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Abstrat
This is a study of laminar ow around long plates. Two ases are onsidered: the owpast a plate with an aerodynami leading edge and, a retangular ross-setioned plate.An aerodynami leading-edge plate is a natural preursor to the ow past a retangularplate beause the shedding is only from the trailing edge. The ow around retangularplates is more omplex beause it involves the interation between leading- and trailing-edge shedding. Both natural and fored shedding ases are studied. The soure of theforing is a small sinusoidal ross-ow osillation added to the free stream. The aoustiresonane generated when a retangular plate is plaed in a dut is also examined. Finally,a limited study on the transition from two- to three-dimensional ow for these geometriesis presented.In this study, the ow is predited by solving the inompressible Navier-Stokesequations numerially. A ombination of spetral-element and global spetral shemes isused for the spatial disretisation. Two di�erent time stepping methods are evaluated.The numerial sheme is validated by simulating the bakward-faing step ow and thedriven avity ow. Several simulations of the ow around the plates are performed todetermine an adequate domain size and temporal and spatial resolution.The aerodynami leading-edge plates mainly onsisted of plates with elliptialleading edges (5:1 axes ratio). The aspet ratio and Reynolds number varied between3:5 � =t � 12:5 and 200 � Re � 700 respetively ( being the hord and t beingthe thikness). The shedding frequeny is determined in the natural shedding ase andreasonable agreement is found with a orrelation obtained from experimental data athigher Reynolds numbers. In the fored shedding ase, the behaviour of the ow aroundthese plates shows several similarities with that around short blu� bodies. There is onlya small range of frequenies for whih the ow is loked but this range grows with foringamplitude. Outside the lok-in range, the mean base pressure approahes that for theunfored ase but the time varying base pressure trae shows the harateristis of beatingbetween the Strouhal frequeny and the foring frequeny. Within the lok-in range, themean base pressure is very sensitive to the foring frequeny. Two distint ases areiii



observed in the parameter range studied; one that ours for lower Reynolds number orlonger plates, and the other for higher Reynolds number or shorter plates. These twoparameters ontrol the thikness of the boundary layer at the trailing edge whih diretlyinuenes the shedding proess. For most of the lok-in range, both ases show a linearinrease in mean base sution with inreasing frequeny. For the ase with shorter plates(or higher Reynolds numbers), the mean base sution is notieably lower than that of thenatural shedding ase at the lower frequeny end of the lok-in range. The other aseshows a drasti phase shift in shedding relative to the foring whih is assoiated witha drop in mean base sution at the higher frequeny end of the lok-in range. Overallthe drag fore mimis the behaviour of the base sution. Within the lok-in range, thereis a derease in the utuating lift fore beause of a narrower wake. The simulationsshow that the mean base sution in the lok-in range is strongly related to the rate ofgeneration of vortiity (of one sign) and the vortex formation length.The ows around retangular plates with aspet ratios in the range 3 � =t � 16and Reynolds numbers between 300 � Re � 500 are simulated next. Three ases areonsidered: (a) natural shedding; (b) where the ow is fored by a small sinusoidal ross-ow osillation; and () where the plate is plaed in a dut and a ow indued aoustiresonane an our. In the natural shedding ase below a ertain aspet ratio andReynolds number, the ow appears to lok to an impinging leading-edge vortex (ILEV)instability mode. This results in a stepwise inrease in Strouhal number (based on hord)with inreasing aspet ratio. The ILEV instability desribed by Naudasher & Wang(1993) omprises of: (i) the leading-edge shear layer shedding disrete vorties; (ii) theonvetion of these vorties past the trailing edge; (iii) and an aompanying pressurepulse that travel upstream and loks the leading-edge shedding and thus ompletes afeedbak loop. These simulations with a retangular plate shows strong base shedding withvorties forming between the passing of leading-edge vorties. An important onlusionfrom the researh is the proposal that it is the pressure utuations from the base sheddingwhih has a dominant role in ontrolling the leading-edge shedding. A modi�ation tothe original ILEV mehanism to inorporate this is desribed. In addition, both thefored shedding and dut resonane ases are also strongly inuened by trailing-edgeshedding. In the fored shedding ase, the lok-in range is large and the mean basepressure is not strongly sensitive to the foring amplitude and Reynolds number. Theforing frequeny whih results in a peak mean base sution also shows a stepwise response.The dut aousti resonane ase involves a plate plaed in a solid walled dut. Thesound generated by the ow around the plate may generate an aousti resonane in thedut whih loks the ow. The ow-sound interation is modelled using Howe's aoustitheory (Howe, 1975, 1980). The frequeny range where resonane ours also shows astepwise response. In all three ases, the stepping in Strouhal number based on hordiv



is approximately desribed by the relationship St = 0:55n, where n is the step number.This trend mathes experimental observations whih are performed at higher Reynoldsnumbers; espeially for the fored and dut aousti resonane ases. This shows that theessential physial mehanisms involved are aptured in these (low Re, two-dimensional)simulations. The stepwise response in all three ases requires a synhronisation betweenthe leading- and trailing-edge shedding. In the natural shedding ase, this is a result of theow at the trailing-edge sending a pressure pulse to lok the leading edge. In the foredshedding and dut aousti resonane ases, the leading-edge shedding is phase-lokedto the foring/aousti �eld. The peak base sution for the fored shedding ase, andthe resonane range in the dut resonane ase, onsistently ours at approximately thesame phase in the ow yle relative to the foring. To maintain the phase relationshipbetween the leading- and trailing-edge ow, the shedding modes an only inrease byhaving a omplete pair of vorties along the plate. This results in the step hange in theshedding mode one ritial aspet ratios are exeeded. The levels of the steps show thatthe average onvetive veloity of the ow strutures along the plate is approximately55% of the free-stream veloity in all ases. Consistent with this are the alulations ofonvetive veloity along the plate for both the natural and fored shedding ases whihshow that the veloity is not signi�antly inuened by aspet ratio and foring/sheddingfrequeny. The mean base sution and drag are generally stronger at the lower aspetratio end of eah step in both the natural and fored shedding ases. This is a result ofmore ompat vorties forming at the trailing edge at higher foring/shedding frequeny.The utuating lift fore in the natural shedding ase is approximately onstant whihmeans that the fore oeÆient (whih is saled on hord) is inversely proportional toaspet ratio. In the fored shedding ase, the peaks in the utuating lift oeÆient alsoshow a stepwise response. This is governed by the phase at whih the leading-edge vortiespass the trailing edge relative to the generation at the leading edge.Some three-dimensional simulations were performed to apture the main insta-bility modes lose to the onset of three-dimensional ow. For the elliptial leading-edgeplates, the trailing-edge wake vorties develop three-dimensionality similar to the waketransition for a irular ylinder. Both Mode A and B shedding (Williamson, 1988) wereobserved. The transition ours at a muh higher Reynolds number (between Re = 400and 500 for =t = 7:5), ompared with Re = 180 for a irular ylinder. This is presum-ably due to the thiker boundary layers at the trailing edge. For the retangular plate, theboundary layer modes were examined. Experiments indiate the existene of two distintmode topologies (Pattern A and B, Sasaki & Kiya, 1991). The urrent study only foundthe presene of Pattern B. It is unlear why the initial instability mode was not found. Astability analysis is planned to resolve this disrepany.
v
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Chapter 1
Introdution
The study of ow around blu� bodies is one of fundamental importane in uid mehanis.It underpins areas as diverse as wind engineering and strutural loading, automotiveaerodynamis, ross-ow heat exhangers, mixing, maritime transport, sub-sea struturesand ow indued aoustis.Many studies have onentrated on pseudo two-dimensional geometries with shortafter-bodies suh as ylinders, squares or prisms (Roshko, 1961, Bearman & Obasaju,1982, Bearman, 1984, Williamson, 1988). The two- and three-dimensional instabilitiesthat develop in the di�erent ow regimes have resulted in many interesting observations.Long blu� bodies are a natural extension of this work.More reently, there have been studies on high aspet ratio geometries and, inpartiular, long retangular plates. These have the ompliation of vortial ow struturesdeveloping at both the leading and trailing edges. Studies of this ow will need to inludethe interation between them. Although this is a basi geometry and is used to further thefundamentals and understanding, several studies on this partiular blu� body have beeninspired by pratial appliations. These inlude wind struture interations (Nakamuraet al., 1991), heat exhangers (Cooper et al., 1986) and aousti ow ontrol (Stokes &Welsh, 1986).This work is building on many previous experimental observations and someomputational studies done in assoiation with the Department of Mehanial Engineer-ing, Monash University and CSIRO Division of Building, Constrution and Engineering.Welsh & Gibson (1979) and Stokes & Welsh (1986) investigated the ase where the plateis plaed in a dut and develops a strong aousti resonane. Parker & Welsh (1983), andMills (1998) investigated the plate in an open jet wind tunnel with applied aousti for-ing. Cooper et al. (1986) used the aousti foring to try to improve heat transfer. While1
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(b)Figure 1.1: (a) A shemati of the long retangular plate with a sinusoidal perturbationadded to the mean ow and (b) a smoke visualisation from Mills et al. (1995) where anaousti perturbation is introdued by speakers in anti-phase plaed above and below theplate.these studies onentrated on ow indued aoustis and aousti ontrol, the long ret-angular plate has also been investigated for its relevane in wind engineering (Nakamuraet al., 1991, Deniz & Staubli, 1997).A shemati of the general geometry and set up for the ow is shown in Figure1.1(a). The long side of the retangular plate is aligned with the ow. Perturbationsto the mean ow may be added by vibrating the blu� body or adding a ross streamomponent as in aousti ontrol. Figure 1.1(b) is a smoke visualisation from Mills et al.(1995) showing the ow around a retangular plate subjeted to ross-ow perturbations.This hapter will review studies on blu�-body ows with a fous on long retangularplates. These inlude (a) the natural shedding ase whih has no external exitation,2



(b) the fored shedding ase where perturbations are introdued to the ow and () thedut aousti resonane ase. The development of three-dimensional instabilities on blu�bodies at low and moderate Reynolds numbers will also be disussed.1.1 Flow instabilitiesSeveral assumptions are ommonly made when studying fundamental blu� body aerody-namis whih inlude the uid being Newtonian, inompressible and isotropi. This allowsthe uid to be mathematially modelled using the time-dependent inompressible Navier-Stokes equations and is the basis of the stability analysis and the numerial modellinghere. The ow around blu� bodies will eventually reah a steady state below a ritialReynolds number. Any disturbanes either from the initial onditions or imposed on theow will deay or be onveted out of the system and the system will reah an equilibriumstate. As the Reynolds number is inreased past a ritial point, disturbanes are nolonger damped and the ow beomes time dependent. The transition between steady andtime-dependent ow is part of the study of hydrodynami stability.A standard approah is to use the Navier-Stokes equations to predit the be-haviour of a ow represented by the sum of a mean ow plus a perturbation. The equa-tions are linearised with respet to the perturbation and an be used to predit the growthor deay of Fourier omponents. In a loal analysis the ow is assumed to be parallel.The resulting equations are alled the Orr-Sommerfeld equations. The analysis identi�estemporal frequenies and spatial wavelengths that will grow for a given veloity pro�leand Reynolds number. The two possible types of instabilities predited by this analysisare the onvetive and absolute instabilities.The onvetive instability only onvets the disturbane downstream from thesoure. It is not loally self sustaining and will deay if the soure of the disturbane isremoved. The absolute instability is loally self sustaining and the disturbanes propagateupstream and downstream of the soure. The onvetive type of instability is generallyreeptive to a wider range of frequenies than the absolute instability whih is generallyreeptive only over a very narrow band of frequenies. This leads to an absolute instabilitybeing alled an osillator and a onvetive instability a noise ampli�er.There have been several analyses of the wake behind a retangular plate. Theleading edge is assumed to be streamlined and with no upstream disturbanes, the owis parallel at the trailing edge making it an ideal problem for this analysis. Using linear3



stability analysis, Koh (1985) analysed the pro�les in the wake near the ritial Reynoldsnumber. As the Reynolds number is inreased towards the ritial value, regions ofonvetive instability develop. As part of the transition proess, the analysis shows regionswith absolute instability in the reirulating region past the ritial Reynolds number.Hannemann & Oertel (1989) studied the instability by numerially simulating the wakebehind the plate. Initially an arti�ial boundary ondition is imposed along the entrelineto maintain symmetry. This is removed one the ow has reahed a quasi-steady state.After that time there is a linear growth of one pure frequeny before reahing a transitionto saturation and �nally a non-linear saturated state.Several methods have been proposed to predit the frequeny seletion in thelinear regime inluding the initial resonane riterion by Monkewitz & Nguyen (1987) andthe maximum growth riterion by Pierrehumbert (1984). The frequeny of shedding in thesaturated state near the ritial Reynolds number an be predited using Koh's resonaneriteria (Koh, 1985) whih is based on the linear stability analysis. The hypothesis isthat the saturated state is dominated by the loal resonane ourring spatially at thetransition from absolute to onvetive instability. Most simulations and experiments areat a Reynolds number signi�antly larger than the ritial Reynolds number. Althoughthis analysis is stritly appliable only near the ritial Reynolds number, it an be appliedat superritial Reynolds numbers with the assumption that the non-linear saturated stateis still governed by this loal resonane. The theoretial stability analysis has been furtherdeveloped to inlude more physis. While the loal linear stability analysis is based onthe initial growth of disturbanes in parallel ows, the nonlinear saturated state an beanalysed with the Ginsburg-Landau equation. The spatial developing nature of the owwhih is not onsidered in the loal analysis an be analysed when onsidering weakly non-parallel ows and results in the preditions of global instabilities (Huerre & Monkewitz,1990). Wake instabilities are present in most blu� body ows above a ritial Reynoldsnumber. With long blu� bodies, it is possible for the ow to separate at the leading edgeand reattah while shedding large-sale vorties. A detailed investigation into the natureof this separated and reattahing ow is found in Cherry et al. (1984). The instabilitiesinvolved are the Kelvin-Helmholtz instability present in the shear layer and the instabilityausing the large-sale shedding. The nature of the instability auses a weak apping ofthe shear layer and shedding to be irregular. Experiments by Soria & Wu (1992) usedlong retangular plates to isolate any trailing-edge e�ets. The separating and reattahingow is shown to be predominantly onvetively unstable and reeptive to a broad rangeof frequenies. The weak apping of the shear layer without external perturbation ouldbe the result of regions of loal absolute instabilities.4
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Figure 1.2: A sketh of the instabilities developing from a plate with a streamlined and ablunt leading edge, and blunt trailing edges.Figure 1.2 shows the long plates studied and their assoiated instabilities. Withan elliptial leading edge, the instability at the trailing edge results in the lassial Karmanvortex shedding. A retangular plate is di�erent from a irular ylinder in that the bluntleading edge fores the uid to separate at a �xed point forming a shear layer. Theinstability in the shear layer results in it rolling up to form disrete vorties. For a blunttrailing edge, the interation between the leading- and trailing-edge ow strutures willbe explored in this thesis.A losely related instability ours when a loal onvetive instability interatswith a solid boundary downstream. Disturbanes from the objet downstream propagateupstream to omplete a feedbak loop. These types of instabilities our when a jet ora mixing layer impinges on a solid boundary downstream suh a blu� bodies, walls oredges. A lassial example of this is the avity ow where the separating shear layer fromthe upstream edge of the avity interats with the downstream edge. A omprehensivereview is found in Rokwell & Naudasher (1979). The onept of global instability wasassoiated with these sort of ows by Rokwell (1990). This instability is of importane tothe ases with a retangular plate beause the shear layer from the leading edge interatswith either the trailing edge or the sides of the plate. Further disussion on this is inludedwhen the ow around retangular plates is reviewed.1.2 Natural sheddingThis setion fouses on ow over a �xed blu� body. The two-dimensional instabilitiesare reviewed in three setions: the ow strutures developing at the leading edge; trailing5



edge; and the interation between these elements.1.2.1 Leading-edge sheddingIn this ase the ow separates from the edge and forms a shear layer whih reattahesfurther downstream. Above a ritial Reynolds number, the shear layer rolls up intodisrete vorties. In the absene of any ontrolling inuene this shedding is irregular.Cherry et al. (1984) attempted to study the unsteady nature of this ow. The experimentswere performed at approximately Re = 3; 200. Near the separation point, the shear layerexhibits a low-frequeny apping possibly due to hanges to the bubble in the sheddingproess. The growth of the shear layer is similar to a plane mixing layer up to about 60%of the bubble length before being inuened by the reattahment proess. The sheddinggoes through phases of pseudo-periodi shedding of vorties, large sale irregular sheddingand relatively quiesent phases with 'neking' of the shear layer after reattahment. Inthe pseudo-periodi phase, the spaing between the vorties is between 60% to 80% ofthe separation bubble length. Veloity orrelations along the span showed that the owbeame three-dimensional soon after separation and the spawise sales grow linearly untilreattahment. The shedding of large sale strutures does not immediately show threedimensionality although the shear layer is three-dimensional.Sasaki & Kiya (1991) experimented at moderate Reynolds numbers (80 < Re <800) and studied the nature of the reattahment and the resulting spanwise instabilityfrom the shed vorties. The reattahment length reahes a maximum of about 6:5t atRe = 320. This is the onset of the roll up of the shear layer and vorties being shed. Thereattahment length approahes a onstant value of 4:5t for Re > 380. The shed vortiesalso develop spanwise instability whih will be disussed in Setion 1.4.2.Simulations by Tafti & Vanka (1991) studied the reattahment and the shedvorties at Re = 1; 000. Although the alulations were two-dimensional (the shear layerdevelops a strong three-dimensionality), it reprodued some experimental trends suh asshedding frequeny and onvetive veloity.1.2.2 Trailing-edge sheddingWith a streamlined leading edge, ow strutures from the trailing edge an be studiedin isolation. The trailing-edge shedding is a simple blu� body wake with the interationof two boundary layers. The experiment by Eisenlohr & Ekelmann (1988) showed therelationship between the trailing-edge shedding frequeny and the displaement thikness6



of the boundary layer at the trailing edge. The experiment used a laminar boundary layerand aspet ratios of between 50 to 800. The data for all the plates orrelated well withequation 1.1 if the harateristi length was taken to be the plate thikness plus two timesthe displaement thikness of the boundary layer. The non-dimensional relationship wasfound to be Ft0 = �39:2 + 0:286Ret0 (1.1)whereFt0 = ft02�Ret0 = vt0�t0=plate thikness(t) + 2 x displaement thikness(d�).Measurements of base pressure as a funtion of momentum thikness were pre-sented in Petrusma & Gai (1994). An aerofoil leading edge with =t = 10 was used withReynolds numbers of the order of Re = 50; 000. The results were limited to when the mo-mentum thikness was less than 0:05t and the base pressure did not vary signi�antly withsmaller momentum thikness. The mean base pressure oeÆient saturated to p = �0:55for a laminar boundary layer. When the ow is tripped suh that the boundary layer wasturbulent, the mean base pressure oeÆient was p = �0:62.1.2.3 Retangular plateWhile studying the e�et of sound, Parker & Welsh (1983) also noted the di�erent naturalshedding regimes that ourred over a wide range of aspet ratios. Varying the Reynoldsnumber between 14; 800 < Re < 31; 000 showed no signi�ant hange in the ow. Thereare four di�erent vortex shedding regimes for the retangular plate depending on theaspet ratio whih are summarised in Table 1.1 below. A plot of the shedding frequenyas a funtion of aspet ratio is presented in Figure 1.3. The �rst transition is aompaniedby a disontinuous hange in frequeny and is sensitive to external onditions resulting insmall variations between studies (i.e. Okajima et al. 1983 at =t = 2:8, Parker & Welsh1983 at =t = 3:2, Okajima et al. 1992 (numerial) at =t = 2:1) A detailed study ofthe transition from leading-edge shedding diretly into the wake to periodi reattahmentwas presented by Okajima (1982). The transition haraterised by a distint hange inshedding frequeny is dependent on Reynolds number and ours between 2 < =t < 3 but7



asymptotes to =t = 2:8 at high Reynolds numbers. The seond regime (3:2 < =t < 7:6)exhibited a distint shedding frequeny in the wake. This is not present in the nextregime (7:6 > =t > 16) and plates longer than =t > 16 exhibited trailing-edge sheddingindependent of the leading edge. Sine then Nakamura et al. (1991) and many others(Ozono et al., 1992, Naudasher & Wang, 1993) have shown that the seond and thirdregimes, namely aspet ratios between approximately 3 � =t � 15, are dominated by theglobal instability whih synhronises the leading- and trailing-edge shedding at low andmoderate Reynolds numbers.This behaviour is not observed for a rounded leading edge whih undergoes onlyone transition at =t = 1:2 (Parker & Welsh, 1983). This results in a step hange in theshedding frequeny shown in Figure 1.8. Below that aspet ratio, the shear layer fromthe leading edge interats diretly to form the vorties in the wake. Longer plates showedonly trailing-edge shedding.=t Charateristis=t < 3:2 Separation from leading edge never reattahes to theside faesShear layer interats diretly to form vortex shedding.3:2 � =t � 7:6 Separation from leading edge reattahes periodially.Separation bubble grows and envelopes trailing edge.7:6 < =t � 16 Separation from leading edge always reattahes.Vorties randomly generated from leading edge movedownstream and interat with trailing edge produingirregular shedding from the trailing edge.=t > 16 Separation from leading edge always reattahes.Vorties randomly generated from leading edge movedownstream but di�use before reahing the trailingedge.Table 1.1 : Summary of ow regimes for at plate (Parker & Welsh, 1983)The early studies were inspired by the wind indued exitation of bridge deksat relatively low wind speeds. Nakamura & Nakashima (1986) studied retangular, Hand ` ross-setions in both a wind tunnel and a water tunnel with aspet ratios, =tbetween 2.0 and 5.0. In the wind tunnel, the model was free to vibrate (Re = 5; 500)and ow visualisations were performed in a water tunnel (Re = 1; 200). Observation inboth situations for all the blu� bodies showed a feed-bak instability. The H geometryresembles two avities with a ommon bottom plate. The instability in the avity ow wasalled the impinging shear layer instability by Rokwell & Naudasher (1978). This led to8



Nakamura & Nakashima (1986) using the lassi�ation and in their ase the shear layerdoes impinge diretly on the trailing edge. The instability manifested itself by distintivefrequeny seletion. The shedding frequeny shows that the instability is still presenteven with a splitter plate attahed to the trailing edge or the ` geometry at large aspetratios. This shows that the trailing-edge shedding is not a neessity for this one sidedinstability.A detailed study of the retangular plate with =t from 3 to 15 at Re = 1; 000was presented in Nakamura et al. (1991). An analysis of the shedding frequeny showedthat peaks in the spetrum orresponded to a stepwise inrease in Strouhal number basedon hord as shown in Figure 1.3. Eah step orresponded to a shedding mode whih has aStrouhal number base on hord approximately an integer multiple of 0:6. Phase measure-ments along the plate showed that an integer number of vorties, n, developed along theplate. This number, n, orresponds to the shedding mode as represented by the skethin Figure 1.4. The steps in Strouhal numbers (i.e., St = 0:6n; n = 1; 2; ::) orrespondingto the number of vorties along the side, suggests that the average onvetive veloityof the ow strutures along the plate is approximately 60% of the free-stream veloity(elaborated in Setion 4.1.2). At aspet ratios lose to where the shedding mode hanges,namely =t = 8 and 11, two peaks appear in the spetrum. The shedding in those asesswith randomly between the two modes.The theory underlying this global instability was based on the avity ow asdesribed above. The apping of the leading-edge shear layer interats diretly with thetrailing edge of the plate. This leads to the emission of a pressure pulse whih ontrols theevolution of the leading-edge shear layer. This establishes a feed bak loop and loks boththe leading- and trailing-edge shedding after a transient period (see Figure 1.6(b)). Thisstritly only applies to the �rst mode, n = 1, of shedding whih ours for approximately=t = 3�6 (Nakamura et al., 1991). The shear layer rolls up into disrete vorties on longerplates. Instead of the shear layer, the seond (n = 2), third (n = 3) or fourth (n = 4)vortex from the leading edge interats with the trailing edge ompleting the feed-bak loop(see Figure 1.6(b)). A better desription of this global instability that enompasses all themodes is the impinging leading-edge vortex (ILEV) instability desribed by Naudasher& Wang (1993). This was summarised in Naudasher & Rokwell (1994) and disussedby Mills et al (1995) who proposed that this better desribes the instability. A re�nementto the ow lassi�ation by Parker & Welsh (1983) was proposed by Naudasher & Wang(1993) whih inorporated the ILEV instability. The ategories are summarised in Figure1.5 with shorter plates (i.e. =t < 3) alled leading-edge vortex shedding (LEVS) andlonger plates (i.e =t > 16) alled trailing-edge vortex shedding (TEVS). The shorterplates are in the same ategory as short after-body geometries suh as ylinders, squaresand triangles. For the longer plates, the vorties shed from the leading edge are too di�use9
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TEVS, c/ t < 3 ILEV, 3 < c/ t < 16 LEVS, c/ t > 16Figure 1.5: Flow lassi�ation by Naudasher and Wang (1993) for the long retangularplate. The aspet ratios stated are only an approximate.to have any inuene at the trailing edge.These instabilities have been suessfully simulated numerially. Okajima et al.(1990) showed that at =t of 2.8 and 6 there was a distint hange in shedding frequenyand ow pattern between Re = 500 and Re = 1; 200. The shear layer from the leadingedge of shorter plates (=t < 2:8) diretly form vorties in the wake. Above =t = 2:8 theleading-edge shear layer reattahes to form what is now known as the �rst mode (n = 1).Okajima (1990) then showed that this ompared well with experiments. Okajima et al.(1992) performed more simulations at Re = 1; 000 and showed that the �rst step oursat =t = 2:1 in the simulations but =t = 2:8 in the experiment. Ozono et al. (1992)and Ohya et al. (1992) attempted to simulate the observations of Nakamura et al. (1991).The simulations at Re = 1; 000 showed the stepwise hange in Strouhal number based onhord between =t = 3 and =t = 9 as shown Figure 1.3. For longer plates, the system didnot lok into a partiular shedding mode even after several hundred dimensionless timeunits of simulation. The shedding swithed modes at =t = 6 and =t = 8 with the latterrandomly swithing between modes. The lift oeÆient showed that at the start of eahstep (i.e., =t = 3; 6 and 9), the ow was more regular and periodi. As the aspet ratiois inreased, the shedding looses regularity until it loks to the next mode. Nakayamaet al. (1993) performed simulations at Re = 200, 400 and 1; 000 for =t = 3 to 10. AtRe = 200 the was no shedding from the leading edge whih resulted in only a linearinrease in Strouhal number based on hord with aspet ratio. This has been observedexperimentally. The simulations at Re = 400 showed the same stepping at Re = 1; 000but with less irregularity at ertain aspet ratios.Nakamura (1996) showed that the global instability that ontrol the sheddingfrom the plate also inuenes short after-body geometries with splitter plates. Nakamura(1994) experimented on a irular ylinder, half irular ylinder, half irular ylinderonneted to a 2:1 square blok, normal at plate and H setion. The splitter platesextended up to 15 diameters downstream. In general, from measurements of the shedding12



frequeny, the ow gradually swithed from Karman shedding to the �rst mode (n = 1)and then through a frequeny jump orresponding to the transition to the seond mode(n = 2). For the irular ylinder, these transitions ourred at =t = 2:5 and =t = 6:5respetively. These di�er from the retangular plate probably beause of the di�erenes inthe leading-edge shear layer and the absene of trailing-edge shedding. At longer aspetratios, there was no single dominant frequeny. Within the Reynolds number range of1600 < Re < 5300 used in the experiment, this instability was almost independent ofReynolds number but observed more easily at lower Reynolds numbers. The half irularylinder with a retangular blok showed a di�erent trend from the other geometries. TheILEV instability is onluded to result in the shedding frequeny displaying distint steps(i.e St = 0:6n; n = 1; 2; :::). In those ases where the trailing-edge shedding is suppressedby a splitter plate, the interation of the leading-edge vorties past the trailing edge stillfeeds bak to result in out of phase shedding from both sides of the leading edge and thesystem loking to a partiular shedding mode.The feedbak disussed previously relies on a weak pressure pulse to ompletethe loop. Above a Reynolds number of several thousand, the ow does not lok into theseshedding modes (e.g., Stokes and Welsh, 1986 (Re = 15; 000 � 30; 000); Mills et al., 1995(Re = 9; 000); Nakamura et al., 1991 (Re > 2000)). Parker & Welsh (1983) did observe adistintive frequeny in the wake for 3:2 < =t < 7:6 at Re = 23; 700 and ow strutureswhih are similar to the �rst shedding mode (n = 1). Nakamura et al. (1991) proposedthat the ILEV mehanism is still present but too weak to lok the ow at higher Reynoldsnumbers or longer aspet ratios but would manifest itself with additional ontrol of theleading-edge shedding suh as vibrating the plate or external foring. If some externalexitation is present suh as the aousti resonane examined by Stokes and Welsh (1986),or the aousti foring demonstrated by Mills et al. (1995), a similar stepwise responsein St with aspet ratio is observed. This will be disussed in more detail in the nextsetion. At high Reynolds number, where the ILEV instability does not lok the ow, themean base pressure and drag are also not inuened by the ILEV instability. At a �xedReynolds number (Re = 8; 667), the general trend is a inreasing mean base sution anddrag with inreasing hord for 6 � =t � 15 (Mills, 1998). With inreasing aspet ratio,there is less interferene of the leading-edge strutures and more regular vortex sheddingfrom the trailing edge. If the Reynolds number is low enough so that the shedding is lokedto the ILEV instability, the mean base sution and drag is stronger at shorter aspet ratioswithin eah mode (Okajima et al. 1992). This is where the shedding frequeny is higherand the shedding, espeially at the trailing edge, is more vigorous.
13



1.2.4 Summary of feedbak mehanisms in the natural sheddingaseA shemati summarising the proposed ontrolling mehanisms involved in eah of theases disussed above is given in �gure 1.6. The governing mehanisms for long platesdepend on aspet ratio and an be broadly lassi�ed as follows.1. Bodies with an aerodynami leading-edge and blunt trailing edge (�gure1.6a). In this ase only trailing-edge shedding ours. During the formation oftrailing-edge vorties, there is an assoiated lowering of the pressure �eld in theviinity of the trailing edge. This auses a time variation in the pressure �eld at theleading edge whih an a�et the formation of the boundary layer there. However,in this ase, there is no leading-edge shedding to lose the feedbak loop. Thissituation is depited in �gure 1.6(a).2. Bodies of retangular ross-setion of moderate aspet ratio (�gure 1.6b).With a blu� leading edge, the shear layer separates from the leading edge. Forplates of aspet ratio less than =t � 6, the shear layer does not have time to formdisrete vortex strutures before reahing the end of the plate. Instead the appingshear layer periodially reattahes in the viinity of the trailing edge resulting ina modi�ation of the pressure �eld whih, in turn, is propagated bak upstreamto the leading edge of the plate. This an a�et the formation of the leading-edgeshear layer, ontrolling further apping. Hene a feedbak loop an be established.This has been referred to as an impinging shear layer instability by Nakamura et al.(1991), and also ours for a shear layer separating and reattahing to the ornersof a avity.3. Bodies of retangular ross-setion of larger aspet ratio (�gure 1.6). Forlonger plates, the leading-edge shear layer sheds disrete vorties. In this ase, ithas been proposed that the impinging shear layer instability beomes an impingingleading edge vortex instability (Naudasher & Wang, 1993). Here, the pressure pulseprodued when the leading-edge vorties pass the trailing edge perturbs the furtherdevelopment of the leading-edge shear layer, ompleting a feedbak loop that loksthe leading-edge shedding. This mehanism ours for other long blu� bodies suhas ` setions and shorter blu� bodies �tted with splitter plates (Nakamura, 1996).An important fous of this researh, (espeially hapter 4) onerns the situationdesribed in item (3) above. Evidene is provided that the feedbak loop as desribedneeds modi�ation, and that the ontrolling mehanism for ow past a long plate is14
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(a) (b) (c)Figure 1.6: A shemati showing the mehanism involved for (a) trailing-edge vortexshedding (TEVS), (b) impinging shear layer instability and () impinging leading-edgevortex instability (ILEV).di�erent from that for shorter bodies with splitter plates, or ow past wide avities wherethe ILEV instability desription is adequate.1.3 Applied foringIn many situations, the blu� body is not rigid but may exhibit vibrations due to theutuating fores aused by interations with the uid. This introdues added omplexityinluding strutural sti�ness and damping. A simpli�ation when onentrating on theuid mehanis is to apply foring at small amplitudes relative to length sales, pressuresor veloities of the system. This foring an be ahieved by vibrating the blu� body oradding a small perturbation to the free-stream veloity suh as due to aousti foring.A small perturbation either by external foring or ow-indued exitation an result insigni�ant hanges in the ow harateristis.These exitations have been broadly lassi�ed into three separate ategories byNaudasher & Rokwell (1994): namely extraneously indued exitation (EIE), instabilityindued exitation (IIE) and movement indued exitation (MIE). EIE ours when theutuations to the ow �eld and pressure are from an independent external soure suh15



as fored osillations, aousti foring (e.g., Parker & Welsh, 1983, Mills et al., 1995)and the veloity perturbation used in this study. Instability indued exitations (IIE) areaused by instabilities inherent to the ow suh as LEVS, ILEV and TEVS desribed inthe previous setion. Strutures whih vibrate due to uid fores an amplify the foringand experiene MIE inluding phenomena suh as utter and lok-on.1.3.1 Leading edgeSigurdson (1995) studied the behaviour of the leading-edge shear layer to applied foring.The experimental apparatus onsisted of a ylinder mounted oaxially to the ow (i.e.Axis of the ylinder parallel to the free stream). An aousti speaker mounted within theylinder, whih had a small gap at the edge, provided a small loal perturbation. Theexperiments on�rmed many harateristis assoiated with foring applied to the shearlayer, suh as shorter reattahment lengths and stronger surfae pressure utuations. Thepresene of the Kelvin-Helmholtz instability of the shear layer and large-sale sheddinginstability inuened the response to the perturbation. The maximum e�et is observedwhen the foring frequeny is lose to the frequeny of the large sale shedding instability.The shear layer ampli�es a broad band of frequenies from approximately the sheddingfrequeny to the frequeny of the Kelvin-Helmholtz instability.Soria & Wu (1992) studied the shear layer at the leading edge of a retangularplate at Re = 900. A small perturbation is introdued by sinusoidally vibrating the sidewalls of the water tunnel. The experiments showed that the shear layer is onvetivelyunstable and reeptive to a broad range of frequenies. Soria et al. (1993) extended thisto inlude more ow visualisation. The shear layer remained nominally two-dimensionalwith applied foring unlike the unfored ase. Stronger vorties are shed at the foringfrequeny (whih was between St = 0:22 and 0:36) with possible pairing downstream fromthe leading edge.1.3.2 Short blu� bodiesThe absolute instability in the ow near the trailing edge of the plate is similar to thatfor shorter blu� bodies. The response of the ow around short blu� bodies suh asylinders and square setions to small perturbations, typially fored osillations appliedto the geometry, has been well studied. Vortiity is normally shed from a point lose tothe leading edge (LEVS). In line with the theoretial preditions of absolute instability,the shedding only loks to the applied foring in a small frequeny range around thenatural shedding frequeny whih is also known as the resonant point. The lok-in e�et16
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variety of bodies have been shown to experiene an inrease in the magnitude of basepressure inluding irular ylinders (Stansby, 1976, Blakburn & Henderson, 1996), atplates plaed tangential to the ow, D-shapes, and triangular setions (Bearman & Davies,1977). The utuating lift omponent also inreases in the lok-in regime as shown byStaubli (1981) for irular ylinders and Bearman & Obasaju (1982) for square setions.This is due to the vortex strutures inreasing in spanwise orrelation (i.e. suppressingthree-dimensionality) and being more ompat. Applied foring at higher frequenies hasshown to derease base sution to below the natural shedding ase. This inludes squareand triangular setions (Bearman & Obasaju, 1982), and irular ylinders and squaresetions (Ongoren & Rokwell, 1988).A omparison of several geometries has show no general relationship between the'range of apture' and the resonant point (Bearman, 1984). The resonant point is atthe lower end of the lok-in range of apture for a irular ylinder but loated quiteentrally for a square setion. Ongoren & Rokwell (1988) showed lear visualisations ofa phase shift of � between the foring and the shedding as the foring frequeny rossesthe resonant point for a irular ylinder and a triangular setion. There have beenontraditing results for a square setion as the phase shift has been observed in someexperiments (Bearman & Obasaju, 1982, Nakamura & Mizota, 1975) and not in others(Ongoren & Rokwell, 1988). The shift in phase ours over a small frequeny range buthas been shown by Bearman & Currie (1979) to be a ontinuous hange. The phase shiftis losely related to the utuating lift fores and hanges the diretion of energy transferbetween the uid and the blu�-body whih an result in an unstable ondition whereexitation of the body is possible.Experimental observations of ow around a blunt trailing edge by Lofty & Rok-well (1993) showed a behaviour similar to ow around shorter bodies. The retangularedge was osillated in a pithing motion with an amplitude of 4% of the plate thikness.The vortex shedding loked to the osillations when the foring frequeny was within 5%of the natural shedding frequeny. Outside this range, a quasi-periodi state was observedin both veloity and pressure utuations in all ases, with a repeatable pattern after sev-eral shedding yles. The number of yles for repetition to our inreases for frequeniesfurther away from the natural shedding frequeny. Within the lok-in regime, detailedow visualisation showed the phase shift in shedding and the inreasing formation lengthwith inreasing frequeny past the phase shift.
18



1.3.3 Long blu� bodiesThis setion reviews the response of longer plates to small perturbations. Several ofthese studies have used external aousti foring to ontrol the ow whih is analogous tovibrating the body. This is a simpli�ation of the studies involving the blu� body plaedin a rigid walled dut. In that ase, the sound power generated by the ow sustainsa resonane in the dut whih an exert feedbak ontrol on ow. When there is ablunt leading edge, the ILEV instability hanges the response of the system signi�antlyompared with aerofoil or rounded leading-edge plates whih exhibit behaviour similar toshorter blu� bodies.Nakamura & Mizota (1975) experimented on vibrating retangular plates withaspet ratios of =t = 1; 2 and 4. The study was onerned with the galloping instabilityexhibited by the shorter plates (=t = 1; 2) whih is not present with longer plate (=t = 4).The longer plate showed a drasti phase hange between the lift fore and the appliedforing lose to the natural shedding frequeny. Assoiated with this phase hange, theamplitude of the lift fore varies from a minimum below the natural shedding frequenyto a maximum above that frequeny. This results in a small frequeny range just belowthe natural shedding frequeny where energy is transferred from the uid to the struture(a neessary ondition for self exitation).As previously disussed, Parker & Welsh (1983) initially doumented several owregimes with varying aspet ratios in the natural shedding ases. Also inluded in thatstudy was the e�et of sound whih was introdued using two speakers in anti-phaseloated above and below the plate in an open jet wind tunnel. Figure 1.8 shows the rangeof applied frequenies where the ow is reeptive to the aousti �eld. The e�et of thesound was to redue the reattahment length at the leading edge resulting in a greaterurvature of the shear layer and more sution on the surfae. The reattahment lengthalso shortened with inreasing frequeny. The shear layer and the reattahment pointosillated at the applied frequeny and there were pathes of vortiity shed one per ylefrom the leading edge whih were � out of phase between the top and bottom surfaes.This was maintained until the vorties passed the trailing edge resulting in the wake alsohaving the same frequeny as the applied foring.Parker & Welsh (1983) found that applying sound did not have a signi�ant e�etfor the shorter plates (=t < 3:2). The seond regime (3:2 < =t < 7:6) only generateddisrete pathes of vortiity at frequenies whih were signi�antly higher than the naturalshedding frequeny (above line AB in Figure 1.8). Below that, the frequeny in the wakewas lose to that without sound applied. This threshold is independent of the strength ofthe aousti �eld within the range studied. A possible ompetition between the natural19
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shedding frequeny and the applied frequeny is present in this ase. Only one pair ofvorties was observed to be shed along the plate in a yle whih is similar to the �rstnatural shedding mode (n = 1). In the third regime (7:6 < =t < 16), where the owalways reattahes without sound, the ow generated disrete vorties for frequenies largerthan St > 0:05 (lower limit of experiment) with several pairs present along the plate ata given instant. In both the seond and third regimes (3:2 < =t < 16), although theshedding mathed the applied frequeny near the plate at higher frequenies, (above lineCD in Figure 1.8), the wake breaks down to a lower frequeny away from the trailingedge. This was lose to the frequeny without sound for plates in the seond regime(3:2 < =t < 7:6). At higher frequenies but maintaining the same pressure amplitude,more energy is put into the system. This may ause the ow to be reeptive at higherfrequenies but break down away from the plate where the aousti �eld is weaker. Noresults were presented on the inuene of sound for plates longer that =t > 16 andfrequenies higher than St > 0:25 due to experimental limitations.A similar arrangement was used by Cooper et al. (1986) to investigate the e�etsof the sound pressure level and frequeny of aousti foring on the fored onvetionof heat from long retangular plates. A heated plate with an aspet ratio of =t = 9:3was used. The loal heat transfer oeÆient is relatively low in the separated regionand rises to a maximum near the reattahment. When the aousti �eld is imposed,the time average reattahment length dereased with frequeny as in Parker & Welsh(1983) but more signi�antly at lower veloities and higher sound pressure levels. Thedisrete shedding of vorties and the redued reattahment length results in a highermaximum loal heat transfer oeÆient at reattahment and also the overall heat transferoeÆient. The inrease in drag is typially 10% with applied sound and is greater atlower frequenies and wind speeds. If the reattahment length is used as the harateristilength, a simple orrelation exists between the loal Nusselt number (non-dimensional heattransfer oeÆient) at reattahment and the Reynolds number for both ases with andwithout sound for all experimental data. A similar orrelation was found by Ota & Kon(1979) who varied the leading edge shape and MCormik et al. (1984) who varied theangle of attak to ontrol the reattahment length. This suggests that the ontrol of thereattahment length is ruial to eÆient fored onvetion.An extension to the study by Parker & Welsh (1983) to investigate the inueneof aousti foring on base pressure was presented in Hourigan et al. (1993). The windtunnel arrangement was similar to Parker & Welsh (1983). The study involved plateswith aspet ratios of =t = 10, 13 and 15 at a Reynolds number around Re = 9; 000. Carewas taken to show that the pressure oeÆient was not signi�antly inuened by owveloity to show generalisation of results with respet to Reynolds number. To maintaina onsistent aousti �eld, the ratio of the aousti partile veloity amplitude to the ow21



veloity (Euler number) was kept onstant. At =t = 10, the base pressure oeÆientshowed a signi�ant redution lose to the ritial redued frequeny reahing a minimum(maximum sution) at that frequeny (St = 0:17). At =t = 13, there is a reovery of basepressure at this ritial frequeny but two weaker loal peaks in base sution at a lowerand higher frequeny. An inrease in base sution, although not as strong as for =t = 10,is observed lose to the ritial frequeny for =t = 15. In this study it is assumed thatthe onvetive veloity is approximately 75% of the free-stream veloity, so for an aoustiStrouhal number of St = 0:17, the vortex spaing along the plate is approximately 4:5plate thikness. This is approximately the di�erene in aspet ratio between =t = 10and 15 whih in both ases are exited at this foring frequeny. It therefore suggestedthat the aspet ratio inuenes the phase in the aousti yle at whih the leading-edgevorties arrive at the trailing edge. The interferene of the leading-edge vorties and thetrailing-edge shedding is reeted in the mean base pressure oeÆient. Also supportingthis proposition are measurements of utuating veloities in the wake with sound appliedat the ritial frequeny whih show a larger spetral peak when =t = 10 and 15 than at=t = 13, due presumably to more vigorous shedding.Some preliminary results in a water tunnel at a redued Reynolds number ofRe = 1300 to ease visualisation were also inluded. The aousti �eld is simulated byvibrating side walls of the working setion. A sample of the ow visualisation is inludedin Figure 1.14. This showed more oherent shedding when the applied foring is loseto the ritial frequeny. Also observed were large-sale vorties shed from the leadingedge when foring is applied. The trailing-edge shedding is not as lear beause of theposition at whih the hydrogen bubbles were introdued. A similar arrangement was alsoused by Wu et al. (1993) to investigate the spanwise orrelation from a long plate witha rounded leading edge. The aspet ratio was =t = 5 and the experiment arried out atRe = 600. The predominant ow strutures in this ase are from the trailing edge only.Measurements were taken using two hot-�lm sensors loated approximately 3t from thetrailing edge whih were 6t and 9t apart. When foring is applied at the natural sheddingfrequeny, the spanwise orrelation inreased signi�antly from 20% without foring untilsaturating at 90% above a ertain level of foring. The low orrelation in the unforedase is due to phase jitter and the formation of streamwise vorties. The phase jitter isdue to small utuations in shedding frequenies along the span resulting in a di�erentphase of shedding along the span. The spanwise instabilities are reviewed in the nextsetion. The foring auses the phase of shedding along the span to math the foringand suppresses the spanwise instabilities.The base pressure measurements presented in Hourigan et al. (1993) were ex-tended to a wide range of plates, 6 < =t < 16, and for a wide range of foring frequen-ies, 0:13 < St < 0:26, in Mills et al. (1995). A similar open jet wind tunnel arrange-22



ment to Parker & Welsh (1983) was used and the results were obtained at approximatelyRe = 11; 000. The amplitude of the sound pressure level near the speaker was kept on-stant for all plates and frequenies. The aousti partile veloity is zero near the entreof the plate and aelerates around the orners. The veloity amplitude approximately0:1t horizontally from the leading edge without mean ow is 4.5% of the mean veloityfor =t = 10. There are small variations for di�erent plates as the speed up depends onthe aspet ratio of the plate. A plot of the absolute mean base pressure as a funtionof foring frequeny and aspet ratio is presented in Figure 1.9. There are lear disretebands in the parameters where the absolute mean base sution reahes a loal maximum.For eah aspet ratio there is at least one well-de�ned peak. Plate lengths lose to thetransition between modes, suh as for =t = 8, have two less distint peaks. When theStrouhal number based on hord length at whih the mean base sution peaks is plot-ted as a funtion of hord-to-thikness ratio, as in Figure 1.3, a stepwise inrease is alsoobserved. Mills et al. (1995) ompared this with the natural shedding ase of Nakamuraet al. (1991) and the aousti resonane ase of Stokes & Welsh (1986) and suggestedthat the same instability is present. At higher Reynolds numbers the weak ILEV insta-bility is not observed naturally possibly due to turbulene and interations with smallersale strutures. The response of the mean base pressure measurements suggest that thisinstability is exited by the external foring. Smoke visualisation also on�rmed earlierobservations that, over a wide range of frequenies, the ow loked to the foring andresults in the out of phase shedding from opposite sides of the leading edge.Okajima & Kitajima (1993) numerially simulated osillating retangular plateswith =t = 1; 2 and 3 to study the galloping instability. The plates were osillated atan amplitude of 14% of the plate thikness and the ow loked-in over a wide range offrequenies (i.e. from St = 0:076 to St = 0:7, whih was the maximum frequeny usedin the simulation for =t = 1). From the phase of the predited lift oeÆient relative tothe osillations, a narrow range of frequenies around St = 0:1 was shown to be unstable.In that range there is transfer of energy from the uid to the plate. This low frequenyinstability is typial of galloping.1.3.3.1 Dut aousti resonaneThe behaviour of ow around long retangular plates subjeted to aousti foring isrelated to the ase where the ontrol is from an aousti resonane generated by a platein a dut. A vertial array of plates in ross ow are ommonly used in heat exhangersand the interation may exite an aousti resonane (Welsh & Gibson, 1979). Theneighbouring plates are replaed by intermediate dut walls to isolate the soures ofsound for one plate. In these experiments a �xed plate is plaed in a rigid walled dut. A23
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rectangular plate

rigid wallsFigure 1.10: A shemati diagram of a plate in a dut inuened by the aousti resonane.shemati of this layout is shown in Figure 1.10. The sound generated by the ow �eldexites the �-mode whih is the fundamental aousti mode in the ross-ow diretion asde�ned by Parker (1966). For plates with an aerodynami leading edge, a natural aoustiresonane develops when the frequeny of the natural shedding of the body mathes thefrequeny of the �-mode of the dut (Welsh et al., 1984). The strong aousti resonanemay reah up to 145dB and will lok the ow. Compliated dut modes an be generatedin a dut whih may omprise of higher harmonis whih vary in phase along the spanor in the longitudinal diretion. Only the �rst �-mode will be onsidered whih onsistsof a standing wave in the ross-ow diretion with the aousti partile veloity havingan anti-node in the entre and nodes at the dut walls. This results in a predominantlyross-ow perturbation to the ow �eld. Measurements have shown that the aoustipartile veloity inreases near the plate and deays quikly away from the plate in thestreamwise diretion (Welsh et al., 1984).An early investigation involving a long retangular plate in a dut was presentedin Welsh & Gibson (1979). A plate with =t = 5 was plaed in the entre of a squareross-setioned dut resulting in 2.6% blokage. The experiments ranged in Reynoldsnumber between 10; 000 < Re < 40; 000. At low Mah numbers, the frequeny of the �rst�-mode is approximately onstant. The vortex shedding frequeny whih was measuredin the wake inreased with veloity (onstant St). A natural aousti resonane ourredwhen this shedding frequeny was lose to the frequeny of the �-mode. This ourred inthe range of 0:10 < St < 0:12. An exited resonane ourred at a lower veloity wherethe natural shedding frequeny would be about half that of the �-mode. This resulted inthe shedding frequeny nearly doubling to 0:18 < St < 0:21. Flow visualisation showedthat the spaing between vorties along the plate also halved. In both the fundamental25



and high-order resonane, a high sound pressure level developed in the dut. The aoustiresonane is initially exited when the shedding frequeny is lose to a harmoni of the�-mode. These resonane states an also be ahieved by �xing the veloity but startingthe plate o� entred axially and moving it towards the middle of the working setion ofthe dut. In their experimental rig, the sound pressure level reahed a maximum 3 seondsafter the plate ame to rest and a jump in shedding frequeny ourred 112 seonds beforethe maximum sound pressure level was observed. This suggests that the shedding feedsinto the �-mode of the dut whih then develops an aousti resonane. The aoustiresonane then loks the ow to that frequeny thus sustaining the resonane. In theresonane state the ow is in a state similar to the ases where a fored perturbation isapplied. Plates ranging from 0:5 � =t � 16 in length with a rounded leading edge andeither rounded or blunt trailing edges were examined by Welsh et al. (1984). As withthe Welsh & Gibson (1979) study, the veloity in the dut was varied. The Reynoldsnumber was in the range of 22; 500 < Re < 32; 000. The rounded leading edge resultedin no large sale vorties from the leading edge. Unlike the blunt leading edge, no exitedresonane was observed and the natural resonane ourred when the shedding frequenywas lose to the �-mode of the dut. At =t = 16, with a rounded trailing edge, theshedding loked to the dut aousti resonane when the natural shedding frequeny wasbetween 10% below the resonane frequeny (lok-up) to 20% above (lok-down). In thisrange the shedding frequeny is onstant and mathed the �-mode of the dut. Theaousti resonane is weaker when a blunt trailing-edge plate was used. At the sameaspet ratio of =t = 16, the lok-in range was when the natural shedding frequenywas between 7% below the resonane frequeny until approximately the natural sheddingfrequeny. Flow visualisations showed stronger vorties shed from the trailing edge withmore spanwise orrelation in the lok-in range. The maximum sound pressure level didnot vary with aspet ratio for =t > 5 but redued for shorter plates. A swith inshedding modes orresponding to a jump in shedding frequeny was observed for theshorter plates. Leading-edge shear layers shed diretly into the wake when =t < 1 andno aousti resonanes were observed in the range 1 < =t < 1:33 near transition.The seond part of this study presented in Stokes & Welsh (1986) used bluntleading-edge plates. Various plates with either rounded or blunt trailing edges up to=t < 16 were experimented with in the range of 8; 000 < Re < 44; 300. The resonanerange for the various plates are presented in Figure 1.11. Although there were no obvioushanges in the ow, the rounded tailing-edge plates generated higher sound pressure levelsresulting in a learer visualisation of the ow �eld and a larger resonane range. In theseond regime (3:2 < =t < 7:6) lassi�ed by Parker & Welsh (1983), aousti resonaneourred at integer multiples of the natural shedding frequeny. The mehanism involved26
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here is equivalent to that of Welsh & Gibson (1979) whih has been disussed earlier. Thelonger plates (7:6 < =t < 16) whih do not have a dominant natural shedding frequeny,also show a ontinuation of this trend where resonant ranges were approximately multiplesof 0:6 in Strouhal number based on hord. For these plates, the resonane ould be startedfrom the random vorties shed from the plate. One exited, the instability in the ow�eld sustains the resonane ompleting the feedbak loop. In the resonane state the owvisualisation show similar features to aoustially-fored ow. These inlude a shorterreattahment length, a higher base sution and out of phase shedding of disrete vortiesfrom the leading edges whih are phase loked to the foring. As a plate loks to higherStrouhal numbers, more pairs of vorties are observed along the plate whih is similarto the situation for di�erent modes as the plates are lengthened in the natural sheddingase examined in Nakamura et al. (1991). For example, at =t = 9:17, the resonaneranges of 1:3 < St < 1:38, 1:62 < St < 2:09 and 2:42 < St < 2:63 orresponded tomodes n = 2, 3 and 4. The resonant ranges shown in Figure 1.11 also indiate a distintstaging at multiples of approximately St = 0:6. In the natural shedding ase, Nakamuraet al. (1991) also observed the steps in Strouhal number base on hord to have this value.When the Strouhal number based on hord at whih the dut aousti resonane reahesa maximum sound pressure level for the retangular plate is plotted as a funtion of =tas in Figure 1.3, a stepwise inrease is also observed. As disussed by Mills et al. (1995),the ILEV instability ould be exited by the aousti resonane of the dut.An attempt to develop a simple mathematial model for the dut resonane waspresented in Welsh et al. (1984), and Stokes & Welsh (1986). The ow was modelledas an invisid ow ontaining disrete point vorties to model the shed vorties. Thehigh aousti veloities (anti-node) and low aousti pressure (node) observed near thetrailing-edge of the plate suggest that the ow is inuened by the aousti veloity ratherthan aousti pressure. The aousti partile veloity of the resonant mode is assumed tobe approximately a potential ow in the ross-ow diretion varying sinusoidally. This isvalid when the soure region is ompat relative to the dut and the ow is approximatelyinompressible. Using Howe's theory (Howe, 1975, 1980), whih inorporates the ow�eld, the vortiity �eld and the aousti partile veloities, the transfer of energy betweenthe uid and the sound �eld an be dedued. A positive transfer of energy from the ow�eld to the sound �eld is a neessary but not suÆient ondition for aousti resonane asthe damping to the aousti �eld must be onsidered. Aousti resonane is sustainablewhen the aousti power generated mathes that leaving the system. This simple modelan give a qualitative desription of the system. Welsh et al. (1984) used this modelto analyse the trailing-edge shedding from long plates whih had no shedding from theleading edge. The model predits more losses through the ends of the dut for shorterplates resulting in a lower sound pressure level and a smaller resonane range. The28



analysis for a blunt leading edge was presented in Stokes & Welsh (1986). Only leading-edge vorties were onsidered. The generation of sound along the plate is negligiblebeause the vortex trajetory is nearly normal to the aousti partile veloity. The mainsoures or sinks of aousti energy were from vorties passing the trailing edge beausethe vortex path is nearly orthogonal with the aousti partile veloity. The phase in theaousti yle when the vorties pass the trailing edge was found to be the main riteriafor resonane. In a half yle, aousti power is generated or absorbed depending on thephase of the aousti �eld when the vortex passes the trailing edge. This is repeated inthe next half yle for the vortex on the other side. Contributions from pairs of vortiesfurther downstream in the wake approximately annihilate eah other. For a �xed hord,and assuming that the onvetive veloity of these vorties are not a funtion of shedding(dut) frequeny, the phase at whih these vorties enter the wake is ontrolled by theshedding frequeny. Resonane ours when the timing of these vorties (relative to theaousti partile veloity) entering the wake results in a net transfer of energy betweenthe ow to the aousti �eld. The several distint resonane ranges are possible beausedi�erent numbers of pairs of vorties an exist along the plate while still maintaining thisondition.As a method of suppressing the aousti resonane, Stoneman et al. (1988) ex-perimented with using a seond plate plaed downstream. All edges of both plates wererounded with aspet ratios of =t = 813 and =t = 8 for the upstream and downstreamplate respetively. The thikness of the trailing plate was 0:625t of the leading plate andexperiments ranged from 10; 000 < Re < 20; 000 based on the upstream plate. As usual,the trailing-edge shedding from the front plate auses an aousti resonane for a rangeof Strouhal numbers when the shedding frequeny is near the �-mode of the dut. Exper-iments onentrated in suppressing resonane in this range. In this rig, the leading edgealone produes a sound pressure level of 150dB. When varying the distane between theplates, the downstream plate an be a soure or sink of aousti energy and the soundpressure level rises and drops with a period of approximately 3.75 plate thikness of theupstream plate. The aousti resonane an be lowered to 94dB or ampli�ed to 153dB.When the aousti resonane is signi�antly damped, there is a narrower lok-in range.An improved numerial model was developed to simulate and analyse the system. Adisrete vortex model is used to model the ow and the sound �eld is found by solvingthe wave equation whih gives a more realisti aousti partile veloity �eld than thepotential ow model as it simulates the nodes at the dut walls and the anti-nodes alongthe entreline of the plate. The aousti power and energy is alulated using Howe'stheory (Howe, 1975, 1980). The model predits that the suppression or augmentation ofaousti energy depends on the phase of the aousti yle when the vorties from theupstream plate reah the leading edge of the downstream plate. This in turn depends on29



the onvetive veloity of the vorties and the plate spaing. Similar to the single platease, near the leading edge of the downstream plate, the vortex path is nearly orthogonalto the aousti partile veloity reating either a net soure or sink of aousti energydepending on the diretion of the aousti �eld in relation to the sign of the vortiity inthe vortex.A review of experiments involving the interation of the sound �eld and the uidow was presented in Welsh et al. (1990). This inluded experiments on long platessubjeted to external soures of sound and plates plaed in duts whih generated aous-ti resonane. Although high sound pressure levels (i.e. up to 150dB) generated byaousti resonane have an obvious inuene on the ow and an be easily deteted byexperimenters, however, low levels (about 70dB) an also inuene the ow �eld but thepresene of the aousti modi�ation of the ow �eld is not as obvious. The inuene oflow levels of aousti resonane on the ow �eld was shown with rounded leading-edgeplates in solid dut wall at ow veloities well below the ritial veloity where loud aous-ti resonane ours. The authors warn that low levels of aousti resonane an inuenethe results of wind tunnel experiments.1.4 Spanwise ow instabilitiesThe ow over two-dimensional bodies develops three-dimensional or spanwise instabilitiesabove a ritial Reynolds number. There have been many blu� body studies, espeiallyon irular ylinders, at low Reynolds number near the initial transition to three dimen-sionality with the aim of understanding phenomena observed at muh higher Reynoldsnumbers. Apart from being observed experimentally, these have also been suessfullymodelled theoretially and numerially in reent times (e.g., Thompson et al., 1996, Hen-derson & Barkley, 1996).1.4.1 Short blu� bodiesMany studies have onentrated on irular ylinders beause it is a simple geometry withthe only free parameter being the Reynolds number. Although this geometry has beenstudied for a long time, reent attention has been foused in the range of 190 < Re <260 whih spans the onset of three dimensionality. The �rst transition is at Re � 45where the ow hanges from being steady in time to large sale von Karman shedding.The onset of three dimensionality results in distint hanges in the relationship betweenshedding frequeny and base pressure with Reynolds number. The Strouhal number in30



the wake undergoes disontinuities in the Reynolds number ranges 180 < Re < 194 and230 < Re < 260 (Williamson, 1988). These ranges annot be narrowed beause the �rstdisontinuity is hystereti and the seond involves a gradual hange with both frequeniespresent within the range. Measurements of mean base pressure show a drop in basesution at the �rst transition and a loal peak in base sution at the seond transition(Williamson & Roshko, 1990). The drop in mean base sution at the �rst transition isdue to the redued spanwise orrelation. At the seond transition, the primary vortexshedding reovers spanwise orrelation resulting in the peak in base sution before beinginuened by smaller three-dimensional strutures at higher Reynolds numbers. Earlymeasurements by Roshko (1955) and visualisation by Hama (1957) showed the transitionto three dimensionality.A detailed study and lassi�ation of these instabilities was presented inWilliamson(1988). The �rst spanwise instability to develop in the range of 180 < Re < 194 is alledMode A. There is a transfer of energy between the �rst and seond mode, alled Mode Bin the range of 230 < Re < 260 with apparently only Mode B present above this range.Mode B persists well into the turbulent regime although the regularity dereases as theow beomes more turbulent making it more diÆult to visualise. Spanwise orrelationsof the ow for Re > 1; 000 by Wu et al. (1994) learly indiate the presene of ModeB streamwise vortial strutures. Sine the initial lassi�ations, many researhers haveon�rmed the presene of these two transitions. Experiments by Norberg (1994) have alsoon�rmed the presene of theses instabilities. Thompson et al. (1994, 1996), and Hender-son & Barkley (1996) were the �rst to aurately predit these instabilities numeriallyand theoretially. A ombination of ow visualisation from experimental and numerialsimulations by Williamson (1988) and Thompson et al. (1996) shown here in Figure 1.12highlights the vortial strutures of the two di�erent instabilities. The spanwise wave-length of Mode A is approximately 3 to 4 diameters and that of Mode B is about 0:8 to1 diameters (Williamson, 1988).The theoretial predition by Barkley & Henderson (1996) using the Floquet sta-bility analysis has identi�ed the most unstable wavelengths and ritial Reynolds numberfor eah shedding mode. The alulations show the ritial Reynolds numbers for Mode Aand Mode B are Re = 188:5� 1:0 and 259 respetively. At the onset of these instabilities,the spanwise wavelengths are 3:96 � 0:02 and 0:822 diameters for these two modes. Ananalysis by Williamson (1996) linked these wavelengths to di�erent physial strutures.Mode A appears to be an elliptial instability of the two-dimensional vortex ores, whileMode B appears to be an instability of the braid regions between the rollers. Importantly,the di�erent instabilities lead to two di�erent topologies for the modes. For Mode A, thestreamwise vortial strutures onneting the largely two-dimensional vortex rollers arealigned in the downstream diretion so that they are of opposite sign on opposite sides31



Figure 1.12: Visualisation of Mode A (top) and Mode B (bottom) taken from abovethe ylinder. The pitures on the left is from Thompson et al. (1996) in whih traerpartiles are plaed in the simulated ow. The pitures on the right is from experimentsby Williamson (1988).
32



of the wake. For Mode B, the reverse is true; here the strutures are of the same sign oneah side of the wake.These spanwise instabilities have been observed on other short blu� bodies. Nu-merial simulations have been performed on elliptial ylinders, normal at plates andsquares. Although Mittal & Balhandar (1996) mainly onentrated on the numerialsheme and the lift and drag fores on an elliptial ylinder, spanwise Mode B patternswere observed. A at plate normal to the ow was studied by Najjar & Balhandar (1998).A diret numerial simulation at Re = 250 showed the system osillated between a highand low drag state with a period of 10 times the vortex shedding period. The high dragstate had oherent Karman vorties with the presene of well organisedMode B strutureswith a spanwise wavelength of 1:2t. Robihaux et al. (1999) performed a Floquet stabilityanalysis for a square-setioned ylinder. This analysis predited the growth of the �rstspanwise instability at Re = 161 and the seond at Re = 190. The spanwise wavelengthsof the �rst and seond modes were 5:2t and 1:2t and their vortial strutures were similarto Mode A and Mode B respetively. A third instability alled Mode S was also preditedwhih was present above Re > 200 and has a spanwise wavelength of 2:8t. Unlike theother two modes, this instability is subharmoni and has twie the period of the two-dimensional shedding. The numerial simulations by Sohankar et al. (1999) on a squaresetion showed the presene of a both Mode A and Mode B in the three-dimensional waketransition proess.Only the most basi spanwise phenomena are onsidered here. Experiments onblu� bodies, espeially irular ylinders at low to moderate Reynolds numbers, havedemonstrated many other features inluding oblique/parallel shedding, vortex disloationsand ellular shedding. It may be possible to study these numerially or theoretially infuture with improvements in omputing speed and numerial tehniques.1.4.2 Long retangular plateUnlike short blu� bodies suh as the irular ylinder, there has been less interest in three-dimensional transition for ow around long retangular plates. Only vortial struturesfrom the leading edge have been onsidered in detail as their interation with the trailing-edge strutures signi�antly inreases the omplexity. Spanwise instabilities develop inthe large-sale vorties shed from the leading edge at low to moderate Reynolds numbersand the separating shear layer at higher Reynolds numbers.Sasaki & Kiya (1991) observed the ow near the leading edge of long retangularplates in a water tunnel. The plates used had an aspet ratio of =t = 10, 20 and 40 and the33



Pattern A Pattern B
320<Re<380 Re>380

Figure 1.13: A top view of the long retangular plate showing a sketh of the spanwisestrutures of the shed vorties observed by Sasaki & Kiya (1991).Reynolds number range in the experiment was 80 < Re < 800. Clear ow visualisationswere obtained using dye traers and hydrogen bubbles. No large-sale vorties were shedfrom the leading edge below Re < 320. One shedding was observed, the reattahmentlength was approximately 4:5t in this Reynolds number range. Measurements were takenbetween 0.6 to 2 times the re-attahment length. Spanwise instabilities were observedat the onset of shedding. A sketh of the two instabilities observed in this Reynoldsnumber range is shown in Figure 1.13. The �rst mode named Pattern A by Sasaki andKiya (1991) is observed in the range of 320 < Re < 380. Slight disturbanes ouldause the deformation of the vortex ores. This is ampli�ed by high veloity gradientsin the vorties, near the plate and in the shear layer resulting in ^-shape strutures.The streamwise vortex strutures whih our between the two-dimensional spanwisevorties are in phase with subsequent streamwise vorties. The streamwise and spanwisewavelengths are both approximately between 2t and 2:5t. For Reynolds numbers in exessof Re > 380, a di�erent mode beomes dominant whih has been alled Pattern B. Thismode has a wavelength of 3t to 4t in both the spanwise and streamwise diretions. Thestreamwise vorties form hairpin-like strutures whih are signi�antly strethed in thestreamwise diretion. These strutures still form in rows but eah row is staggered withrespet to the next one. The vorties downstream indue the formation of the initiallytwo-dimensional upstream vortex to develop waviness shifted by half a wavelength. Thepattern is less regular with inreasing Reynolds number.Similar spanwise instabilities have been observed in wall bounded shear ows.These are studied in the ontext of transition to turbulene and unlike the plate, there34



is no separation of the shear layer. At suÆiently high Reynolds numbers, slight per-turbations to the boundary layer readily generate Tollmein-Shlihting waves whih aredisrete pathes of vortiity but these waves may also our without perturbation. Three-dimensional strutures an be observed when the perturbation is not uniform along thespan. Using a vibrating trip wire, Perry et al. (1981) observed ^-shape strutures sim-ilar to Pattern A. An alternative struture, alled a subharmoni, has been observed byKahanov & Levhenko (1984) and Sari & Thomas (1984). The vortex pattern hadtwie the wavelength of the Tollomien Shlihting waves beause the hairpin strutureswere staggered between rows in the streamwise diretion. Both patterns were observedbefore turbulent transition further downstream. At higher Reynolds numbers when theboundary layer is turbulent, Head & Banyopadhyay (1981) have observed hairpin vorties.The separating shear layer prior to reattahment and the shedding of large salevorties exhibit three-dimensional instabilities at higher Reynolds numbers. As observedby Cherry et al. (1984), at Re = 3; 200 the shear layer develops three-dimensionalitysoon after separation and the spanwise orrelation dereases with the development ofthe shear layer. The e�et of higher Reynolds number and smaller sales is to blur thevisualisation of oherent strutures; the same applies to the large sale shedding at higherReynolds numbers. Without any perturbation, lear ow strutures were not observedfor ow over a retangular plate at Re = 900 by Soria et al. (1993) and at Re = 1; 300 byHourigan et al. (1993). The random development of three-dimensional strutures in theshed vorties leads to smaller sale strutures downstream. Although some horseshoe-likestrutures ould be observed further downstream, the pattern is not lear and regular.A ow visualisation by Hourigan et al. (1993) in Figure 1.14(a) show the randomness ofspanwise strutures without foring. Regular large-sale vortex strutures would not beexpeted at higher Reynolds numbers.1.4.2.1 Fored sheddingExperiments by Soria et al. (1993) and Hourigan et al. (1993) inluded spanwise owvisualisation of ow around long retangular plates in a water tunnel. Perturbations areapplied by osillations of the side walls of a water tunnel. The veloity amplitude nearthe walls was vpert = 5% of free-stream veloity in Soria et al. (1993). Two-dimensionalvortex ores develop from the shear layer and spanwise vortex strutures develop in arepeatable manner aross the span. Staggered horseshoe strutures were observed over awide range of frequenies (0:22 < St < 0:36) used in the experiment. Clear visualisationwas obtained by Hourigan et al. (1993) at the same level of perturbation. Figure 1.14(b)shows the ow pattern at an applied perturbation frequeny of St = 0:20. Together witha shorter reattahment and stronger shed vorties, the applied perturbation also auses35



(a)

(b)

Figure 1.14: Flow visualisation from Hourigan et al. (1993) showing the side and top view(not at the same instant) of a retangular plate (a) without applied perturbation and (b)with applied perturbation at St = 0:2the formation of staggered horseshoe-like strutures.
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Chapter 2
Numerial Tehniques
Many previous studies on the ow around retangular plates, espeially those with appliedforing have been done experimentally. This study aims to simulate some of the experi-mental observations and test some hypotheses previously proposed or suggested by others.Although the maximum Reynolds number is more limited in the numerial simulations,it is hypothesised that the important ow physis an still be aptured. Comparison withexperimental results will be used to test this laim. Numerial simulations also hope togive more insight into the physis of the problem by providing detailed time-dependentdata. Diret numerial simulations with no sub-grid sale or turbulene models are usedto aurately model the ow. As the geometry being studied is a moderately simple one,a high-order spatial sheme an be used without signi�ant ompliations. A high-ordersheme uses less nodes to ahieve the same resolution, and if well implemented, an resultin a redution in memory and omputational requirements. A unstrutured spetral-element tehnique is used for spatial disretisation in two dimensions beause it allowsfor mesh exibility and an ahieve a high order of auray. As the geometry is onlytwo dimensional, a Fourier expansion is used to extend the model to three dimensionsbeause it is easy to implement and is omputationally eÆient. A lassial three-steptime-splitting sheme is used to advane the simulation in time.This hapter will desribe both the temporal and spatial disretisation used inthis study. A desription of the boundary onditions used in the numerial model isinluded. To test the auray of the model, two benhmark problems were used tovalidate the sheme, namely the bakward-faing step ow and the driven avity ow.To aurately simulate the ow over a retangular plate, the size of the domain and therequired spatial and temporal resolution are determined. A desription of the appliation37



of Howe's aousti model is given. Finally, other post-proessing steps are also eluidated.2.1 Numerial shemeThe main software used in this study implements a numerial solver for the time-dependentinompressible Navier-Stokes equations. These onsist of the momentum equation�u�t = �(u � r)u�rp + 1Rer2u; (2.1)and the inompressibility onstraint r � u = 0: (2.2)As will be disussed in the following setions, the spatial derivatives are evaluated usinga mixture of spetral-element and global spetral disretisations while the equations areintegrated forward in time using a lassial three step splitting sheme. This program is amodi�ation of �nite-element software to inorporate high-order interpolation within eahelement. It was mainly developed by Mark C. Thompson and Kerry Hourigan from theDepartment of Mehanial Engineering, Monash University. This software was initiallydeveloped to study ow past a irular ylinder and has aurately modelled the spanwiseinstabilities at low Reynolds numbers (Thompson et al., 1994, 1996).2.1.1 Spatial shemeThe spatial disretisation is based on a two-dimensional spetral-element sheme. This isextended into the spanwise diretion using a global Fourier spetral sheme. The spetral-element tehnique was �rst applied to the study of uid dynamis by Patera (1984).Sine then, further re�nements have been introdued by Karniadakis (1989, 1990). Thetehnique employed in this study is similar to that used by Karniadakis & Triantafyllou(1992) to simulate three-dimensional blu� body ows. Initially, this setion will reviewthe spetral-element sheme used for the two-dimensional simulations and then desribethe extension to three dimensions through a Fourier expansion.2.1.1.1 Two-dimensional disretisationTraditionally, the �nite-element method has found favour beause of its ability to han-dle omplex geometries. Typially �rst- or seond-order elements are used beause thissheme is more omputationally eÆient using these elements. A global spetral method38



(Canuto et al, 1988) an ahieve \spetral onvergene" when implemented orretly buthandles only the simplest of geometries without signi�ant ompliations. The spetral-element tehnique is a hybrid of these two tehniques. The spetral-element method isessentially a modi�ation of the Galerkin �nite-element method to inorporate a spetralexpansion within eah element. When a problem results in a ontinuous and smoothsolution, the spetral-element tehnique an ahieve exponential onvergene, with signif-iant savings in omputations over high-order �nite element tehniques espeially whenhigh auray is required. The end result is a high-order spatial sheme that inorporatesmuh of the ability of the �nite element tehnique to handle geometries.The main di�erene between the traditional Galerkin �nite-element method andspetral-element method is in the hoie of basis funtions. After mapping the elementsto a omputational square, the spetral-element tehnique uses the tensor produt ofhigh-order Lagrangian polynomials to interpolate the solution variables in eah diretionwithin eah element. Importantly, within eah loal element, the nodes are hosen to beat the Gauss-Lobatto-Legendre quadrature points whih are the roots of the equation,(1� �2)P 0m(�) = 0 with � 1 � � � 1 (2.3)where the Legendre polynomials arePm = 12mm! dmd�m (x2 � 1)m where m = 0; 1; 2; :: : (2.4)The nodes are strethed towards the boundaries of eah element as shown in Figure 2.1and Figure 2.3(b). Typially between 6th (m = 6) and 12th (m = 12) order polynomialsare used, resulting in an equivalent order of auray, and hene between N = 7 to 13nodes in eah diretion. The Galerkin weighted residual method is used to form equationsfor the solution variables at the nodal points. The momentum equations are multipliedby the nodal weighting funtions, in this ase the assoiated Lagrange polynomials, andintegrated over all spae. Beause the weighting funtions are only non-zero within theelement, the resulting integrals only depend on the loal and neighbouring elements.These integrals are evaluated numerially by Gauss-Lobatto-Legendre quadrature. Itturns out that this is muh more eÆient omputationally than the normal �nite-elementapproah of using Gauss-Legendre quadrature. For Gauss-Lobatto-Legendre quadraturethe weighting oeÆients are given bywj = 2m(m + 1) 1[Pm(xj)℄2 with j = 0; 1; ::; m: (2.5)This allows an integral to be evaluated by the following approximation :Z 1�1 f(x)dx �= NXj=1wjf(xj) (2.6)39



and is exat if f(x) is a polynomial of degree 2N �3 or less. (This is slightly less auratethan for Gauss-Legendre quadrature where the approximation is exat for polynomials ofdegree 2N � 1 or less.)Earlier implementations of these shemes positioned the nodes at the Gauss-Lobatto-Chebyshev points (Patera, 1984, Karniadakis, 1989) but later used Gauss-Lobatto-Legendre points (Karniadakis, 1990, Karniadakis & Triantafyllou, 1992). This is mainlybeause the ompression of the nodes towards element boundaries is not as severe.Using Lagrange polynomial basis funtions and loating the nodes at the Gauss-Lobatto-Legendre points leads to signi�ant omputational bene�ts. Only a limited num-ber of nodes in an element ontribute to the equations formed at a partiular node. Forexample, the \Mass" matrix is diagonal whih markedly improves the eÆieny of time-stepping problems. This is not the ase for traditional �nite-element implementationswhere Gauss-Legendre quadrature is used. Stati ondensation tehniques further re-due the omputational requirements. This tehnique takes advantage of the fat thatthe equations for the internal nodes in eah element are only a funtion of the elementboundary nodes. This allows the matrix equations to be deoupled into two sets; oneinvolving the element boundary nodes, and K small matrix equations for the internalnodes of eah element. After solving the larger matrix equation governing the boundarynodes, the K smaller matrix equations are inverted to provide the solution at the internalnodes. Bandwidth minimisation shemes an redue the bandwidth of the matries andsparse matrix solvers are used to solve the large system of equations involved. If thegrid, physial onstants and timestep are �xed, the matries are deomposed using LUdeomposition at the start of the simulation and stored in memory. Impliit steps (i.e. forpressure and di�usion) are done by baksubstitution from the stored LU deomposition.2.1.1.2 Spanwise disretisationAn eÆient way to extend the method to three dimensions for two-dimensional geometriesis to use a global Fourier spetral disretisation in the third diretion. This approah wasused in onjuntion with a spetral-element method by Karniadakis (1990) and speif-ially on two-dimensional irular ylinders by Karniadakis & Triantafyllou (1992) andThompson et al. (1996). This global spetral approah has the advantage of exponentialor spetral onvergene but restrits the boundary onditions in the spanwise diretionto be periodi.The spatial disretisation onsists of a series of F equi-spaed planes in the span-wise diretion with an idential spetral-element mesh on eah plane. The ow variablesare transformed into Fourier spae in the spanwise diretion for eah node on the spetral-40



element grid. A fast Fourier transform is used to redue the operation ount. This de-ouples the problem into a set of F Fourier modes whih an be solved independentlyfor the linear operators. This results in the generation of F=2 smaller matrix equationsrather than one large matrix equation with a large bandwidth whih would onsiderablyinrease the storage requirements. The deoupling of the problem into e�etively F=2 two-dimensional planes and the use of stati ondensation for the spetral-elements disussedin the previous setion failitates the implementation on parallel arhiteture mahines.This has not been implemented yet but is work in progress. In the future with advanes inomputational performane, it will soon be possible to perform aurate simulations withspetral-element disretisation in all three dimensions. Although this is signi�antly moreomputationally expensive, it will allow three-dimensional geometries to be simulated.2.1.2 Temporal shemeThere are many tehniques for integrating the Navier-Stokes equations forward in time.The three step time-splitting tehnique desribed in Karniadakis et al. (1991) is wellsuited to the spatial tehnique used here. It splits the Navier-Stokes equations into threesub-steps and allows a mixture of impliit and expliit high-order temporal shemes tobe used for eah sub-step. The momentum equations are split into three semi-disreteequations, namely the non-linear onvetive step,u� � un�t = �u � ru; (2.7)the pressure orretion step, u�� � u��t = �rpn+1; (2.8)and the di�usive step un+1 � u���t = 1Rer2u; (2.9)where the supersripts n and n + 1 refers to the time level at the start and end of thetimestep respetively. This tehnique introdues two intermediate ow �elds (i.e. u� andu��). The pressure (pn+1) is obtained by enforing inompressibility at the end of steptwo (Equation 2.8).The onvetive equations are non-linear and are normally solved expliitly usingthe Adam-Bashforth family of shemes to avoid iterations but this restrits the maximumsize of the timestep. The di�usive step an be solved impliitly using the Adam-Moultonfamily of shemes resulting in a Helmholtz equation whih is solved by inverting theequation matrix. The spetral-element spetral sheme used for the simulations desribedhere uses the third-order Adam-Bashforth sheme for the non-linear step and the seond-order Adam-Moulton (Crank-Niholson) sheme for the di�usive step. For the pressure41



step, the seond intermediate ow �eld (u��) is fored to satisfy the inompressibilityonstraint. As a result the pressure an then be found by solving a Poisson equation,r2pn+1 = 1�tr � u�; (2.10)and subsequently the pressure sub-step is used to �nd (u��). When u�� satis�es theontinuity equation then un+1 also satis�es that ondition (provided the initial �eld isdivergene free).2.1.3 Boundary onditionsTypially, the equation for the onvetive sub-step is applied to the entire domain inlud-ing the boundary nodes and no boundary onditions are presribed in this operation (i.eu� is not �xed at the boundaries). The pressure boundary ondition is hosen so that thethe seond intermediate veloity �eld, u��, is divergene free everywhere in the domainand also at the boundaries. Boundary onditions are imposed on the �nal veloity �eld,un+1 when solving the Helmholtz equation for the di�usion step. This ensures that theveloity boundary ondition is satis�ed at the end of this timestep and the start of thenext. As shown by Karniadakis et al. (1991), an appropriate hoie of boundary ondi-tion for the pressure gradient normal to the boundary is required to eliminate the splittingerrors and ensure ontinuity is satis�ed at the boundaries. A stable formulation is pro-posed in Karniadakis et al. (1991) whih uses the ow �eld from previous timesteps toform a ondition for the normal pressure gradient at the boundary. As shown by Karni-adakis et al. (1991), the order of the time-marhing sheme an only be one order abovethe order of extrapolation used to �nd the pressure boundary ondition. The numer-ial sheme used in this study uses a �rst-order pressure boundary ondition resultingin overall seond-order time-aurate sheme (onsistent with the order of the di�usionsub-step).2.1.4 Stopping riteria for temporal evolutionIn the present study, generally only the asymptoti state is of interest. Simulations arestarted with either a stationary uid or a ow �eld whih has reahed an asymptoti stateat a lower Reynolds number. Care is taken to asertain if the ow has reahed an asymp-toti state. This sometimes required between several hundred and several thousand timeunits to be simulated before this is ahieved (Typially there are 100 or more timestepsper time unit). The ow is judged to have reahed a steady state if the maximum hange42



in the veloity �eld (�u) per timestep is four orders of magnitude below the mean owveloity. When the asymptoti ow is not steady, a key indiator suh as the total kinetienergy or the base pressure is monitored. The possible unsteady states observed in theseows inlude a periodi state where the ow is repeatable every period, a quasi-periodistate in that there are a few frequenies present and a haoti or random state where thereare many frequenies present. The ow is assumed to have reahed a periodi state whenthe indiator shows a repeatable pattern over several periods. When the ow reahes aquasi-periodi state, the signal is usually repeated after a muh longer time interval thanin the previous ase. In this ase, the simulation is evolved until several periods of thelongest wavelength is aptured and show a repeatable pattern. In the last ase, the statis-tial properties of the signal suh as the mean and the standard deviation are alulatedand the simulation is stopped after these properties are approximately onstant (takenover several data sets).2.2 ValidationTo validate the ode and investigate typial grid resolutions required, two lassial testproblems are studies: namely, ow over a bakward-faing step and the driven avity ow.These are two distint problems in that the ow over a bakward-faing step involves aninow and an outow boundary, while the driven avity ow is a losed system. Thedriven avity ow problem is also used to investigate the possibility of using a di�erentimpliit sheme for the non-linear substep namely the Runge-Kutta sheme. This isstudied beause the onvetive step is done expliitly and an improved sheme ouldredue the timestep restrition.2.2.1 Bakward-faing step owThere are numerous studies involving this partiular problem as this is used as a benh-mark problem to verify numerial methods for omputing ows. Results from Kim &Moin (1985), and Gresho et al. (1993) will be used as validation. Simulations from Kim& Moin (1985) are hosen beause results are presented for a wide range of Reynolds num-bers using a time-dependent solver. A detailed study of this problem at Re = 800 waspresented by Gresho et al. (1993). Using various spatial shemes inluding the spetral-element method, Gresho et al. (1993) showed that at Re = 800, the ow is steady andstable to perturbations. Gresho et al. (1993) showed that if the ow is not well resolved,the spetral-element method (as well as other shemes) an predit an arti�ial unsteadybehaviour even after a long simulation time. The resolution used in this study mathes a43
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Figure 2.1: A layout for the 'ow over a bakward-faing step' problem (above) and thespetral-element mesh used for the simulation (below). Note that within eah spetral-element there are 8� 8 nodes (N = 8).resolution used in Gresho et al. (1993) to produe a onsistent result at Re = 800. It isassumed that this will also be able to resolve the ow at lower Reynolds numbers. As isommon pratie, the reattahment length of the separation bubble formed in the wakeof the step will be used for omparison.The parameters for this problem is hosen so as to math Kim & Moin (1985)and Gresho et al. (1993). A layout of the ow over a bakward-faing step problem isshown in Figure 2.1. It involves a two-dimensional hannel of height H and an inow onthe left boundary above a step of height h and outow some distane downstream. Noslip boundaries are applied to the top and bottom of the hannel and the step. In thispartiular study, the step height is hosen to be half the hannel height and the outowboundary to be 17H downstream of the inow boundary although Kim & Moin (1985)used a shorter domain (15H). The inow veloity pro�le has a paraboli pro�le whihapproximates a fully developed laminar hannel ow at the entry to the expanded region.The paraboli pro�le is, u(y) = (24y(12 � y); 0); y 2 (0; 0:5); (2.11)where y is the vertial distane above the step. The paraboli pro�le hosen has an averageveloity of one unit. The Reynolds number is based on the average inow veloity andthe hannel height H. The normal gradients for all ow variables are set to zero at theoutow boundary.Simulations were performed at Reynolds numbers of Re = 10; 100; 200; 400 and800. The spetral-element mesh used for this problem onsisted of a 32 � 4 (K = 128)regularly spaed element with 8 � 8 (N = 8) nodes in eah element as shown in Figure2.1. The simulations were started with the ow �eld from a lower Reynolds number andstopped when the ow reahed a steady state. Figure 2.2 shows the streamlines of the44



ow at eah Reynolds number after the ow has reahed a steady state. The reattahmentlength, r, is measured by searhing for the point where the ow swithes diretion alongthe �rst layer of nodes from the bottom boundary. Table 2.1 show a omparison ofreattahment lengths, r, between the present simulations and previous studies . The twosets of results show only a small di�erene. A possible soure of error other than fromthe numerial sheme is the method used for measuring the reattahment length. Thespaing between the �rst layer of nodes and the boundary and the horizontal spaing ofthe nodes are di�erent for the di�erent shemes. This may have a small inuene on theresults. Re r=h (Present Study) r=h (Comparison)10 0:81100 3:19 3:2 (Kim & Moin, 1985)200 5:39 5:3 (Kim & Moin, 1985)400 8:61 8:6 (Kim & Moin, 1985)800 12:05 12:2 (Gresho et al., 1993)Table 2.1: Comparison of reattahment length and between the present study and Kim& Moin (1985) and Gresho et al. (1993).2.2.2 Driven avityThe lassial driven avity ow problem onsists of a square domain with three stationarywalls and a 'sliding lid'. The 'sliding lid' is normally the top boundary having a uniformtangential veloity. A sketh of this is show in Figure 2.3(a). The Reynolds number isbased on the length of the domain and the veloity of the lid. The veloity singularity atthe top orners where the lid meets the stationary walls auses problems with high-ordershemes. Some regularisation is required to avoid loal arti�ial osillations in the veloity�eld but only a small amount of regularisation is needed. A veloity pro�le for the lid ishosen so that it is uniform for a large proportion of the lid but deays to zero lose theedges where it meets the stationary walls and is also ontinuous in the �rst and seondspatial derivatives. The veloity pro�le is:u(x) = ((1� exp(�20(1� x2)))3; 0); x 2 (�1:0; 1:0); (2.12)where x is the horizontal distane along the lid. This veloity pro�le is used for both thespetral-element and global spetral shemes.The driven avity ow problem is also a ommonly onsidered benhmark problemand been used by many authors to validate numerial shemes. In the steady state regime,45
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(e)Figure 2.2: Streamline plots for ow over a bakward-faing step at Reynolds numbers(a) Re = 10, (b) Re = 100, () Re = 200, (d) Re = 400 and (e) Re = 800.
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the results will be ompared to Ghia et al. (1982) beause results were presented for awide range of Reynolds numbers. It is one of the earlier studies whih presented detailedresults for the driven avity ow using a steady solver and many others have sine usedit for omparison. Above a ritial Reynolds number, the driven avity ow will notasymptote to a steady solution. The time-dependent solution an be periodi, quasi-periodi or haoti. In this ow regime the spetral-element simulations will be omparedwith results from a global spetral sheme. The global spetral ode was also used todevelop and test a modi�ed time-splitting sheme that uses the Runge-Kutta shemeinstead of the Adams-Bashforth sheme for the onvetive term.The mesh used for the spetral-element simulation onsisted of am 11� 11 (K =121) elements with 10�10 (N = 10) nodes within eah element as shown in Figure 2.3(b).The elements are strethed towards the boundaries in both diretions by loating the edgesof the elements at the Chebyshev olloation points. Figure 2.4 shows the streamlines ofthe driven avity ow at various Reynolds numbers. For Re = 1; 000, 5; 000 and 7; 500,the ow reahed a steady state. At the higher Reynolds numbers of Re = 10000, 14; 000and 17; 000 the streamlines are a snapshot in time as the ow does not reah a steadystate.2.2.2.1 Steady stateSimulations were performed using the spetral-element sheme at a Reynolds number ofRe = 100, 400, 1; 000, 3; 200, 5; 000 and 7; 500 whih orresponded to results presentedin Ghia et al. (1982). The simulations were started using the results from the next lowerReynolds number exept for Re = 100 whih was started using a stationary veloity �eld.The ow �eld was integrated until a steady state solution was ahieved (i.e. �u=�t < 10�6for the entire domain) whih required several thousand non-dimensional time units ofintegration. The simulations were performed using a timestep of �t = 0:0012. Suh asmall timestep is a result of Courant restrition from the expliit step in the time-marhingalgorithm due to the �ne spatial resolution. Although Ghia et al. (1982) presented resultsat Re = 10; 000, those results were obtained using a steady state solver. When using thistime-dependent solver, the highest Reynolds number at whih the solution asymptotes toa steady state is Re = 8; 000. At the next inrement in Reynolds number, Re = 8; 125,the solution asymptotes to a periodi state. This was the ase even after several thousandmore time units were simulated with the ow in a periodi state. This is in lose agreementwith the analytial work of Poliashenko & Aidun (1995) whih predited the ow beomingunsteady above Re = 7763 with the small di�erene in the transition Reynolds numberpossibly due to the regularisation used in the lid pro�le for the simulations.47
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Figure 2.3: (a) A shemati of the driven avity ow, (b) the spetral element mesh and() the global spetral mesh.
48



(a) (b)

(c) (d)

(e) (f)Figure 2.4: Streamlines plots of the driven avity ow at (a)Re = 1; 000, (b)5; 000,()7; 500, (d)10; 000, (e)14; 000 and (f)17; 000. Note: Blak lines are positive streamlineswhih start at 0:01 with inrements of 0:02. Grey lines are negative streamlines whihstart at �0:001 with derements of �0:001. These values are non-dimensionalised withthe avity length and the lid veloity. 49
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Figure 2.5 shows a omparison of veloity pro�les at various Reynolds numberswith those from Ghia et al. (1982). Figure 2.5(a) shows the pro�le of the horizontalomponent of veloity taken vertially aross the entre of the avity while Figure 2.5(b)shows the pro�le of the vertial omponent of veloity taken horizontally aross the entreof the avity. Also shown are the minimum and maximum veloities within eah pro�lefound by Ghia et al. (1982). In this omparison, the two separate simulations produegraphially idential veloity pro�les. The magnitude and loation of the maximum andminimum veloities found by Ghia et al. (1982) are also onsistent with the present sim-ulations. Although there is a small amount of regularisation of the veloity pro�le of the'driving lid', the e�et on the overall ow �eld appears to be small.2.2.2.2 Global spetral shemeA global spetral sheme was developed to study the pratial implementation of a Runge-Kutta sheme for the non-linear term. A global spetral sheme is used beause it is asimpler sheme to implement and the spetral onvergene allows spatial error to bemuh smaller than the temporal errors. The global spetral sheme was developed underthe guidane of Dr. Paul Morris who was formerly with the Department of MehanialEngineering at Monash University and is urrently at Kodak (Aust.). The implementationand results aquired have been published in Tan et al. (1998).An outline of the spatial tehnique is presented in Canuto et al. (1988). As theow is wall bounded, a Global-Galerkin tehnique is employed with Chebyshev polyno-mials used to interpolate the ow variables in both diretions within the domain. Thisnode positioning is ideal for studying this problem as the natural ompression towards theboundaries improves the resolution of boundary layers. Other polynomials ould be usedbut the Chebyshev polynomials have traditionally been favoured beause a Fast Fouriertransform exists to onvert between real and polynomial spae and, of ourse, they exhibitspetral onvergene. Although a Fast Fourier transform exists, for the large grids usedin the omputations, an optimised matrix multipliation routine is found to be faster forderivatives alulation. Although the operation ount is higher, the transform method isslower beause of the numerous logial operations and reordering of the matries requiredby this method. Shen (1991) also found the matrix multipliation to be faster whenstudying the regularised driven avity using a similar spetral method. A diret matrixmethod also allows any arbitrary resolution to be used rather than powers of two. Theimpliit steps are performed using a matrix diagonalisation tehnique given by Canuto etal. (1988).The lassial time-splitting sheme (Equations 2.7, 2.8 and 2.9) uses the Adam-51



Bashforth family of shemes to advane the onvetive step as shown in Karniadakiset al. (1991). As this is an expliit step, the Courant stability limit restrits the max-imum allowable timestep espeially for �ner grids. For �nite di�erene disretisationof the onvetion or di�usion operators on an equi-spaed grid, the maximum timestepwhen using fourth-order Runge-Kutta sheme is approximately seven times larger thanfor the third-order Adams-Bashforth sheme (Canuto et al., 1988). Although the fourth-order Runge-Kutta sheme requires approximately four times more omputation than thethird-order Adams-Bashforth sheme, an overall saving is gained from the less restritivetimestep. This led to the investigation into the use of the Runge-Kutta sheme insteadof the Adams-Bashforth sheme.The initial attempt was for eah timestep to advane only Equation 2.7 (theonvetive term) with the fourth-order Runge-Kutta sheme and then solve Equation 2.8and 2.9 using the same method desribed earlier. This led to results whih were moredissipative than expeted. For example this partiular problem was found to asymptote toa steady solution at Re = 10; 000 while the spetral-element sheme using the traditionaltime-marhing algorithm and a predition by Li�man (1996) both showed the ow toasymptote to an unsteady state. The error resulted from the Runge-Kutta step whihis meant to advane the equation a full timestep rather than to an intermediate veloity�eld(u�). In other words, it leads to a splitting error. When the Runge-Kutta shemeis applied to Equation 2.7 and summed with Equation 2.8 and 2.9, the result is not theoriginal Navier-Stokes equation but instead a similar equation ontaining some spuriousterms. This was realised after tests showed that the onvergene was less than �rst-orderin time. To overome this problem, a modi�ed time-splitting sheme is developed to or-retly implement the Runge-Kutta sheme to advane the non-linear term. The temporalshemes for the pressure orretion step and the di�usion step remains the same. Thissheme basially advanes all three terms within eah Runge-Kutta sub-step. As all theequations do not expliitly depend on time, a memory eÆient Runge-Kutta sheme de-sribed in Canuto et al. (1988) is used. The resulting algorithm is shown below.Set u = unFor k = s; 1;�1u��un�t=k = �u � ruu���u��t=k = �rp r�u�� = 0u�u���t=k = 12 Re(r2u +r2un)End ForSet un+1 = u:The order of the Runge-Kutta sheme is set to four (s = 4) for all the simulations. The52



global spetral sheme produes results whih were onsistent with the spetral-elementsheme and Li�man (1996) when the above algorithm was used. Simple onvergenetests showed that this sheme is seond-order aurate when using a �rst-order pressureboundary ondition. A omparison between the global spetral tehnique and the spetral-element tehnique for the driven avity ow in the unsteady regime will be presented inthe next setion.2.2.2.3 Time dependene of High Re avity owThis setion presents a omparison between the time-dependent harateristis of thedriven avity ow predited by the spetral-element tehnique and the global spetraltehnique. For this partiular problem, both shemes predited the system evolved toa steady state for Reynolds number up to Re = 8; 000. Additional simulations wereperformed at Re = 9; 000, 10; 000, 12; 000, 14; 000, 15; 000, 16; 000 and 17; 000 with thedi�erent shemes for omparison. The total kineti energy is used to ompare the separatesimulations beause it is a global measurement whih provides and indiation of the stateof the ow. This method has been used previously for studying driven avity ow, e.g.,Shen (1991), Li�man (1996), and Tan et al. (1998). The total kineti energy of the owis de�ned as, E(t) = Z 12 juj2dA; (2.13)with the integration over the entire domain. For the spetral-element simulation, thisintegral is performed using the Gauss-Legendre-Lobatto quadrature within eah elementand then by summing over all elements. In the global spetral ase, the integral is obtainedby transforming the �eld into Chebyshev spae where �nding the integral is only a simplearithmeti operation.The global spetral simulations were performed on a 80 � 80 grid as shown inFigure 2.3() with a timestep of �t = 0:0025. To asertain that this resolution is suÆient,a 100 � 100 simulation was performed at the highest Reynolds number. The di�erenein the statistial properties in the kineti energy trae was less than 2%. The spetral-element simulations were performed on the same grid used for the steady state ase butthe timestep redued at Re = 12; 000, 14; 000, 15; 000, 16; 000 and 17; 000 to �t = 0:008,0:008, 0:006, 0:006 and 0:005 respetively. The simulations were performed until anasymptoti state was reahed and then the evolution of the kineti energy is reordedover approximately 300 time units. For those ases where a periodi state is attained,the period was also reorded. Additional results of the global spetral simulation an befound in Tan et al. (1998).
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Re Spetral-Element Global SpetralMean Period Std. Dev. Mean Period Std. Dev.9; 000 4:551� 10�2 2:28 7:380� 10�6 4:536� 10�2 2:28 7:357� 10�610; 000 4:523� 10�2 9:349� 10�6 4:472� 10�2 9:338� 10�612; 000 4:347� 10�2 1:48 1:381� 10�5 4:388� 10�2 1:47 1:351� 10�514; 000 4:172� 10�2 1:652� 10�5 4:188� 10�2 1:637� 10�515; 000 4:070� 10�2 1:60 1:938� 10�5 4:078� 10�2 1:58 1:833� 10�516; 000 3:986� 10�2 2:128� 10�5 3:940� 10�2 1:831� 10�517; 000 3:861� 10�2 7:407� 10�5 3:850� 10�2 8:421� 10�5Table 2.2: Mean, Standard Deviation and Period of the kineti energy trae at variousReynolds number from the spetral element simulation and the global spetral simulation.The mean, standard deviation and period of the kineti energy trae is sum-marised in Table 2.2. The results ompare well with deviations not exeeding 3% in mostases. This is likely due to the di�erent spatial and temporal errors from the di�erentshemes and numerial round o�. The larger di�erene in the standard deviations atRe = 16; 000 and 17; 000 is beause at those high Reynolds numbers the kineti energytrae ontains many wavelengths. A muh longer time series has to be analysed to reduethis unertainty.2.2.2.4 Runge-Kutta versus Adams-BashforthAfter implementing the di�erent shemes for advaning the non-linear term and showingthat the results for both shemes are onsistent, a omparison was made of the perfor-mane of both shemes. Both time-marhing shemes were implemented with the globalspetral disretisation and several simulations were performed to assess the omputationalost and timestep restrition.In terms of operation ount, to perform one timestep using the fourth-orderRunge-Kutta sheme is approximately equivalent to performing four omplete timestepsusing the Adam-Bashforth sheme. Simulations of the driven avity ow with varioustimesteps showed that the stability limit of the fourth-order Runge-Kutta sheme is ap-proximately 6 times larger than using the third-order Adam-Bashforth sheme. This isapproximately onsistent with theoretial preditions for a �nite di�erene sheme on aonvetive equation disussed earlier. The storage requirements of the two shemes areequivalent when using the memory eÆient Runge-Kutta sheme. This result shows thatthe Runge-Kutta sheme an be more eÆient if simulations are performed with muhlarger timesteps. 54



However, when taking larger timesteps, the overall auray of the sheme mustalso be onsidered. Both shemes use a �rst-order pressure boundary ondition and aCrank-Niholson sheme for the di�usion term whih restrits them to be seond-orderaurate in time. This means that the larger timesteps with the Runge-Kutta sheme inura larger temporal error. Attempts to inrease the order of the sheme by using a seond-order pressure boundary ondition and a third-order Adam-Moulton sheme instead of theCrank-Niholson tehnique signi�antly redues the stability of the overall sheme. Thetreatment of the pressure boundary ondition requires extrapolating veloity �elds fromprevious timesteps; however inreasing the order of the pressure boundary ondition thisway redues the overall stability. This is also the observation of Karniadakis et al. (1991).Using the third-order Adam-Moulton sheme is expeted to redue the stability althoughit is an impliit sheme as theoretial preditions show that it is not unonditionally stablelike the Crank-Niholson sheme.Weighting the ost between a lower operation ount and the larger errors, thespetral-element ode used for the simulations in the following hapters has not be mod-i�ed to inorporate the Runge-Kutta sheme. The Runge-Kutta sheme would be usedif the order of auray of the overall sheme was improved without su�ering from aredued maximum timestep. The main ause of this redued timestep is from the im-plementation of the pressure boundary ondition. With further development, it ould bepossible to formulate a stable pressure boundary ondition that better suits the Runge-Kutta sheme. Even reently, seond-order time-aurate shemes are still used by manyauthors (Sohankar et al., 1999, Najjar & Balahandar, 1998, Barkley & Henderson, 1996).2.3 Flow around long platesThis setion will present the preliminary work performed for the simulation of ow pastlong plates. The two geometries studied are an elliptial leading-edge plate with a blunttrailing edge, and a retangular plate. This setion will inlude a desription of thedomain and boundary onditions used. Several simulations were performed to verify thatthe omputational domain is large enough. A domain whih is too small signi�antlyinuenes surfae pressures due to blokage and therefore hydrodynami fores on theplate. Simulations with di�erent resolution and timesteps are performed to verify thatthe resolution is suÆient.
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Figure 2.6: The omputational domain for (a) the retangular plate and (b) the elliptialleading-edge plate. The omputational mesh for () a plate with =t = 10, (K = 562)and (d) an elliptial leading-edge plate with =t = 7:5, (K = 557).(e) A sketh showingan elliptial leading-edge plate with an an axes ratio of a:b and an aspet ratio of =t.
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2.3.1 Computational domain and boundary onditionsA sketh of the omputational domain is shown in Figure 2.6(a) and Figure 2.6(b) for aretangular plate and a elliptial leading-edge plate respetively. With the ow diretionfrom left to right, the inlet, top and bottom boundaries are set to a free-stream onditionwhih has a unit veloity in the horizontal diretion. The normal gradients for all veloityomponents are set to zero at the outow boundary on the right. The veloity on theplate is set to zero. In those simulations where foring is applied to the ow, a sinusoidalross-ow omponent is added to all the free-stream boundaries. The resultant boundaryondition is, u(t) = (U1; Ao sin(2� St t)); (2.14)where St is the non-dimensional foring frequeny. In later hapters, the phase in theforing yle used to desribe the di�erent times in a period is based on the sine wave.Figure 2.6() and Figure 2.6(d) shows typial spetral-element grids used for thesesimulations. The elements are onentrated towards the plate. The elements are strethedtowards the plate from the top, left and bottom boundary using a osine strething fun-tion. The �rst few elements from the boundary are merged to redue the overall numberof elements. Between the plate and the outow boundary, this strething was found tobe too severe and to better resolve the wake, a hyperboli sine strething funtion asdesribed in Thompson et al. (1985) was used. To redue the overall number of elements,they are adapted to a oarser mesh away from the wake in the ross-ow diretion. Theelements are gradually adjusted from an elliptial leading-edge geometry to a irularboundary for the elliptial leading-edge plate.The square edges on the plates are disontinuities that restrit the spatial onver-gene rate of spetral-element sheme. However this e�et is loal and does not degradethe auray of the ow �eld away from these points. A higher onentration of elementsare plaed near these points to redue this e�et.The simulations are normally started from a stationary state. The solution froma lower Reynolds number is used if one is available. The ow starts shedding betweenapproximately 80�150 time units depending on the Reynolds number. Typially the owis evolved for another 100 time units to allow it to settle to an asymptoti state. In thoseases where foring is applied, the solution of the unperturbed ow is used as an initialondition.Extending the model into the spanwise dimension is urrently restrited only toperiodi boundaries (e�etively an in�nite ylinder) by using a Fourier series. The freeparameters in this ase are the number of Fourier planes and the size of the spanwise57



domain.2.3.2 Domain sizeWhen simulating visous ows over blu� bodies, the size of the domain signi�antlyinuenes the surfae pressure on the body (Barkley & Henderson, 1996). As the two-dimensional simulations aim to generate quantitative results of the pressure and foreson the plate, it is important to determine the required size of the domain in order toredue this e�et below a ertain tolerane. Several simulations were performed on theow over an elliptial leading-edge plate to asertain the required domain size. This sizewas then tested on the retangular plate. These tests were performed without externalforing and at a low Reynolds number of Re = 300 where the ow strutures are largerand the overall system is more a�eted by lose boundaries. The resolution near the plateis approximately the same for all the domain sizes tested. The next setion will show thatthis resolution is adequate.For the two geometries in this study, there are three parameters that govern thesize of the domain. From Figure 2.6 these are: l1 is the distane from the inow to theleading-edge of the plate, l2 is the distane between the top or bottom boundary to theplate and l3 is the distane from the trailing edge to the outow boundary. All distanesare normalised by plate thikness.In the three-dimensional simulations, the omputational domain on eah spetral-element plane is muh smaller than for the two-dimensional simulations. This redues thesize of the problem to a manageable one. These omputations are aimed at simulatingthe qualitative ow strutures. A restritive domain may a�et pressure measurementsbut should not signi�antly inuene the large sale ow strutures. The majority of thethree-dimensional simulations were with the spanwise domain of 2� t wide.2.3.2.1 Elliptial leading-edge plateSimulations were performed on the elliptial leading-edge plate with a 5:1 axes ratio andan overall aspet ratio of =t = 7:5. The domain has a rounded inow boundary hene l1is equivalent to l2. This results in only two free parameters. At this Reynolds number,the ow asymptotes to a periodi state. The mean base pressure (measured at the entreof the trailing edge) and the peak-to-trough is reorded in Table 2.3 for omparison.On inreasing the size of the domain, the results onverged to a mean base pressure ofp = �0:274 and a peak-to-trough value of 0:050.58



l2 l3 Mean p Peak-to-trough10 4 -0.450 0.08514 6 -0.353 0.08120 10 -0.311 0.07222 12 -0.283 0.05524 15 -0.279 0.05728 20 -0.273 0.05440 27 -0.274 0.05140 40 -0.273 0.05160 60 -0.274 0.050Table 2.3: The mean base pressure and peak-to-trough base pressure di�erene for variousdomain sizes.It is important to model the essential physis in the two-dimensional simulations.A small error due to boundary proximity is aeptable so that less elements are required;espeially far away from the plate thereby speeding up omputations and allowing alarger parameter spae to be studied. It was deided that an an error of less than 2%would be tolerated as this is omparable with other unertainties whih inlude modellingassumptions and numerial error.l2 Mean p Peak-to-trough12 -0.292 0.04220 -0.277 0.05427 -0.275 0.05340 -0.273 0.051Table 2.4: The mean base pressure and peak-to-trough base pressure di�erene with l3�xed at 40. l3 Mean p Peak-to-trough28 -0.277 0.05434 -0.275 0.05440 -0.273 0.051Table 2.5: The mean base pressure and peak-to-trough base pressure di�erene with l2�xed at 20.To determine the required distane for l2 and l3, initially l3 is �xed at 40. FromTable 2.4, a distane of l2 = 20 would be suÆient to redue the errors due to the59



boundaries below the aeptable limit. Next l2 is �xed at 20 and various values of l3are experimented on. From Table 2.4, a distane of l3 = 28 appears to be adequate.Subsequent simulations with elliptial leading-edge plates were performed using l2 = 20and l3 = 28.2.3.2.2 Retangular plateThe retangular plate geometry with =t = 10 is tested with this domain size to determineif it is adequate. This domain size is ompared with another whih is 5 units larger ineah diretion. Simulations at a higher Reynolds number of Re = 400 is also used asnumerous simulations will be performed at that Reynolds number. At the lower Reynoldsnumber of Re = 300, the base pressure shows a regular periodi signal but at Re = 400,the signal is not perfetly periodi beause the system is not as strongly loked into apartiular shedding mode. Therefore the peak-to-trough base pressure di�erene is notpresented at Re = 400. From the base pressure preditions show in Table 2.5, the smallerdomain appears to be adequate and was used in further omputations.Re l1 l2 l3 Mean p Peak-to-trough300 24 20 28 -0.334 0.074300 29 25 33 -0.341 0.071400 24 20 28 -0.482400 29 25 33 -0.487Table 2.5: The mean base pressure and peak-to-trough base pressure di�erene for owaround a retangular plate simulated with two di�erent domain sizes at Re = 300 and400.2.3.3 Spatial and temporal resolutionSimulations were performed on the same grid as in the previous setion but the numberof nodes in eah element was inreased to determine the resolution required to adequatelyresolve the ow. The domain size determined previously was used in these simulations.The grids for the retangular plate and the elliptial leading-edge plate is shown in Figure2.6() and Figure 2.6(d) respetively. The investigation will involve both the natural andfored shedding ases. Base pressure measurements are used for omparison. When thespatial resolution is inreased, the size of the timestep needs to be dereased beause ofthe stability restritions imposed by the Courant stability restrition.60



For the elliptial leading-edge plate, the simulations were performed on a platewith an elliptial (5:1 axes ratio) leading edge and a overall aspet ratio of =t = 7:5.The simulations were performed at a Reynolds number of Re = 500 for two di�erentresolutions. At this Reynolds number, the system reahes a periodi shedding state.Idential meshes were used, one with a lower resolution of 7 � 7 (N = 7) nodes perelements and the other higher resolution simulation had 9�9 (N = 9) nodes per elements.A timestep of �t = 0:007 was used for the lower resolution and �t = 0:004 for the higherresolution. The results of base pressure preditions as shown in Table 2.6 below on�rmsthat the lower resolution is suÆient to resolve the ow at this Reynolds number.N �t Mean p Peak-to-trough7 0.007 -0.439 0.1359 0.004 -0.438 0.134Table 2.6: The mean base pressure and peak-to-trough base pressure di�erene at twodi�erent resolutions for a elliptial leading-edge plate at Re = 500.To ensure that this resolution was suÆient when applied foring is introdued,the same geometry was simulated at a Reynolds number of Re = 500 with a sinusoidalforing in the ross-ow diretion added to the free stream with an amplitude of vpert =2:5%. A foring frequeny of St = 0:2025 was used beause it loks the ow and produethe strongest mean base sution within the range tested. Again the simulations wereperformed on an idential domain but at two resolutions. The lower resolution used 7� 7(N = 7) noded elements and the higher, 9 � 9 (N = 9) noded elements. The timestepfor eah simulation were �t = 0:007 and �t = 0:004 respetively. Table 2.7 show thepredited base pressure. Again, this indiates the lower resolution is suÆient to resolvethe fored shedding ase.N �t Mean p Peak-to-trough7 0.007 -0.592 0.30510 0.004 -0.585 0.309Table 2.7: The mean base pressure and peak-to-trough base pressure di�erene at twodi�erent resolutions for a elliptial leading-edge plate at Re = 500 with a sinusoidalross-ow.A limited number of simulations were performed at a Reynolds number of Re =700. At this partiular Reynolds number, the same mesh was used but the resolutionwithin eah element was inreased to 8 � 8 (N = 8) nodes and the timestep redued61



to �t = 0:005. To verify that this resolution was adequate, a simulation with 10 � 10(N = 10) nodes with a timestep of �t = 0:003 was performed. The results from Table2.8 indiate that the lower resolution is adequate.N �t Mean p Peak-to-trough8 0.005 -0.582 0.28810 0.003 -0.583 0.286Table 2.8: The mean base pressure and peak-to-trough base pressure di�erene at twodi�erent resolutions for a elliptial leading-edge plate at Re = 700.A similar experiment was performed on the retangular leading-edge plate atRe = 400. The di�erene in this ase was that a sinusoidal osillation with an amplitudeof vpert = 2:5% was applied to all free-stream boundaries. The simulations were arriedout using 7� 7 (N = 7) and 9� 9 (N = 9) noded elements with a timestep of �t = 0:007and �t = 0:004 respetively. The ow generates stronger vorties when foring is appliedtherefore a resolution that suÆiently resolves this ow an resolve one without appliedforing. Figure 2.7 shows a plot of the mean base pressure oeÆient for various foringfrequenies. The lower resolution appear to be able to resolve the ow.Subsequent simulations with various geometries are performed using grids with asimilar resolution near the plates and 7� 7 (N = 7) noded elements. A timestep of �t =0:007 is maintained for those simulations. This orresponds to between approximately700 to 1200 timesteps in a typial shedding period. Tests have shown that inreasing theresolution only hanged the properties of the base pressure by less than 2%.2.4 Post-proessingOne the simulations are performed in subsequent hapters, results are presented whihanalyse the results of the simulations. From the vortiity �eld, the movement of the vortexores an be traked and the irulation evaluated. The appliation of Howe's aoustimodel is also done as a post-proessing step. The tehniques used to implement theseproedures are outlined in this setion.2.4.1 Vortex oresThe shed vorties an be traked over some time interval to gain more insight into theow. The onvetive veloity of these vorties an also be evaluated. The loation of62
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the loal maximum or minimum in the vortiity �eld is used to de�ne the loation of thevortex ore. This task is more diÆult as this sheme is an Eulerian tehnique whihsolves the ow on a �xed grid. To loate the peak value of vortiity within a path ofvortiity, initially the loal maximum value on a node is loated. A two-dimensionalNewton-Raphson method is used to re�ne that loation. The same interpolants usedwithin eah spetral-element to solve the ow variables are used when interpolating. Thestopping riteria for the Newton-Raphson iterations are when the hange in loation isless than 0.001% of the plate thikness. This proess is may be repeated at regular timeintervals to obtain the trajetories of the vortex ores.2.4.2 CirulationThe point of this exerise is to evaluate the amount of irulation ontained in a shedvortex. To alulate the amount of irulation within a two-dimensional region, eitheran area integral or a line integral around the region an be used. In this instane, theirulation is alulated using the line integral given by,� = I u � d~s: (2.15)To perform this line integral, the losed path of integration around a region ontainingvortiity has to be loated. A small value of vortiity is hosen as the ut o� value withthe aim of apturing as muh of the irulation of a partiular vortex while avoiding otherow strutures. The ow �eld veloity is then found at regular intervals of 0:04t alongthis iso-ontour. The interpolation is done using the same polynomials as the spetralelement sheme. The tangent vetor to the iso-ontour is found using a ubi splinebetween the neighbouring nodes. The integral is evaluated using a �rst-order method.Again all interpolation is done using the spetral-element interpolants.2.4.3 Howe's aousti modelHowe's theory (1975, 1980) has been developed to alulate the sound power generatedby the ow in the presene of an external sound �eld. This an be used to predit theaousti resonane when a plate is plaed in a dut. The length and time sales of theow and sound �eld are several orders of magnitude apart when the Mah number islow. This model is used instead of simulating the fully ompressible ow beause ofthe high omputational ost involved due to the small timestep required to apture theompressible behaviour.In this ase the sound is generated by the vortial ow around the plate. This64



feeds into the sound �eld in the dut and may generate an aousti resonane. Theresonane will then lok the ow to that frequeny. This model is used to determine theamount of power transferred between the ow �eld and the aousti �eld. A positivetransfer is a neessary ondition for dut resonane to our. This is not a suÆientondition beause it neglets damping in the dut and reeptivity of the ow. An appliedforing is used to lok the ow in the simulations.The remainder of this setion desribes how the model is implemented. Thismodel has been formulated assuming the ow is rotational, invisid and isentropi. Fromthe aousti model, the aousti power in a region of the ow is given by the volumeintegral, P = ��0 Z ~! � (u� v)dV: (2.16)The volume integral redues to an area integral in two dimensions. The vortiity, ~!,and veloity, u, are properties of the ow �eld, �0 is the mean uid density and v is theaousti partile veloity.The aousti veloity �eld for the �rst �-mode (desribed in the previous hapter)in a dut is approximately a standing wave with nodes at the top and bottom wallsof the dut, anti-nodes along the entreline and deaying away from the plate in thestreamwise diretions. This leads to the veloity potential of the aousti partile veloity,�, satisfying the wave equation. This is expressed as,D2�Dt2 = 2sr2�; (2.17)where s is the speed of sound. This has also been used previously by Stoneman et al.(1988) to model the aousti partile veloity.The wave equation is solved by assuming the solution an be separated into afuntion only dependent on time and another on spae suh that�(x; y; z; t) = �t(t) �s(x; y; z): (2.18)Negleting the onvetive terms, using this assumption the wave equation redues to thefollowing equation for the temporal variation,d2�tdt2 + (2�f)2�t = 0; (2.19)together with the equation for the spatial variation,r2�s +  2�fs !2�s = 0: (2.20)Solving for the time dependene gives�t = Ao sin(2�f t+ �); (2.21)65



with the resonant frequeny, f , and phase of osillations, � mathing that of the appliedforing (i.e. � = 0) used to lok the ow. The amplitude of the osillations, Ao, is setto unity leaving the only arbitrary saling fator to be in the spatial part. Solving thespatial part basially results in the amplitude (as a funtion of spae) of the aoustipartile veloity in the dut. The spatial part results in an eigenvalue problem whihis solved on the same grid as the ow by modifying the spetral-element sheme. Theboundary ondition for the spatial part of the wave equation are zero normal gradientsfor all boundaries inluding the dut entreline exept for the plate surfae where �t = 0.This will result in a solution that is mirrored aross the entre line and deays away fromthe plate. Note that this solution an be arbitrarily saled. For uniformity between aspetratios, the amplitude of the aousti partile veloity is set to one unit at the entre ofthe leading or trailing edge of the plate (the value at these two points are equal beauseof symmetry).As some of the earlier studies (Welsh et al., 1984, Stokes et al., 1988) used asinusoidally varying potential ow to model the aousti partile veloity, this has alsobeen done for omparison. Firstly, the potential ow around a irular ylinder is found.Then the spae around the ylinder is transformed to the spae around a retangular plateusing the Shwarz-Christo�el transformation (Churhill et al., 1974). Finally the veloity�eld around the irular ylinder is also transformed to that around a retangular plate.A positive time-average aousti power transfer from the ow to the aousti�eld is neessary to sustain the resonane. Seleting the size of the integration domainis ompliated by the vorties onveting downstream and the �nite domain size. Themethod used for time averaging and overoming the �nite domain size is addressed whenthe model is applied in the Chapter 4.
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Chapter 6
Summary and Conlusions
This hapter reviews the issues overed in this study and onlusions are drawn from thework presented both here and in previous studies. The numerial tehniques employedand their use in the study of ow around long plates is desribed. In relation to thesimulation tehniques, the topis overed inlude benhmarking, testing of a modi�edtemporal sheme, domain and resolution testing, and proedures used for post-proessing.The plates onsidered either had an elliptial or blunt leading edge and a blunt trailingedge. The ases onsidered inlude natural and fored shedding in two-dimensional spaeand a limited number of ases in three dimensions. For the retangular plate, the dutaousti resonane ase is also investigated.6.1 Computational aspetsThe approah to this problem involves numerially simulating the ow around the blu�bodies. As the problem being studied involves reeptivity and feedbak mehanisms, ahigh-order method is preferable beause it is able to aurately apture the relativelyweak and sensitive features within the ow.6.1.1 Numerial tehniqueThe time-dependent Navier-Stokes equations in primitive variables are the governingequations used in this solver. The spatial sheme onsists of a spetral-element/Fouriermethod as outlined by Karniadakis & Triantafyllou (1992). The spetral-element methodis used for spatial disretisation on a two-dimensional plane. This tehnique is similar to a206



Galerkin �nite element method exept that high-order Lagrangian polynomials (althoughothers ould be used) are used to interpolate within eah element. This tehnique has theability to handle geometries like the �nite element method and an ahieve high orders ofauray if the solution is ontinuous. A global Fourier expansion is used for disretisationin the spanwise diretion. This sheme is hosen beause it is relatively simple to imple-ment and is eÆient on omputational resoures. A lassial three-step time-splittingsheme (Karniadakis et al., 1991) is used to evolve the solution in time. This tehniquesplits a timestep into onvetive, pressure and di�usion sub-steps. The onvetive stepis handled by an expliit third-order Adam-Bashforth sheme. Continuity is enfored tosolve for pressure whih results in a Poisson equation. The di�usion is performed usingan impliit seond-order Crank-Niholson sheme whih results in a Helmholtz equation.The latter two steps are solved by matrix inversion. To redue the splitting errors, a�rst-order pressure boundary ondition is enfored and the overall sheme is seond-orderaurate in time.6.1.2 Benhmark testTwo ommonly used benhmark problems are used for validation, namely the drivenavity ow and the ow over a bakward faing step. These two are hosen beausethey are distint problems with the ow over a bakward faing step involving ontinuousinow and outow while the driven avity ow is in a losed system.In the ow over a bakward faing step problem, simulations are performed atvarious Reynolds numbers and the reattahment length is reorded. The results at Re =10, 100, 200 and 400 are ompared with those of Kim & Moin (1985) and the result at800 with Gresho et al. (1993). All these ases inluding at Re = 800 asymptotes to asteady state as predited by Gresho et al. (1993). The reattahment length for all theases simulated were within 2% of the previous published data. The sheme used in thesesimulations an therefore reprodue steady-state results of previous simulations.Simulations on the driven avity ow problem were performed over a large Reynoldsnumber range whih resulted in asymptoti states that were either steady or time depen-dent. A small amount of regularisation to the lid pro�le was needed to maintain thespetral onvergene. Simulations at Re = 100, 400, 1000, 3200, 5000 and 7500 whihasymptote to a steady state were ompared with those of Ghia et al. (1982). Veloitypro�les taken vertially and horizontally aross the entre of the avity were used foromparison. Plots of veloity pro�les showed that the two sets of simulations are visuallyindistinguishable. This sheme is therefore able to onsistently reprodue results in thesteady regime and the small di�erene in lid pro�le is negligible. The asymptoti state207



was steady in time below Re � 8000 in these simulations.A ode using a global spetral tehnique for spatial disretisation was developedindependently to validate the time dependent results produed and investigate the feasi-bility of using a Runge-Kutta sheme to advane the onvetive step. This is a Global-Galerkin tehnique whih uses Chebyshev polynomials to interpolate the ow variable inboth spatial dimensions. Again, spetral onvergene is ahievable if the solution is on-tinuous. The time-stepping sheme is modi�ed from the lassial three-step time-splittingshemed to failitate the use of a forth-order Runge-Kutta sheme for the onvetive step.Simulations were performed with both numerial shemes at Reynolds numbersranging from Re = 8; 000 to 17; 000. The global spetral sheme also predited thatthe ow reahes a steady state at Re = 8; 000. The total kineti energy was used tomonitor the ow. The mean kineti energy di�ered by less than 1% between the twotehniques used for simulation. The di�erene in the standard deviation were also in thatrange exept at Re = 16; 000 and 17; 000 where the di�erene is larger (less than 10%).This larger di�erene is due to many frequenies present in the trae and a muh largersampling time is required to redue this unertainty. There is an overall agreement in theresults produed by the independently developed odes using di�erent shemes.No three-dimensional ow problem was performed to validate the ode. This teh-nique is limited to two-dimensional geometries and periodi boundary onditions in thespanwise diretion. This further limits the number of problems where aurate solutionshave been published. No detailed validation was performed beause of the omputationalost and the limited number of aurate ow simulations for omparison. This is the sameode used by Thompson et al. (1994, 1996) and has aurately simulated the two stagetransition for ow around a irular ylinder.6.1.3 On using the Runge-Kutta sheme for the onvetive sub-stepThe time-stepping algorithm has been modi�ed to enable the Runge-Kutta sheme tobe used for the onvetive step. This temporal sheme together with the global spetralsheme for spatial disretisation has been tested by simulating the driven avity ow.This investigation is arried out beause impliit shemes (suh as the Adam-Bashforthand Runge-Kutta shemes) have stability limits whih restrit the size of the timestep.The aim of this investigation is to determine if the Runge-Kutta sheme is more eÆientand stable than the urrent sheme. 208



To implement orretly the Runge-Kutta sheme for the onvetive step, thepressure and di�usive step also has to be advaned within eah sub-step of the Runge-Kutta sheme. In terms of operation ount, using the fourth-order Runge-Kutta shemewould be approximately equivalent to four disrete timesteps with the Adam-Bashforthsheme. The bene�t of using the fourth-order Runge-Kutta sheme is that timestep ouldbe six times larger than the third-order Adam-Bashforth sheme (lose to theoretialpreditions). In term of storage requirements, the third-order Adam-Bashforth shemerequires four levels of veloity �elds while the Runge-Kutta sheme (any order) wouldrequire only three levels when using the memory eÆient algorithm.Beside operation ount and storage requirements, the order of auray of theoverall sheme must also be onsidered. The original sheme and the modi�ed sheme areboth seond-order aurate in time beause both are limited by the pressure boundaryondition and the order of the di�usive step. Attempts to inrease the order of aurayeither by using higher-order pressure boundary onditions or higher-order impliit shemesfor the di�usive step have resulted in a signi�ant derease in the allowable timestep.(Note that the third-order Adams-Moulton sheme is not unonditionally stable unlikethe Crank-Niholson sheme.)It was deided that auray was more important than the higher operation ount(� 25%) required to ahieve the same simulation time. Therefore the third-order Adam-Bashforth sheme is maintained for all subsequent simulations. The main onstrainton auray in these shemes is the pressure boundary ondition and the Runge-Kuttasheme would be more favourable if a more stable high-order pressure boundary onditionould be formulated.6.1.4 Simulation of ow around platesBefore the detailed investigation into ow around long plates was undertaken, some pre-liminary simulations were performed to determine the adequate domain size and resolu-tions. For ow around blu� bodies, the preditions of surfae pressure an be signi�antlyaltered if the boundaries are too lose to the body (Barkley & Henderson, 1996). The two-dimensional simulations are intended to produe quantitative preditions of base pressureand fores on the plate and therefore some preliminary simulations are performed to de-termine the adequate domain size. Simulations with various domain sizes are performedfor an elliptial leading-edge plate (5:1 axes ratio) with =t = 7:5 at Re = 300 and a ret-angular plate with =t = 10 at Re = 300 and 400. The mean and the level of utuationin the base pressure is used to gauge the e�et of the domain size. The domain size isonsidered adequate when preditions with larger domains di�er by less than 2%. These209



simulations show that this is ahieved when the distane from the plate to the upstreamdomain (l1) and to the side boundary (l2) is 20t and the distane from the plate to theoutow boundary (l3) is 28t.To hek if the resolution is adequate, simulations were performed with higherspatial and temporal resolution. Again the elliptial leading-edge plate (=t = 7:5) andthe retangular plate (=t = 10) were simulated at Re = 500 (upper limit). Simulations ofthe natural and fored shedding ases are performed on the same grid using 7�7 (N = 7)and 9 � 9 (N = 9) noded elements. The inreased resolution required the timestep tobe redued from �t = 0:007 to 0:004. Again the properties of the base pressure traeis used for omparison and the di�erene between resolutions in all ases were less than2%. This shows that the lower resolution is adequate and therefore all the simulationsmaintained this resolution around the plate. The higher resolution used for simulatingthe ow around the elliptial leading-edge plate (=t = 7:5) at Re = 700 was also shownto be adequate.6.2 Flow around elliptial leading-edge platesIn this ase, there is no leading-edge shedding with the aerodynami leading edge. Thisredues the omplexity and is a natural preursor to studying the ow around retangularplates. This geometry shares some similarities with short blu� bodies beause vortiesare only shed in the wake.6.2.1 Natural sheddingThe shedding frequeny predited by the simulation is ompared with the results obtainedexperimentally by Eisenlohr & Ekelmann (1988). Simulations are performed for a platewith =t = 7:5 between Re = 200 and 700. As with most of the aerodynami leading-edgeplates, the leading edge is an ellipse with a 5:1 axes ratio. The shedding frequeny isextrated from the base pressure trae whih in all these ases asymptote to a periodistate. Eisenlohr & Ekelmann (1988) found a orrelation between the redued sheddingfrequeny (Ft0) and the Reynolds number (Ret0) if the harateristi length is the platethikness plus two times the displaement thikness at the trailing edge. The simulationsare in good agreement with these results. The plots show that the rate of inrease of Ft0with Ret0 is visually indistinguishable. All but the lowest Reynolds number simulated are210



within the range of experimental unertainty.6.2.2 Fored sheddingSimulations of ow around elliptial leading-edge plates ranging from =t = 3:5 to 12:5at Reynolds numbers between 300 � Re � 500 are performed. The foring is in the formof a sinusoidal osillating veloity omponent in the ross-ow diretion added to the freestream. The amplitude of these osillations are small relative to the free-stream veloity(i.e. foring amplitudes simulated were at vpert = 1:25%,2:5% or 5:0%).The base pressure was used initially to gauge the response of the system. Theforing only alters the mean base pressure at frequenies lose to the natural sheddingfrequeny. This range approximately orresponds to the lok-in range where the sheddingis loked to the foring and the base pressure trae shows a periodi osillation with afrequeny mathing that of the foring (twie the foring frequeny, beause taken at theentre). The lok-in range varies between ases (i.e Re and =t) but grows with inreasingforing amplitude. This is illustrated in Figure 3.13 whih is the state seletion diagramfor the ase where =t = 7:5 and Re = 500. The state seletion diagram for this geometryis similar to that desribed for a irular ylinder in Karniadakis & Triantafyllou (1989).For this geometry, as the foring amplitude is inreased, the lower limit of the lok-inrange grows faster than the upper limit. The natural shedding frequeny is loser to theupper limit of the lok-in range. Outside the lok-in regime, the mean base pressure isapproximately equivalent to that of the natural shedding ase and the spetrum showed atypial 'beating' proess (i.e. the two dominant frequenies present were the natural shed-ding frequeny and a low frequeny orresponding to the di�erene between the foringand the natural shedding frequeny).In all the ases studied, there is a linear inrease in mean base sution with foringfrequeny for most of the lok-in range. The main di�erene is the behaviour nearer thelower and upper limits of the lok-in range. These an be lassi�ed into two typial ases,one that ours at longer plates or lower Reynolds numbers and the other at shorterplates or higher Reynolds numbers. It is expeted that these two parameters govern thebehaviour beause they ontrol the thikness of the boundary layer at the trailing edgeof the plate. At these Reynolds numbers, there was also no shedding from the leadingedge when the nose geometry was rounded. Changing the nose geometry inreases theoverall boundary layer thikness along the plate. For the trailing-edge shedding, this isequivalent to a marginally longer plate.The behaviour generi to the higher Reynolds number or shorter aspet ratio211



ases is desribed next. At the lower limit of the lok-in range, there is a derease inmean base sution as the ow loks to the foring. This is followed by linear inreases inmean base sution with foring frequeny. The mean base pressure gradually approahedthat of the natural shedding ase as the foring frequeny inreases pass the upper limitof the lok-in boundary. There is a distint di�erene for the ases where the Reynoldsnumber is lower or the aspet ratio shorter. At the lower foring frequeny limit of thelok-in range, the drop in mean base sution assoiated with the onset of lok-in is lesssigni�ant than the earlier ase. Again, this is followed by a linear inrease in meanbase sution with foring frequeny whih dominates the lok-in range. Towards theupper limit of the lok-in range, there is a drasti drop in mean base sution to belowthat of the natural shedding ase as the foring frequeny is inreased and approahesthe upper limit of the lok-in range. The mean base pressure approahes that of thenatural shedding with further inrease in foring frequeny. The sudden drop in meanbase sution (rise in mean base pressure) is assoiated with a hange in the relative phasebetween the foring and the shedding. While the relative phase between the foring andthe shedding is approximately onstant for the rest of the lok-in range, a phase shiftof approximately 90o in the shedding relative to the other foring frequenies has beenobserved in onjuntion with the drasti drop in mean base sution when =t = 12:5 andRe = 300.Further analysis is performed on two ases whih typify the two distint be-haviour. The ase with =t = 7:5 and Re = 500 is representative of the higher Reynoldsnumber or shorter aspet ratio ases, and the ase with =t = 12:5 and Re = 300 is forthe the lower Reynolds number or longer aspet ratio. The level of applied foring is atvpert = 2:5%. The fous will be in the lok-in range where the foring has more inueneon the pressure and fores on the plate.The behaviour of the drag fore as a funtion of foring frequeny mimis that ofthe mean base pressure. This an be expeted as the foring has an insigni�ant e�et onthe fores at the leading edge and the base pressure is monitored at the trailing fae. Asthe drag fore inreases in the lok-in range, the utuating lift fore dereases. Plots ofvortex trajetories have shown that the vorties form and remain loser to the entre linein these ases. The narrower wake would aount for the inrease in drag fore and thederease in utuating lift fore. Experiments on ow around blu� bodies have reordedan inrease in utuating lift fore when foring is applied (Staubuli, 1981, Bearman& Obasaju, 1982). In those situations, the ow is three-dimensional in nature and theapplied foring inreases the spanwise orrelation and thus the overall fores.The narrowing of the wake an be related to the phase of the shedding relative tothe foring. Within the lok-in range, exluding the narrow region where the phase shift212



ours, the vorties are enouraged by the foring to form loser to the entreline. Thisis supported by visualisation whih shows vorties forming on the top side of the platebetween 90o and 270o in the foring yle where the perturbation is aelerating in thedownward diretion and the opposite ours in the other half of the yle.The vortex formation length is evaluated for both ases (i.e. Re = 500, =t = 7:5and Re = 300, =t = 12:5) at foring frequenies that lok the ow and also the naturalshedding ase for omparison. In general, the vortex formation length is proportionalto the mean base pressure. As expeted, stronger mean base sution is reorded whenthe vorties are more ompat and form loser to the base of the plate. In determiningthe vortex formation length, the standard deviation of the vertial veloity omponentalong the entreline is also alulated. The analysis shows that the magnitude of the peakstandard deviation also inuenes the mean base pressure. When both the natural andfored shedding ases are onsidered, the mean base pressure is more losely related to themagnitude of the peak standard deviation for the ase where the Reynolds number is lowerand the aspet ratio is greater. In both ases, as the foring frequeny is inreased pastthe frequeny at whih the peak base sution ours, there is a small drop in mean basesution, a further redution in vortex formation length and a redution in the magnitudeof the peak standard deviation of the vertial omponent of ow veloity. A possibleexplanation for this behaviour is that the vortex formation length is ontrolled by theforing (inreased frequeny resulting in a redution in vortex formation length) but thewake is not as reeptive to the higher frequeny (shown by the derease in the peak valueof standard deviation, derease in mean base sution and approahing the upper limit ofthe lok-in range). A further inrease in foring frequeny for the lower Reynolds numberand longer aspet ratio ase results in a drasti inrease in vortex formation length inonjuntion with a phase shift in the shedding and a drasti redution in mean basesution. Theoretial preditions have shown that there is a diret relationship betweenthe mean base pressure and the amount of irulation of one sign generated in one period(i.e. Equation 3.5, St�o1�p = 0:5). The irulation ontained within the vorties in thewake were examined in both representative ases. Only the periodi ases were examinedwhih were the natural shedding ase and the lok-in range for the fored shedding ases.Extrapolating the amount of irulation in the wake to the base of the plate, all thesimulations were within, St�o1�p = 0:42 � 0:03. The lower values are mainly due to theunder estimation of the irulation ontained in eah vortex. The region of integrationused to alulate the irulation is arbitrarily trunated at about 15% of the peak vortiitylevel within the vortex so as to isolate individual vorties. Another soure of error ouldbe from the linear extrapolation tehnique used whih may not aurately model the highlevels of ross-annihilation that our near the trailing edge.213



Earlier in the study, the mean base pressure as a funtion of foring frequenyfor all ases studied display either one of two distint harateristis. Further analysishas shown that there are di�erenes in the wake. In general, the observations at higherReynolds number or shorter aspet ratio show a higher natural shedding frequeny andassoiated lok-in range, smaller length sales (shorter vortex formation length and moreompat vorties), and stronger vorties shed (larger utuations in base pressure andvertial veloity omponent in the wake) than the ases observed at lower Reynolds num-ber or longer aspet ratio. The natural ases already show these quantitative di�erenes.The aspet ratio and Reynolds number govern the thikness of the boundary layer at thetrailing edge. This in turn determines whether ompat or di�use vorties are shed fromthe trailing edge. This is indiretly measured by evaluating the vortex formation lengthand vortex trajetories in the wake. The small applied foring has only a limited ontrolon the ow in a narrow band of frequenies. The simulations have shown that the owwith the di�erent harateristis in the wake respond di�erently to the external foring.The simulations are performed at Reynolds number below or around where tran-sition to three-dimensional ow ours. These two-dimensional simulations in the naturalshedding ase are therefore only aurate at these low Reynolds numbers before transitionours. As applied foring suppress the three-dimensionality of the ow, these ases arevalid to a higher Reynolds number. In this study, some omparisons were made withexperiments, in partiular those of Mills (1988) whih were performed at Re � 9; 000.In that situation, the ow is three-dimensional even with applied foring. As a result,there are di�erenes between the experimental observations and the numerial preditionswhih have been previously disussed.6.3 Flow around retangular platesThe study of ow around retangular plates has inreased omplexity when ompared tothe previous setion with the additional interation of leading- and trailing-edge shedding.This study involves three di�erent ow situations, namely the natural shedding ase, thefored shedding ase and the dut aousti resonane ase. Firstly, the main points ofobservations in eah situation will be reviewed. Next, the mehanism in eah ase will bedesribed and related to the preditions. Finally, the similarities between the three asesare highlighted.
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6.3.1 Results from simulations6.3.1.1 Natural sheddingAt moderately low Reynolds numbers, studies in the past have shown that the ow aroundretangular plates lok to distint shedding modes depending on the aspet ratio (Okajimaet al., 1990, Nakamura et al., 1991 and Ohya et al., 1992). Only n (integer) pairs of vortiesan develop along the sides of the plate when the ow is loked to a partiular mode. Theinreasing number of vortex pairs along the plate also result in the Strouhal number basedon hord (St) of the shedding to show a stepwise inrease with aspet ratio =t with eahstep orresponding to a partiular shedding mode (n). The mehanism that loks the owto the di�erent modes has been lassi�ed as the impinging leading-edge vortex instability(ILEV) by Naudasher & Wang (1993). Simulations of the natural shedding ases areperformed in the lead up to the fored shedding and dut aousti resonane ase tostudy the relationship between ases.Firstly several simulations are performed to study the e�et of Reynolds number.Flow around plates with aspet ratios of =t = 3 and =t = 10 are simulated at Re = 300,400 and 500. All simulations with =t = 3 loked to the �rst shedding mode (n = 1) whileat =t = 10, the ow loked to the third shedding mode (n = 3) when Re = 300 and 400.At Re = 400, there are small utuations between periods in the base pressure trae andat Re = 500, the ow no longer loked to a partiular shedding mode and there are severalfrequenies present in the base pressure trae. When the ow is loked to a partiularmode, varying the Reynolds number has only a small inuene on the shedding frequeny(i.e. less than 10%). Nakamura et al. (1991) also found that the shedding frequeny isindependent of Reynolds number when this mehanism loks the ow. The base pressuretrae showed that the mean and utuating levels inreasing with Reynolds number forall ases where the ow is loked. There is a drop in the mean and utuating levels whenthe Reynolds number is inreased and the ow no longer loked to a shedding mode.Next, the aspet ratio is varied between =t = 3 to 16 at Re = 400 to study thee�et of varying the aspet ratio. The ow loked to a shedding mode between =t = 3to 10 and also at =t = 13. Vortiity plots showed that =t = 3, 4 and 5 loked to n = 1,=t = 6, 7 and 8 to n = 2, 9 and 10 to n = 3, and =t = 13 to n = 4. The sheddingfrequeny (Strouhal number based on hord) approximately orresponds to St = 0:55nfor all these ases. The base pressure trae showed more utuations between periodstowards the higher aspet ratio end of eah shedding mode. The spetrum taken from thebase pressure trae when =t = 11 (not loked) showed the presene of two frequenies,one orresponding to the n = 3 shedding mode and another to a frequeny whih is inthe middle of the n = 2 and 3 shedding mode.215



The e�et of the ILEV instability is also seen in the base pressure and fores onthe plate. The mean base sution and drag fores are generally higher at the lower aspetratio end of the step and derease with aspet ratio. This trend ontinues even to aspetratios that no longer lok to a single frequeny. The standard deviation of lift oeÆientis approximately inversely proportional to aspet ratio.6.3.1.2 Fored sheddingAt higher Reynolds numbers where the wake only shows a broad band of frequenies,experiments with applied external foring have shown that the system is more reeptiveat partiular frequenies (Mills et al., 1995 and Mills, 1998). These experiments showedthat the foring frequeny (St) whih exited the peak base sution also showed a stepwiseinrease with aspet ratio. Applied foring is introdued into the simulations with theaim of simulating these observations and further study the mehanism involved.Initially, several simulations are performed using =t = 10 to examine the e�etof varying Reynolds number and foring amplitude. The lok-in range in these asesare muh larger than the ases with the aerodynami leading-edge plates. Firstly, theReynolds number is varied from Re = 300 to 500 while the foring is �xed at vpert = 2:5%.The mean base pressure as a funtion of foring frequeny shows a similar trend. Theforing frequeny where the peak base sution ourred varied by 0:05 in Strouhal number.The magnitude of the peak inreases with Reynolds number. Next, the foring amplitudeis varied between vpert = 1:25% and vpert = 5:0% while the Reynolds number is �xedat Re = 400. Again the overall behaviour in mean base pressure is similar betweenforing levels. The inrease in mean base sution with foring levels is greater at foringfrequenies that result in strong base sution.Next, ow around plates ranging between =t = 6 to 16 are simulated at Re = 400with a foring level of vpert = 2:5%. The foring frequeny at whih the mean base sutionpeaks also displays a stepwise inrease with aspet ratio. These steps orresponds toSt = 0:55n with =t = 6 to 9 at n = 2, =t = 10 to 14 at n = 3, and =t = 15 and 16at n = 4. In some ases where these peaks ourred at lower foring frequenies, anotherpeak developed at a higher frequeny within the lok-in range. The mean base sutionshowed another loal peak in ases with aspet ratios of =t = 8, 9, 12, 13 and 14. Theforing frequeny at whih these peaks our orrespond to a frequeny whih is betweenthe major steps (i.e. for =t = 8 and 9, it is between n = 2 and 3 and for =t = 12, 13 and14, it is between n = 3 and 4). When the foring amplitude is dereased to vpert = 1:25%,the peaks orresponding to the major steps dereased in magnitude but the magnitude ofthe peaks assoiated with the intermediate steps inreased.216



The stepwise nature of the peaks in base sution is also seen in the mean dragand utuating lift fores. The mean drag fore shows a similar trend to that observed forthe mean base pressure. The standard deviation of lift oeÆient showed loal maximaorresponding to the ases assoiated with the major steps while the intermediate stepsshowed loal minima.Vortiity plots showed that the major steps orresponding to the peak in meanbase sution has the same n integer pairs of vorties along the plate as the level of thesteps. The seond peaks that ours at a higher frequeny have an extra vortex presentalong the plate ompared with the major step at that aspet ratio. As a result thetrailing-edge shedding is 180o out of phase ompared with the lower frequeny peak.6.3.1.3 Dut aousti resonaneSound generated from ow around a plate plaed in a dut an exite resonant modesin the dut whih in turn loks the ow. Stokes & Welsh (1986) found it possible togenerate that resonane at several distint frequeny bands. These bands also showeda stepwise inrease with aspet ratio. Previous theoretial and omputational models(Welsh et al., 1984, Stokes & Welsh, 1986, Stoneman et al., 1988) have proposed themehanism for the sound generation. The urrent simulations improve on the previouswork by aurately simulating the ow (i.e. no ow and boundary layer models). Theow �eld and the aousti �eld are deoupled and the aousti �eld is modelled usingHowe's aousti theory (Howe 1975, 1980).These simulations are performed at Re = 400 and the applied foring used tolok the ow is vpert = 2:5%. The aousti model predits distint frequeny rangeswhere there is a nett transfer of energy from the ow �eld to the aousti �eld. This is aneessary ondition for aousti resonane. The ranges of St where resonane is possiblealso showed a stepwise inrease with aspet ratio. Again these steps are approximatelyat St = 0:55n. Further investigations showed that the preditions were not sensitiveto the di�erent approximations used for the aousti partile veloity. The di�erentapproximations tested are the potential ow model and the wave model with di�erentdut lengths.6.3.2 On the ontrolling mehanismIn this setion, the proposed ontrolling mehanism involved in eah of the three asesis reviewed and supported by further analysis. Figure 6.1 shows a sketh of the essential217



omponents involved. The underlying mehanism in eah ase was used to explain thebehaviour of the ow predited by the simulations. The relationship and similaritiesbetween the mehanisms involved in eah ase will be highlighted.6.3.2.1 Natural sheddingIn the natural shedding ase, it is generally agreed that the impinging leading-edge vortexinstability (ILEV) whih loks the ow at low and moderate Reynolds numbers onsistsof a feed bak loop (Nakamura et al., 1991, Ohya et al., 1992, Naudasher & Wang, 1993).As shown in Figure 6.1(a), this mehanism onsists of leading-edge vorties onvetingdownstream. These vorties interat with the trailing-edge vorties and pressure utua-tions develop with the passing of the leading-edge vorties and the development of disretevorties at the trailing edge. These pressure utuations radiate out and if they are strongenough at the leading edge to lok the shedding, it ompletes the feed bak loop. This re-sults in a synhronisation between the leading- and trailing-edge shedding. Vortiity plotstaken from the simulations have shown that in all ases where this mehanism loks theow, there is a onstant relative phase between the leading- and trailing-edge shedding.To maintain this synhronisation, the possible modes an either inrease or derease byan integer pair of vorties. Again as shown by vortiity plots, there an be only n integerpairs of disrete vorties along the plate. With only a pair generated eah period, thismeans that a ow struture would require n periods to onvet from the leading edge tothe trailing edge.This mehanism is also responsible for the frequeny seletion. When the ow isperiodi and a ow struture requires n periods to traverse the plate, then the Strouhalnumber based on hord, St (whih is f=U1), divided by the shedding mode n, is theaverage onvetive veloity of these strutures. The alulations have shown that thebehaviour of the onvetive veloity of the vorties are approximately uniform for plateswith di�erent aspet ratio. It follows then that the shedding frequeny of St = 0:55nmeans that the average onvetive veloity is 55% of the free-stream veloity for all theaspet ratios tested that lok to the ow.As the aspet ratio is inreased, the shedding frequeny, St, would have to de-rease to allow more time for the vorties to traverse the plate. This ontinues until thesystem is no longer reeptive to suh a low frequeny that it jumps to the next step.This is seen in the redution in mean base sution and drag fore as the aspet ratio isinreased within a shedding mode. The lower frequeny shedding also results in the basepressure trae showing some random utuations between periods. After the step jumpin frequeny, these trends ontinue with further inreases in aspet ratio. The trend in218
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base pressure and drag fore ontinue even when the ow no longer loks to the shedding.This is not surprising as spetral plots of the base pressure trae shows that the ILEVfrequeny is still signi�ant for the ase with =t = 11 and Re = 400 whih does not lokto the single frequeny due to a ompetition between this shedding mode (n = 3) and alower intermediate mode (between n = 2 and n = 3).The synhronisation between the leading- and trailing-edge shedding also resultsin a more uniform utuating lift fore with aspet ratio. Pairs of vorties along the plateapproximately anel the e�et of eah other. The leading-edge shedding and the passingof vorties at the trailing edge are the main ontributors to the utuating lift fores.As these two proesses are synhronised, the the levels of the utuation in the lift foreis approximately onstant and the standard deviation in the utuating lift oeÆient(based on hord) would therefore be inversely proportional to the aspet ratio.The reeptivity range of the system is a ombination of the reeptivity at theleading and trailing edges. In the ase where the trailing-edge shedding is suppressed,suh as the ` setion at Re = 300, Nakamura (1996) found the �rst shedding mode(n = 1) ourred between =t = 3 to 10 and the seond shedding mode (n = 2) ourredbetween =t = 11 to 15(limit of experiment), n = 2. In that ase, where only the leading-edge shedding is signi�ant, the shedding frequeny (St) range is muh larger omparedto the retangular plate. The presene of the trailing-edge shedding, although inuenedby the passing of the leading-edge vorties, redues the reeptivity range of the systeman leads to transition between shedding modes at shorter intervals in aspet ratio.This feedbak mehanism relies on a relatively weak pressure pulse from thetrailing edge to synhronise the leading-edge shedding. With inreasing distane (largeraspet ratios), the pressure pulse whih propagates radially would be weaker at the leadingedge. The leading-edge shedding would not lok if the strength of this pulse falls belowa ritial level. As the Reynolds number inreases, any disturbanes from upstream anddue to ow strutures would experiene less damping. The level of \bakground" noiselevels due to haos and turbulene also grows with inreasing Reynolds number. Sinethe pressure pulse does not grow as rapidly with Reynolds number, these disturbaneswould drown the signal at higher Reynolds numbers. This would explain the upper limitin aspet ratio and Reynolds number where the ow no longer loks to a single frequeny.6.3.2.2 Fored sheddingAlthough not present in the natural shedding ase at higher Reynolds number, this meh-anism an be exited if there is some external inuene (Nakamura et al., 1991). This isseen in the fored shedding and the dut aousti resonane ases. Hourigan et al. (1993)220



proposed the foring frequeny where the mean base sution peaks is determined by theinterferene of leading-edge vorties at the trailing edge. Further re�nements by Mills(1998) showed that the phase in the foring yle at whih the leading-edge vortex arrivesat the trailing edge determines the frequeny seletion. These simulations also show thisto our and builds on these observations.The key omponents in the fored shedding ases is shown in Figure 6.2(b). Thesimulations have shown that the leading-edge shedding is phase-loked to the foring inall ases where the ow is loked to the foring. As in the natural shedding ase, theyonvet downstream and the trailing-edge vorties form between the passing of leading-edge vorties. This loks shedding of both the leading- and trailing-edge vorties toone frequeny whih is the applied foring frequeny. The phase of the trailing-edgeshedding relative to the foring or the leading-edge shedding is therefore determinedby these leading-edge vorties. The behaviour of the trailing-edge-shedding, whih alsoexperienes the global foring, would be governed by its relative phase to the foring aswell. For all aspet ratios tested, at the foring frequeny that orresponds to the peakbase sution, or the lower frequeny peak in those ases where there are two loal peaks,the phase of shedding at the trailing edge relative to the foring is onstant. To maintainthis phase relationship, as in the natural shedding ase, there an be only an inrease orderease in a omplete pair of vorties along the plate. The vortiity plots also show thatthere are n (integer) number of vorties along the plate with integer inreases at ritialaspet ratios. At this relative phase, the diretion of the aeleration in the perturbationveloity indues the vorties forming at the trailing edge towards the entreline of theplate. Vorties forming loser to the base and the narrower wake results in the strongerbase sution predited by the simulations.The frequeny seletion also depends on the onvetive veloity of the leading-edge vorties. Calulations have shown that the behaviour of the onvetive veloity ofthese vorties is not signi�antly inuened by the aspet ratio and the foring frequeny.One di�erene under foring is that the leading-edge vortex is more ompat and theminima in onvetive veloity ours loser to the leading edge suggesting that theyform loser to the leading edge ompared with the natural shedding ase. Based on thesynhronisation of the trailing-edge shedding and the behaviour of the onvetive veloityof the leading-edge vorties, the stepwise response in the foring frequeny St where thesepeaks in mean base sution our would therefore also show a stepwise response as in thenatural shedding ase. The number of vorties along the plate (n) orrespond to the levelof the steps. Again the level of the steps at St = 0:55n would signify that the averageonvetive veloity of the vorties along the plate is 55% of the free-stream veloity.221



At some aspet ratios, where the peak in base sution ours at a low foringfrequeny, another loal peak develops at a higher foring frequeny within the lok-inrange. These ases show that the trailing-edge shedding is 180o out of phase relativeto the ases orresponding to the major steps. These ases have only one extra vortexalong the plate, and as a result, the foring frequeny (St) is at an intermediate levelbetween steps. Simulations at a di�erent level of foring show that the magnitude ofthese peaks derease with inreasing foring levels. As the trailing-edge shedding is outof phase relative to the major steps, the applied foring is atually suppressing the meanbase sution by induing the trailing-edge vorties to form further from the entreline ofthe plate.The mehanism exited by the foring an also explain other observations found inthe simulations. The foring frequeny at whih the base sution peaks is not signi�antlyaltered by variations in Reynolds number and foring amplitude. These parameters donot signi�antly alter the behaviour of the onvetive veloity of vorties along the plate.As the same mehanism is involved, the foring frequeny at whih the peak base sutionours would not vary signi�antly. The e�et of inreasing the foring amplitude is toinrease the mean base sution with larger inreases at foring frequenies whih resultin strong mean base sution. At these foring frequenies, there is strong base shedding,and as in the ase where the nose is aerodynami, the base sution grows with foringamplitude. Even with a small foring amplitude, the lok-in range of frequenies is large.This is aused by the leading-edge shedding loking to the large range of frequenies.The vorties from the leading edge have a strong inuene on the trailing-edge sheddingthereby loking the entire system over a large band of frequenies.As in all previous ases, the behaviour of the drag fore mimis that of the meanbase pressure. The utuating lift fore shows loal maximums orresponding to themajor steps and loal minimums orresponding to the intermediate steps. This is a resultof the phase at whih the leading-edge vorties pass the trailing edge. They an eitheradd or oppose the utuating omponent resulting from the leading-edge shedding. Themagnitude of the peak in base sution and drag fore is higher for ases with aspetratios loser to the lower end of eah step. In these ases, the foring frequeny is higher.The simulations have shown that the vortex formation length dereases with inreasingfrequeny. Therefore the vorties form loser to the trailing edge in these ases andthis results in stronger base sution. If the foring frequeny is inreased further, thesimulations show that the trailing-edge shedding is suppressed and this results in a lowermean base sution.
222



6.3.2.3 Dut aousti resonaneIn this ase, the sound �eld resonating in the dut ompletes the feed bak loop. Figure6.1() shows the essential omponents in this partiular ase one resonane ours. Thepreditions in this study and previous studies have shown the region near the trailingedge to be the main soure of sound (Stokes & Welsh, 1986, Thompson et al., 1987).Energy transfered from the ow to the sound �eld will then sustain the resonant �eld.The resonant sound in turn loks the leading-edge shedding. The �nal result is a feedbak loop with the sound �eld, trailing- and leading-edge shedding loking to the resonantfrequeny.The tehnique used in this study assumes the ow is lose to inompressible anddeouples the ow �eld and the aousti �eld. A resonant aousti �eld is assumed to bepresent and the ow is loked to that frequeny by the external applied foring. Howe'saousti theory is then used to determine if there is a nett transfer of energy form theow �eld to the aousti �eld. This is a neessary but not a suÆient (beause energylosses are negleted) ondition to sustain the resonane.The aousti model predits only a negligible amount of sound generated betweenthe leading and trailing edge beause the aousti partile veloity is approximately tan-gential to the ow. Upstream of the plate, a negligible aousti power is generated beausethe amount of vortiity is negligible. Further downstream of the plate, vortex pairs anelthe e�et of eah other. Nett aousti energy is generated when vorties are shed at thetrailing edge or leading-edge vorties pass the trailing edge and enter the wake. Contourplots of aousti power and analysis of the shedding proess have shown that the phasein the resonane yle these vorties are introdued into the wake govern the diretion ofaverage energy transfer.As the leading-edge shedding is phase-loked to the resonant sound, the phase ofthe leading-edge vorties passing the trailing edge and the trailing-edge shedding is againdependent on aspet ratio and resonant (foring) frequeny as for the fored sheddingases. It is not surprising then that the frequeny bands where resonane is possiblealso shows steps approximately orresponding to St = 0:55n. In the plates simulated,some plates showed two or three frequeny bands where resonane is possible. In theseases, eah inreasing band orresponds to an additional pair of vorties along the plate.Even when trailing edge shedding is suppressed at higher foring frequenies, resonaneis possible with aousti power generated from leading-edge vorties entering the wake.
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6.3.2.4 Similarity between asesOne ommon feature in all three ases is the frequeny seletion whih in eah ase showsstepwise inreases of St = 0:55n with aspet ratio. After reviewing eah ase, it was foundthat they all rely on a synhronisation between the leading- and trailing-edge shedding. Inall ases the leading-edge vorties onvet downstream and this ontrols the trailing-edgeshedding. The di�erene is the way the leading-edge shedding is synhronised to shedalternately. In the natural shedding ase, there is a pressure pulse from the the trailingedge. In the ases with applied foring or dut resonane, the leading-edge shedding isphase-loked to the applied foring or sound �eld. These triggers (pressure pulse, appliedforing or aousti �elds) travel muh faster than the ow veloity in these ases beausethe ow �eld is almost inompressible. The frequeny seletion is therefore based on therole of the leading-edge vorties whih take a �nite time to travel the length of the plate.This study has shown that the behaviour of the onvetive veloities of these vorties isnot signi�antly inuened by aspet ratio and foring frequeny (when applied). Thestepwise inrease with aspet ratio is therefore a result of the system maintaining thesynhronisation between the leading- and trailing-edge shedding.The simulations have shown that in eah ase the steps in frequeny are approxi-mately St = 0:55n. This is a result of the onvetive veloity of the ow strutures betweenthe leading and trailing edges being 55% of the free-stream veloity. The independentexperiments in eah ase show that the steps are loser to St = 0:6n (Nakamura et al.,1991 in the natural shedding ase, Mills, 1988 in the fored shedding ase and Stokes &Welsh, 1986 in the aousti resonane ase). In these experiments, the Reynolds numbersare generally higher and the ow three dimensional (Nakamura et al., 1991 at Re = 1; 000,Mills, 1988 at Re � 9; 000 and Stokes & Welsh at Re � 15; 000� 30; 000). As a result,the average onvetive veloity of ow strutures along the plate in the experiments maybe higher than in the simulations.Although these simulations are two dimensional, they have aptured the majormehanism ontrolling the ow. Physially at these Reynolds numbers, there is somethree-dimensionality in the ow, the mehanism is two dimensional and the vortex rollersare still predominantly two dimensional with some spanwise distortions. This allows theows to be simulated with a reasonable amount of auray in two dimensions.6.3.2.5 On the feedbak mehanism in the natural shedding asesThe ow around long bodies with blu� leading edges an lok to a partiular sheddingmode thereby synhronising the leading-edge shedding with the ow strutures at the224



trailing edge. To ahieve this, a feedbak loop is established between the leading andtrailing edges. There are some di�erenes in several parts of the feedbak loop as shown inFigure 6.2. This diagram builds on previous works (see Setion 1.2.4) and the observationsin this study. The seletion is dependent mainly on aspet ratio and the trailing-edgegeometry. The ommon omponent is the separated leading-edge shear layer and thepressure pulse generated around the trailing edge whih feeds bak and ontrols the shearlayer thus ompleting the loop. Small aspet ratio geometries where the vorties from theleading edge are shed diretly into the wake are not onsidered here.The �rst of three ases onsidered here is where the leading-edge shear layer di-retly interats with the trailing edge (shown in blue, Figure 6.2). This has been lassi�edby Nakamura (1986) as the impinging shear layer instability. That study involved geome-tries with retangular, H and ` ross-setions ranging between =t = 2 and 5. Here, theshear layer interats diretly with the trailing edge whih in turn sends a pressure pulse tolok the leading-edge shedding. This lassi�ation of impinging shear layer instability hasbeen used previously in other ases to desribe the situation where the shear layer inter-ats with a solid boundary downstream whih send a pressure pulse upstream inueningthe shear layer (Rokwell & Naudasher, 1978).The term impinging leading-edge vortex instability (ILEV) was proposed by Nau-dasher & Wang (1993) to inorporate the shedding of leading-edge vorties in those aseswhere the leading-edge shear layer does not reah the trailing edge (i.e. n = 2; 3; ::). Theearlier ase (n = 1) ould be inluded in this lassi�ation beause vorties are shed fromthe leading edge although the shear layer does periodially reah the trailing edge. Thisproess is highlighted in red (Figure 6.2). The shear layer at the leading edge rolls upinto disrete vorties and onvet along the body. As these vorties pass the trailingedge, a pressure pulse is generated. This pulse travels upstream to lok the leading-edgeshedding. Examples of where this ours inlude the ` setion and a wide variety of blu�bodies suh as ylinders and square setions �tted with splitter plates (Nakamura, 1996).Previous studies and lassi�ation assoiated with the ow around long ret-angular plates did not highlight the important role of shedding from the trailing edge(Nakamura et al., 1991, Ozono et al., 1992, Naudasher & Wang, 1993). In these simu-lations, although pressure utuations do our when the leading-edge vorties pass thetrailing edge, strong base shedding is also observed. The pressure utuations assoiatedwith the formation of trailing-edge vorties are larger in these simulations. This is seenin the large mean and utuating omponents in base pressure. A desription of thefeedbak proess ourring in these simulations is shown in green (Figure 6.2). Vortiesare shed from the shear layer at the leading edge. These vorties onvet along the plateand interat with the shedding at the trailing edge (i.e., trailing-edge vorties forms be-225
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Figure 6.2: A shemati showing the possible feedbak mehanisms for ow around a longbody with a blu� leading edge experiening no external exitation.tween the passing of leading-edge vorties). The pressure pulse from the base sheddingthen feeds bak upstream and ontrols the leading-edge shedding. As disussed earlierin Setion 6.3.2.1, the added inuene of the trailing-edge shedding ompared with thoseases without is the more limited range of shedding frequenies in eah shedding mode.Previous desription of this feedbak mehanism suh as the impinging shear layer orthe impinging leading-edge vortex instability does not disriminate between trailing-edgegeometries. As a result, the trailing-edge shedding has been exluded from the feedbakmehanism. In the ase of a retangular plate, the simulations show strong base sheddingwhih would dominate the e�et of leading-edge vorties passing the trailing edge. Thedesription proposed here to inorporate the base shedding is therefore more appliableto ases with signi�ant base shedding.
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6.4 Three-dimensional simulationsA limited number of three-dimensional ow simulations are performed to study the transi-tional states for ow around elliptial leading-edge and retangular plates. The Reynoldsnumbers in these simulations are hosen around where transition from two- to three-dimensional ow ours. In the ase where the leading edge is aerodynami, the transitionin the wake is examined. The spanwise instability of leading-edge vorties is the fous insimulations involving retangular plates. The nature of the tehnique used here enforesperiodi boundary onditions on the spanwise boundaries. This allows only disrete span-wise wavelengths (more limited at longer wavelengths) to be aptured and therefore mayinuene the results.6.4.1 Elliptial leading-edge plateSimulations are performed for the ow around elliptial leading-edge plates with a 5:1 axesratio and aspet ratios of =t = 7:5 and 2:5. Two spanwise shedding modes have beenobserved similar to Mode A and Mode B in the wake of a irular ylinder. The spanwisewavelengths in these simulations are generally larger beause of the thiker boundarylayers near the trailing edge and the resulting vorties being more di�used.The simulations were able to apture three-dimensional vortial strutures withtopology similar to Mode A at Re = 500 and =t = 7:5. Two wavelengths of this sheddingwere simulated in the omputational domain resulting in a spanwise wavelength of � t.It is unertain if the most unstable mode is aptured beause only disrete wavelengthsan be simulated. No spanwise instabilities were observed in simulations at Re = 400and below. Mode B shedding is expeted to dominate at higher Reynolds number but nosimulations were attempted due to omputational onstraints.Simulations with =t = 2:5 have aptured two shedding modes in the transitionproess. The simulation aptured a long wavelength ow struture at Re = 300 withtopology onsistent with Mode A shedding. As only one wavelength of this ow struturewas aptured within the domain (2�t), there is some unertainty as to whih is the mostunstable wavelength. There are smaller wavelengths that develop in ertain sheddingyles. This ould be either a ompetition between shedding modes or a result of therestritive domain. At Re = 350, Mode A shedding is suppressed and the presene ofsome ow strutures onsistent with Mode B shedding is present. The wavelength ofthese strutures is unertain beause they are sporadi and not uniform aross the span.When the Reynolds number is inreased to Re = 380, these strutures beome strongerand more regular. These ow strutures have a spanwise wavelength of approximately227



0:8t. Simulations with applied external foring are not attempted for this geometrybeause of the diÆulty in simulating at higher Reynolds number to apture the transition.Some simulations with applied foring are attempted with the retangular plate.6.4.2 Retangular plateThe ow around plates with =t = 6, 10 and 13 is simulated at Re = 350 and 400. Nospanwise instability was observed in the simulations with =t = 6. Flow strutures similarto those lassi�ed as Pattern B by Sasaki & Kiya (1991) are observed when =t = 10and 13 at both Re = 350 and 400. These were hairpin-like strutures arranged in astaggered manner on both sides of the plate. In all ases, two wavelengths were apturedin the domain and therefore the spanwise wavelength is approximately 3t. The streamwisewavelengths is approximately 3t when =t = 10 and 4t when =t = 13. Both streamwiseand spanwise wavelengths are within the range of experimental unertainty.Further simulations to apture Pattern A have not been suessful. These wereperformed with =t = 13 at several Reynolds number below Re < 350 and with di�erentspanwise domain sizes. Simulations with applied foring for plates with =t = 10 andRe = 400 all resulted in the ow reahing a two-dimensional state. The foring amplitudewas at vpert = 2:5% and the frequeny ranged ranged between St = 0:13 and 0:19. Toapture transition in these ases would require simulations with higher Reynolds number.
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