-dimensional is not capable of capturing. The quasi-two-dimensional model was

able to capture non-axisymmetric structures representative of k 6 5 and illustrated the

same trends observed in the three-dimensional model. That is, either increasing Ro

or E resulted in a decrease in the stable azimuthal wavenumber as a consequence of

nonlinear effects.

8.5 Future research

The present research has revealed the flow structures and transitions in a differentially-

rotating container of various aspect ratios. This thesis reports the first simulations of

the axisymmetric and non-axisymmetric flows within this system. Despite the novel

findings in this thesis, some unanswered questions remain.

293



Axisymmetric base flows described by both positive and negative Ro were thor-

oughly investigated. However, subsequent analysis of the linear stability of the flow

and the nonlinear effects were focused primarily on positive-Ro flows. Thus, additional

studies are required to elucidate trends in the negative-Ro regime. In particular, explor-

ing the mode II instability present at high magnitudes of negative Ro and identifying the

dependence of the Rossby and Ekman number on the preferred azimuthal wavenumbers.

In addition, it would be interesting to verify that the growth rate as a function of az-

imuthal wavenumber is consistent across all aspect ratios provided that the shear layer

is unconstrained by the confinement, similar to that observed for positive-Ro flows. Al-

though the limited results suggest that the trends established in the positive-Ro regime

are also applicable in the negative-Ro regime, the results need to be substantiated.

The study of negative-Ro flows can be extended by analysing the nonlinear effects in

a three-dimensional direct numerical simulation. That is, establishing the prominence

of nonlinear effects in the negative-Ro regime and the presence of inertial-like waves at

large negative |Ro|.

Regarding the linear stability of the flow, it would be interesting to confirm if the

onset of the mode II instability is described by the proposed relationship Romode II ∝
E 2/3, corresponding to a constant Reynolds number based on the thickness of the E 1/3

Stewartson layer. This would reinforce the suggestion that the mode II instability is

associated with E 1/3 layer.

The computational costs required were extremely high in simulating the flow via

three-dimensional direct numerical simulation. As such, it was not possible to explore

all aspects of the three-dimensional flow. In particular, ideally a greater number of

Fourier modes should be implemented to capture the harmonics of the preferred small

wavelength structures and confirm the negligible effect of the mode II linear instabil-

ity in the nonlinear growth regime. Also, flow conditions that exhibit time-dependent

flow characteristics should be further explored to compare against time-dependent be-

haviours reported in the experiments. It would also be interesting to see direct num-

erical simulation being utilised to study the three-dimensional flows at other aspect

ratios, especially those at large aspect ratios where the instability of the E 1/4 layer

is thought to be different or in some cases non-existent. Moreover, investigations into

whether the presence of a sloping bottom demonstrates any major differences beyond

effectively changing the aspect ratio as suggested by the linear stability analysis would
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further the understanding of these differentially rotating flows.
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Appendix A

The Ekman solution

This section details the velocity solution in an Ekman layer, following Pedlosky (1987).

The Ekman layer is a frictional layer which appears on a surface perpendicular to the

rotational vector. Consider an incompressible rotating flow with angular velocity Ω

with a horizontal uniform flow sufficiently far (z → ∞) from a stationary plate at

z = 0. The horizontal velocity is given by u = (u, v, w)(x, y, z) = (U∞, 0, 0). On the

rigid boundary, the velocity components are zero (u = v = w = 0). The equations

governing the flow are given by

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
− fv = −∂P

∂x
+ ν

(

∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2

)

, (A.1)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z
+ fu = −∂P

∂y
+ ν

(

∂2v

∂x2
+
∂2v

∂y2
+
∂2v

∂z2

)

, (A.2)

∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z
= −∂P

∂z
− g + ν

(

∂2w

∂x2
+
∂2w

∂y2
+
∂2w

∂z2

)

, (A.3)

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0, (A.4)

where f = 2Ω represents the Coriolis parameter, P is the kinematic pressure and ν is

the kinematic viscosity. Assuming steady-state flow, and that the components u, v and

w are functions of z only, equations A.1 to A.4 simplify to

w
∂u

∂z
− fv = −∂P

∂x
+ ν

∂2u

∂z2
, (A.5)

w
∂v

∂z
+ fu = −∂P

∂y
+ ν

∂2v

∂z2
, (A.6)

0 = −∂P
∂z

− g, (A.7)

∂w

∂z
= 0. (A.8)

Note that equation A.8 states that w does not vary with z. Given that w = 0 at the

boundary, w is therefore zero everywhere in the flow. Thus, the w∂u/∂z and w∂v/∂z
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terms equate to zero. Since the fluid is homogeneous, the z derivatives of the x and y

pressure gradients are zero. That is, the horizontal pressure gradients are independent

of z. Applying the conditions at z → ∞, the horizontal pressure gradients are given by

0 = −∂P
∂x

, (A.9)

fU∞ = −∂P
∂y

, (A.10)

which are also applicable near z = 0 as the pressure gradients are independent of z.

Thus the governing equations are described by

−fv =
∂2u

∂z2
, (A.11)

fû = ν
∂2v

∂z2
, (A.12)

where û = u− U∞, which represents the departure from geostrophic flow.

Eliminating v from equations A.11 and A.12 yields

d4û

dz4
+
f2

ν2
û = 0, (A.13)

whose general solution is the sum of the four independent homogenous solutions. That

is, the general solution for û is characterised as

û = C1e
(1+i)z/δ + C2e

(1−i)z/δ +C3e
−(1+i)z/δ + C4e

−(1−i)z/δ , (A.14)

where C1, C2, C3 and C4 are constants, with δ =
√

ν/Ω representing the Ekman layer

thickness. The first two terms on the right side of equation A.14 grow exponentially

without bound for increasing z. Thus, the constants C1 and C2 are required to be zero

which also satisfies û = v = 0 at z → 0. Therefore, û is given by

û = C3e
−(1+i)z/δ + C4e

−(1−i)z/δ. (A.15)

Substitution of equation A.15 into equation A.12 yields

v = −iC3e
−(1+i)z/δ + iC4e

−(1−i)z/δ . (A.16)

Applying the boundary conditions at z = 0 (û = −U∞ and v = 0), equation A.16 states

that C3 = C4. Hence, equation A.15 declares that

C3 = C4 = −U∞

2
. (A.17)
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Therefore, the horizontal velocities are given by

u = U∞(1− e−z/δ cos(z/δ)), (A.18)

v = U∞e
−z/δ sin(z/δ). (A.19)

The velocity solutions implies that the flow consists of a uniform geostrophic region for

z > δ while a thin Ekman layer exists for 0 < z < δ.
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Appendix B

Scaling of the governing

equations

This section highlights the process of non-dimensionalising the governing equations of

the flow in a differential rotating configuration using two different sets of reference

scales. The only difference between the two scaling sets is the angular rate used to

scale velocity, time and pressure. That is, either the tank rotation rate or the disk

rotation rate is implemented. The two paradigms and their numerical tractability are

presented here, with the former being adopted throughout the thesis.

Consider a closed cylindrical rotating tank with disks located at the top and bottom

boundaries whose axes are aligned with the axis of rotation. The tank rotates at an

angular speed of Ω, while the disks rotate at a speed of Ω+ω. The tank has dimensions

of Rt, Rd and H, which correspond to the radius of the tank, the radius of the disks

and the height of the tank, respectively. The aspect ratio of the container is given by

A =
H

Rd
. (B.1)

The governing parameters of the flow are the Rossby and Ekman numbers, which are

defined respectively as

Ro =
Rdω

2ΩH
, (B.2)

E =
ν

ΩH2
, (B.3)

where Ω represents the mean rotation rate of the flow. The parameter Ω is calculated

by averaging the rotation rate prescribed in each quadrant in the r-z plane, such that

Ω =
Ω+ Ω+ (Ω + ω) + (Ω + ω)

4
,

= Ω+ ω/2. (B.4)
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The dimensional governing equations describing the conservation of momentum and

mass are written in vector form, respectively, as

∂u

∂t
+ (u · ∇)u = −∇P + ν∇2

u, (B.5)

∇ · u = 0, (B.6)

where u is the velocity field, P = p/ρ is the kinematic pressure, p is the pressure, ρ the

fluid density and ν = µ/ρ is the fluid kinematic viscosity.

B.1 Governing equations scaled by the tank rotation rate

The flow quantities are non-dimensionalised through the following relationships,

u = RdΩû, (B.7)

∇ = ∇̂/Rd, (B.8)

t = t̂/Ω, (B.9)

P = R2
dΩ

2P̂ , (B.10)

where the hat accents denote dimensionless quantities. Substituting equations B.7 -

B.10 into equation B.5 and B.6 yields the non-dimensional governing equations

∂û

∂t̂
+ (û · ∇̂)û = ∇̂P̂ +

ν

R2
dΩ

∇̂2
û, (B.11)

∇̂ · û = 0. (B.12)

The Ekman number definition can be rearranged through the following

EA2 =
ν

ΩR2
d

,

ν

R2
d

= EA2
(

Ω+
ω

2

)

,

ν

R2
dΩ

= EA2
(

1 +
ω

2Ω

)

, (B.13)
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to obtain an expression for ν/R2
dΩ. Similarly, the Rossby number definition can be

rearranged through the following

Ro =
ω

2A
(

Ω+ ω
2

) ,

Ro =
ω

A(2Ω + ω)
,

1

ARo
=

2Ω + ω

ω
,

1

ARo
=

2Ω

ω
+ 1,

ω

2Ω
=

ARo
1−ARo

, (B.14)

to obtain an expression for ω/(2Ω). Thus, the coefficient of diffusion in equation B.11

can be expressed in terms of the governing parameters through equations B.13 and B.14

as

ν

R2
dΩ

= EA2

(

1 +
ARo

1−ARo

)

,

ν

R2
dΩ

=
EA2

1−ARo
. (B.15)

The limitation in the potential Ro range of numerical investigation originates from the

coefficient of diffusion. That is, the coefficient must be positive. Since A and E are

always positive, it is required that the denominator remain positive and must not equate

to zero. Thus, (1 −ARo) > 0 implies the requirement of Ro < 1/A and therefore, this

paradigm is convenient in simulating negative-Ro flows. The resulting non-dimensional

momentum equations expressed in terms of the governing parameters are given by

∂û

∂t̂
+ (û · ∇̂)û = ∇̂P̂ +

EA2

1−ARo
∇̂2

û. (B.16)

It should be noted here that Ro = 1/A is the upper limit of Rossby number, as to

approach this number, the ratio of ω to Ω goes to infinity. That is, ω → ∞ for a

constant Ω.

The following section follows the same procedure presented here except that the

angular speed of the disk is used as the reference scale.
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B.2 Governing equations scaled by the disk rotation rate

The flow quantities are non-dimensionalised through the following relationships,

u = Rdω
∗
û, (B.17)

∇ = ∇̂/Rd, (B.18)

t = t̂/ω∗, (B.19)

P = R2
dω

∗2P̂ , (B.20)

where ω∗ = Ω+ ω represents the angular speed of the disk and the hat accents denote

dimensionless quantities. Substituting equations B.17 - B.20 into equation B.5 and B.6

yields the non-dimensional governing equations

∂û

∂t̂
+ (û · ∇̂)û = ∇̂P̂ +

ν

R2
dω

∗
∇̂2

û, (B.21)

∇̂ · û = 0. (B.22)

The Ekman number definition can be rearranged through the following

EA2 =
ν

R2
d

(

Ω+ ω∗−Ω
2

) ,

EA2 =
2ν

R2
d (Ω + ω∗)

,

ν

R2
d

=
EA2

2
(Ω + ω∗),

ν

R2
dω

∗
=

EA2

2

(

Ω

ω∗
+ 1

)

, (B.23)

to obtain an expression for ν/R2
dω

∗. Similarly, the Rossby number definition can be

rearranged through the following

Ro =
ω∗ − Ω

2A
(

Ω+ ω∗−Ω
2

) ,

ω∗ − Ω = 2A

(

Ω+
ω∗ − Ω

2

)

Ro,

ω∗ − Ω = AΩRo +Aω∗Ro,

Ω(ARo + 1) = ω∗(1−ARo),

Ω

ω∗
=

1−ARo
ARo + 1

, (B.24)
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to obtain an expression for Ω/ω∗. Thus, the coefficient of diffusion in equation B.21 can

be expressed in terms of the governing parameters through equations B.23 and B.24 as

ν

R2
dω

∗
=

EA2

2

(

1−ARo
ARo + 1

+ 1

)

,

ν

R2
dω

∗
=

EA2

ARo + 1
. (B.25)

The limitation in the potential Ro range of numerical investigation originates from

the coefficient of diffusion. That is, the coefficient must be positive. Since A and E

are always positive, it is required that the denominator remain positive and must not

equate to zero. Thus, (1 + ARo) > 0 implies the requirement of Ro > −1/A and

therefore, this paradigm is convenient in simulating positive-Ro flows. Similar to the

paradigm presented in the previous section, the limit of Ro > −1/A corresponds to a

physical situation where the disk speed approaches infinity for a constant tank speed

(i.e. ω/Ω = ∞). The resulting non-dimensional momentum equations expressed in

terms of the governing parameters are given by

∂û

∂t̂
+ (û · ∇̂)û = ∇̂P̂ +

EA2

ARo + 1
∇̂2

û. (B.26)
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