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Big whorls have little whorls

That feed on their velocity,

And little whorls have lesser whorls,

And so on to viscosity.

Lewis F. Richardson, 1920.

In fluid dynamics, you have to smooth

whatever you can, whenever you can, as

much as you can.

A. Jameson, 1994.
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Abstract

A numerical study of the flow past rings is presented. The study is limited in scope to

the low-Reynolds-number range Re . 350 which is sufficient to include the important

two- and three-dimensional wake transitions. Flow transitions that are investigated

include the transition from attached to separated flow, and the transitions to both

unsteady flow, and non-axisymmetric flow.

The ring geometry is described by a single geometric parameter, the aspect ratio,

Ar , which is the ratio of the mean ring diameter to the ring cross-section diameter. By

varying the aspect ratio from zero to infinity, a continuous geometric variation from a

sphere to a straight circular cylinder is described. The ring therefore provides a useful

geometry for a study of the flow past bluff bodies, as probably the two most widely

studied and well-understood bluff bodies are represented by the rings corresponding to

the minimum and maximum limiting aspect ratios.

A spectral-element method is applied to compute the flow past rings. Meshes have

been constructed to model a significant number of aspect ratios over the range 0 ≤
Ar ≤ 40. Thorough spatial resolution studies verify that the meshes maintain a spatial

accuracy in the order of 0.1%, while a domain study reveals that an accuracy in the

order of 1% is expected, when compared to the idealised case of flow in an infinite

domain.

For different aspect ratios, the axisymmetric flows past rings are computed, and a

combination of flow visualisation, wake recirculation bubble measurements and velocity

transient measurements have enabled the identification of three aspect ratio ranges

which exhibit unique flows. Wakes comprising a steady attached recirculation bubble, a

detached recirculation bubble, and an attached annular recirculation ring were observed.

In addition, drag coefficient and Strouhal number measurements were also made for

these axisymmetric flows.

The stability of the axisymmetric wakes to non-axisymmetric perturbations was

studied by employing a linear stability analysis technique. This technique enabled

three flow regimes to be identified for 0 ≤ Ar . 3.9, where the non-axisymmetric

transition preceded the transition to an axisymmetric vortex street. Three vortex street

instability modes were predicted for the wakes behind rings with Ar & 3.9. These

included analogues of the Mode A and B instabilities familiar from studies pertaining

to the wake of a circular cylinder, and an additional instability, Mode C, which was
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subharmonic.

Non-axisymmetric computations are employed to study the wake structure and non-

linear transition behaviour of the modes. The Landau model is applied to determine

which of the transitions are subcritical and which of the transitions are supercritical.

Non-axisymmetric amplitude measurements in the vicinity of the transitions are used

to verify the predicted hysteretic properties of the bifurcations.

Following the presentation of drag force and velocity spectra, as well as discrete

azimuthal mode energy evolution, an analysis of the vortex streets in the wakes behind

rings is performed. Both the azimuthal domain and the Reynolds number are varied,

and it is shown that regardless of the presence of a period-doubling mode in the wake

for some aspect ratios, the transition to turbulence occurs as irregularities emerge in

the vortex streets through the development of spatio-temporal chaos.

A coupled dynamical model is developed which describes the three-dimensional

flow regime for the flow past a circular cylinder. The model accurately predicts the

Strouhal–Reynolds number profile throughout the flow regime. In addition, a linear

stability analysis is performed on spanwise-averaged base flows constructed from the

three-dimensional wakes corresponding to Mode A and B in the wake of a circular

cylinder. The analysis assists in describing the discrepancy between the predicted and

measured onset of Mode B in the wake. A theory is developed which explains the

Reynolds number ranges for the Mode A regime, the mixed Mode A/B regime, and the

Mode B regime in the vortex street behind a circular cylinder.
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Nomenclature

A list of nomenclature used throughout the thesis is included here. Mathematical

symbols are presented, followed by Greek alphabet nomenclature and English alphabet

nomenclature.

Symbol Description

§ Thesis section∫
Integration

∇ Vector gradient operator (grad)
∇2 Del squared (or div grad) operator

∑b
i=a Sum of arguments with j incrementing from a to b

αA
1 Cubic saturation coefficient for Mode A amplitude in coupled Landau

model
αB

1 Cubic saturation coefficient for Mode B amplitude in coupled Landau
model

αA
2 Quintic saturation coefficient for Mode A amplitude in coupled Lan-

dau model
Γi Inlet wall boundary of computational domain
Γo Outlet boundary of computational domain
Γt Outer transverse wall boundary of computational domain

Γaxis Wall boundary of axis of symmetry in computational domain
Γring Wall boundary of ring cross-section in computational domain
γA
1 Cubic coupling coefficient for Mode A amplitude in coupled Landau

model
γB
1 Cubic coupling coefficient for Mode B amplitude in coupled Landau

model
∆Ei ith uncertainty in computations
∆Etot Overall error in computations
∆x Change in a given variable x

δ Boundary layer thickness

Continued on the next page.
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Continued from previous page.

Symbol Description

ηdiff Landau diffusivity constant
θ Azimuthal cylindrical polar coordinate
λ Wavelength
λi Wavelength based on i–scale

λimax Maximum wavelength based on i–scale
µ Fluid viscosity,

Floquet multiplier
µA Linear evolution equation multiplier for Mode A
µB Linear evolution equation multiplier for Mode B
ν Kinematic viscosity
ξ Real variable in equation solved to find Gauss-Legendre-Lobatto

quadrature points
ρ Density,

magnitude of the amplitude A in the Landau equation
ρsat Amplitude of A at saturation (Landau model)
ρA
sat Magnitude of amplitude of Mode A at saturation for coupled Landau

model
ρB
sat Magnitude of amplitude of Mode B at saturation for coupled Landau

model
σ Linear growth rate in the Landau equation and linear stability analysis
σn Growth rate of a linear instability mode over the nth period in linear

stability analysis
τ Shear strain rate
Φ Phase angle of the amplitude A in the Landau equation
ΦA Phase angle of the amplitude of Mode A in the coupled Landau model
ΦB Phase angle of the amplitude of Mode B in the coupled Landau model
φ Deformation angle of a fluid element under continuous shear

Ψcylinder Normalising coefficient in the L2 norm integral
Ω Computational domain of the ring model
ω Vorticity field
ω Angular frequency

Continued on the next page.
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Continued from previous page.

Symbol Description

ωA Angular frequency in linear term of the coupled Landau model ampli-
tude equation for Mode A

ωB Angular frequency in linear term of the coupled Landau model ampli-
tude equation for Mode B

ωi i–direction vorticity component
ωsat Angular frequency of A at saturation (Landau modelling
ωB

sat Angular frequency of amplitude of Mode B in the coupled Landau
model

A First real coefficient of Strouhal–Reynolds relationship for laminar
vortex shedding,
Complex amplitude in Landau equation,
Mode A amplitude in coupled Landau model

a Frequency shift factor in the Strouhal–Reynolds number relationship
for rings proposed by Leweke & Provansal (1995)

Afrontal Projected frontal area of ring
Ai Amplitude of Mode A evaluated at ith time step in coupled Landau

model
An nth period of the coupled evolution equation for Mode A proposed by

Barkley et al. (2000)
Ar Ring aspect ratio
B Second real coefficient of Strouhal–Reynolds relationship for laminar

vortex shedding,
Mode B amplitude in coupled Landau model

Bi Amplitude of Mode B evaluated at ith time step in coupled Landau
model

Bn nth period of the coupled evolution equation for Mode B proposed by
Barkley et al. (2000)

C Third real coefficient of Strouhal–Reynolds relationship for laminar
vortex shedding

c Landau constant
cA
1 Complex coefficient of cubic term for Mode A amplitude equation in

the coupled Landau model
cB
1 Complex coefficient of cubic term for Mode B amplitude equation in

the coupled Landau model

Continued on the next page.
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Symbol Description

cA
2 Complex coefficient of quintic term for Mode A amplitude equation

in the coupled Landau model
Cd Drag coefficient
Cdν Viscous component of drag coefficient
Cdp Pressure component of drag coefficient
D Mean diameter of ring
d Diameter of ring cross-section,

Reynolds number length scale
dA

1 Complex cubic coupling coefficient for Mode A amplitude in coupled
Landau model

dB
1 Complex cubic coupling coefficient for Mode A amplitude in coupled

Landau model
DN(u) Linearised advection term operator in the Navier–Stokes equations for

linear stability analysis
DSi ith mesh employed in domain study
Eq Kinetic energy of the qth azimuthal mode of velocity at a point in the

wake
F Fourier transform
f0 Dominant frequency of oscillation
fA

i Right hand side of Mode A coupled Landau model equation evaluated
at ith time step

fB
i Right hand side of Mode B coupled Landau model equation evaluated

at ith time step
Fd Total drag force
Flν Viscous component of lift force
Flp Pressure component of lift force
Fr Froude number

f(x) Function of x (employed in Gauss-Legendre-Lobatto quadrature)
g(Re) Strouhal frequency shift function of Re from the Strouhal–Reynolds

number relationship for rings proposed by Leweke & Provansal (1995)
i Imaginary number (i =

√−1)
J Number of azimuthal Fourier planes in non-axisymmetric numerical

formulation

Continued on the next page.
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Symbol Description

j Counter for number of planes in non-axisymmetric numerical
formulation

K Ring curvature
l Cubic saturation term in Landau equation

L0 Azimuthal span corresponding to the Mode A instability
L2 A norm of the azimuthal or spanwise velocity field
li Inlet domain length of computational mesh of the ring model
lo Outlet domain length of computational mesh of the ring model
lt Outer transverse domain length of computational mesh of the ring

model
Lteth Tether length in tethered-body computations
laxis Inner transverse domain length of computational mesh of the ring

model
m Azimuthal or spanwise mode number of an instability
m? Mass ratio for tethered-body computations
mA The gradient of the growth rate, σA(Re), from the coupled Landau

model
Ma Mach number
Md Critical azimuthal mode number beyond which viscous dissipation

dominates
N∆E Number of uncertainties in computations
N(u) Non-linear advection term operator in the Navier–Stokes equations

for liner stability analysis
N [u′(t)] Norm of perturbation field at time t

N2 Number of nodes per element employed in computations
Nt Number of spanwise-averaged velocity field snapshots included for

spanwise-averaged linear stability analysis
P Scalar pressure
p Kinematic pressure
p̂ Complex perturbation pressure field amplitude for linear stability

analysis

Continued on the next page.
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Symbol Description

p̂m Azimuthal Fourier component of decoupled perturbation kinematic
pressure field

p′ Perturbation field kinematic pressure for linear stability analysis
p′m Fourier component of the perturbation pressure field for linear stabil-

ity analysis, with azimuthal mode number m

Pm Legendre Polynomial of order m

r Radial cylindrical polar coordinate
Rblockage Blockage (area) ratio of frontal projected areas of body to computa-

tional domain
Re Reynolds number

ReA
last Highest Reynolds number at which evidence of Mode A is observed in

the wake of a circular cylinder

ReB
first Lowest Reynolds number at which evidence of Mode B is observed in

the wake of a circular cylinder
Rec A critical or transition Reynolds number
ReC1 Flow separation transition Reynolds number for the wake of a circular

cylinder
ReC2 Hopf transition Reynolds number for the wake of a circular cylinder
ReC3 Three-dimensional transition Reynolds number for the wake of a cir-

cular cylinder
ReS1 Flow separation transition Reynolds number for the wake of a sphere
ReS2 Regular non-axisymmetric transition Reynolds number for the wake

of a sphere
ReS3 Hopf transition Reynolds number for the wake of a sphere
ReT1 Ring flow separation transition Reynolds number
ReT2 Ring unsteady flow transition Reynolds number

S Ring solidity parameter
St Strouhal number
St0 Strouhal frequency for parallel shedding in the wake of a circular

cylinder
St3D Strouhal frequency for a three-dimensional or a non-axisymmetric flow
Stc The Strouhal number at ReT2 for a given Ar

Continued on the next page.
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Symbol Description

StC2 The Strouhal number of parallel shedding at ReC2 for the circular
cylinder

T Period of an oscillating flow
t Time (non-dimensionalised)

t̂ Time (dimensional)
t0 Initial time

T2D Period of a two-dimensional or axisymmetric flow
T3D Period of a three-dimensional or non-axisymmetric flow
U Fluid velocity magnitude scalar for parameter relationships

U∞ Mean free-stream velocity
u Axial cylindrical polar velocity component,

Cartesian x–direction velocity component
u Velocity vector
û Complex perturbation velocity field amplitude for linear stability

analysis
ûm Amplitude of the mth azimuthal Fourier mode of the axial velocity

component of the perturbation field
u′ Perturbation field velocity vector for linear stability analysis
u′m Fourier component of the perturbation velocity field for linear stability

analysis, with azimuthal mode number m

u∗ Velocity field at first substep
u∗∗ Velocity field at second substep
u2D Two-dimensional base flow field for linear stability analysis
ū3D Spanwise-averaged base flow field for linear stability analysis
un u at the nth timestep

un+1 u at the (n + 1)th timestep
uj u–velocity component of the jth azimuthal expansion in the non-

axisymmetric numerical formulation
ũ1 Complex variable for velocity in the axisymmetric coordinate system
ũ2 Complex variable for velocity in the axisymmetric coordinate system
V Volume of the computational domain

Continued on the next page.
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Symbol Description

v Radial cylindrical polar velocity component,
Cartesian y–direction velocity component

v̂m Amplitude of the mth azimuthal Fourier mode of the radial velocity
component of the perturbation field

vj v–velocity component of the jth azimuthal expansion in the non-
axisymmetric numerical formulation

w Azimuthal cylindrical polar velocity component,
Cartesian z–direction velocity component

ŵm Amplitude of the mth azimuthal Fourier mode of the azimuthal veloc-
ity component of the perturbation field

wj jth Gauss-Legendre-Lobatto weighting coefficient,
w–velocity component of the jth azimuthal expansion in the non-
axisymmetric numerical formulation

x Cartesian streamwise coordinate
xj jth Gauss-Legendre-Lobatto quadrature point
y Cartesian transverse coordinate
z Axial cylindrical polar coordinate,

Cartesian spanwise coordinate
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Introduction

A numerical study of the flow past rings is presented in this thesis. Over the follow-

ing sections of this introduction, an overview of the problem is provided, the aims of

the investigation are stated, and some basic concepts and parameters fundamental to

fluid mechanics are introduced. Following this, a description of the problem is pro-

vided, assumptions of the study are explained, and finally, the structure of the thesis

is outlined.

Overview of the Problem

The study of the flow past a submerged body, and the wake and vortex structures which

result, is an ongoing area of research in the field of fluid dynamics. This research is of

practical importance, as an understanding of the two- or three-dimensional structure

of steady and unsteady wakes is paramount when considering practical engineering

problems such as vibration, fatigue, acoustic noise and turbulent flow.

Studies continue into the dynamics of various bodies in open flows (e.g. Roshko

1955; Balachandar et al. 1997), including bluff bodies such as spheres (Johnson & Pa-

tel 1999; Tomboulides & Orszag 2000; Ormières & Provansal 1999; Thompson et al.

2001a), discs (Roos & Willmarth 1971; Natarajan & Acrivos 1993), circular cylinders

(Williamson 1996b; Thompson et al. 2001b), normal plates (Taneda 1956b), and elon-

gated bodies such as flat plates (Hourigan et al. 2001; Mills et al. 2002, 2003) and

aerofoils. The significant role that the geometry of a body plays to determine the flow

characteristics is apparent from the variety of flows observed in these studies. It is

imperative to gain a solid understanding of the dependence of the characteristics of the

flow field on the body geometry, as well as the parameters describing the fluid flow.

From a geometric perspective, a ring provides an excellent model to study the

effect that altering a geometry has on the downstream flow. Despite the simplicity of

the ring geometry being considered in this study, it has been afforded little attention
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in the research field. In this study, the rings are aligned normal to the direction of

flow. A pleasing feature of the ring geometry is that it may be described by a single

geometric parameter, known as the aspect ratio Ar . The aspect ratio will be defined

shortly, however, it may be noted that a diverse set of geometries are described by

this single parameter. At the small-aspect-ratio limit, a sphere is described, and with

an increase in aspect ratio, firstly closed rings are described, which resemble blood

platelets, and secondly, open rings are described, which increase in slenderness. Local

to the ring cross-section, the geometry approaches a straight circular cylinder at the

large-aspect-ratio limit (see Monson 1983; Leweke & Provansal 1995). Therefore, two

of the simplest and most well-understood bluff bodies provide reference points for the

present investigation into the unknown wake dynamics and transitions of the flow past

rings.

Aims of the Study

This study aims broadly to compute the flows around rings over a wide range of aspect

ratios with a view to understanding the different flow structures as a single geometric

parameter is altered. By employing a combination of numerical schemes, both axisym-

metric and non-axisymmetric flows are to be computed. A linear stability analysis is to

be applied, which will provide predictions as to the spatio-temporal symmetries of the

non-axisymmetric instabilities in the wakes. Furthermore, the study aims to ascertain

the values of the Reynolds number parameter at which the instabilities occur in the

flow.

The study aims to assess the suitability of the Landau model to describe the non-

axisymmetric transitions in the wakes behind rings. Verification of this suitability

is to be performed by comparing Landau model predictions pertaining to the non-

linear transition behaviour at the onset of the instability, with corresponding non-

axisymmetric computations of the wakes.

It is intended that a comprehensive mapping of the drag coefficient variation with

Reynolds number and aspect ratio be completed, through which an understanding of

the effects of variation in a geometry on measurable physical parameters of a bluff-body

flow may be ascertained.

The study aims to validate the results the numerical studies by comparing flow vi-

sualisation from simulated-particle computations with experimental dye visualisations.
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The vortex streets in the wakes behind rings with large aspect ratios will be in-

vestigated in the context of the development of chaotic and turbulent flows, and these

studies will be compared with the flow past a straight circular cylinder.

Finally, the study aims to shed new light on the three-dimensional transition sce-

nario in the wake of a circular cylinder, through application of both a coupled oscillator

model and a modified stability analysis technique.

Fundamental Fluid Dynamics Concepts

Before discussing the problem addressed in this work, it is helpful to review some of the

relevant fundamental concepts of fluid dynamics. More detail may be found in texts

such as White (1999).

A fluid may be defined as a medium that deforms continuously when subjected

to any finite strain. The two most common examples of fluids in nature that are

recognisable to the lay-person are air and water. In fact, all matter in a liquid or

gaseous phase satisfies this definition of a fluid.

This investigation is concerned with an idealised class of fluids known as Newtonian

fluids. For a Newtonian fluid element with dimensions δy high and δx wide, a shear

stress τ causes a continuous shear deformation at a rate δφ/δt. Following White (1999,

pp. 22–23), a relationship for the shear stress as a function of the velocity gradient may

be written

τ = µ
du

dy
,

where the viscosity, µ, is the constant of proportionality.

The Reynolds Number and the Strouhal Number

Throughout this work the fluid density ρ is assumed to be almost constant, and is

combined with the viscosity µ to form the kinematic viscosity

ν =
µ

ρ
.

The importance of the relationship between the kinematic viscosity, a representative

velocity of a fluid (e.g. U) and a suitable length scale (e.g. d), was first discovered by

Reynolds (1883) (reprinted in Reynolds 1901), from a series of experiments investigating

the development of unsteady and turbulent flow in pipes. The non-dimensional group,

Ud/ν, is known as the Reynolds number (Re) and is the most important dimensionless
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parameter in fluid mechanics as it determines the nature of a flow. Steady laminar

flows are observed at low Reynolds numbers, while unsteady and turbulent flows are

observed at high Reynolds numbers.

When considering unsteady flows, it is convenient to non-dimensionalise the fre-

quency, f , of the flow. The classic “Aeolean harp” experiments performed by Strouhal

(1878) concerned the flow of air normal to cylindrical wires, and through that work the

importance of the dimensionless group fd/U was established for unsteady flows. The

dimensionless group has since come to be known as the Strouhal number (St).

Vorticity

Vorticity (ω) is a fundamental concept relating to the structural and dynamic properties

of a flow field and is employed to characterise and understand various features of the

computed flows. It is written

ω ≡ curl u ≡ ∇× u, (i)

and is equal to twice the local angular velocity. In nature regions of high vorticity may

be observed in swirling river flows and in atmospheric events such tornadoes.

Components of the vorticity field have the useful property of being independent of

the reference frame of the observer. This is referred to as Galilean invariance. Expand-

ing equation i into its components in Cartesian coordinates gives

ωx =
∂w

∂y
− ∂v

∂z
, (ii)

ωy =
∂u

∂z
− ∂w

∂x
, (iii)

ωz =
∂v

∂x
− ∂u

∂y
. (iv)

In the case where the flow field is two-dimensional, only ωz is non-zero, and hence the

rotational state of the flow is described by the z–vorticity component.

The Ring Flow System

The system investigated in the present study consists of a ring of circular cross-section,

submerged in a fluid, and orientated normal to the direction of flow (i.e. the axis of

symmetry of the ring is aligned with the flow). The geometry is axisymmetric, in that

it does not vary in the azimuthal direction. This symmetry leads to a reduction in

dimensionality, which simplifies the numerical formulation of the model.

4



&%

'$

?
Axisymmetric

projection

Axis of symmetry

-

-

-

-

- Freestream
velocity U∞

Fluid kinematic
viscosity ν

6

?

Ring centre
offset from

axis D
2

units

¡
¡¡ª

Ring cross-
section diameter

d units

Figure I: Schematic representation of the ring model.

Numerically, the flow past a ring is modelled on a rectangular mesh, which is ap-

propriate for the uniform stream condition in the far flow field. The density of macro-

elements is increased both downstream of, and around, a circular wall-boundary in

the mesh, which models the cross-section of the ring. An axisymmetric projection of

the mesh about the axis provides the desired ring geometry by wrapping the circular

cross-section around the axis to form a ring. Figure I illustrates the concept behind the

development of the ring model from the axisymmetric plane.

The diagram in figure I shows that the ring with cross-section d is subject to a

uniform free stream velocity U∞. Defining the kinematic viscosity of the fluid as ν, and

the length scale of the ring as the cross-section diameter (d), the Reynolds number for

the ring system is defined as

Re =
U∞d

ν
. (v)

For computational convenience, the length and velocity scales are non-dimensionalised

with d and U∞.

The choice of the cross-section diameter as the most important length scale of

the system is consistent with both previous studies of the flows past rings (Monson

1983; Leweke & Provansal 1995), a sphere (Tomboulides & Orszag 2000) and a circular

cylinder (Bloor 1964; Barkley & Henderson 1996).
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The Aspect Ratio Parameter

An aspect ratio parameter (Ar) defines the geometry, and is written

Ar =
D

d
. (vi)

The aspect ratio is defined as a ratio of the diameter through the centreline of the ring

cross-section, to the diameter of the ring cross-section itself.

The present aspect ratio definition differs from the study of Leweke & Provansal

(1995), who defined their aspect ratio as the mean circumference of the ring to the

cross-section diameter (πD/d). The alternative aspect ratio definition employed in the

present work is used for two reasons. Firstly, the present definition is more intuitive with

respect to the numerical formulation, as the computational length d is taken as unity,

thus equating Ar with D. Secondly, no long-standing parameter definition exists in the

literature for describing the ring geometry. An earlier study (Monson 1983) employed a

solidity parameter, S, loosely related to the reciprocal of the aspect ratio defined in the

present study, whereas Bearman & Takamoto (1988) and Miau et al. (1992) employ a

ratio (similar to the present study) of the mean ring diameter to the projected frontal

ring width, in studies of the flow past rings of non-circular cross-section.

The aspect ratio parameter may vary between zero and infinity (0 ≤ Ar < ∞).

From figure I it is clear that for aspect ratios Ar ≤ 1 (D/2 ≤ d/2), there is no space

between the inner surface of the ring cross-section and the axis of symmetry. Over this

aspect ratio range closed rings are defined, which approach a sphere as Ar → 0.

Visualisation of Rings with Different Aspect Ratios

In figure II, orthogonal and isometric views of several rings with small aspect ratios are

presented for visualisation.

As the aspect ratio increases, the local geometry with respect to the ring cross-

section approaches a straight circular cylinder with diameter d. An azimuthal curvature,

K, about the ring is defined by the relationship

K =
2
D

, (vii)

and decreases as the aspect ratio increases. As Ar →∞, K → 0, and locally, the cross-

section of the ring approaches a straight circular cylinder. This trend is illustrated in

figure III.
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(a) Ar = 0 (sphere). (b) Ar = 0.5 (closed ring).

(c) Ar = 1 (closed-open transi-

tion).

(d) Ar = 1.5 (open ring).

Figure II: Orthogonal and isometric views of a sphere, and closed and open rings with
0 ≤ Ar ≤ 1.5.

(a) Ar = 5, K = 0.4. (b) Ar = 10, K = 0.2. (c) Ar = 20, K = 0.1.

Figure III: Ring sections of various aspect ratio, elucidating the increased local similarity
to a circular cylinder as the aspect ratio is increased.
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It is apparent that a wide range of geometries can be studied with variation in the

aspect ratio The ring flow system presents a unique opportunity to examine the effect

of geometric variation on the wake dynamics and transition behaviour in the Reynolds

number range prior to the development of wake turbulence.

Constraints Imposed in this Study

For the purposes of the present study of the flow past rings, the fluid is assumed to

be Newtonian, incompressible and isothermal. Far from the body, the fluid stream is

assumed to be laminar, uniform and continuous, with a constant velocity.

The Newtonian fluid assumption specifies that the fluid has a linear relationship

between shear stress and shear strain. This assumption is valid for a large range of

liquid and gaseous fluids, including air and water, but it does not hold for many fluids

such as solutions of polymeric molecules.

The incompressibility constraint specifies that the fluid density remains approxi-

mately constant for all time, everywhere in the flow. While this condition is never

completely satisfied in practice, its effects have been shown to be negligible for flow

speeds less than approximately 30% of the speed of sound in a fluid. For example,

as the speed of sound is approximately 340m/s in air, the incompressibility condition

applies for speeds of less than approximately 100m/s in air.

The isothermal fluid constraint specifies that the temperature remains constant

throughout the fluid. This constraint is appropriate as heat-transfer and thermal con-

vection are not considered in the present study.

The laminar flow constraint in the far wake implies that there is a zero turbu-

lence intensity in the flow. This constraint ensures that the low-Reynolds-number flow

transitions being investigated can be modelled in the absence of external disturbances.

Furthermore, the body of the ring is taken to be perfectly smooth. This is appropriate

for the Reynolds number range of the present study. Surface roughness effects be-

come important at significantly higher Reynolds numbers, and influence the turbulent

transition of the boundary layer around the body.

Structure of the Thesis

The preface of the thesis, which comprises the preceding pages, includes a dedication,

title page, statement of originality, abstract, acknowledgments, a list of the publications
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by the author pertaining to the thesis, nomenclature, the table of contents, and finally,

this introduction.

The body of the thesis consists of a literature review in chapter 1, a numerical

methods chapter (chapter 2), results chapters (chapters 3–7), and conclusions (chap-

ter 8). Chapters 3–7 contain results from axisymmetric, linear stability analysis, and

non-axisymmetric computational studies, as well as a study of the transitions which

lead to turbulence in the vortex streets behind rings, and a study which revisits the

three-dimensional transitions in the wake of a circular cylinder.
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Chapter 1

A Review of the Literature

From the formulation of the ring flow system described previously, it is clear that a

review of studies of the flow past a ring would be incomplete without consideration of

the flow past a sphere and a circular cylinder. Over the sections to follow, previous

studies of the flow past a sphere, a circular cylinder and a ring are reviewed in turn.

Despite the limitation of the scope of the present study to a Reynolds number range

Re . 400, a more complete overview of the wake dynamics for these geometries is

considered for completeness.

1.1 The Flow past a Sphere

The flow past a sphere has been of significant practical importance for centuries. Ap-

plications in military fields include ballistics and projectile dynamics, and applications

in civil fields range from ball sports to atmospheric particle dynamics.

1.1.1 Attached Flow

One of the earliest analytical studies of the flow past a sphere was performed by Stokes

(1851) as part of a study into the resistance on the motion of a pendulum. Stokes

solved equations of motion which excluded advection, but included viscous diffusion,

and assumed a no-slip condition at the sphere surface. The solution of this problem

has become known as Stokes flow, and represents the low velocity limit of the flow of a

viscous incompressible fluid past a sphere as Re → 0. Flows at low Reynolds numbers

that approximate Stokes flow (generally considered to be flows with Re < 1) are known

as creeping flows. Creeping flows exhibit a remarkable property known as reversibility.

For reversible flow past a symmetrical body such as a sphere, the flow streamlines are

symmetrical both upstream and downstream of the body, as shown in figure 1.1(a).
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Another feature of reversibility is that if a motion through a fluid is reversed exactly,

the fluid particles return to their original positions.

Despite efforts to gain a better analytical description of the far wake of the flow

past a sphere over the century following the work of Stokes, it has only been since the

middle of the twentieth century that many advancements have been made in the study

of the flow past a sphere.

Proudman & Pearson (1957) sought to extended the solution of Stokes (1851) to

higher Reynolds numbers. They developed separate locally valid stream function equa-

tions for the flow fields near to and far from the body. This formulation reduced the

problem to a single set of boundary conditions for each expansion; a no-slip boundary

at the sphere surface for Stokes flow, and a uniform stream condition in the far flow

field for Oseen flow.

Further efforts were made to extend this analytical description of the flow past a

sphere by Chester & Breach (1969). They extended the analysis of Proudman & Pearson

(1957) from an expansion of order Re2 log Re, to an order Re3 log Re. Consistent with

the previous study, they employed expansions for the inner flow which satisfied the

no-slip condition of Stokes flow, and expansions for the outer flow field which satisfied

the uniform stream condition of Oseen flow.

Chester & Breach (1969) reported that their solution only agrees with experimen-

tal measurements over a Reynolds number range 0 < Re . 0.5. The limited range

over which their solution was accurate suggested that an inappropriate form of the

expansions was used, however a more fundamental problem existed: the governing

Navier–Stokes equations provide an often insurmountable obstacle when an analytical

solution to a fluid flow problem is sought. Their method, which divided the flow field

into a near field dominated by viscous diffusion, and a far field dominated by advec-

tion, provided an inadequate description of the flow, as flow features such as separation,

non-axisymmetry, and unsteady flow were suppressed.

The technological revolution of the latter half of the twentieth century brought about

a revolutionary analysis technique known as computational fluid dynamics. Instead of

deriving solutions to the Navier–Stokes equations with analytical methods, approximate

solutions are obtained with computational numerical methods.

An early computational study of the flow past a sphere was performed by Ri-

mon & Cheng (1969). Their study employed a time-dependent axisymmetric stream-
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(a) Attached creeping flow at

Re = 0.1 (photographed by M.

Coutanceau).

(b) Separated flow at Re = 56.5

(photographed by M. Payard and

M. Coutanceau).

Figure 1.1: Images of the steady flow past spheres at low Reynolds number (Van Dyke
1982).

function/vorticity formulation, with a finite-difference method used for the spatial dis-

cretisation of the vorticity transport equation, and a second-order central-difference

scheme used for space and time integration. Their work provides early treatment of

the difficulties in constructing a pressure field from vorticity when the velocity field is

unknown. Considering the age of the computations, a relatively small sphere to domain

diameter ratio of approximately 1 : 8.2 (blockage percentage approximately 1.49%) was

employed.

1.1.2 The Transition to Separated Flow

The computations of Rimon & Cheng (1969) predicted that the flow past the sphere

remained steady and attached for Re . 25, and for Re & 25, the flow separated

from the rear of the sphere, forming a recirculation bubble. They computed a linear

relationship between the bubble length and log Re for Re . 150. They reported a

secondary separation of flow for Re ≈ 1000, but earlier experimental flow visualisations

of the flow past a sphere (Magarvey & Bishop 1961b,a; Magarvey & MacLatchy 1965)

suggested that the computational assumption of axisymmetric flow was nonphysical at

these higher Reynolds numbers. Despite this, a good correlation between the computed

drag coefficient Cd, and experimentally measured values of Cd was found for 0 . Re .

1000.

A semi-analytical numerical study was conducted by Dennis & Walker (1971), for

the wake around a sphere. They employed Legendre functions to reduce the governing

equations to a series of ordinary differential equations, which were then solved numer-
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ically. Only a steady axisymmetric flow was considered, with solutions being sought

for the vorticity and stream-function equations. By assuming that at separation, the

change in vorticity in the tangential direction at the rear of the sphere would be zero,

they interpolated a value for the separation transition Reynolds number of approxi-

mately ReS1 ≈ 20.5, between flows computed at Re = 20 and Re = 40.

Taneda (1956a) performed an experimental study of the flow past a sphere being

towed through a tank, for Reynolds numbers 5 ≤ Re ≤ 300. By extrapolating the

linear relationship between the measured recirculation bubble length and logRe to

zero, he obtained a transition Reynolds number for flow separation from the sphere

of approximately ReS1 = 24. Taneda commented on the potential for discrepancies

when measuring the transition Reynolds number for flow separation in the wake. He

noted that attempts to identify the initial formation of the recirculation bubble visually

was difficult, as the bubble was initially very small and formed near to a stagnation

in the flow where the velocities were very small. Extrapolation of the recirculation

bubble length against Reynolds number was the preferred method for calculating the

separation transition Reynolds number, as the length of the bubble could be measured

easily at higher Reynolds numbers.

Recent numerical computations have allowed the separation transition Reynolds

number to be accurately determined. By extrapolating the variation in length of the

recircualtion bubble with Reynolds number to zero from direct numerical computa-

tions, a value of ReS1 = 20 was determined from several studies (Tomboulides et al.

1993; Johnson & Patel 1999; Tomboulides & Orszag 2000). This value is remarkably

consistent with the value obtained from the early study by Dennis & Walker (1971).

It has been widely reported that the length of the recirculation bubble increases

proportional to log Re (Taneda 1956a; Tomboulides et al. 1993; Johnson & Patel 1999;

Tomboulides & Orszag 2000). Studies have also observed that at a critical Reynolds

number ReS2, the recirculation bubble becomes unstable to non-axisymmetric flow.

1.1.3 The Transition to Non-Axisymmetric Flow

In the experimental study by Taneda (1956a), it was observed that the axisymmet-

ric recirculation bubble became unstable with an increase in Reynolds number. The

stability of the axisymmetric wake of a sphere to axisymmetric and non-axisymmetric

disturbances has been studied numerically with varied success by Kim & Pearlstein
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(1990) and Natarajan & Acrivos (1993).

The numerical stability analysis of Kim & Pearlstein (1990) employed a spectral

method to solve the axisymmetric stream function form of the governing equations

for the base flow. An axisymmetric stability analysis was performed, which employed

the same method, and a non-axisymmetric stability analysis was performed, which

employed a modified primitive variables form. Their computations predicted that the

axisymmetric wake undergoes a non-axisymmetric Hopf bifurcation at Re = 175.1,

with an azimuthal mode number m = 1. The instability that they predicted had an

imaginary component giving a predicted linear oscillation frequency of St = 0.0955

at the onset of the instability. These predictions were at odds with the observations

from experimental studies, as unsteady flow was generally only observed for Re & 300

(Taneda 1956a; Magarvey & Bishop 1961b,a; Magarvey & MacLatchy 1965).

The more recent numerical study performed by Natarajan & Acrivos (1993) proved

to be more successful. They employed a robust finite-element method for spatial dis-

cretisation of the flow past a sphere and the flow past a disc. They verified that a

high grid convergence was obtained in their computations by monitoring various wake

parameters, and an excellent agreement was obtained between the computed drag co-

efficients of spheres and discs, and the previous experiments of Roos & Willmarth

(1971), up to Re = 200. Natarajan & Acrivos (1993) based their Reynolds number

length scale on the radius of the sphere and disc, whereas here they are converted to

Reynolds numbers based on the diameter for consistency with other reported results.

They predicted that the first bifurcation of the steady axisymmetric wake of a sphere

occurred at Re = 210, with an azimuthal mode number m = 1. This instability was

predicted to occur through a regular (steady to steady flow) transition. They predicted

that a secondary mode occurs at Re ≈ 277.5. This secondary instability was predicted

to occur through a Hopf bifurcation to unsteady flow, with an azimuthal symmetry of

m = 1. Despite the axisymmetric base flow not providing a physical representation of

the wake beyond the primary non-axisymmetric instability, the predicted Hopf mode

was still qualitatively consistent with the experimental observations of the onset of un-

steady flow in the wake (270 < ReS3 < 300). The predicted azimuthal symmetries of

the primary and secondary non-axisymmetric instabilities were in excellent agreement

with experimental observations of the non-axisymmetric wakes over similar Reynolds

numbers (Magarvey & Bishop 1961a,b).
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(a) Experimental dye-visualisation. (b) Computed non-axisymmetric

particle traces.

Figure 1.2: Comparison between experimental and computational flow visualisation of the
steady non-axisymmetric wake of a sphere at Re = 250 (from Johnson & Patel 1999). Plan
and elevation views at the same time are presented.

Stability of the sphere wake was studied using the complex wave amplitude Landau

equation (Ghidersa & Dušek 2000; Thompson et al. 2001a). The coefficients of the

linear and cubic terms of the Landau model were estimated from non-axisymmetric

numerical computations close to the transition Reynolds numbers. The initial asym-

metric transition was found to be a regular type transition, occurring at ReS2 = 212,

and the subsequent transition was identified as being a Hopf transition at ReS3 = 272.

The critical Reynolds numbers of the transitions are in excellent agreement with pre-

vious studies. The analysis demonstrates that both transitions are predicted to occur

through continuous supercritical bifurcations, and hence no hysteresis is expected in

the vicinity of either transition. The Hopf transition in the wake of a sphere was the

subject of a recent study by Schouveiler & Provansal (2002). They verified the super-

critical nature of the transition, and through experimental measurements of the wake

of a sphere, they determined coefficients of the Landau model to test the suitability of

the model in describing the wake dynamics.

1.1.4 Steady Non-Axisymmetric Flow

Experiments and numerical computations performed by Johnson & Patel (1999) found

the axisymmetric wake to undergo a regular bifurcation through a shift of the steady re-

circulating bubble behind the sphere from the axis at approximately ReS2 = 211. They
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observed the double-threaded wake consistent with previous experimental observations

(Magarvey & Bishop 1961a,b). The numerical studies of Tomboulides et al. (1993) and

Tomboulides & Orszag (2000) find a similar value, ReS2 = 212. The flow visualisations

in figure 1.2 provide a detailed representation of the non-axisymmetric wake beyond

the transition. The shift of the recirculation bubble from the axis is evident, and to the

far right of the images, the pair of streamwise vortices which form the double-threaded

wake may be observed.

1.1.5 The Transition to Unsteady Flow

Taneda (1956a) perceived a small periodic “pulsing” with a long period at the rear

of the recirculation bubble for Re & 130. However, the far wake was observed to be

completely laminar up to Re ≈ 200, and the vortex ring was attached to the sphere

up to Re ≈ 300. In light of the more recent results reported here, it is reasonable to

assume that the observed pulsing was the result of an extrinsic instability associated

with the towing apparatus, as it was localised to the tail of the recirculation bubble.

This observed pulsing does suggest, however, that the recirculation bubble is sensitive

to perturbations in the vicinity of the transition.

Striking flow visualisations of the wakes behind spherical liquid droplets descending

through a tank were presented by Magarvey & Bishop (1961a). The liquid droplets

remained relatively uniform in size and shape, and provided a useful approximation

to the flow past a fixed solid sphere. They controlled the Reynolds number by judi-

cious selection of appropriate droplet size and liquid phases, as the Reynolds number

depended on the terminal velocity of a given droplet. They presented visualisations of

various wake states, including a steady, axisymmetric wake at Re = 200, and several

images of unsteady wakes at Reynolds numbers 350 ≤ Re ≤ 500. Some examples of the

dye-visualisation images that they obtained are reproduced here in figure 1.3. In all

cases, the unsteady wakes that they observed consisted of vortex loops being shed into

the wake from the alternate sides of the sphere. A plane of reflective symmetry was

observed in the wake up to approximately Re ≈ 500, and they observed that the wake

at Re ≈ 600 no longer exhibited periodic shedding, and had lost its planar symmetry.

In Magarvey & Bishop (1961a), an approximately linear Strouhal–Reynolds number

trend was estimated to a qualitative accuracy of approximately 10%, ranging from

17



(a) Axisymmetric wake at Re = 200.

(b) Vortex-loop wake at Re = 380.

Figure 1.3: Reproductions of dye visualisation photographs from Magarvey & Bishop
(1961b), which show spherical droplets falling through a liquid. For illustrative purposes,
the flow is presented here from left to right.

St = 0.11 to 0.125 for Re = 350 to 500.

Their followup paper (Magarvey & Bishop 1961b) reports similar experiments over

a wider Reynolds number range 0 < Re < 2500. Their experimental rig enabled

detailed images of the trailing wakes to be obtained, as the droplets were motionless

in the reference frame of the camera. Attention was paid to classifying the observed

wakes, which were summarised as follows: “Class I” (0 < Re < 210) exhibit a single

thread wake, “Class II” (210 < Re < 270) exhibit a double thread wake, “Class III–V”

(270 < Re < 700) exhibit planar-symmetric unsteady wakes, and “Class VI” (Re > 700)

exhibit asymmetrical aperiodic wakes.

Detailed photographs presented in Magarvey & Bishop (1961b) illustrate exam-

ples of an axisymmetric “Class I” wake observed at Re = 170. Images of the “Class

II” double-threaded wake show a steady non-axisymmetric wake caused by a loss of

axisymmetry of the recirculation bubble. A distinction is drawn between the “Class

III” wakes (270 < Re < 290), in which a waviness evolves downstream of the double-

threaded wake, and the “Class IV–V” wakes, which display a well-defined shedding of

vortex loops. The effect of having no transverse restraint on the free-falling droplets

on the observed wakes remained an open question from their work. They estimated a

linear Strouhal–Reynolds number relationship for the single-loop shedding observed for

290 < Re < 410, which varyied between 0.05 < St < 0.065 (for reference, in Magarvey

& Bishop 1961a, the Strouhal–Reynolds number profile represents data obtained from

the double-loop shedding observed for “Class V” wakes).
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(a) Sketch of the wake vortex con-

figuration from Achenbach (1974). (b) Plan and elevation views of the

vortical structure at Re = 300 from

Johnson & Patel (1999).

Figure 1.4: Comparison between a sketch of the vortex loop shedding pattern in the wake
of a sphere, and flow visualisation from recent numerical computations.

A later work by Magarvey & MacLatchy (1965) analysed the formation and evolu-

tion of the unsteady wake of a sphere with a careful image-acquisition technique. They

proposed a “sheet involution” mechanism for the shedding process, whereby instead of

vorticity convecting directly into the axisymmetric wake for Re . 200, vorticity is first

transferred to the region behind the sphere, where a loop is formed. They described

that below the critical Reynolds number for unsteady flow (ReS3 ≈ 300), sufficient

vorticity was transported into the wake via the double-threaded tails to maintain a

steady wake, and beyond the critical Reynolds number the wake becomes unstable,

and a periodic shedding of vortex loops ensues. A series of photographs capturing the

evolution of the initial vortex loop following the destruction of symmetry in the wake

was presented, representing a “Class III” wake at Re = 340. A sketch of the vortex

configuration for the vortex-loop wake behind a sphere was included in the study of

Achenbach (1974), and is reproduced here in figure 1.4(a).

The flow visualisations from various numerical computations (Tomboulides et al.

1993; Johnson & Patel 1999; Tomboulides & Orszag 2000) support the bifurcation

scenario predicted by Natarajan & Acrivos (1993), with unsteady wakes being observed

for Re & 280. Each of these studies found that the unsteady wake consisted of vortex

loops or hairpins that shed downstream from the sphere, in the same plane as that of

the steady double-threaded wake. The observed wake structures are in good agreement

with the experimental observations of Magarvey & Bishop (1961a,b) and Magarvey &

MacLatchy (1965), pertaining to the shedding of vortex-loops into the wake, and as
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an example, figure 1.4(b) is included, reproducing the isosurface plots of the computed

vortex-loop wake structure from Johnson & Patel (1999).

1.1.6 The Flow at Higher Reynolds Numbers

Computations by Mittal (1999a,b) verified both the earlier computations (Tomboulides

et al. 1993; Johnson & Patel 1999) and experimental observations (Magarvey & Bishop

1961b; Magarvey & MacLatchy 1965) of the periodic wake of a sphere. They showed

that the wake remained planar-symmetric up to a Reynolds number of Re ≈ 375, be-

yond which the symmetry was lost. Combining a Digital-Particle-Image Velocimetry

technique with a spatio-temporal reconstruction technique, the non-axisymmetric struc-

ture of the wake of a sphere was analysed by Brücker (2001), who observed a similar

loss of symmetry occurring within the Reynolds number range 400 < Re < 500.

Tomboulides et al. (1993) observed fine scale flow structures in the wake of a sphere

computed with a large-eddy simulation method, for a Reynolds number range of 500 <

Re < 1000. Magarvey & Bishop (1961b) observed a breakdown in periodicity of the

hairpin shedding for Re > 600 also. These results are considered to mark the onset of

turbulence. Measurements indicating the development of similar fine-scale structures

are reported by Chomaz et al. (1993) and Tomboulides & Orszag (2000), who speculated

that these structures developed from a Kelvin-Helmholtz instability of the shear layer

separating from the sphere. The smoke-wire visualisations presented by Kim & Durbin

(1988) show fine-scale wake structures behind a sphere for Re = 32000, consistent with

a Kelvin-Helmholtz instability of the separating shear layer.

Achenbach (1972) performed wind-tunnel experiments over a range of Reynolds

numbers 5× 104 < Re < 6× 106. At these Reynolds numbers, the wake was observed

to be highly turbulent. However, the flow could be considered incompressible, as the

Mach number (fluid flow speed/speed of sound) of Ma ≈ 0.1 was far lower than the

critical Mach number requiring consideration of compressible flow (Ma ≈ 0.3). To

overcome skin friction effects, the sphere was highly polished, and measurements of

both pressure drag and skin friction were made.

At a critical Reynolds number, Achenbach reported a massive reduction in drag

from Cd ≈ 0.5 at Re = 3× 105, to Cd ≈ 0.06 at Re ≈ 3.7× 105. He identified four flow

regimes over the Reynolds number range he investigated. These flow regimes included

a subcritical regime for 4 × 104 < Re . 3 × 105, a critical regime for 3 × 105 . Re .
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3.7 × 105, a supercritical regime for 3.7 × 105 . Re . 1.5 × 106, and a transcritical

regime for 1.5× 106 . Re < 6× 106.

Achenbach measured a relatively constant drag of Cd ≈ 0.5 throughout the sub-

critical regime. Through the supercritical and transcritical regimes, the drag increased

with Reynolds number from a minimum at Re ≈ 3.7×105, to Cd ≈ 0.2 at Re ≈ 6×106.

He concluded that the critical regime marked the development of turbulence in the

boundary layer around the sphere.

In the subcritical regime, the viscous (or friction) component of the drag force

was found to vary with approximately Re0.5. A laminar boundary-layer separation

was measured to occur at Re = 1.62 × 105, at an angle of 82◦ with respect to the

front of the sphere, and flow recirculation was measured beyond this angle. Achenbach

observed the point of laminar boundary-layer separation to move downstream, to 95◦

at Re = 2.8× 105. He hypothesised that further increases in Reynolds number through

the critical regime cause a laminar separation and turbulent reattachment of the flow

past a sphere. It was determined from skin friction and pressure measurements that the

supercritical regime was characterised by a laminar-turbulent boundary layer transition

prior to separation, and the transcritical regime was characterised by a fully turbulent

boundary layer.

The wake dynamics over this high-Reynolds-number range was investigated by

Taneda (1978), employing surface oil-flow visualisation and smoke visualisation to gain

an understanding of the wake dynamics and structure. The experimental setup enabled

Reynolds numbers to be studied over the range 104 < Re < 106. He observed evidence

of a progressive wave motion in the wake for 104 < Re < 3×105, and a streamwise pair

of vortices for 3.8× 105 < Re < 106. Consistent with Achenbach (1972), a sharp drag

decrease was found over the critical Reynolds number regime to Re ≈ 3.8× 105. From

oil patterns, he observed boundary layer separation in the subcritical regime to occur

at an angle of 80◦ at Re = 2.3 × 105, in good agreement with the 82◦ measured by

Achenbach (1972). Further observations confirmed that the critical regime comprised a

laminar separation at 100◦, and a turbulent reattachment at 117◦, followed by a turbu-

lent separation at 135◦. In addition, he observed a slow irregular rotation of both the

subcritical wavy planar wake, and the supercritical turbulent double-threaded wake.

In a subsequent work, Achenbach (1974) studied the vortex shedding in the wake of

a sphere for Reynolds numbers 400 < Re < 5×106. Water channel measurements were
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taken for Re < 3×103, and from flow visualisation, his famous schematic representation

of the vortex-loop configuration of the unsteady wake of a sphere at Re = 1000 was

sketched. Visualisations of the wake for Re . 400 showed a steady, non-axisymmetric

wake. Useful Strouhal–Reynolds number measurements were made, illustrating, among

other points, the large discrepancy between the measured shedding frequency of the

wake of a fixed sphere, and the liquid droplets from Magarvey & Bishop (1961a,b).

At higher Reynolds numbers, wind tunnel measurements of the Strouhal–Reynolds

number profile presented by Achenbach (1974) showed an increase in Reynolds number

from St ≈ 0.125 at Re ≈ 6× 103 to St ≈ 0.2 at Re ≈ 3× 105. An attempt was made to

predict the stability of the spiral shedding wake observed over this Reynolds number

regime by Monkewitz (1988b). In that study, the spiral mode was predicted to be

absolutely unstable for Reynolds numbers Re & 3.3×103, which implied that the spiral

mode developed from a local oscillation in the near wake. Beyond the critical regime, no

dominant frequency was observed, which was consistent with earlier flow visualisations

that identified a turbulent double-threaded wake in this regime (Achenbach 1972).

Achenbach hypothesised that some critical Reynolds number existed in the range 3×
103 < Re < 6 × 103, where a sharp drop in Strouhal number would occur. The wind

tunnel measurements were made from temporal fluctuations in the local skin friction

immediately upstream of the separation point of the sphere, whereas the water channel

measurements were estimated from the time taken for 50 shedding cycles to be observed.

An experimental study by Taylor & Whitelaw (1984) determined that for the flow

past a sphere, the transition Reynolds numbers and size of the near-wake region was

highly dependent on blockage in confined flows. Blockage ratios of approximately 25%

to 50% were considered.

As part of an experimental study investigating the acoustic excitation of the wake

of a sphere for Reynolds numbers 500 < Re < 6 × 104 by Kim & Durbin (1988), hot-

wire probe measurements suggested that the wake of a sphere in the subcritical regime

was characterised by two incommensurate frequencies. A low frequency oscillation

(0.1 < St < 0.2) was measured in a large number of positions throughout the wake for

all Reynolds numbers in the range 500 < Re < 1×105. Despite a decrease from St ≈ 0.2

to 0.1 over the Reynolds number range 6×103 < Re < 9×103, the Strouhal number for

the low-frequency mode remained otherwise constant. The values agree well with those

obtained by the wind tunnel work of Achenbach (1974). In addition, a high Strouhal

22



Sphere wake transition Experimental Rec Computational Rec

Boundary layer separation 24–25 20–21
Regular non-axisymmetric transition 200–210 210–211

Unsteady Hopf transition 270–280 277.5

Table 1.1: Transition Reynolds numbers from experimental and computational studies of
the flow past a sphere (Taneda 1956a; Natarajan & Acrivos 1993; Johnson & Patel 1999;
Tomboulides & Orszag 2000).

frequency was observed, varying approximately with Re0.75, for Re & 800. The high-

frequency mode was only detected in the wake immediately behind the sphere, and

interestingly, the Reynolds number in which it first occurred was consistent with the

Reynolds number at which a loss of planar symmetry was observed by Magarvey &

Bishop (1961b).

The observation of two frequencies in the wake was verified by Chomaz et al. (1993).

The Strouhal frequencies that they measured for the high-frequency mode correllated

well with the Strouhal frequencies measured for the vortex-loop shedding mode by

Achenbach (1974). The observations of Chomaz et al. (1993) support the speculation

that the high-frequency mode is due to a Kelvin-Helmholtz instability of the separat-

ing shear layer, and the low-frequency mode is associated with some longer-timescale

instability, such as the slow wake rotation observed by Taneda (1978).

A summary of the transitions in the flow past a sphere at low Reynolds number is

presented in table 1.1.

1.2 The Flow past a Circular Cylinder

A review of previous work pertaining to the flow past a circular cylinder is now pre-

sented.

1.2.1 Attached Flow

Experimental observations of the flow past a circular cylinder at very low Reynolds

numbers show that the flow is steady and attached (Taneda 1956b). In figure 1.5(a),

the creeping flow past a circular cylinder is shown. The reversibility associated with

creeping flow can be observed in the figure.
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1.2.2 The Transition to Separated Flow

The initial transition in the flow past a circular cylinder occurs with the separation of

flow at the rear of the cylinder, which results in the formation of a steady recirculation

bubble. This transition was predicted to occur at ReC1 = 5 from low-dimensional nu-

merical computations performed by Noack & Eckelmann (1994b). In the experimental

study by Taneda (1956b), the low-Reynolds-number flow past a circular cylinder was

investigated. Taneda observed from flow visualisation and extrapolation of the wake

length to zero that the separation transition occurred in the vicinity of ReC1 ≈ 6. With

further increases in Reynolds number, a steady symmetrical recirculation bubble was

observed to grow in the wake. The wake length was found to be proportional to logRe,

which is consistent with the corresponding recirculation bubble in the wake of a sphere

(Taneda 1956a). The recirculation bubble remained steady, two-dimensional and sym-

metrical about the centreline of the flow until a subsequent transition to asymmetric

flow was observed for Reynolds numbers Re & 40.

One of the pioneering computational studies of fluid mechanics was performed by

Payne (1958), who numerically modelled the wake of a circular cylinder. The Helmholtz

vorticity equation was employed, incorporating viscosity, and a finite-difference scheme

was employed for spatial discretisation. For temporal integration a forward-difference

technique was employed. Although an unsteady solver was employed, the computations

were only evolved for sufficient time for the flow to evolve from the inviscid startup

condition to the viscous steady-state solution. In the study, a variation in the computed

drag coefficient was reported. At Re = 40, the drag coefficient varied over 3 < Cd < 1.8

between t = 0 and t = 6. At Re = 100, the drag coefficient varied over 1.2 < Cd < 1

between t = 0 and t = 6. A later study by Ingham (1968) extended the computations

of Payne (1958) to t = 24. Ingham reported a concern with the resolution of the

computations at Re = 100. At Re = 40, an asymptotic drag coefficient of Cd = 1.5 is

achieved.

An attempt to model the unsteady viscous flow past a circular cylinder was per-

formed by Ta Phuoc Loc & Bouard (1985), who employed a numerical method com-

prising finite-difference discretisations of fourth-order for the stream-function equation,

and second-order for the vorticity transport equation. The computations modelled only

one half of the wake, therefore suppressing the natural development of a vortex street.

The Reynolds numbers of the computations were Re = 3×103 and Re = 9.5×103, and
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(a) Attached flow at Re = 0.16. (b) Separated flow at Re = 13.1.

Figure 1.5: The steady flow past a circular cylinder at low Reynolds numbers (from Van
Dyke 1982, photographs by S. Taneda).

the computations were evolved for 0 ≤ t ≤ 5. Solutions were computed with transverse

domains of 9.2d and 5d, with little variation being observed between the computed

wakes.

In Coutanceau & Bouard (1977a), experiments were conducted in which a cylinder

was raised through a tank, with images of the wake being captured at the tank mid-

point, minimising wall, surface and startup effects. The study concerned the steady

wake behind a circular cylinder, and visualisations were obtained by illuminating mag-

nesium particles with a 1mm thick laser sheet. A steady recirculation bubble was

observed in the wake for 5 < Re < 40, which consisted of a counter-rotating vortex

pair. The visualisations compare favourably with the early experiments of Taneda

(1956b), who observed a steady recirculation bubble in the wake for Re > 6. Images of

both the attached and separated flow past a circular cylinder are provided in figure 1.5.

An experimental study by Nishioka & Sato (1974) provided velocity measurements in

the wake behind a circular cylinder for Reynolds numbers 10 < Re < 80. Included was

a detailed analysis of the velocity profiles in the recirculating eddies in the wake, and it

was shown that a similarity existed in the returning stagnation streamline for Reynolds

numbers 10 < Re < 40, which corresponded to observed steady flow.

1.2.3 The Transition to Unsteady Flow

As a followup to their earlier work, Coutanceau & Bouard (1977b) studied the decay

of unsteady transients in the wake of a circular cylinder, subsequent to an impulsive

initiation of motion. They observed a more rapid decay of transients at smaller Reynolds

numbers. At Re = 20.2 unsteady transients decayed within t ≈ 7 time units (where

t = U∞t̂/d, and t̂ is the measured time), and at Re = 40 the transients decayed
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within t ≈ 12. Flow parameters such as the vortex position and separation angle were

monitored, and it was observed that transverse flow features evolved more rapidly than

longitudinal flow features. The parameters associated with the recirculation bubble

evolved more rapidly than the surrounding flow field.

Pertaining to the development of unsteady flow, the study by Coutanceau & Bouard

(1977a) reported that a steady asymmetry was observed in the recirculation bubble

behind a circular cylinder for Re > 40.3. This asymmetry marked the onset of the

transition to unsteady flow in the wake.

The stability of the steady flow past bluff bodies was considered by Taneda (1963).

In that study, the flow past both a plate and a circular cylinder in a water channel

was investigated. A Reynolds number range of 0.8 < Re < 60 was considered for the

circular cylinder, and from measurements of wake oscillations Taneda proposed that

the critical Reynolds number below which all disturbances were damped was Re ≈ 1.0

for the flow past a circular cylinder. An analysis was performed assuming parallel flow,

and a general critical value of Re ≈ 3.2 was proposed for the flow past bluff bodies of

any shape. In earlier experiments, Taneda (1956b) reported an oscillation in the far

wake, despite a steady recirculation bubble being observed in the near wake at Re ≈ 30.

An explanation for the detection of oscillations below the critical transition Reynolds

number for unsteady flow can be made by considering the nature of the instability

responsible for the development of unsteady flow past a circular cylinder (e.g. see

Provansal et al. 1987; Monkewitz 1988a). In these studies, absolute and convective

instabilities are defined, with absolute instabilities displaying exponential growth at

the location of their generation, whereas convective instabilities are transported away

from the source, leaving the flow ultimately undisturbed. The terms local and global

are also applied, where local instabilities are confined to a small region of the flow,

and global instabilities evolve everywhere in a flow, with a linear growth rate that is

independent of position.

In Monkewitz (1988a), the stability of transverse profiles of the wake of a circular

cylinder was investigated at low Reynolds numbers. A critical Reynolds number Re ≈ 2

was predicted for the transition between stability and convective instability. This pre-

diction corresponds with the observed measurement of unsteady transients downstream

of the cylinder by Taneda (1963), at Reynolds numbers Re ≈ O(1). A second critical

Reynolds number Re ≈ 25 was predicted for the transition between convective and
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absolute local instability in the wake. This prediction corresponds with the measure-

ment of oscillations in the near wake behind a circular cylinder at Re ≈ 30 by Taneda

(1956b).

The critical Reynolds number for the transition to unsteady flow was predicted to

be ReC2 = 54 from a numerical study by Noack & Eckelmann (1994a), however, the

Galerkin method they used appeared to have too few modes to accurately capture the

instability. The experimentally derived results of Williamson (1988a, 1989), which ob-

serve a critical Reynolds number of ReC2 ≈ 49 are widely regarded as more accurate.

In Nishioka & Sato (1974), an extrapolation of experimental data for finite-length cylin-

ders to an infinite length ratio achieved a value of ReC2 ≈ 48. Jackson (1987) calculated

a value of ReC2 ≈ 46.2 from Richardson extrapolation of finite-element computations,

and more recently, further computational refinement of the critical Reynolds number

has been made. Dušek et al. (1994) obtained a value of ReC2 = 47.1 through numerical

computation and the application of the theoretical Landau model. They also verified

the prediction of Provansal et al. (1987), who identified the transition to occur through

a continuous supercritical Hopf bifurcation. A recent and highly accurate stability anal-

ysis of the steady flow past a circular cylinder was recently performed by Motallebi &

Norbury (1999). They predicted a critical Reynolds number of ReC2 = 47.0 from lin-

ear stability analysis computations which employed an eigensolution method for global

stability analysis.

1.2.4 The Kármán Vortex Street

At Reynolds numbers beyond the Hopf transition Reynolds number ReC2 for the flow

past a cylinder cylinder, the wake shear layer rolls up and vortices are shed downstream

from the rear of the cylinder, forming the classic Kármán vortex street. Beautiful images

of the Kármán vortex street in the wake of a circular cylinder were captured with a

smoke visualisation method by Zdravkovich (1969). Photographs of both a laminar and

turbulent Kármán vortex street are provided in figure 1.6.

A numerical study performed by Fromm & Harlow (1963) included a detailed de-

scription of the evolution of the Benard–von Kármán instability responsible for the

formation of the vortex street in the flow past a bluff plate. They observed that the

instability manifests itself through a development of asymmetry between the counter-

rotating vortices in the recirculation bubble. This in turn initiates a transverse shift in
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(a) Laminar two-dimensional wake

at Re = 140 (photographed by S.

Taneda).

(b) Turbulent wake at Re = 1×104

(photographed by T. Corke and H.

Nagib).

Figure 1.6: The laminar and turbulent Kármán vortex streets in the wake of a circular
cylinder (from Van Dyke 1982).

the position of the vortices, to the point where a detachment occurs, and an oscillatory

shedding of vortices from alternating sides of the body into the wake every half-period

is initiated.

The experimental study of Gerrard (1966) reported on experiments conducted on the

flow past a circular cylinder at Re = 85, 235 and 2× 104. The study observed flapping

in the wake analogous to a flag. Although Gerrard provided no flow visualisation, it

is probable that this flapping was due to the convection of the visualisation matter

downstream in the vortex street. As well as parallel modes of shedding, Gerrard was

able to distinguish both oblique shedding modes and vortex street dislocations in the

wake.

An experimental study was performed by Wen & Lin (2001), employing a soap-

film visualisation method to model the two-dimensional Kármán vortex street in the

wake of a circular cylinder. The technique achieved a two-dimensional flow, which was

confirmed by the measurement of a continuous Strouhal–Reynolds number profile which

was in close agreement with values computed numerically for two-dimensional flows up

to Re = 560.

1.2.4.1 Extrinsic Instabilities of the Vortex Street

The wake of a circular cylinder is fundamentally different to the wake of a sphere, in

that the maximum spanwise length of the wake is not limited by the symmetry of the

body (e.g. a maximum azimuthal span of 2π radians is permitted for the flow past a

sphere). The wake of a circular cylinder is susceptible to extrinsic instabilities that
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propagate from the cylinder ends.

In an experimental study by Tritton (1959), drag force measurements were made

for the flow past a circular cylinder by measuring the deflection of quartz fibres in a

stream over a Reynolds number range 0.5 < Re < 100. A discontinuity was measured

in the Strouhal–Reynolds number profile, suggesting that a transition in the vortex

street occurred at Re ≈ 90, from parallel to non-parallel shedding. Tritton proposed

that this transition was due to a shift in the origin of the vortex street from the wake

to the cylinder. From the flow visualisation images provided in the study, it is observed

that the vortex rollers rapidly become non-parallel as they convect downstream, at

Reynolds numbears Re = 78, and at Re = 88, the rollers are shed from the cylinder

in a non-parallel fashion. In a later study, Tritton (1971) performed experiments in a

wind-tunnel to verify the existence of the transition at Re ≈ 90. A transition in the

variation of a parameter ReSt was measured at Re = 110, and it was proposed that

this shift in the transition Reynolds number was influenced by experimental conditions

including background turbulence intensity.

Gaster (1971) reports on experiments performed on the flow past a tapered cylinder.

Such a geometry imposes a local variation in Reynolds number along the span of the

cylinder, and also in the Strouhal frequency associated with a particular measured fre-

quency. Gaster observed a significant discontinuity in the measured Strouhal–Reynolds

number profile for the geometry at Re ≈ 100, with a second less-pronounced discontinu-

ity at Re ≈ 115. The vortex street was observed to be composed of cells, with different

shedding frequencies in each cell. The cell positions shifted along the span with ve-

locity, and therefore correspond to localised regions of flow where the vortex shedding

frequency was roughly aligned with the local length scales of the model. Gaster pro-

posed that the Strouhal–Reynolds number discontinuities that had been reported by

Tritton were likely due to the formation and movement of vortex street cells in a slightly

non-uniform flow, which supports the observation by Tritton (1971) that background

turbulence strongly influenced the transition Reynolds number.

More recent experimental studies have reported a similar discontinuity in the Strou-

hal–Reynolds number profile for the laminar shedding in the wake of a circular cylinder

in a water channel, which occurred at Re ≈ 60. Flow visualisations confirmed that

this discontinuity was consistent with the development of oblique shedding in the wake

(Williamson 1989; Hammache & Gharib 1991). At Reynolds numbers Re & 64 oblique
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shedding was reported in the wake of a circular cylinder (Williamson 1988a, 1996b),

where the inclination of the vortex rollers to the cylinder caused a reduction in the

Strouhal frequency of shedding. A mathematical relationship was developed which

described the Strouhal frequency of shedding as functions of both the Reynolds number,

and the angle of oblique shedding.

These studies verify that the transition from parallel to oblique vortex streets in

the wake of a circular cylinder is sensitive to the end-conditions of the cylinder and the

experimental apparatus. The influence of side-wall blockage on the wake of a circular

cylinder was studied experimentally by Shair et al. (1963). A change in drag coefficient

of approximately 18% was measured when the blockage ratio was increased from 5%

to 20%. A staggering change in the critical Reynolds number for the onset of unsteady

flow in the order of 300% was recorded by varying the blockage ratio. They determined

that ReC2 ≈ 40 for a blockage ratio approaching zero, and ReC2 ≈ 135 for a blockage

ratio of 20%.

In an experimental study by Gerich & Eckelmann (1982), the effect of placing plates

at the ends of a circular cylinder on the wake was considered, with one and two plates

being added, and Strouhal frequency measurements being made both near to the plates

and in the unaffected region. Importantly, they found that frequencies 10–15% less

than the regular shedding frequency were measured at distances between 6d and 15d

from the end of the cylinder. Norberg (1994) considered the effect of varying the

cylinder aspect ratio (length/diameter) on the measured wake parameters including

base pressure coefficient. It was found that aspect ratio variation had an increased

effect at lower Reynolds numbers, presumably due to the sensitivity of the laminar

vortex street to end effects.

1.2.4.2 The Stability of a Vortex

The stability of an array of vortices was studied by Robinson & Saffman (1982). They

predicted that a single row of vortices was unstable to two-dimensional perturbations,

whereas a Kármán street was predicted to be unstable to three-dimensional perturba-

tions for a range of vortex roller spacings. In addition, a symmetric vortex street was

found to be unstable to either two- or three-dimensional disturbances, depending on

the spacing ratio.

The stability of a rectilinear vortex with an elliptical cross-section was studied
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numerically by Robinson & Saffman (1984). The flow field was assumed to be steady,

and the vortex was subject to an irrotational strain field. They determined that the

analytical weak-strain instability was applicable to finite-strain flows. Importantly,

they predicted that such a flow is more unstable to a three-dimensional perturbation

than a two-dimensional perturbation in the regions of the parameter space relevant

for practical applications. More recently, the stability of two-dimensional visco-elastic

elliptic flows was investigated by Haj-Hariri & Homsy (1997), who identified additional

instability modes to the inertial modes predicted from previous studies.

Marshall (1992) studied the stability of an axially stretched pair of counter-rotating

vortices to three-dimensional perturbations. In that study, it was found that when

the stretching rate is greater than zero, the perturbation amplitude initially grows,

however it always decayed to zero over large times. The predictions of the analysis

were compared with observations of hairpin vortices in turbulent flows, which in the

absence of any stretching were observed to become unstable and quickly dissipate.

1.2.4.3 Linear Instabilities of the Vortex Street

Experiments have observed the parallel periodic vortex street in the wake of a circular

cylinder to become unstable to a three-dimensional instability at Re ≈ 178 (Williamson

1988a, 1996b, see figure 1.7(a)). This transition was studied using a linear Floquet

stability analysis (Barkley & Henderson 1996). They found that at Re = 188.5 the

cylinder wake becomes unstable to three-dimensional perturbations with a spanwise

wavelength of 3.96 diameters. A second instability of the two-dimensional base flow

was predicted to occur at Re ≈ 259, with a spanwise wavelength of 0.822d. These

instability modes are referred to as Modes A and B, respectively.

The numerical predictions of Barkley & Henderson (1996) pertaining to the span-

wise wavelength of the vortex street instabilities were in good agreement with both

experimental flow visualisation, and experimental measurements. In a study by Mansy

et al. (1994), the spanwise wavelength of the three-dimensional component of the vor-

tex street was calculated for Reynolds nubmers in the range 170 < Re < 2200. They

measured a spanwise wavelength of λd ≈ 3.5d at a Reynolds number of Re ≈ 200, and

a spanwise wavelength which decreased from 1d to 0.6d for Reynolds numbers which

increased from Re ≈ 260 to 2000. By employing a Particle Image Velocimetry tech-

nique in a plane normal to the wake, Brede et al. (1996) computed spatio-temporal
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reconstructions of the three-dimensional wakes corresponding to the Mode A and B

instabilities. Interestingly, they calculated a reduction of circulation in the streamwise

vortices in the wake by a factor of two from Mode A with 160 . Re . 240 to Mode B

with Re & 240. The estimated spanwise wavelengths they reported were approximately

4.5d and 1.0d for Modes A and B, respectively. Ma & Karniadakis (2002) modelled the

three-dimensional transitions in the wake of a circular cylinder using a low-dimensional

model. Snapshots of the most energetic modes from high-resolution direct numerical

simulations were obtained, and predictions of the Strouhal discontinuity at the onset

of Mode A were made. A Strouhal number of St2D ≈ 0.194 was predicted at Re ≈ 183,

and a Strouhal number of St3D ≈ 0.183 was predicted at Re ≈ 185. Their model could

not predict the hysteresis (or bi-stability) that was both calculated and measured at

the onset of Mode A (Williamson 1996b,a; Henderson 1997).

Photographs of the Mode A and B instabilities in the vortex street behind a circular

cylinder are reproduced in figure 1.7. The first numerical computations that captured

both the Mode A and B instabilities in the three-dimensional wake of a circular cylinder

were performed by Thompson et al. (1994, 1996). These studies provided isosurface

plots of the streamwise vorticity in the Mode A and B wakes, which correspond to

the spatio-temporal mode symmetry predicted by Barkley & Henderson (1996). The

results of simulated-particle computations were also presented, which were almost in-

distinguishable from the experimental dye visualisation of the modes from Williamson

(1988b, 1996b).

A detailed Floquet analysis was performed by Thompson et al. (2001b), to at-

tempt to identify the physical mechanism of the Mode A transition. They showed that

although the instability was complex, the mechanism was consistent with an elliptic

instability of the vortex cores. Evidence suggests that the transition is in fact a co-

operative elliptic instability (Leweke & Williamson 1998), with the elliptic instability

dominant in initiating the growth of the three-dimensional flow structures in the near

wake. Advection then transports some perturbation into the braid regions where it is

amplified as the vortex rollers convect downstream.

The wake behind a square-section cylinder provides an interesting complement to

studies of the wake behind a circular cylinder. The flow past a square cylinder has fixed

separation points imposed by the corners of the body. No such restrictions are imposed

on the flow past a circular cylinder. An early experimental study by Vickery (1966)
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(a) Mode A at Re = 200. (b) Mode B at Re = 270.

Figure 1.7: Three-dimensional instabilities of the vortex street behind a circular cylinder
(from Williamson 1996b). Flow is upwards, and the wake is viewed from above.

measured lift and drag coefficients from square cylinders for various angles of attack.

That study explored a Reynolds number range 4×104 < Re < 1.6×105. A peak in the

root-mean-square of the lift coefficient was recorded for an angle of attack of 0◦, and

a minimum root-mean-square of the lift coefficient was recorded for an angle of attack

of 45◦. Vickery also reported that a higher variation in fluctuating lift coefficient was

measured in a turbulent stream than in a smooth stream.

Computations of the flow past a square cylinder with an angle of attack of 0◦ have

been reported in numerical studies (Robichaux et al. 1999; Blackburn & Lopez 2003).

In a numerical stability analysis of the wake of a square cylinder, Robichaux et al.

(1999) predicted that the two-dimensional vortex street was unstable to the Mode A

and B instabilities reported previously for the wake of a circular cylinder, as well as

an instability mode with λd ≈ 2.8d. They named this new instability Mode S, and

predicted that it was subharmonic with a 2T symmetry, meaning that the instability

was periodic over two shedding cycles of the base flow. This predicted symmetry for

Mode S contrasted the 1T symmetries of Modes A and B, which were periodic over

a single period of the base flow. The spanwise wavelengths that they predicted for

Modes A and B were approximately 40% larger than the predicted wavelengths for the
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corresponding modes in the wake of a circular cylinder, which indicated that the vortex

street and the instability modes scaled on the diagonal length of the square cross-section.

In experimental and numerical studies of the flow past a circular cylinder perturbed by

a trip-wire, Zhang et al. (1995) had earlier observed a similar intermediate-wavelength

instability in the wake. They referred to this observed mode as Mode C, and measured

a spanwise wavelength of λd ≈ 2d for the mode. The spatio-temporal reconstructions

of the mode which were provided in their study indicated that the instability had

properties consistent with a subharmonic mode.

The stability analysis technique employed by Robichaux et al. (1999) is known as

the power method, which is described in chapter 2. A recent study by Blackburn

& Lopez (2003) employed a Krylov method to solve the stability of the flow past a

square cylinder, and showed that Robichaux et al. had incorrectly classified Mode S

as a real subharmonic mode. The application of the Krylov method reavealed that the

dominant Floquet mode of the Mode S instability bifurcated as a complex-conjugate

pair. The imaginary component of the mode was small compared with the negative

real component, which explained the incorrect identification by Robichaux et al., as the

perturbation field would have alternated in sign from one period to the next, however

a perfect 2T symmetry would not have been maintained. Based on their findings,

Blackburn & Lopez (2003) proposed that for all bodies that preserved a reflective

symmetry about the wake centreline (this includes both circular and square cylinders),

a generic bifurcation scenario exists, consisting of real Modes A and B, and an additional

complex-conjugate mode. This proposed scenario is supported by the stability analysis

of Ryan et al. (2001) for the wake of elliptical leading-edge plates. The wakes behind

these plates preserved the reflective symmetry of the vortex street, and their study

predicted that instabilities which corresponded to Mode A, Mode B, and a complex-

conjugate mode occur at various plate lengths.

Henderson (1997) computed the three-dimensional wake of a circular cylinder

through the Mode A and B transitions. The span of the computations was varied

by up to 4 times the spanwise wavelength of the Mode A instability. The interaction

between the Mode A and Mode B instabilities was studied by monitoring the pro-

portion of energy present in each of the spanwise Fourier modes in the computations.

Isosurface plots were presented which showed the three-dimensional wake structures

at Re = 265. These showed an instantaneous coexistence of both Mode A and Mode
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B wake structures in the wake. In the study a spontaneous switching between Mode

A and B was observed, which explains the presence of two distinct Strouhal frequen-

cies in the wake over the Reynolds number range 230 . Re . 260, as measured by

Williamson (1988b). An attempt was made to study the physical mechanism which

leads to the formation of streamwise vortical wake structures (Mittal & Balachandar

1995b); however, the computational domain they employed spanned only a single cylin-

der diameter, which resulted in the artificial suppression of Mode A structures. They

did, however, observe the formation of well-defined vortical structures in the braid re-

gion of the vortex street, associated with Mode B shedding. Beyond the onset of these

three-dimensional transition modes in the vortex street, the remnants of these insta-

bilities persist even in turbulent flows. For example, the Particle Image Velocimetry

measurements of Wu et al. (1996) in a plane aligned with the wake flow record evidence

of a spanwise wavelength of approximately 0.7d in the wake at Re ≈ 500.

1.2.5 Pattern Breakdown and the Route to Chaos

The route to turbulence associated with an increase in Reynolds number for the flow

past bluff bodies has been the subject of a significant body of research over many

years. Simple geometries such as the sphere (Taneda 1956a; Magarvey & Bishop 1961b;

Tomboulides & Orszag 2000), the circular cylinder (Williamson 1988a, 1996b), and

flat plates (Sato & Kuriki 1961; Hourigan et al. 2001) have all been studied to gain

an understanding of the intermediate flow states and the transitions that can occur

between the steady attached laminar wakes of low-Reynolds-number flows (typically

Re < 5 for the flow past of a circular cylinder), to the chaotic and turbulent wakes of

high-Reynolds-number flows (typically Re > 400 for the flow past a circular cylinder).

Despite a surge in activity over recent years, with research into the transitions and

mechanisms associated with the development of turbulence in the wakes behind bluff

bodies (Henderson 1997; Prasad & Williamson 1997a,b), the nature of the mechanism

describing the route to chaos in a vortex street behind non-cylindrical geometries is still

poorly understood.

1.2.5.1 Turbulent Flow and Chaos

Turbulent flow is characterised by a continuous spectrum of frequencies, due to the

development of fine scale vortical structures. A uniform flow at low Reynolds number

will contain few, if any, frequencies. A natural tool for modelling the development of
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these additional frequencies in the wake is chaos theory.

Chaos theory is concerned with the development of apparently random behaviour

from simple systems. Some excellent introductory reading on the subject may be found

in Gleick (1993), and for more technical reading, Otto (1993) is useful. A feature of

chaotic systems that is analogous to turbulent flows is self-similarity. Self-similarity

determines that the distribution of scales within a system remains consistent for all

scales. For turbulent flows, self-similarity is observed in homogeneous regions of the

flow, however, the series of smaller and smaller vortical scales is eventually truncated

at a finite scale by viscous diffusion (Henderson 1997).

1.2.5.2 The Period-Doubling Cascade: Excitement Through a Subhar-
monic Instability

Different routes to turbulence have been suggested for open flows in fluid mechan-

ics. These include the aforementioned spatio-temporal chaos, itermittency, bursting

chaos and a period-doubling cascade (Karniadakis & Triantafyllou 1989; Rockwell et al.

1991; Tomboulides et al. 1992; Karniadakis & Triantafyllou 1992; Mittal & Balachandar

1995b). The period doubling cascade is of particular interest to this study, as it was

shown to occur in fluid flows similar to the von Kármán wake of the cylinder, such as

a row of vortices (Braun et al. 1998). A period-doubling cascade causes the response

of a periodic system (i.e. a three-dimensional vortex street) to undergo a succession of

period-doubling bifurcations with the increase of a given parameter (in this case the

Reynolds number Re). This cascade renders the response chaotic, with an effectively

infinite period. It was proposed that a period-doubling cascade arises in vortex streets

through the evolution of a subharmonic instability (Tomboulides et al. 1992). Compu-

tational studies of the flow past a circular cylinder (Karniadakis & Triantafyllou 1992;

Tomboulides et al. 1992; Mittal & Balachandar 1995a) showed that the transition to a

three-dimensional vortex street caused a period-doubling bifurcation of the wake. These

studies employed compuational domains with a spanwise length insufficient to capture

the Mode A instability. The predicted route to chaos from these studies is therefore

questionable, as the three-dimensional bifurcation scenario of the vortex street was in-

correctly computed. Computations which include a Mode A instability have shown

that a period-doubling bifurcation is not observed in the wake (Thompson et al. 1994,

1996; Henderson 1997).

36



1.2.5.3 Chaos in Spatially Extended Systems

Spatially extended systems include at least one spatial dimension. These systems may

be either constant (i.e. steady flow) or uniformly varying in time (i.e. two-dimensional

periodic flow) when at equilibrium. An increase in the control parameter (for the

fluid flows considered here, the Reynolds number is the control parameter) beyond

the equilibrium point causes patterns to develop. Efforts to model a vortex street as

a spatially extended dynamical system have been performed by Leweke & Provansal

(1994, 1995). In an experimental study of the flow past a circular cylinder, Roshko

(1967) determined that the critical Reynolds number for the transition to turbulent

flow in the near-wake region was proportional to a ratio of the cylinder length to the

cylinder diameter.

Henderson (1997) performed an extensive numerical study of pattern development in

the vortex street in the wake of a circular cylinder. He identified the mechanism through

which turbulence appears in the wake of a circular cylinder with a large span. It was

observed that a breakdown of the regular saturated Mode B wake occurred through a

development of spatio-temporal chaos in the wake, whereby local disturbances destroyed

the global pattern of the wake, forming a wake consisting of random fluctuations in both

space and time, and no discernable overall pattern. These computational measurements

are consistent with earlier experimental observations by Gerrard (1977), which show

the breakdown of the vortex street in the wake of a circular cylinder at Re = 344.

A significant conclusion from the study by Henderson is that with an increase in the

span, the vortex street becomes unstable to instabilities such as vortex dislocations

and spatio-temporal chaos, whereas with an increase in Reynolds number, turbulence

appears in the wake through the development of small-scale vortical structures.

1.2.6 The Flow at Higher Reynolds Numbers

The flow past a circular cylinder comprises three distinct shear flows (Williamson

1996b). These include the wake (located downstream of the cylinder), the mixing

layer (located in the near-wake region), and the boundary layer (located around the

cylinder). It was shown that turbulent flow emerges progressively in the wake in the

form of small-scale vortical structures for Reynolds numbers Re & 300 (Roshko 1954;

Bloor 1964; Gerrard 1977; Unal & Rockwell 1988; Williamson 1996b; Henderson 1997;

Prasad & Williamson 1997a,b).
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Roshko (1953, 1954) describes three distinct regimes of flow past a circular cylinder.

These were a “stable range” (40 . Re . 150) over which regular vortex shedding

was observed, a “transition regime” (150 . Re . 300), and an “irregular regime”

(Re & 300) over which turbulent velocity fluctuations were measured in addition to

the periodic vortex street. Respectively, the stable range and the transition regime

describe the two- and three-dimensional flow regimes discussed previously. Roshko

proposed that turbulence entered the flow through a laminar-turbulent transition of

the free shear layers propagating from the separation points from the cylinder. Roshko

measured the decay of discrete energy in the wake as turbulent flow dissipated the vortex

rollers in the wakes in the irregular regime. He observed that within 50 diameters, the

vortex street was completely obliterated, and the decay was consistent throughout a

Reynolds number range 300 . Re . 10, 000.

A significant contribution to the understanding of the development of turbulence in

the wake of a circular cylinder was made by Bloor (1964). In that study, it was observed

that the location of the transition to turbulence in the wake moved towards the cylinder

with an increase in Reynolds number. A shift in wake dynamics was observed when

the turbulent transition in the wake entered the near wake formation region, which

corresponded to a shift from the transition regime identified by Roshko to the irregular

regime, at Reynolds numbers of Re & 400 in the Bloor study. Over the irregular

regime a decrease in the base pressure coefficient (Roshko 1993) and the fluctuating

lift coefficient (Norberg 2001) have been measured. Bloor (1964) observed that in

the irregular regime, the development of wake turbulence occurred through distortion

of the vortex street due to large-scale three-dimensional effects. This is essentially

a description of spatio-temporal chaos, which Henderson proposed as a mechanism

through which turbulence developed in vortex streets.

A markedly different mechanism for the development of turbulence in the irregular

regime (1.3× 103 < Re < 8×103) was proposed by Bloor. In that case, turbulence was

observed to occur following the breakdown of Tollmien–Schlichting waves in the sepa-

rated shear layers. Over the irregular regime, laminar flow was still detected within the

formation region, exhibiting a dominant fundamental frequency. Moving downstream in

the formation region, Bloor measured turbulent bursts which imposed higher-frequency

components on the fundamental shedding frequency. The study by Unal & Rockwell

(1988) provides base pressure coefficient and velocity fluctuation measurements which
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confirm the transition to turbulence within the formation region, however a higher

Reynolds number of Re ≈ 1.9 × 103 is proposed for the onset of the irregular regime.

A local minimum in both the base pressure coefficient and the velocity fluctuation at

the transverse edge of the formation region was also measured at the beginning of this

irregular regime. Norberg (2001) also reported a local minimum in the fluctuating lift

coefficient variation with Reynolds number at the beginning of the irregular regime.

Above the intermediate range, the study by Bloor (1964) provided measurements

at Re = 1.95 × 104, 2.95 × 104 and 4.5 × 104. For each of these Reynolds numbers,

the laminar–turbulent transition occurred in the formation region, approximately 0.2d–

0.25d from the rear of the circular cylinder.

A review of base pressure coefficient measurements of the wake of a circular cylinder

was conducted by Roshko (1993), up to Re ≈ 107. The intermediate range proposed

by Bloor (1964) is shown to coincide with an increase in base pressure coefficient,

corresponding to the development of a Kelvin–Helmholtz instability in the separating

shear layers. The observed increase in base pressure coefficient continued up to Re ≈
1.2×105. Beyond this Reynolds number, a dramatic decrease in both the drag and base

pressure coefficients are observed, as the “critical transition” in the wake occurs. Roshko

described that the flow past a cylinder at the critical transition experienced a separation

followed by a reattachment, which allowed a later separation at approximately 140◦ from

the front of the cylinder. This reduced the width of the wake, which in turn reduced

the drag coefficient.

At still higher Reynolds numbers, the “supercritical regime” and the “post critical

regime” are found. In the supercritical regime low drag coefficients are measured, as

the boundary layer separates, becomes turbulent and reattaches to the cylinder, before

again separating. In the post critical regime, the boundary layer is fully turbulent, and

separation occurs at approximately 100◦, giving rise to an increase in base pressure

coefficient measurements.

This completes the review of the flow past a circular cylinder. A summary of the

transitions in the flow past a circular cylinder at low Reynolds number is presented in

table 1.2.
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Circular cylinder wake transition Experimental Rec Computational Rec

Boundary layer separation 6 5
Hopf transition to unsteady flow 48 47

Three-dimensional transition – Mode A 180 188.5
Three-dimensional transition – Mode B 230–260 259

Table 1.2: Transition Reynolds numbers from experimental and computational studies of
the flow past a circular cylinder (Taneda 1956b; Noack & Eckelmann 1994b; Nishioka & Sato
1978; Williamson 1988a; Dušek et al. 1994; Barkley & Henderson 1996; Henderson 1997).

1.3 The Flow past Rings

Having reviewed significant findings in the literature pertaining to the flow past a sphere

and a circular cylinder, the relatively small body of work dedicated to the flow past

rings is now explored.

1.3.1 Rings with Circular Cross-Section

As part of a detailed experimental study of the development of turbulence in vortex

streets behind circular cylinders (Roshko 1953, 1954), the flow behind rings was studied

for comparison purposes. In Roshko (1954), rings were constructed by bending wire

into circles ranging from 4mm to 1.6cm in diameter. These were supported by three

fine wires in the order of 0.1mm in thickness, equi-spaced around the ring. This enabled

aspect ratios of Ar = 5.1, 9.5 and 10.0 to be modelled, with experiments varying in

Reynolds number over 70 < Re < 500. It was noted that for a ring with Ar = 10.0,

the wake consisted of annular vortex rings, which appeared similar in structure to the

vortex shedding street observed behind a circular cylinder. Quantitatively, a reduction

in Strouhal frequency of vortex shedding was observed when compared with the wake of

a circular cylinder. At Re = 100, the Strouhal frequency of shedding was approximately

6% lower for the wake of a ring with Ar = 10.0, and at Re = 500, the Strouhal frequency

was approximately 3% lower. Evidence of an asymmetry between the shed inner and

outer vortices comprising the annular vortex wake was measured with a hot-wire probe.

A less-pronounced discrepancy was also observed for circular cylinders, so it remained

an open question as to whether this asymmetry was due to the axisymmetric geometry,

or interference of the probe.

The experiments of Roshko (1954) involving a ring with Ar = 5.1 showed that

the wake exhibited remarkably different properties. Between Reynolds numbers 89 ≤
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Re ≤ 153, the wake consisted of vortex-loop shedding consistent with observations of

the wake behind a sphere (Magarvey & Bishop 1961b; Mittal 1999a), with Strouhal

frequencies being measured in the range 0.051 < St < 0.060. An increase in Reynolds

number caused a rapid jump in Strouhal number, to between St = 0.147 and 0.212

up to Re = 455. This increase corresponded to a switch in wake dynamics from the

vortex-loop type shedding, to the shedding of annular vortex rings consistent with the

wake behind larger rings, and analogous to the vortex street in the wake of a circular

cylinder.

The culmination of several years of work was presented in a landmark publication

by Monson (1983). He provided for the first time a systematic study of the wakes of

a wide range of aspect ratios, at various Reynolds numbers over the range Re < 1000,

which included the viscous regime relevant to the present study. Flow visualisation was

performed by coating rings in dye, and allowing them to fall freely through a tank.

As with the sphere studies of Magarvey & Bishop (1961a), the vertical descent of the

rings was influenced by hydrodynamic forces acting on the rings, which in some cases

induced transverse motions, no doubt influencing the characteristics of the observed

shedding modes in the wake.

Monson used a parameter based on the projected frontal solidity, S, to describe the

rings. The solidity relates to the aspect ratio parameter employed in the present work

by

Ar =
2
S
− 1 + 2

√
1
S2

− 1
S

. (1.1)

Based on observations of the types of wakes observed, Monson categorised the rings

into three groups. Small aspect ratios in the range 1 ≤ Ar . 7 exhibited wakes similar

to solid bodies, with rows of oblique vortex loops being shed into the wake. He reports

that at higher Reynolds numbers, these wakes experienced a change, shedding coun-

terrotating vortex rings, and experiencing a sharp rise in Strouhal frequency, similar

to that measured by Roshko (1954). Such a transition can only be observed from the

wake visualisations presented by Monson for aspect ratios Ar & 4.42. At Ar = 4.42,

this transition occurrs between 94 < Re < 97. Visualisations of smaller aspect ratios

show solid-body type shedding to high Reynolds numbers (i.e. Re = 2940 at Ar = 1,

and Re = 347 at Ar = 2.60).

An intermediate aspect ratio range is proposed for 7 . Ar . 25, where either

a wake consisting of parallel or oblique shedding was observed, with counterrotating
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vortex rings, or helical counterrotating vortex spirals being observed, respectively. With

an increase in Reynolds number, the uniform vortex rings became irregular, forming

“turbulent annular puffs”.

Finally, for aspect ratios Ar & 25, the wakes behind the rings were observed to

consist of only parallel counterrotating vortex rings, and with an increase in aspect

ratio, the wake characteristics approached those observed behind a circular cylinder.

1.3.1.1 Rings Approximating a Circular Cylinder

These earlier studies provided the inspiration for a comprehensive study by Leweke &

Provansal (1995) of rings with large aspect ratios (Ar & 10), to study the wake behind

a circular cylinder without the end-effects usually associated with experimental studies.

Some of the findings in that study were also reported in Leweke & Provansal (1994).

Roshko (1953) showed experimentally that laminar vortex shedding from rings oc-

curred at frequencies lower than for the circular cylinder by up to a few percent. This

behaviour was quantified experimentally by Leweke & Provansal (1995). They defined

a Strouhal–Reynolds-curvature relationship for laminar shedding for a ring diameter at

least 10 times greater than its cross-sectional diameter. Their study also investigated

the flow regimes for Re < 400, and employed slender rings to model a straight circular

cylinder without end-effects. Roshko (1953) noted that at smaller aspect ratios, the

wakes of the rings exhibited a vastly different Strouhal–Reynolds number variation.

Asymmetric wakes were observed by both Monson (1983) and Leweke & Provansal

(1995), in the form of helical vortex rings analogous to the oblique shedding observed

by Williamson (1989) for circular cylinders. Whereas the oblique wake of a circular

cylinder can be observed at arbitrary angles to the cylinder axis depending on the

experimental end conditions and cylinder length, the helical vortex rings were observed

to shed as discrete modes consisting of single, double or triple helices, due to the imposed

periodicity of the ring geometry. Smoke-wire flow visualisation of the vortex shedding

modes in the wake behind a ring are provided in figure 1.8.

The experiments of Monson (1983) involved observing a ring falling through a liquid,

rendering Strouhal number measurements difficult. However, the study by Leweke &

Provansal (1995) employed a fixed ring mounted in a wind tunnel. This permitted

accurate measurement of the Strouhal number by a hot-wire probe. The appearance of

the three helical modes was studied for different aspect ratios, and it was found that
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(a) Parallel shedding. (b) Single-helix shedding.

(c) Double-helix shedding. (d) Triple-helix shedding.

Figure 1.8: Vortex-shedding modes in the wake behind a ring with Ar = 24.3 at Re = 105
(from Leweke & Provansal 1995). The modes were identified by observing the deformation
of a cylindrical smoke sheet.

the double and triple helices could only be observed for larger rings of aspect ratio

approximately Ar > 18. The stability of the helical modes was also studied. Higher-

order helical modes were less stable, being observed only at higher Reynolds numbers

than for parallel shedding. Furthermore, it was observed that a decrease in aspect

ratio led to a corresponding increase in the relative critical Reynolds numbers for the

respective helical modes.

The Strouhal–Reynolds number profiles of Leweke & Provansal (1995) over the

asymmetric transition range for the rings compare in an interesting way to the cor-

responding profiles reported by Williamson (1988a, 1996b) for the circular cylinder.

The former observed a discontinuity, marked by a drop in Strouhal frequency of about

5%, in the vicinity of the Mode A transition for the cylinder, consistent with the cor-

responding drop in the cylinder profile. At the Mode B transition, however, Strouhal

number profiles for the ring exhibit a difference in the behaviour. For the circular cylin-

der, there is evidence of two distinct frequencies in an overlap region before the wake

becomes dominated by the Mode B instability at Re u 260. In contrast, the wake of

the ring appears to undergo a continuous transition as the Reynolds number increases.
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At higher Reynolds numbers (Re > 300) there is a return to consistency between the

cylinder and ring profiles for the range of aspect ratios studied.

1.3.1.2 Oblique Shedding Modes

The phenomenon of oblique shedding in the wakes behind rings was observed by Monson

(1983) and Leweke & Provansal (1995). It is analogous to the oblique shedding in the

wake of a circular cylinder (Williamson 1989; Hammache & Gharib 1991). Williamson

(1989) showed that the Strouhal frequency of the oblique vortex streets adheres to

a cosine function of the parallel Strouhal frequency, and the oblique shedding angle.

Leweke & Provansal (1995) verified that the same law holds for the oblique shedding

from rings. The azimuthal periodicity of the ring geometry locks the oblique shedding

modes to helical spirals. Oblique shedding modes including up to three spirals have

been observed (Leweke & Provansal 1995).

1.3.2 Rings with Non-Circular Cross-Section

The study of rings of various cross-section has been fuelled by the myriad practical

applications of these geometries to internal flows. Examples of these flows include

propulsion systems, carbuerettor jets, combustion chambers, and flame stabilisers.

A short work by Takamoto & Izumi (1981) included interesting dye visualisation

images of both the annular vortex rings shed from a ring comprising a circular disc

with a large hole at the centre, giving a diameter ratio of approximately D/d = 5.

They observed a predominantly axisymmetric wake, which in cross-section appeared

similar to the vortex street in the wake of a circular cylinder, however a pairing of the

inner to the outer shed vortices was observed. Evidence of weak streamwise structures

can be observed in their photographs, especially at early times in the run. The ring

was started impulsively, so it is likely that these non-axisymmetric irregularities of the

annular vortex rings was a by-product of their startup conditions. The evolution of

intrinsic non-axisymmetric instabilities of the wake analogous to the three-dimensional

instabilities in the wake of a circular cylinder would be surprising for the Reynolds

number range of their experiments (51 < Re < 68).

Experiments on a ring with a trapeziodal cross-section were performed to assess the

characteristics of such a geometry in open flow (Bearman & Takamoto 1988), and a

confined flow (Miau et al. 1992), which introduces an additional parameter pertaining

to the pipe diameter in which the ring was enclosed.
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1.3.3 Analogous Flows to the Flow past Rings

The vortex streets observed in the wakes behind rings bear some similarities to the

wakes observed in the flow past pairs of bluff bodies. A similarity is also observed

between the flow past a circular cylinder in the vicinity of a boundary, and the flow

past a ring.

1.3.3.1 The Flow past A Cylinder Near to a Boundary

A geometric analogy exists between the two-dimensional circular cylinder placed close

to a wall, and the circular cross-section ring at small aspect ratios, where the ring

cross-section lies in the vicinity of the axis. Essentially both the axis of the ring and the

boundary near the cylinder constrain and deform the wake. A free surface with a Froude

number dominated by gravity (Fr = 0) is essentially a boundary with zero tangential

stresses. Hourigan et al. (2002) modelled such a case with numerical computations at

a Reynolds number Re = 180. They showed that as the cylinder approached the free

surface, the Strouhal number for the vortex shedding street increased by 10% from the

reference cylinder with no boundaries in its vicinity. This maximum shedding frequency

occurred where the gap between the cylinder and the wall was 0.7 times the diameter

of the cylinder (0.7d). A further reduction in this gap saw a rapid drop in frequency,

until for gap ratios less than 0.1d no vortex shedding was observed.

1.3.3.2 The Flow past a Pair of Cylinders

In considering the diverse wake structures observed to shed from rings, Roshko (1954)

drew analogies with studies of a pair of circular cylinders aligned normal to the flow,

and the coalescence of the vortex streets as the gap between the cylinders is reduced

(e.g. also refer to the more recent study by Bearman & Wadcock 1973). In Williamson

(1985b) the oscillating flow past a circular cylinder and a pair of circular cylinders was

investigated experimentally. The study of flows around oscillating bodies is not relevant

to the present work. However, in a subsequent work, Williamson (1985a) considered

the case of fixed circular cylinders, side by side in a flow. By varying the gap ratio

between the cylinders, several flow regimes were identified.

Williamson provided striking experimental dye visualisations of both antiphase vor-

tex shedding modes (the vortex shedding behind one cylinder is a reflection of the

other), and in-phase modes (one wake appears as a topological copy of the other).
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(a) Antiphase shedding.

(b) In-phase shedding.

Figure 1.9: Dye visualisation images of the wakes behind a pair of circular cylinders at
Re = 200 (from Williamson 1985a). Flow is from left to right, and the cylinders are separated
by 2.4 cylinder diameters.

These flow visualisations are reproduced here in figure 1.9. Williamson found that the

antiphase configuration to be stable even for gap ratios in the order of three cylinder

diameters (3d). The in-phase vortex street tended to break down for small gap ratios

(2d–4d), as like-signed vortices from each cylinder coalesced, forming a large diffused

vortex street far downstream. Wind tunnel smoke visualisations confirmed that fluid

was indeed passing from one side of the wake to the other. Observations were made

of an asymmetry in strength which occurred between steady wakes behind the two

cylinders for lower Reynolds numbers (Re ≈ 55) and small gap ratios (approximately

1d). This asymmetry induced a large-scale waviness in the far wake, as the shear layer

developed an instability.

The study of the interferences of the wakes behind closely aligned bluff bodies is

not limited to circular cylinders. Indeed, in Hayashi et al. (1986), the flow behind two,

three, and four normal flat plates was studied experimentally.
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1.3.3.3 The Flow past a Pair of Spheres

A number of recent experimental and numerical studies treat the wake interference

between two spheres in proximity. The experimental study by Leweke et al. (1999),

provided both striking and detailed flow visualisations of the non-axisymmetric and

unsteady wakes behind a sphere at Re = 270 and 300, respectively, and also presented

images that showed the wakes behind spheres for which the distance between the centres

varied from 1.0d (i.e. surfaces touching) to 2.8d. They observed coupling of the unsteady

wakes at Re = 360 for separation distances less than 2.2d. For larger separations (2.5d–

5.0d), no coupling was observed, with an independent phase of shedding measured

from each sphere. Separations between 1.9d and 2.2d showed predominantly in-phase

shedding. A reduction in the separation to between 1.3d and 1.6d caused antiphase

shedding. Finally, for very small separations (1.0d–1.1d), the spheres were observed

to behave as a single body, generating an unsteady wake with a similar vortex-loop

structure to that observed behind a single sphere.

The three-dimenional numerical computations of Brydon & Thompson (2001) sup-

port the experimental observations of Leweke et al. (1999), with no coupling observed

for a separation of 3.5d, coupled in-phase shedding observed for a separation of 2.5d,

and a strongly interacting antiphase wake observed for a separation of 1.5d. Leweke

et al. (1999) and Brydon & Thompson (2001) provide experimental dye visualisation

images which verify the existence of the flow regimes they identified. These images are

reproduced in figure 1.10. In recent publications (Schouveiler et al. 2002, 2004), the

numerical and experimental results are compared, and the coupling scenario for varied

sphere separations is verified.

In summary, the coupling scenario for spheres with an increase in gap ratio includes

initially a single-body wake, followed by coupled antiphase shedding, in-phase shedding,

and for sufficiently large gap ratios, coupling is no longer observed. For wakes of pairs of

cylindrical geometries the scenario is somewhat different. Small gap ratios can induce

single-body behaviour, and antiphase shedding is stable for a range of gap ratios, which

maintains the reflective wake symmetry. In-phase shedding is unstable for intermediate

gap ratios, and an antisymmetrical large-scale wake is observed. For the wake behind

a ring, an added complexity is introduced, as the vortex rollers observed on opposite

sides of the ring are in fact sections of the one annular vortex street.
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(a) Separation of 3d.

(b) Separation of 2d.

(c) Separation of 1d.

Figure 1.10: Dye visualisation images of the wakes behind a pair of spheres at Re = 350
(from Leweke et al. 1999; Brydon & Thompson 2001). Flow is from left to right, and sphere
separation is measured from the centre of the spheres.

1.4 Review Summary

This review of the literature has revealed that further studies are required to better

understand the low-Reynolds-number flow past rings. Broadly speaking, rings with

small aspect ratios exhibit wake dynamics similar to solid axisymmetry bodies such

as a sphere or a disc, and rings with large aspect ratios exhibit wakes similar to the

circular cylinder. Presently there is only limited knowledge and understanding of the

precise flow regimes that exist over the aspect ratio/Reynolds number parameter space.

In the next chapter, methodologies for the numerical, analytical, and experimental

aspects of the study are discussed. Following this, chapters present the results of studies

pertaining to the axisymmetric flow past rings, the stability of the axisymmetric flow

past rings, the non-axisymmetric transition modes in the flow past rings, the transitions

which lead to turbulence in the vortex streets behind rings, and finally, analysis of the
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three-dimensional transitions in the vortex street behind a circular cylinder is presented.
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Chapter 2

Numerical Methods and
Experimental Techniques

This chapter introduces numerical techniques employed throughout the research pro-

gramme. A computational technique known as the spectral-element method is employed

to compute the flow fields being investigated. A linear stability analysis technique is

also employed, as is a non-axisymmetric formulation of the numerical code. The nu-

merical formulation of these techniques will be expanded upon in § 2.1.3 and § 2.1.4,

respectively.

The numerical formulation of the spectral-element method is described in § 2.1. In

§ 2.2, the method by which the numerical scheme is applied to the flow past a ring is

elucidated. Results of a grid-resolution study from which the computational domain size

and spatial resolution for the axisymmetric computations was determined is presented

in § 2.2.1. A discussion regarding the accuracy of the computations and application of

the results is included in § 2.2.3.

2.1 Computation of the Flow past Rings

The previous studies that have investigated the flow past a ring have all been experi-

mental in nature (e.g. Monson 1983; Bearman & Takamoto 1988; Leweke & Provansal

1994, 1995). No attempt has been made to investigate the low-Reynolds-number flow

past rings numerically. A motivation for the present computational study is the lack

of understanding of the low-Reynolds-number flow transitions which occur in the flow

past rings. The scope of the present work includes the stability and structure of the

wakes behind rings at low Reynolds numbers, and hence computational methods are

an ideal tool to investigate the current problem.
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As previously stated, the spectral-element method was chosen as the preferred

method of computational simulation. Despite the existence of some “meshless” meth-

ods for fluid flow computation, most methods acquire their solutions by approximation

of the governing equations for fluid motion over a grid of discrete points, where the flow

field is approximated by simple shape functions (often linear or quadratic polynomials)

between these points. The spectral-element method is an efficient and accurate method,

as it combines the exponential convergence rate of the less adaptable global spectral

methods, with the adaptability of finite-element methods.

2.1.1 The Governing Flow Equations

The above computational methods all obtain their solutions by approximating the gov-

erning equations of motion for a fluid, subject to the various boundary and initial condi-

tions imposed by the system geometry and starting state. Named after the nineteenth-

century scientists credited with their derivation, the governing equations are known as

the Navier–Stokes equations. In their most general form the equations are highly com-

plicated, and analytical solutions have only been obtained for very limited and specific

cases. The Navier–Stokes equations apply to Newtonian fluids (i.e. fluids which exhibit

a linear relationship between shear stress and shear strain). For the present study, only

Newtonian fluids are considered, and the flow is assumed to be incompressible. The

incompressibility constraint implies that the fluid has a constant density in both space

and time. It is generally considered appropriate to assume incompressibility for flows

at Mach numbers Ma . 0.3. As was discussed earlier, these assumptions are valid for

the flow systems considered in the present work.

In vector form, the incompressible Navier–Stokes equations are written

∂u
∂t

= −(u · ∇)u− 1
ρ
∇P +

1
Re
∇2u, (2.1)

∇ · u = 0, (2.2)

where equation 2.2 is the continuity relationship, derived from the principle of conser-

vation of mass, and equation 2.1 describes the momentum relationship, and contains

from left to right a non-linear advection term, a pressure term, and a diffusion term.

To maintain dimensional consistency, the velocity (u) and time (t) are considered in

non-dimensionalised form. It is convenient in the computational formulation to com-

bine the (constant) density and pressure to form the kinematic pressure p = P/ρ. The

Reynolds number is given by Re.
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2.1.2 The Spectral-Element Method

The spectral-element method is used to discretise the incompressible Navier–Stokes

equations to solve the flow past rings. The chosen scheme employs a Galerkin finite-

element method in two dimensions, with high-order Lagrangian interpolants used within

each element. Some inherent efficiencies common to the spectral method are also

achieved with the spectral-element method. The node points within each element

correspond to the Gauss-Legendre-Lobatto quadrature integration points, producing

diagonal matrices. As the functions at internal nodes only depend on the boundary

nodes, matrix manipulation allows the internal nodes to be eliminated from the matrix

subproblems of the pressure and diffusion substeps through static condensation.

2.1.2.1 Spatial Discretisation

The treatment of spatial discretisation for the spectral-element method has been well-

documented (e.g. see Patera 1984; Tomboulides et al. 1993; Tomboulides & Orszag

2000; Blackburn & Lopez 2002; Pregnalato 2003). A description of some important

aspects of the spatial discretisation are provided here.

The computational domain in the r–z plane is broken up into quadrilateral elements.

Within each element, Gauss–Lobatto–Legendre quadrature is employed for integration,

which provides exponential convergence. Karniadakis & Sherwin (1999) describe that

the Gauss-Lobatto-Legendere quadrature points are the roots of the equation

(1− ξ2)P ′
m(ξ) = 0 with − 1 ≤ ξ ≤ 1. (2.3)

Kreyszig (1993) provides an expression for the Legendre polynomial (Pm) using Ro-

driguez’s formula, which is written

Pm =
1

2mm!
dm

dξm
(ξ2 − 1)m where m = 0, 1, 2, . . . . (2.4)

The weighting coefficients of Gauss-Legendre-Lobatto quadrature are given by

wj =
2

m(m + 1)
1

[Pm(xj)]2
with j = 0, 1, . . . , m. (2.5)

These weighting coefficients and quadrature points permit the integrals resulting

from the application of the weighted residual method to be determined using Gauss-

Legendre-Lobatto quadrature in two dimensions.
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It should be noted that Tomboulides et al. (1993) employed Lagrangian inter-

polants based on zeroes of Jacobi polynomials in the elements along the axis of sym-

metry, whereas in the present formulation, Gauss-Legendre-Lobatto interpolants are

used throughout the domain. To avoid the singularities associated with r → 0 at the

axis, the singular terms in the fluid equations are set to zero. This follows the study by

Blackburn & Lopez (2002), which showed that such a formulation is equivalent to the

assumption that variables approach zero as r → 0 faster than r2. The efficiency of the

spectral-element method is therefore retained, and spectral convergence is preserved for

flows in an axisymmetric coordinate system.

2.1.2.2 Temporal Discretisation

A three-step splitting scheme is used for the temporal discretisation, as described in

Karniadakis et al. (1991). The substeps of this process treat the advection, mass con-

servation/pressure, and diffusion terms of the Navier–Stokes equations. For use with

this method the Navier–Stokes equations are considered in conservative form, which

provides discrete energy conservation.

In the first substep, an intermediate velocity field u∗ is computed from the non-linear

convection term by the equation

u∗ − un

∆t
= −u · ∇u, (2.6)

which is solved by a third-order Adams-Bashforth scheme.

In the second substep, a second intermediate velocity field u∗∗ is computed from

the pressure term by the equation

u∗∗ − u∗

∆t
= −∇pn+1. (2.7)

The divergence of equation 2.7 reduces to Poisson’s equation for the pressure,

∇2pn+1 − 1
∆t
∇ · u∗ = 0, (2.8)

where the divergence-free condition (equation 2.2) has been applied to the intermediate

velocity field u∗. Equation 2.8 is then solved directly.

In the third substep, the velocity field un+1 is computed from

un+1 − u∗∗

∆t
=

1
Re
∇2u (2.9)
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using an implicit Crank–Nicholson scheme with a theta modification (see Canuto et al.

1988). The Crank–Nicholson method maintains second-order accuracy in both space

and time, and overall, the splitting scheme achieves a second-order time-accuracy when

first-order pressure boundary conditions are imposed, as described in Karniadakis et al.

(1991).

In the axisymmetric computations, the velocity and pressure fields vary with the spa-

tial coordinates z and r, and time t, and are independent of θ. In the non-axisymmetric

computations, the velocity and pressure fields vary also with θ, and a description of the

non-axisymmetric formulation of the method is provided in § 2.1.4.

The following section provides a description of the stability analysis technique that

is employed in chapter 4 to determine the stability of the axisymmetric wakes behind

rings to non-axisymmetric transitions.

2.1.3 Floquet Linear Stability Analysis

Conceptually, Floquet analysis takes a two-dimensional periodic base flow, and com-

putes the growth rate of a three-dimensional perturbation of a chosen spanwise wave-

length using the linearised three-dimensional Navier–Stokes equations. The magnitude

of the perturbation field is monitored from period to period. The stability of the base

flow to the particular spanwise perturbation is described by the Floquet multiplier µ.

The flow is unstable for |µ > 1|, and stable for |µ| < 1. Neutral stability occurs when

|µ| = 1, which represents a system in which the perturbation will neither grow nor

decay. The Reynolds number for a flow giving |µ| = 1 is the critical Reynolds number

for the onset of the instability of the chosen azimuthal wavelength.

2.1.3.1 Formulation of the Linear Stability Analysis Technique

The formulation of the Floquet linear stability analysis technique begins from the non-

dimensionalised incompressible Navier–Stokes equations

∂u
∂t

= −N(u)−∇p +
1
Re
∇2u,

∇ · u = 0,
(2.10)

where the non-linear advection term N(u) ≡ (u·∇)u. Expanding about the axisymmet-

ric base flow, a non-axisymmetric perturbation u′ is added to the system such that the

velocity field is written as u(z, r, t) + u′(z, r, θ, t). The perturbation field is subtracted
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from the base flow equation, which yields the linearised Navier–Stokes equations

∂u′

∂t
= −DN(u′)−∇p′ +

1
Re
∇2u′,

∇ · u′ = 0,
(2.11)

with the linearised advection term DN(u′) ≡ (u′ · ∇)u + (u · ∇)u′. The perturbation

field is assumed to be periodic with the base flow, and from period to period, a norm

of the perturbation field, N(u′), is evaluated.

The perturbation fields are written as a Fourier expansion

u′(z, r, θ, t) =
∑
m

û(z, r,m, t)eimθ,

p′(z, r, θ, t) =
∑
m

p̂(z, r,m, t)eimθ,
(2.12)

and the linearity of the system permits the azimuthal Fourier modes which comprise

the perturbation field to be decoupled. The Floquet modes are assumed to be real, and

from the analysis of Barkley & Henderson (1996), a typical term in the expansion takes

the form

u′m(z, r, θ, t) = 〈ûm cos (mθ), v̂m cos (mθ), ŵm sin (mθ)〉 ,

p′m(z, r, θ, t) = p̂m cos (mθ).
(2.13)

The perturbation remains in the same form under equation 2.11, and provides Floquet

modes of the same form. Therefore, the stability of a perturbation field u′ to an

axisymmetric base flow u, is a function of Reynolds number Re, and the Floquet mode

number m, of a discrete Fourier mode. The aims of the analysis are to determine the

dominant Floquet multiplier µ for each mode number, and to determine the critical

Reynolds number at which the mode is neutrally stable (|µ| = 1).

For analysis, the dominant Floquet multiplier is defined as

µ ≡ eσT , (2.14)

and the magnitude of the dominant Floquet multiplier is obtained from

|µ| = N [u′(z, r, θ, t + T )]
N [u′(z, r, θ, t)]

. (2.15)

In fact, the perturbation field is not necessarily periodic with the base flow. Sub-

harmonic modes, where the mode occurs with a Floquet multiplier µ = −1, have a

period twice that of the base flow (2T symmetry). In addition, the instability can

occur through a complex-conjugate pair Floquet mode, in which case an additional
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frequency is introduced, which renders the mode aperiodic. It is therefore necessary to

monitor the perturbation field periodicity and sign when the instabilities are classified.

With the present linear stability analysis technique, a subharmonic mode will exhibit

a converged Floquet multiplier, with a perturbation field that alternates in sign from

period to period. Likewise, a complex-conjugate pair mode will produce an aperiodic

perturbation field, with Floquet multipliers that oscillate about a mean value.

2.1.3.2 Treatment of Periodic and Steady Base Flows

It was mentioned earlier that the linear stability analysis technique applies to time-

periodic flows. In the present work, base flows that are steady in time are also analysed.

The present linear stability analysis technique may be applied to steady base flows, as

shown here. Time-periodic flows satisfy the definition

u(t) = u(t− T ),

p(t) = p(t− T ),
(2.16)

which states that for any time t, the flow field is identical to the flow field from the

preceding period t−T , where T is the period of the flow. Clearly, a flow that is steady

in time satisfies this definition for any arbitrary value of T , as it is identical for all t.

If the value of T is kept constant in the analysis of a steady flow, a similar consistency

between measured values of |µ| is achieved, which from equation 2.14 then varies only

as a function of the growth rate of the instability (σ). It is through this approach that

the present analysis is to be applied to the steady flow past rings in chapter 4.

2.1.3.3 The Power Method Versus the Krylov Method

The present formulation of the stability analysis technique adopts the power method

described by Blackburn & Lopez (2003). In this method, the perturbation field is

temporally evolved with the base flow field, and the magnitude of the dominant Floquet

multiplier |µ| is determined by monitoring the change in magnitude of a norm of the

perturbation field (N [u′(t)]) over a period of the base flow (T), so that

eσnT = N [u′(t + T )]/N [u′(t)], (2.17)

where σn is the growth rate of the mode over the nth period. The perturbation field

is renormalised to unity after every period, and after a sufficient number of periods,

the magnitude of the Floquet multiplier may then be determined from the norm of the
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perturbation field at the end of the period,

|µ| = N [u′(t + T )]. (2.18)

This method carries the advantage of lending itself to simple extension to parallel

computing, with the base flow being computed on one processor, and any number

of perturbation fields of different spanwise wavelength being computed on additional

parallel processors. Obviously, it is necessary to send the base flow velocity and pressure

fields to the perturbation field processors at each time step.

Two significant drawbacks of the present formulation when compared to the Krylov

method described by Blackburn & Lopez (2003), and the methods of Natarajan &

Acrivos (1993) and Barkley & Henderson (1996), are the assumption of real eigenmodes,

and the inability to isolate multiple dominant eigenmodes. Blackburn & Lopez (2003)

employed a method that included complex eigenmodes, which permitted standing-wave

and modulated travelling-wave modes to be distinguished for complex-conjugate Flo-

quet modes. These alternative methods simultaneously evolved fields of less dominant

multipliers, whereas the present formulation provides only a linear combination of any

dominant modes. This presents a difficulty when secondary modes occur at a given

wavelength.

2.1.3.4 Classification of Instability Modes

The exclusion of phase information from the Floquet multipliers means that care must

be taken when classifying instability modes. Several recent works treat this subject

(Blackburn & Lopez 2003, 2004; Blackburn et al. 2004), which is briefly summarised

here. The Floquet mode may adopt any one of three forms: A real bifurcation (µ = 1),

a subharmonic bifurcation (µ = −1) and a complex-conjugate bifurcation (µ = a± ib).

Real bifurcations maintain the periodicity of the instability mode with the base flow

(although non-linear evolution usually results in a frequency shift). Examples of real

bifurcations are Mode A and Mode B in the wake of a circular cylinder (Barkley &

Henderson 1996), and the primary non-axisymmetric instability in the wake of a sphere

(Natarajan & Acrivos 1993; Tomboulides & Orszag 2000).

Subharmonic bifurcations result in a doubling of the period of the mode, as the

mode alternates in sign each base flow period. Thus, the mode will give converged

Floquet multipliers with application of the power method, and the perturbation field

must be studied to determine if the mode bifurcates through µ = −1 or µ = 1.
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Complex-conjugate bifurcations may introduce an incommensurate frequency to the

mode, which causes the Floquet multipliers obtained using the power method to os-

cillate around some mean value, rather than converge to a particular value. Hence

complex-conjugate modes are easy to identify, however there is an additional complica-

tion. Complex-conjugate modes can adopt either a modulated standing-wave solution,

with the evolving mode fixed in the spanwise direction, or a travelling-wave solution,

where the mode shifts along the span. The decomposition of the spanwise modes in the

linear stability analysis technique employed in the present study (see equation 2.13) ex-

cludes spanwise phase information. Therefore, the present analysis technique provides

no distinction between standing-wave and travelling-wave complex-conjugate modes.

To model travelling-wave modes, a complex spanwise expansion of the Floquet modes

must be employed.

2.1.4 Non-Axisymmetric Flow Computations

The computation of non-axisymmetric flow past rings employs a Fourier expansion in

the azimuthal direction (θ) of the flow field in the r–z plane. The present formulation of

the method was successfully applied to the wake of a sphere (Thompson et al. 2001a).

It is based on the method described in Tomboulides et al. (1993).

The azimuthal periodicity of the ring geometry makes it an ideal geometry for

application of a Fourier expansion to model non-axisymmetric flow structures in the

wake. At each point on the mesh, the velocity and pressure variables that comprise

the axisymmetric formulation of the numerical scheme are replaced by a Fourier series

expansion of wavelength λθ = 2π/m in the azimuthal direction, where J r–z planes

are included. The azimuthal mode number m is included, to permit the scheme to

model spanwise-periodic flows with an azimuthal wavelength less than 2π, such as the

non-axisymmetric modes in the vortex street behind open rings. For further details on

the techniques applied here, see Canuto et al. (1988), Tomboulides et al. (1993) and

Pregnalato (2003).

The velocity and pressure fields are decomposed with a Fourier expansion in θ,

which gives 



u(z, r, θ, t)
v(z, r, θ, t)
w(z, r, θ, t)
p(z, r, θ, t)





=
J/2−1∑

j=−J/2





uj(z, r, t)
vj(z, r, t)
wj(z, r, t)
pj(z, r, t)





eimjθ (2.19)

For an axisymmetric geometry, the largest possible azimuthal wavelength (λθmax) is
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limited by the azimuthal symmetry of the geometry such that λθmax = 2π.

For an axisymmetric coordinate system, the operators ∇mj and ∇2
mj are defined as

∇mj =
〈

∂

∂z
,

∂

∂r
,
imj

r

〉
, (2.20)

∇2
mj =

∂2

∂z2
+

1
r

∂

∂r

(
r

∂

∂r

)
− m2j2

r2
= ∇2

rz −
m2j2

r2
. (2.21)

These expressions, and equation 2.19, are substituted into equation 2.1 of the governing

equations to form

∂uj

∂t
= Fj [−(u · ∇)u]z −

∂pj

∂z
+

1
Re

(
∇2

rz −
m2j2

r2

)
uj , (2.22)

∂vj

∂t
= Fj [−(u · ∇)u]r −

∂pj

∂r
+

1
Re

[(
∇2

rz −
m2j2 + 1

r2

)
vj − 2imj

r2
wj

]
, (2.23)

∂wj

∂t
= Fj [−(u · ∇)u]θ −

imj

r
pj +

1
Re

[(
∇2

rz −
m2j2 + 1

r2

)
wj − 2imj

r2
vj

]
, (2.24)

where Fj is a Fourier transform in the azimuthal direction. The non-linear terms are

given by

Fj [−(u · ∇)u]z = −uj

(
∂uj

∂z
+

∂vj

∂r
+

imjwj

r

)
, (2.25)

Fj [−(u · ∇)u]r = −vj

(
∂uj

∂z
+

∂vj

∂r
+

imjwj

r

)
, (2.26)

Fj [−(u · ∇)u]θ = −wj

(
∂uj

∂z
+

∂vj

∂r
+

imjwj

r

)
. (2.27)

It can be seen that equations 2.23 and 2.24 are strongly coupled. It is convenient to

introduce complex variables which decouple the equations, as described in Tomboulides

& Orszag (2000). The complex variables are defined as

ũ1 ≡ vj + iwj , (2.28)

ũ2 ≡ vj − iwj , (2.29)

and reduce equations 2.22–2.24 to a set of equations for uj , ũ1 and ũ2, which are only

coupled through the non-linear terms, and are written

∂uj

∂t
= Fj [−(u · ∇)u]z −

∂pj

∂z
+

1
Re

(
∇2

rz −
m2j2

r2

)
uj , (2.30)

∂ũ1

∂t
= F̃j [−(u · ∇)u]r −

(
∂

∂r
− mj

r

)
pj +

1
Re

(
∇2

rz −
(mj + 1)2

r2

)
ũ1, (2.31)

∂ũ2

∂t
= F̃j [−(u · ∇)u]θ −

(
∂

∂r
+

mj

r

)
pj +

1
Re

(
∇2

rz −
(mj − 1)2

r2

)
ũ2, (2.32)
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where the non-linear terms are given by

F̃j [−(u · ∇)u]r = Fj [−(u · ∇)u]r + iFj [−(u · ∇)u]θ

= Fj

[
−ũ1

(
∂uj

∂z
+

∂vj

∂r
+

imjwj

r

)]
,

(2.33)

F̃j [−(u · ∇)u]θ = Fj [−(u · ∇)u]r − iFj [−(u · ∇)u]θ

= Fj

[
−ũ2

(
∂uj

∂z
+

∂vj

∂r
+

imjwj

r

)]
.

(2.34)

In the computations, the z–derivative terms are evaluated in Fourier space, and the

non-linear terms are evaluated in physical space for reasons of computational efficiency

(see Karniadakis 1990). Only the modes corresponding to positive wavenumbers (j ≥ 0)

are retained in the computations, as the modes possess the symmetry uj = u−j . The

J/2 mode is assigned a value of zero to permit the upper and lower modes in the

computations to match, which is necessary to extract the real velocity components.

The present formulation does not explicitly take account of aliasing due to the non-

linear substep, which is instead done in real space. Generally, this does not present a

problem for computations of low-Reynolds-number flows, as viscosity acts to limit the

highest modes (which correspond to the smallest scales) observed in the flow.

2.2 Formulation of the Ring Models

In the introduction, a conceptual representation of the flow system was presented (refer

to figure I). In this section, the application of the computational method is described,

and a thorough grid resolution and domain size study is presented.

The spectral-element method employed in this study requires a mesh of conforming

quadrilateral macro-elements. The elements that comprise the grid are four-sided, and

adjacent elements present their entire edge to each other.

Previous numerical studies of the flow past spheres and circular cylinders were used

as a starting point for the development of the computational meshes for the present

study. In particular, the meshes employed in the numerical stability analysis of the wake

of a straight circular cylinder by Barkley & Henderson (1996), and the three-dimensional

study by Henderson (1997), provided a helpful description of grid size and resolution

for their spectral-element analysis. In order to compare with prior numerical studies

of the wakes behind spheres, the meshes employed in the computational studies of

Natarajan & Acrivos (1993), Tomboulides et al. (1993), Tomboulides & Orszag (2000),

and Thompson et al. (2001a) were considered.
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Figure 2.1: Diagram of computational domain Ω, with wall boundary and domain size
nomenclature defined.

The computational meshes for all aspect ratios maintained consistent inlet, trans-

verse and outlet domain lengths, and spatial element density. A rectangular domain

was employed, with a zero normal velocity boundary condition imposed at the axis,

a zero normal velocity gradient boundary at the outlet, and a constant velocity inlet

condition imposed over the upstream inlet boundary and the outer transverse boundary

to model the free stream fluid velocity U∞. In figure 2.1, the computational domain is

shown.

With the diameter of the ring cross-section scaled to unity, and the domain lengths

li, lt and lo fixed for all aspect ratios, the aspect ratio may be varied by altering the

length laxis. The length laxis is related to aspect ratio by

laxis =
Ar
2

. (2.35)

2.2.1 Grid-Resolution Study

A thorough grid-resolution study was performed to determine both an adequate domain

size for the family of meshes created to model rings, and a sufficient spatial resolution

to accurately and efficiently resolve all features of the flow field in the Reynolds number

ranges under consideration in the study.

The determination of the inlet length (li), the transverse length (lt), and the outlet

length (lo) is described in § 2.2.1.1. In § 2.2.1.2, a spatial resolution is selected for

the meshes such that the requirements of computational accuracy and efficiency are
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Sphere studies Circular cylinder studies Square cylinder
Mesh A Mesh B Mesh C Mesh D Mesh E Mesh F

li 4.5 15 8 8 6 5.5
lt 4.5 15 14 8 6 9
lo 25 15 25 24 12 17.5

Table 2.1: Inlet, transverse and outlet computational domain lengths from numerical studies
in the literature, normalised by the length scale, d. Sphere models include Mesh A from
Tomboulides & Orszag (2000) and Mesh B from Johnson & Patel (1999), circular cylinder
models include Mesh C from Barkley & Henderson (1996), Mesh D from Henderson (1997)
and Mesh E from Zhang et al. (1995). Mesh F comes from a study of a square cross-section
cylinder (Robichaux et al. 1999).

fulfilled.

2.2.1.1 Domain Size Study

As previously stated, the meshes generated for the present study were based on meshes

used in similar numerical studies of wakes behind spheres and circular cylinders. The

pertinent inlet, transverse and outlet domain lengths from some of these studies are

provided in table 2.1.

An important point regarding the transverse domain size employed for a numerical

study stems from an observation by Batchelor (1967) that in a cylindrical coordinate

system (i.e. such as that employed for the present study), perturbations decay in pro-

portion to 1/r3. This is one power of r faster than the corresponding decay rate in

a Cartesian coordinate system, where transverse perturbations exhibit a rate of decay

proportional to 1/y2. Based on previous experimental observations of the wake dy-

namics in the flow past rings by Leweke & Provansal (1995), the 1/y2 variation applies

for the wakes behind rings with large aspect ratios, which scale on the cross-section

diameter d. The flow visualisations of Monson (1983) suggest that the wakes behind

rings with small aspect ratios scale with the outer ring diameter, D + d, and hence

considering the 1/r3 variation would be more appropriate for these wakes. The maxi-

mum aspect ratio at which the wake behind a ring scales with the outer ring diameter

must be considered when applying the 1/r3 law, to ensure that the models constructed

for rings with intermediate aspect ratio are not subject to greater blockage restrictions

than for the meshes of smaller and larger aspect ratios.

Presently, the exact maximum aspect ratio at which the wake behind a ring scales
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with the outer ring diameter as opposed to the local ring cross section is unknown. Some

guidance regarding this aspect ratio limit may be determined from the literature, with

studies by Roshko (1954), Monson (1983) and Bearman & Takamoto (1988) observing

that rings exhibit vortex shedding similar to the wake of a circular cylinder for aspect

ratios Ar & 4 to 6. A value of lt for the ring models constructed for the present study

must satisfy the 1/r3 law for Ar ≤ 6, giving

1
r3

. 1
y2

. (2.36)

As y = lt and r = lt/laxis, it follows that

1
(lt/laxis)3

. 1
lt

2

∴ (lt/laxis)3 & lt
2.

(2.37)

and substituting laxis = 3 for Ar = 6, the minimum transverse domain length is deter-

mined by rearranging

lt
3

3

& lt
2

∴ lt
27

& 1

∴ lt & 27.

(2.38)

A transverse domain length of lt > 27, non-dimensionalised by the cross-section diam-

eter, d, must be employed to ensure that errors due to the transverse domain are less

than those of the circular cylinder for all aspect ratios.

A second, and largely independent, blockage consideration is the blockage (area)

ratio, Rblockage. This is a ratio of the frontal projected area of the body to the frontal

projected area of the entire domain. Tomboulides & Orszag (2000) employed a grid

with a blockage ratio Rblockage = 1.2% to compute the wake behind a sphere. For the

ring meshes, equation 2.39 gives the relationship describing Rblockage.

Rblockage =





(laxis+
1
2
)2

(laxis+lt)2
for 0 ≤ Ar < 1,

2laxis
(laxis+lt)2

for Ar ≥ 1.
(2.39)

Equation 2.39 describes an increase in Rblockage with an increase in laxis (and hence

with an increase in Ar). This is due to an increase in the projected area of the ring

with an increase in aspect ratio more rapidly than an increase in the projected area of

the domain. This increase continues until Ar = 2lt, where lt = laxis, and the blockage

ratio is equivalent to the blockage of a circular cylinder mesh with the same lt. Hence
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DS1 DS2 DS3 DS4 DS5 DS6 DS7 DS8

Melem 356 356 378 291 447 330 486 538
li 15 8 25 15 15 15 15 15
lt 20 20 20 20 20 10 20 30
lo 25 25 25 15 35 25 25 25

Table 2.2: Domain length parameters defining the meshes DS1 to DS8. Melem is the number
of elements, and li, lt and lo describe the inlet, transverse and outlet domain sizes, respectively.

a value of lt that satisfies the blockage of a circular cylinder grid, and the lt > 27d

requirement imposed by the 1/r3 law will be satisfactory for all ring aspect ratios.

The inlet boundary condition imposes a constant inlet velocity parallel to the axis

at the free-stream velocity U∞. The length li must be sufficiently large to minimise

the difference between the upstream flow conditions and the uniform inlet velocity. Ta-

ble 2.1 shows that inlet lengths are generally relatively small compared to the transverse

and outlet domain lengths, with values varying between 4.5d and 15d. Similarly, there

is variation in the outlet domain length, with lo varying between 12d and 25d.

The domain length study presented here employs a large family of meshes to allow

independent variation of the domain lengths in question: li, lt and lo. For validation pur-

poses, the pressure and viscous components of drag are monitored, as are the Strouhal

frequency of vortex shedding, and the velocity magnitude at a point approximately 4d

directly downstream of the ring cross-section.

Each group of meshes utilised in the grid-resolution study are shown in figure 2.2.

For a summary of the domain lengths chosen for the domain length study, see table 2.2.

Axisymmetric computations were performed on meshes DS1 to DS5, as they mod-

elled a ring with Ar = 5. A two-dimensional formulation of the spectral-element

code was employed for the straight circular cylinder meshes DS6 to DS8. Initially,

N2 = 49 nodes per element was employed for the computations, at a Reynolds number

of Re = 100, which was sufficiently large to produce periodic flows for all the meshes em-

ployed in the study. The parameters which were determined from these computations

are provided in table 2.3.

Based on both the results of this study, and the blockage-related restriction on the

transverse domain size (i.e. lt > 27d), the models used throughout the investigation

will employ li = 15d, lt = 30d and lo = 25d.
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Figure 2.2: Groups of meshes used to test the effect of independently altering the parameters
governing the domain lengths of the ring meshes. Note that meshes DS1 to DS5 define a
ring with aspect ratio Ar = 5, for tests varying li and lo. The meshes DS6 to DS8 define a
straight circular cylinder to test the lt length.

li variation lo variation lt variation
DS2 DS1 DS3 DS4 DS1 DS5 DS6 DS7 DS8

St 0.16433 0.15887 0.15769 0.15876 0.15887 0.15879 0.16905 0.16702 0.16671
Cdp 0.9535 0.9035 0.8925 0.9028 0.9035 0.9035 1.0258 1.0096 1.0072
Cdν 0.3358 0.3226 0.3197 0.3224 0.3226 0.3226 0.3497 0.3455 0.3450
Cd 1.2893 1.2261 1.2122 1.2252 1.2261 1.2261 1.3755 1.3551 1.3522

Table 2.3: Convergence of global flow field parameters for the meshes used to determine
suitable domain sizes for the meshes employed throughout this work.
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N2 42 52 62 72 82 92

St 0.15805 0.15847 0.15867 0.15867 0.15867 0.15867
Cd 1.2265 1.22111 1.22400 1.22419 1.22456 1.22465
Cdp 0.9054 0.90049 0.90219 0.90200 0.90210 0.90209
Cdν

0.3212 0.32063 0.32181 0.32219 0.32246 0.32256

Table 2.4: Convergence of the flow field parameters at Re = 100.

2.2.1.2 Spatial Resolution Study

The spatial resolution study presented here varied the order of interpolation within

each macro-element of a mesh based on the domain length parameters from the mesh

domain size study of § 2.2.1.1. For consistency with the preceding domain size study,

the mesh employed in the present study models a ring with aspect ratio Ar = 5.

Computations have been performed using the test mesh, with the number of nodes

per element varying between N2 = 16 and N2 = 81. Computations with N2 = 100

required a smaller time-step due to restrictions imposed by the Courant condition, and

were therefore discarded. The macro-element distribution remains unchanged through-

out the spatial resolution study. Two sets of computations are performed: one with

Re = 100, and the other at Re = 200. It is clear from numerical stability analysis of

the sphere wake (Natarajan & Acrivos 1993) and the circular cylinder wake (Barkley &

Henderson 1996); as well as experimental studies of the wake behind the sphere (Ma-

garvey & Bishop 1961b; Johnson & Patel 1999) and the circular cylinder (Williamson

1988a), that a transition to three-dimensionality occurs over the Reynolds number

range 190 . Re . 210. The experimental studies of the flow past a ring (Monson 1983;

Leweke & Provansal 1995) suggest that the axisymmetric flow regime does not extend

far beyond Re ≈ 200. The spatial resolution study presented here covers a sufficient

Reynolds number range to represent the axisymmetric flow regime for rings.

As with the domain size study, the global flow field parameters St , Cd, Cdp and Cdν

are recorded. Tables 2.4 and 2.5 show the convergence characteristics with an increase

in polynomial order for the global flow field quantities.

The data shows a more rapid convergence of the flow field parameters for the com-

putations at Re = 100 than at Re = 200, which is expected. An accuracy in the order

of 0.1% is desired for the selected node resolution, which is achieved at Re = 100 with

N2 ≥ 72. At Re = 200, a resolution of N2 = 82 achieves a similar accuracy. For

consistency, all axisymmetric computations employ a polynomial order N2 = 82 in the
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N2 42 52 62 72 82 92

St 0.17951 0.18389 0.18485 0.18482 0.18492 0.18497
Cd 1.20487 1.22292 1.23404 1.23243 1.23442 1.23264
Cdp 0.97018 0.98495 0.99497 0.99364 0.99516 0.99360
Cdν

0.23468 0.23797 0.23906 0.23880 0.23925 0.23904

Table 2.5: Convergence of the flow field parameters at Re = 200.

present study.

2.2.2 Details of Mesh Construction

The set of meshes constructed for this study maintained a remarkable similarity over

the entire aspect ratio range. The domain parameters li, lt and lo were constant for

all meshes, and the macro-element density was kept as consistent as possible. Some

alteration in mesh density between the ring cross-section and the axis of symmetry was

unavoidable, due to the variation in that particular domain length laxis with aspect

ratio. A uniform expansion in element size was adopted for the meshes in all directions

away from the ring cross-section, to minimise computational expense. The ring cross-

section was surrounded by a square (2d× 2d) containing a mesh of between 12 and 14

elements around, and three elements deep. The innermost ring of elements are small

enough in the radial direction (relative to the centre of the ring cross section) to capture

the boundary layer around the cross section of the ring.

The thickness of the laminar boundary layer around the ring cross-section can be

approximated from boundary layer theory (see White 1999, pages 428–429). It can

be shown that at Re = 200, the idealised boundary layer thickness varies between

0d ≤ δ ≤ 0.22d from the front to rear surface of the cross-section, with δ ≈ 0.16d at

the mid-point. The element polynomial order N2 = 82 ensured that approximately

8 interpolation points were included within the boundary layer, even for the thinnest

boundary layers considered.

The inlet, transverse and outlet domain regions consist of 3, 7 and 20 elements,

respectively, between the square mesh surrounding the cross-section of the ring, and

their respective boundaries Γi, Γt and Γo.

Special attention has to be given to the meshes created to model rings in the range

of aspect ratios 0 ≤ Ar < 2, as no outer mesh is present between the square mesh

surrounding the ring cross-section, and the axis of symmetry boundary Γaxis. Several
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(a) Ar = 0.6 (b) Ar = 0.9 (c) Ar = 1.2

Figure 2.3: The various modifications of the standard mesh to accommodate rings with
aspect ratios in the range 0 ≤ Ar < 2. Note that the macro elements around the in the vicinity
of the ring cross-section boundary Γring are displayed here without any curvature. Curvature
was included in the computations, though, to accurately model the circular geometry.

different refinements to the meshes were employed to overcome the problems imposed

by this situation. Figure 2.3 presents the mesh structure surrounding the cross-section

of the ring for several aspect ratios; each requiring a different modification to model

the aspect ratio.

For rings with aspect ratios 0 ≤ Ar . 0.71 (see figure 2.3(a)), the mesh structure

is similar to meshes created to model a sphere (Natarajan & Acrivos 1993; Thompson

et al. 2001a). As the aspect ratio increases over the range 0 ≤ Ar ≤ 1, near to the axis,

the ring develops sharp dimples upstream and downstream, as in cross section the ring

shifts from a single circle to a pair of circles.

To maintain numerical stability over the aspect ratio range 0.71 . Ar ≤ 1 , the

numerical models required a modification that fundamentally altered the geometry.

Due to this mesh alteration, only limited results were obtained over this aspect ratio

range in the present work, and are considered qualitatively only.

For aspect ratios 0.71 . Ar ≤ 1 mesh elements near to the axis in the vicinity of

the ring become too skewed to accurately model the flow. The modification displayed

in figure 2.3(b) shows how this problem was overcome for meshes over this aspect ratio

range. The zero normal velocity boundary at the axis of symmetry was diverted locally

from the axis both upstream and downstream of the ring. This created computational

conical stress-free surfaces tapering upstream and downstream of the body. It is clear

that this mesh modification fundamentally alters the geometry being modelled, which

will influence the surrounding flow field. The greatest geometric alteration was made
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Mesh variable Uncertainty ∆Ei

Re = 100 Re = 200

li 1.232%
lt 0.0504%
lo 0.238%
N2 0.115% 0.157%

Overall uncertainty 1.64% 1.68%

Table 2.6: Uncertainty estimates for axisymmetric computations using the proposed ring
meshes at Reynolds numbers Re = 100 and Re = 200, employing an element polynomial
order of N2 = 49 and N2 = 64, respectively.

for Ar = 1, with the diameter of the artificial conical surfaces reaching 0.59d at the

point of intersection with the ring cross-section. To preserve the integrity of this study,

results from rings with 0.71 . Ar ≤ 1 will only be referred to qualitatively throughout

this work.

The meshes describing rings with aspect ratios 1 < Ar < 2 require a minor modifi-

cation. The distance between the inner surface of the ring cross-section and the axis is

less than d/2. The elements in the quadrant between the ring surface and the axis are

compressed in the transverse direction to accommodate this reduction.

2.2.3 Accuracy of the Ring Models

An estimation of the overall accuracy of the models employed in the present work is

formulated in this section. Knowledge of the accuracy of the numerical modelling is

paramount to the formation of solid conclusions from the study.

In keeping with standard scientific practices, an overall error (∆Etot) is evaluated

as a summation of the N∆E relative uncertainties (∆Ei) corresponding to each aspect

of the study,

∆Etot u
N∆E∑

i=1

∆Ei. (2.40)

Equation 2.40 was applied to determine estimates of the overall uncertainty for

axisymmetric computations at both Re = 100 and Re = 200. These uncertainties

are presented in table 2.6. An increase in the overall uncertainty is expected with an

increase in Reynolds number, due to the convergence properties of the spectral-element

method employed here (Patera 1984; Karniadakis 1990). Thus, through inference and

extrapolation, an understanding of the uncertainty behaviour over the Reynolds number

range 0 < Re . 200 may be established.
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The variation in the length of the inlet contributes the vast majority of the overall

uncertainty of the computations at Reynolds numbers of both Re = 100 and Re = 200.

The overall uncertainty is of the order O(1%), varying between approximately 1.6%

and 1.7% over the Reynolds number range pertinent to the present study. Due to

the consistent domain lengths employed between aspect ratios in the present study, an

uncertainty of order O(0.1%) is expected when comparing results between rings, due

only to the uncertainty in the spatial resolution.

2.3 The Landau Model and Non-Axisymmetric Transition
Behaviour

The Landau model provides a means for studying the non-linear behaviour near the

transition Reynolds number. It has been used widely in describing and classifying bluff

body wake transitions previously: for example, the Hopf bifurcation of a circular cylin-

der wake (Provansal et al. 1987; Dušek et al. 1994; Zielinska & Wesfreid 1995); the

three-dimensional Mode A and B transitions in the wake of a circular cylinder (Hen-

derson 1997); and the non-axisymmetric transitions in the wake of a sphere (Provansal

& Ormières 1998; Ghidersa & Dušek 2000; Thompson et al. 2001a).

Landau & Lifshitz (1976) proposed the Landau equation as a model to describe

the growth and saturation of a perturbation post-transition. The governing equation

is written
dA

dt
= (σ + iω)A− l(1 + ic)|A|2A + . . . , (2.41)

where A(t) is a complex variable representing the mode amplitude. A description of

this equation, and its application to stability analysis, is provided in Provansal et al.

(1987). Here, the characteristics of the model and the method of its application to the

present study is discussed.

The complex variable A(t) represents the amplitude of the perturbation mode from

the base flow. The right-hand side of the equation gives the first two non-zero terms

of a series expansion. Provided that l is positive, these first two terms should provide

a good description of the non-linear behaviour in the neighbourhood of the transition,

since the saturated amplitude should still be small. This is not true if l is negative; in

that case, the cubic term accelerates the growth of the perturbation and quintic or even

higher-order terms are required to describe saturation of the mode. Thus, the sign of l

plays an important role in classifying the transition. Positive l means the transition is
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supercritical (non-hysteretic), while negative l means it is subcritical (hysteretic). The

parameter σ is the linear growth rate of the perturbation, and thus at the transition

point, its value changes from negative to positive. Also, ω is the angular oscillation

frequency during the linear growth phase, which is non-zero for a Hopf bifurcation.

The parameter c is known as the Landau constant. It is a global quantity (unlike l)

and hence does not vary with position in the flow. It modifies the oscillation frequency

at saturation, and in addition, its size and magnitude determine global behaviour in

related flow systems such as wake behaviour under external oscillatory forcing (Le Gal

et al. 2001).

The usual way to manipulate the Landau equation (i.e. Dušek et al. 1994) is to

write the complex amplitude variable as

A ≡ ρeiΦ, (2.42)

where ρ = |A| is a real variable describing the mode amplitude, and Φ is a real variable

providing the phase of the mode. The Landau equation can then be split into real and

imaginary parts, giving

d log(ρ)
dt

= (σ − lρ2 + . . .), (2.43)

dΦ
dt

= (ω − lcρ2 + . . .). (2.44)

Using equation 2.43 and noting that at saturation the (real) amplitude will not

change in time, gives ρsat
2 = σ/l. In addition, since σ is necessarily proportional to the

Reynolds number increment above critical in the neighbourhood of a simple transition,

the energy in the mode (proportional to ρ2) varies as Re−Rec, where Rec is the critical

Reynolds number. This behaviour was verified numerically (e.g. Dušek et al. 1994)

and experimentally (e.g. Ormières & Provansal 1999) for different supercritical wake

transitions. The equation for the phase (equation 2.44) also provides useful information.

If the flow reaches a periodic state at saturation, dΦ/dt becomes the constant angular

frequency of oscillation (ωsat). It takes the value ωsat = ω − lcρsat
2 = (ω + σc). Hence,

σc determines the shift from the oscillation frequency in the linear regime, as the flow

saturates.

Provansal et al. (1987) showed that the viscous diffusion timescale (d2/ν) is propor-

tional to (Re − Rec)/σ. Grouping these terms allows the constant of proportionality,
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known as the Landau diffusivity constant, to be expressed

ηdiff =
(Re − Rec)

σ
× ν

d2
. (2.45)

This constant was evaluated from experimental measurements for the Hopf transition of

a circular cylinder wake by Provansal et al. (1987). They found a value of approximately

ηdiff = 5. Using the data presented in Thompson et al. (2001a), the Landau diffusivity

constant may be computed for the Hopf transition of a sphere wake. At Re = 280

(Re − Rec ≈ 7.8), they predicted the Hopf transition to grow with σ ≈ 0.015, and

yielding ηdiff ≈ 1.86.

For regular (i.e. steady–steady) transitions, only the real component of the am-

plitude A need be considered, and hence equation 2.43 is applied. For transitions

involving time-dependent flows, the phase of the amplitude is considered by applying

equation 2.44.

Given equation 2.43, it is possible to determine the real parameters in the model

from numerical computations by plotting d log |A|/dt against |A|2. The y–intercept

gives the linear growth rate σ and the gradient for small amplitudes near to the y–

axis yields −l. For the truncated cubic Landau model to describe the transition well,

equation 2.43 indicates the plot should be linear. Plotted this way, the time trajectory

of the transition should start at the y–axis, and finish on the x–axis if the flow reaches

a periodic or steady asymptotic state. If the slope of the curve is positive at the y–

axis, the transition is subcritical and at least quintic terms are required in the Landau

equation to describe the saturation process with any accuracy. The linear dependence of

d log |A|/dt with |A|2 for supercritical transitions was explained in a recent publication

by Noack et al. (2003), in the context of low-dimensional Galerkin models for the viscous

incompressible flow past a circular cylinder.

In the vicinity of the transition, it is possible to determine the Landau constant

by measuring the oscillation frequency of the perturbation in the linear regime and at

saturation, and by rearranging equation 2.44 to give

c =
ωsat − ω

σ
. (2.46)

From a numerical point of view, the derivative (d log |A|/dt) can be accurately es-

timated using finite-differences. For transitions to a time-dependent final state, the

signal at small times is initially sinusoidal multiplied by an exponential growth fac-

tor. At larger times, as the flow saturates, the amplitude envelope asymptotes to a
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constant width and the sinusoidal oscillation frequency adjusts slightly according to

equation 2.44. Thus, in the more complicated case of transition to a time-dependent

final state, the derivative can be estimated by finite-differences by using the heights of

the approximately sinusoidal peaks and troughs during the growth and saturation of

the instability.

To proceed further, the amplitude variable A needs to be specified. Previous stud-

ies have taken different approaches. For example, Dušek et al. (1994), and Thompson

et al. (2001a) used the transverse velocity component at a fixed point on the centreline

of the circular cylinder wake. Zielinska & Wesfreid (1995) instead used the maximum

transverse velocity component on the centerline. The position at which this occurs

varies with Reynolds number. Henderson (1997) used the L2 norm of spanwise veloc-

ity component for examining two-dimensional to three-dimensional transitions for the

wake of a circular cylinder. However, because the numerical domain was necessarily

truncated downstream before the mode amplitude decayed to zero, this also was not a

unique global measure. For the analysis presented in chapter 5, the L2 norm method,

as described in Henderson (1997) and Thompson et al. (2001a), is employed. As the

transitions studied in chapter 5 are non-axisymmetric transitions, an L2 norm is com-

puted based on an integration of the azimuthal velocity component of the wake, as

follows:

|A| ≡
[
Ψcylinder

∫

V
w2dV

]1/2

, (2.47)

where |A| is the amplitude of the mode in question, Ψcylinder is a normalising coefficient

set to unity for simplicity, V is the volume of the computational domain, and w is the

azimuthal component of the velocity field.

2.4 Experimental Validation of the Flow past Rings

Despite comprising a small portion of this study, it is pertinent to divulge the experi-

mental technique used in the present study for validation of selected numerical results.

Two techniques for experimental flow visualisation have been employed in previous

studies for the wakes behind rings. Monson (1983) observed rings falling through a tank

of water. The rings were coated with a dye that entrained into the wake, highlight-

ing the flow structures present. This method has the advantage of not imparting any

spurious perturbation on the wake due to the presence of tethers attached to the ring.

A major drawback with the technique of Monson (1983) is the inability to maintain
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a perpendicular orientation of the ring to the vertical direction of motion. This effect

is especially noticeable for asymmetric wake visualisation, where the non-uniform dis-

tribution of drag around the ring incites an oscillatory wobble in the axial orientation

of the ring. Leweke & Provansal (1995) overcame this difficulty by fixing their rings

within a wind tunnel with an arrangement of fine tethers. The mounting of four tethers

to the ring did not provide a noticeable effect on the wake, due to the large difference

in scale between the tether diameter, and their placement around the circumference of

the ring. The radial direction that these wire anchors were placed appeared to add no

observable alteration of the wake structures in the flow visualisation images presented

by Leweke & Provansal (1995).

The experimental method employed in the present study differed somewhat from

those of these previous studies. Due to the desire to monitor the wakes behind rings

with aspect ratios in the range 4 < Ar < 7, a technique was developed whereby a

buoyant ring coated in Fluorescein dye is dragged vertically downward into a tank.

The tension of the tow line was maintained by the buoyancy of the ring, which had

a density approximately half that of the water. The horizontal inclination of the ring

was maintained by the attachment of three equi-spaced tethers positioned at the centre

of the upstream surface of the ring. The three tethers were affixed to a tow line ap-

proximately 10d to 15d upstream of the ring. The tow line traversed a near-frictionless

pulley system at the base of the tank, and returned to the surface near to a side wall

of the tank, where it was wound onto a spool machined to a uniform diameter. The

spool was driven at a constant velocity by a computer-controlled stepper motor which

employed 40000 steps per revolution. The ring velocity was kept constant to a high

degree of accuracy, which maintained a constant Reynolds number for the system. Reg-

ular temperature measurements ensured that an accurate estimation of the kinematic

viscosity of the fluid was made for precise Reynolds number measurements. The ring

was carefully machined from wood, and was sanded smooth with a fine-grit sandpaper.

Surface roughness effects were not considered significant due to the low Reynolds num-

ber of the experiments. No surface treatment was performed in addition to sanding, as

the ring was painted with dye prior to immersion in the water tank.

The experimental rig consisted of a vertical tank 550mm high, and 500mm square at

the base. A schematic representation of the experimental apparatus setup is shown in

figure 2.4. It should be noted that the distance over which the ring was towed during the
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Figure 2.4: A schematic representation of the experimental apparatus employed to obtain
wake flow visualisation images to validate the numerical predictions presented throughout
this work.

experiments was approximately 450mm, or 56d. For qualitative purposes, the annular

vortex street was generally observed to saturate over between 200mm–250mm from the

startup condition. Therefore, over at least the final 25d of the experimental run, the

vortex street was qualitatively free of transients.

Flow visualisation was performed by illuminating the dye with a laser light source

(wavelength 540nm). Images were captured with a Canon EOS 300 35mm SLR camera

fitted with a 22–55mm f/4.0–f/5.6 USM zoom lens. 400 ASA colour film stock was

employed, and the photographs were digitised with a Nikon Coolscan II 2700dpi film

scanner.

The computer-controlled motion of the ring was initiated from a static position

approximately 1cm below the surface of the tank, and buoyancy forces maintained a

vertical alignment of the ring. Initially, a fast acceleration was applied to the ring,

which resulted in the evolution of a uniform axisymmetric vortex street in the wake

of the ring. This condition was fundamental to the evolution of linear asymmetric

instability modes of the wake.

The mean inner and outer diameters of the ring used in the experiments were mea-

sured by digital calipers, with 31.88mm and 48.07mm being measured, respectively.

These measurements provide the mean ring diameter D = 39.98mm and the mean

76



cross-section diameter d = 8.095mm. As an independent verification of these measure-

ments, the cross section was also measured to be d = 8.10mm ± 0.03mm. From these

measurements, the aspect ratio of the ring employed in the experiments was determined

to be Ar = 4.94 (actually closer to Ar = 4.9382).

The circumference along the ring centreline non-dimensionalised with respect to

the ring cross-section (d) is πD = 15.51d. Numerical studies predict that the wake

behind a ring with Ar = 5 will become unstable to a linear Mode C instability at Re =

161, followed by a Mode A instability at Re = 194. The respective azimuthal mode

numbers of these instability modes are m = 9 and m = 4, respectively, corresponding

to azimuthal wavelengths (non-dimensionalised with d) of λd = 1.75d and λd = 3.93d.

The measured mean ring cross-section diameter was d = 8.10 × 10−3 m, and the

assumed kinematic viscosity was ν = 1.01× 10−6m2s−1 based on a water temperature

of 23.5◦C. Therefore, the velocity (U) range that the ring was required to be towed at

to achieve the Reynolds number range (above the critical Reynolds number for Mode C

and below Mode A) was 2.01 cm1s−1 < U < 2.42 cm1s−1. Clearly, these velocities were

extremely low, and left the experiment susceptible to slightly non-uniform conditions,

such as convection within the tank, imperfections on the body of the ring, and the

wake disruption imposed by the towing line upstream of the ring. These problems were

overcome through careful machining of the geometry, the use of extremely fine thread to

attach the ring to the tow line, and by allowing sufficient time before a run for the ring

to reach a vertical equilibrium point in the tank, and the fluid to become motionless to

the limit of observation.

2.5 Chapter Summary

In this chapter, the spectral-element method has been introduced. This computational

technique is the sole method employed to solve the fluid flows associated with the flow

past the rings studied in the present work.

The logical extensions of the axisymmetric (or two-dimensional) formulation of the

spectral-element method to both a linear Floquet-type stability analysis technique, and

a non-axisymmetric (or three-dimensional) method have been discussed.

Numerical meshes have been developed that model a wide range of ring aspect ratios,

and a detailed grid-resolution study has been presented. The difficulty of modelling the

sharp dimples located on the axis of the ring both upstream and downstream, as the
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aspect ratio increases to Ar → 1, and difficulty of modelling the constriction through

the small hole at the axis when the aspect ratio is just greater than unity have been

discussed.

The Landau model has been introduced, and the useful features of the model have

been explored. The method by which the model will be applied in the current work

was presented.

Finally, the experimental apparatus and methodology employed to validate the nu-

merical fluid flow predictions for an intermediate aspect ratio of approximately Ar ≈ 5

was discussed.

In the next chapter, axisymmetric wakes are computed for a range of aspect ratios.

The axisymmetric separation and Hopf transitions are studied, and characteristics of

the unsteady wakes produced following the Hopf transition are investigated. These

include the Strouhal–Reynolds number variation, the wake structure, and the drag

characteristics.
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Chapter 3

Axisymmetric Flow past Rings

The axisymmetric flow past a sphere, and the two-dimensional flow past a circular

cylinder have been investigated previously (Taneda 1956a,b), and are well understood.

For the axisymmetric flow past rings, only the unsteady axisymmetric flow has been

investigated (Leweke & Provansal 1994, 1995). The steady axisymmetric flow past

rings at low Reynolds numbers is not yet well understood. In order to perform the

linear stability analysis and non-axisymmetric computational studies presented in later

chapters, the axisymmetric flow regimes for the flow past rings must be characterised

and investigated.

This chapter presents an axisymmetric computational study of the flow past rings.

In the next section, the results of computations are presented which identify low-

Reynolds-number flow regimes characterised by attached flow, separated flow, and un-

steady flow. The transition Reynolds numbers for flow separation and unsteady flow are

determined for a wide range of rings. In the following section, the Strouhal–Reynolds

number profiles for unsteady wakes behind rings are analysed, and a relationship is

proposed for the Strouhal frequency of the axisymmetric wakes behind rings. A third

section explores the drag properties of the flow past rings, drawing comparisons with

the drag properties of the flow past both a sphere and a circular cylinder. Finally, a

qualitative comparison between experimental and numerical flow visualisations is pre-

sented.

Some of the results in this chapter have previously been published in Sheard et al.

(2003c).
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3.1 Axisymmetric Transitions and Flow Regimes

A study of the flow past a sphere (Taneda 1956a) and a study of the flow past a circular

cylinder (Taneda 1956b) both verify that at sufficiently small Reynolds numbers the flow

remains steady and attached to these bodies. In cross-section, the attached flow past

a sphere and a circular cylinder consists of a single upstream and a single downstream

stagnation point. At some transition Reynolds number, the flow separates from the

body due to an adverse (or increased) pressure gradient in the direction of flow, which

creates a pair of separation points in the vicinity of the rear of the body beyond the

separation transition. A steady recirculation bubble is located in the wake between

the separation points, and its length increases with an increase in Reynolds number.

At some higher Reynolds number, the steady recirculation bubble becomes unstable to

two- or three-dimensional disturbances, depending on the geometry.

The characteristics and transition Reynolds numbers of these regimes in the flow

past rings is currently unknown. To characterise these regimes, axisymmetric com-

putations were employed to determine the transition Reynolds numbers for both flow

separation and unsteady flow in the wakes behind rings, and to establish features of

the structure of the wakes.

3.1.1 The Transition to Separated Flow

Two methods can be employed to determine the transition Reynolds number for sep-

arated flow: the wake length method and the separation angle method. The wake

length method was employed in several experimental studies (including Taneda 1956b,a;

Coutanceau & Bouard 1977a), and involves the extrapolation to zero of the measured

variation in recirculation bubble length with Reynolds number. The separation angle

method was employed by computational studies (Rimon & Cheng 1969; Tomboulides

et al. 1993), and involves the extrapolation to zero of the computed variation in separa-

tion angle with Reynolds number. The separation angle is defined as the angle between

lines through the separation points and the centre of the sphere or cylinder.

The wake length method is suitable for symmetrical flows, such as the flow past a

sphere or a circular cylinder. However, for open rings (Ar > 1), the flow field around

the ring cross-section is asymmetrical, and measurement of the wake length is difficult.

The separation angle method was therefore applied in the present work.

Using the separation angle method, the transition Reynolds number for separated
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Figure 3.1: Reynolds numbers for the flow separation transition (ReT1) versus aspect ratio
for rings shown by blue lines. The dashed line indicates the emergence of the hole in the
centre of the ring at Ar = 1, and the upper limit of the applicability of axisymmetric com-
putations is indicated by the dotted red lines, which represent the predicted transition to
non-axisymmetric flow discussed later.

flow was determined for the flow past rings of a wide range of aspect ratios, and for the

flow past a sphere and a circular cylinder. For the flow past a sphere, the separation

transition was found to occur at ReS1 = 21, and for the flow past a circular cylinder,

the separation transition was found to occur at ReC1 = 6. These Reynolds numbers

are within ±0.5 Reynolds numbers of the accepted values from previous studies. For

the flow past rings, a plot of the variation in separation transition Reynolds number

(ReT1) with aspect ratio is presented in figure 3.1.

Two distinct flow regimes can be identified from figure 3.1. For 0 ≤ Ar ≤ 1, the

transition Reynolds number for flow separation decreases from ReT1 = 21 at Ar = 0 to

ReT1 ≈ 0 at Ar = 1. For Ar > 1, the transition Reynolds number for flow separation

decreases from a very large value over aspect ratios 1 < Ar . 3, and approaches

ReT1 ≈ 6 as Ar →∞.

The flow separations that occur over these two regimes are distinct. For 0 ≤ Ar ≤ 1,

the separation transition forms a recirculation bubble located on the axis behind the
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Figure 3.2: Flow streamlines around a ring of aspect ratio Ar = 0.6 at Re = 10, following
the separation transition, illustrating the recirculating region behind the ring on the axis.
Unevenly spaced streamline contour levels are used to elucidate relevant flow structures.

closed rings, as shown in figure 3.2. For Ar > 1, the separation transition forms

an annular recirculation bubble located behind the cross-section of the open rings, as

shown in figure 3.3. A steady flow was computed at all aspect ratios at the separation

transition.

The variation in the separation transition Reynolds number with aspect ratio is

best explained in terms of the structure of the computed wakes. For 0 ≤ Ar ≤ 1, the

transition Reynolds number for flow separation decreases with an increase in aspect

ratio. For attached flow to be maintained at Reynolds numbers below ReT1, the fluid

that travels down the axis must divert from the axis upstream of the ring, remain

attached around the body, and continue along the axis downstream. With an increase

in aspect ratio from Ar = 0, the adverse pressure gradient towards the leeward side

of the ring becomes more pronounced as Ar → 1. At Ar = 0, the fluid must turn

90◦ from the rear of the ring to align with the axis. As Ar → 1, the fluid must turn

by more obtuse angles approaching 180◦. Hence lower Reynolds numbers are required

to maintain attached flow as the aspect ratio increases from Ar = 0 to Ar → 1, and

therefore the transition Reynolds number decreases over this aspect ratio range from

ReT1 ≈ 21 to ReT1 → 0.

At Ar = 1, the separated flow condition is almost paradoxical. The conjecture

that ReT1 → 0 as Ar → 1 implies that at Ar = 1, the separation transition occurs

at ReT1 = 0. The Stokes flow condition at Re = 0 does not allow flow separation;

however, separated flow exists for Re > ReT1, and as ReT1 → 0 as Ar → 1, separated

flow exists at Ar = 1 for all Reynolds numbers Re > 0. A close inspection of the

transition Reynolds numbers in the vicinity of Ar = 1 in figure 3.1 shows that at

Ar = 1, ReT1 ≈ 1. In chapter 2 is was described that for the numerical meshes

employed to model rings with Ar = 0.8 and 1, the extreme geometric constrictions at
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Figure 3.3: Flow streamlines around a ring with aspect ratio Ar = 3 at Re = 100, following
the separation transition, illustrating the recirculating region behind the ring cross-section.
Arbitrary contour levels are used to highlight the flow structures.

the axis were removed by adding artificial tapered slip-walls which diverted the flow

away from the axis in the vicinity of the ring for computational stability. This mesh

alteration slightly inflated the computed values of ReT1 in the vicinity of Ar = 1. If the

ReT1 values at Ar = 0.8 and 1 are disregarded, an extrapolation of ReT1 from Ar = 0

to Ar = 1 yields ReT1 ≈ 0.

For Ar > 1, the transition Reynolds number for flow separation increases as the

aspect ratio decreases towards Ar → 1. With a decrease in aspect ratio, the flow

around the circular cross-section increases in asymmetry between the flow around the

outer side of the ring, and the flow around the inner side of the ring. This asymmetry

is imposed by the proximity of the axis at smaller aspect ratios. The rapid increase

in the transition Reynolds number for Ar . 3 as Ar → 1 is caused by a reduction in

velocity of the fluid which passes through the hole of the ring. The velocity reduction

causes a reduction in the local Reynolds number of flow, which amplifies the effective

Reynolds number required to cause flow separation.

3.1.2 A Detached Axial Recirculation Bubble

For 1 < Ar . 3, the attached flow at Reynolds numbers below the transition Reynolds

number for flow separation exhibit an interesting structure. A detached axial recircu-

lation bubble is located directly behind the ring, which corresponds to the attached

axial recirculation bubble observed for Ar ≤ 1. Examples of the detached recircula-

tion bubble are provided in figure 3.4. The figure shows that the recirculation bubble

increases in length with an increase in Reynolds number, which is consistent with the

axial recirculation bubble computed in the wakes behind rings with 0 ≤ Ar ≤ 1.

The detached recirculation bubble is located downstream of a stagnation point on

the axis behind the open ring. The stagnation of flow is caused by an adverse pressure
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(a) Re = 25.

(b) Re = 100.

Figure 3.4: Flow streamlines around a ring with aspect ratio Ar = 1.4. In (a) the axial recir-
culation bubble located downstream of the ring is observed. In (b), this bubble is significantly
larger, and a divergence of streamlines from the lower right surface of the ring cross-section
may be observed, corresponding to boundary layer separation. Again, the contour levels of
the streamline plots are arbitrary.

gradient along the axis, as the downstream side of the hole in the ring acts as a local

expansion. The effect of the expansion is greatest at Ar ≈ 1, and is negligible for

Ar & 3, where flow stagnation is no longer observed on the axis. This explains the

absence of a detached recirculation bubble in the wake of the ring with Ar = 3 in

figure 3.3.

Figure 3.4(a) shows a detached recirculation bubble downstream of a ring with

Ar = 1.4 at Re = 25. The flow around the ring cross-section shows an upstream

stagnation point on the inner upstream surface of the ring, and a downstream stagnation

point on the outer downstream surface of the ring. Boundary layer separation had not

occurred at this Reynolds number. The small closed streamline in the vicinity of the

downstream stagnation point is an artefact of the streamline integration.

The flow around the ring cross-section in figure 3.4(b) differs from the flow in fig-

ure 3.4(a). On the inner downstream surface of the ring, a local divergence of the flow

streamlines is observed. This divergence is due to the boundary layer separation that

was computed to occur at ReT1 = 91 for a ring with Ar = 1.4.

The streamline plots in figure 3.4 show that with an increase in Reynolds number,

a larger proportion of fluid passes through the hole of the ring due to viscous effects.
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Figure 3.5: Unsteady transient decay rates for the flow past a ring with Ar = 5. Computed
decay rates are shown as squares, and the solid line represents a linear fit to the data. The
dashed line represents the neutral stability limit where the decay rate k = 0.

In figure 3.4(a), the upstream streamlines indicate that a column of fluid at the axis

approximately 0.1d in diameter passes through the hole in the ring. In figure 3.4(b),

the upstream streamlines indicate that a column of fluid at the axis approximately

0.4d in diameter passes through the hole in the ring. In other words, a Reynolds

number of Re = 100 is required to provide a local velocity through the hole in the

ring of approximately unity. At aspect ratios Ar & 3, this can be achieved at far

lower Reynolds numbers, which explains the rapid increase in ReT1 as the aspect ratio

decreases towards Ar → 1.

It is proposed from the observation of axial recirculation bubbles in the wakes of

closed and open rings with 0 ≤ Ar . 3, and the observation of an annular recirculation

ring in the wake of open rings with Ar & 3, that the transition from closed to open

rings at Ar = 1 does not discontinuously alter the wake dynamics. In relation to the

scaling of the wakes, for 0 ≤ Ar . 3 the wake is observed to scale with the diameter of

the ring D + d, whereas for Ar & 3 the wake is observed to scale with the cross-section

diameter d.
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Figure 3.6: Reynolds numbers for the Hopf transition versus aspect ratio for rings obtained
from axisymmetric computations (blue line). The dashed line indicates Ar = 1, where the
hole first appears in the ring at the axis, and the predicted non-axisymmetric transition
profiles are included as dotted red lines.

3.1.3 The Transition to Unsteady Flow

The critical Reynolds numbers for the transition from steady to periodic flow were

found for a range of aspect ratios with Ar > 1. To determine the critical Reynolds

number, the decay rates of unsteady velocity transients in the wake were measured at

Reynolds numbers below the transition Reynolds number. Extrapolation of the decay

rate variation with Reynolds number to zero yielded the neutral stability limit for

unsteady transients in the wake, which corresponded to the critical Reynolds number

for the transition to unsteady flow, ReT2. An example of the linear trend in measured

decay rates in the vicinity of the unsteady flow transition is presented in figure 3.5, for

the wake behind a ring with Ar = 5.

In figure 3.6, a plot of the variation in ReT2 with aspect ratio is presented. Unsteady

flow was not able to be computed for rings with Ar . 1 over the Reynolds number

range 0 < Re . 400. This was expected, as studies of the flow past spheres and discs

(Natarajan & Acrivos 1993; Johnson & Patel 1999; Tomboulides & Orszag 2000) show

that the steady axisymmetric wakes become unstable to non-axisymmetric flow at lower
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Reynolds numbers than a for a transition to unsteady flow. In chapter 4, results of a

linear stability analysis are presented which predict that a regular non-axisymmetric

wake transition will precede the axisymmetric Hopf bifurcation in the wake for aspect

ratios Ar . 3.9. The present results from the axisymmetric study are presented here in

their entirety, and the predicted non-axisymmetric transition boundaries are included

to indicate the physical limits of these results.

At the large-aspect-ratio limit, the critical Reynolds number for the transition to

unsteady flow past rings asymptotes to the critical Reynolds number for the transition

to unsteady flow past a circular cylinder, ReT2 → ReC2 ≈ 47. This result is expected

based on the studies by Monson (1983) and Leweke & Provansal (1995). For an increase

in aspect ratios over Ar & 5, the critical Reynolds number for the transition to unsteady

flow decreases slowly from ReT2 ≈ 65 towards ReT2 ≈ 47. For a decrease in aspect

ratios from Ar ≈ 5 towards Ar → 1, the critical Reynolds number for the transition to

unsteady flow increases rapidly. At Ar = 2, for example, ReT2 ≈ 280.

It is known that the Hopf transition in the wake of a circular cylinder is caused by

an instability of the shear layers in the wake, which manifests itself through transverse

oscillations of the recirculation bubble (Provansal et al. 1987; Dušek et al. 1994). The

dramatic increase in ReT2 as the aspect ratio decreases towards Ar = 1 follows the sim-

ilar increase in ReT1, with the instability of the annular recirculation bubble occurring

with ReT2 > ReT1 for Ar > 1.

The flow past rings with small aspect ratios is an axisymmetric analogy to the

flow past a circular cylinder near to a slip-wall, or free surface of high Froude number.

Various works have treated this subject (Bearman & Zdravkovich 1978; Sheridan et al.

1997; Reichl et al. 1998, 2001a,b; Reichl 2001; Hourigan et al. 2002). Through these

studies it was noticed that vortex shedding was suppressed at Re = 180 for gap ratios

less than 0.1d. In the present work, a ring with Ar = 1.2 has a similar gap ratio

between the axis and ring cross-section, but no vortex shedding was computed in the

wakes behind rings with Ar . 2.7 at Re = 180. The higher solidity of the ring about

the axis may have provided a greater constraint on the transition to unsteady flow than

the analogous circular cylinder near to a slip-wall. Therefore greater Reynolds numbers

were required to induce vortex shedding, although the mechanism which inhibited the

unsteady transition was the same.

87



3.1.4 Axisymmetric Vortex Shedding

At Reynolds numbers beyond ReT2, the transition to unsteady flow results in an axisym-

metric vortex street in the flow past rings. This observation is consistent with the exper-

iments of Leweke & Provansal (1995), who observed that for rings with 10 . Ar . 31.7

at Reynolds numbers beyond the transition to unsteady flow, vortex rings were shed

into the wake. In figure 3.7, contour plots of vorticity are presented for the flow past a

range of rings, and the flow past a circular cylinder, at Re = 200. In figure 3.7(a–b), a

steady wake was computed, as at these aspect ratios ReT2 > 200.

For aspect ratios Ar ≥ 5, presented in figure 3.7(c–e), the vortex rollers were shed

at an angle to the flow. A decrease in the shedding angle was observed for an increase in

aspect ratio. In keeping with observations by Monson (1983) and Leweke & Provansal

(1995), the vortex street in the flow past rings approaches the vortex street in the flow

past a circular cylinder (in figure 3.7(f)) as the aspect ratio increases, as indicated by

the reduction in shedding angle.

3.1.4.1 The Strouhal–Reynolds Number Profile for Rings

Leweke & Provansal (1995) provided Strouhal number measurements for the flow past

rings, and they observed that with an increase in aspect ratio, the Strouhal–Reynolds

number profiles for the flow past rings approached the Strouhal–Reynolds number pro-

file of the flow past a circular cylinder. Lower Strouhal numbers were measured for

rings with smaller aspect ratios at a given Reynolds number. In the present study,

Strouhal–Reynolds number profiles were obtained from axisymmetric computations of

the periodic flow past rings with aspect ratios over the range 3 ≤ Ar ≤ 40. The

Strouhal–Reynolds number profile for the flow past a circular cylinder was also com-

puted. In figure 3.8, the computed Strouhal–Reynolds number profiles are presented.

As the aspect ratio increases, the computed Strouhal–Reynolds number profiles for

the flow past rings approach the Strouhal–Reynolds number profile computed for the

flow past a circular cylinder, in agreement with the behaviour observed by Monson

(1983), and measured by Leweke & Provansal (1995). An increase in critical Reynolds

number for the onset of periodic flow is observed with a decrease in the aspect ratio,

which verifies the critical Reynolds number profile in figure 3.6.

A significant drop in Strouhal number was computed for rings with 3 . Ar . 5.

The experimental studies of Roshko (1954), Monson (1983), Bearman & Takamoto
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(a) Ar = 2.

(b) Ar = 3.

(c) Ar = 5.

(d) Ar = 10.

(e) Ar = 20.

(f) Circular cylinder.

Figure 3.7: Vorticity contour plots of axisymmetric wakes of rings and the two-dimensional
wake of a circular cylinder, at Re = 200. 16 contour levels are displayed between −3 ≤ ωz ≤ 3,
with red and green contours representing negative and positive vorticity, respectively.
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(1988) and Miau et al. (1992) all report a change in behaviour of the wake over a

similar range of aspect ratios, in the wakes behind rings with various cross-sections. In

chapters 4 and 5, the reason for the observed change in the characteristics of the wake

is investigated.

3.1.4.2 The Relationship Between the Strouhal–Reynolds Number Profile
and Aspect Ratio

A relationship for the Strouhal number of the flow past rings as a function of both

the Reynolds number and aspect ratio was proposed by Leweke & Provansal (1995).

The relationship that they proposed was extended from a relationship for the laminar

Strouhal–Reynolds number relationship for the unsteady flow past a circular cylinder

proposed by Williamson (1988a). Williamson showed that the product of the Strouhal

number and the Reynolds number in the two-dimensional regime was approximated

closely by a quadratic function

Re St = ARe2 + B Re + C , (3.1)

where A, B and C are real coefficients determined empirically. Fey et al. (1998) pro-

posed an alternative functional form for the Strouhal–Reynolds number relationship,

where St was a function of 1/
√

Re. By choosing appropriate values of the coefficients

for the flow regimes which included laminar parallel shedding, three-dimensional tran-

sition regimes, the Kelvin–Helmholtz shear-layer instability regime and the subcritical

regime, a good approximation of the experimentally measured profile was obtained over

a wide Reynolds number range 47 < Re < 2 × 105. As the present study aims to ex-

tend the circular cylinder and ring Strouhal–Reynolds number relationships proposed

by Williamson (1988a) and Leweke & Provansal (1995), a functional form similar to

the Williamson and Leweke & Provansal relationships is employed here.

The relationship proposed by Leweke & Provansal introduced a ring curvature K =

2/Ar, and was written as

St(Re,K, θ) = St0(Re,K = 0)− a [Re − Rec(K = 0)]K cos(θ), (3.2)

where θ specified the angle between the vortex rollers and the ring for oblique shedding

modes, and St0 was the Strouhal frequency of parallel shedding in the wake of a circular

cylinder. Leweke & Provansal determined from experimental measurements that the

coefficient a = 0.0002134.
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Figure 3.8: Computed Strouhal–Reynolds number profiles for the two-dimensional axisym-
metric flow past rings (red lines). The blue line represented the circular cylinder Strouhal
number profile for reference.

The relationship proposed by Leweke & Provansal was adapted to the Strouhal–

Reynolds number profiles computed in the present study. A simplification to the rela-

tionship was made by taking cos(θ) to be unity, as the axisymmetric computations that

were employed suppressed oblique shedding modes. The validity of the relationship

proposed by Leweke & Provansal for the wider range of aspect ratios considered in the

present study was determined by the application of a correction to the present compu-

tations for zero curvature. For the relationship to be applicable, the Strouhal–Reynolds

number profiles for the flow past rings should collapse onto the Strouhal–Reynolds num-

ber profile for the flow past a circular cylinder. In figure 3.9, a plot of the corrected

profiles from the present computations is shown. The plot shows that the relationship

proposed by Leweke & Provansal breaks down for aspect ratios 3 ≤ Ar . 10. In the for-

mulation of the relationship, a linear dependence of the Strouhal number shift with K

was assumed. The relationship which they proposed was of the form St = St0−g(Re)K,

where the function g(Re) was a linear function of Re independent of K, which repre-

sented |∆St0/∆K|, where ∆St0 was the difference between the Strouhal numbers at a

given Reynolds number for the flow past rings and a circular cylinder.
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Figure 3.9: Strouhal–Reynolds number profiles of the current data extrapolated to zero
curvature using the curvature correction formula developed by Leweke & Provansal (1995).
Line colours and symbols are as per figure 3.8.
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An alternative functional dependence is proposed, whereby the Strouhal–Reynolds

number profiles all exhibit a similar profile when translated to the same starting point

and scaled by a factor that varies with aspect ratio. This relationship takes the form

St(Re,Ar) = Stc + [St0(Re − ReT2 + ReC2)− StC2]/A, (3.3)

where St(Re,Ar) is the Strouhal number for a given Re and Ar , ReT2 is the critical

Reynolds number for the onset of unsteady flow at a given Ar , Stc is the Strouhal

number at ReT2 for a given Ar , St0(Re) is the Strouhal–Reynolds number relationship

for a straight circular cylinder, ReC2 is the critical Reynolds number for unsteady flow

in the wake of a straight circular cylinder, StC2 is the Strouhal number at the critical

Reynolds number for the circular cylinder and A is the factor by which the Strouhal

frequencies differ, as a function of Ar.

Relationships were determined for these coefficients as functions of K from the

computed wakes. The relationship forms were chosen to minimise the discrepancy

between computed and estimated values of the coefficients to less than 1%.

Stc = −1.14786K5 + 0.59433K4 + 0.34015K3 − 0.12845K2 + 0.0188K + 0.124

St0 = 0.0000452401Re + 0.213346098− 4.9434288783/Re

ReT2 = 414.405922K3 − 16.516256K2 − 2.411304K + 46.51112

ReC2 = 46.51112

StC2 = 0.124

A = 14.032351K3 − 4.842855K2 + 0.72144K + 1.0

The new relationship provides an excellent description of the Strouhal–Reynolds

number profiles over the entire aspect ratio range investigated here. A plot of the

present Strouhal–Reynolds number data, corrected for zero curvature, is presented in

figure 3.10. An excellent collapse onto the Strouhal–Reynolds number profile of the

circular cylinder is achieved. The maximum deviation of any one point from the corre-

sponding Strouhal number for the flow past a circular cylinder is approximately 5%, but

generally the deviation is much less than 2%. The fit provided by Leweke & Provansal

(1995) is accurate to within 1% for rings with aspect ratios Ar ≥ 10, however for as-

pect ratios in the range 3 ≤ Ar . 10 the discrepancy can be as high as 15%. Over this

aspect ratio range, the relationship derived by Leweke & Provansal typically predicts

Strouhal frequencies with a discrepancy an order of magnitude greater than the current
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expression. It is pertinent to note that in the linear stability analysis reported in chap-

ter 4, it is predicted that the wakes behind rings with aspect ratios Ar . 4 undergo a

non-axisymmetric transition prior to the predicted Hopf transition. Even for an aspect

ratio Ar = 4, the present formula still exceeds the accuracy of the Leweke & Provansal

relationship.

3.1.4.3 Experimental and Computational Comparison

Limited attempts to capture flow visualisation of axisymmetric vortex shedding in the

wakes behind rings have been reported. Some dye visualisation was presented for the

flow past a flat ring in Takamoto & Izumi (1981), which showed an annular vortex

street in the wake. The visualisations presented in the experimental work by Monson

(1983) captured the entire wake region behind freely falling rings in a liquid. The

use of dye and the camera positioning occluded the internal wake structure, although

some evidence of parallel Kármán type vortex shedding was observed for rings with low

solidity (i.e. large aspect ratio).

In the experimental study by Leweke & Provansal (1995), images of oblique and

parallel modes of vortex shedding were captured with a smoke-visualisation method for

the wakes behind rings with Ar & 10. The study was primarily concerned with Strouhal

number measurements and dynamical modelling of the various unsteady modes, so no

attempt was made to study the localised wake structure in the vicinity of the cross-

section of the rings.

As part of the present study, both an experimental dye visualisation technique and

a computational simulated-particle visualisation technique were employed to study the

axisymmetric vortex street in the wake behind a ring with Ar = 4.94. The study was

performed to validate the results of the numerical computations for intermediate aspect

ratios, as limited data was available in the literature to validate the computational

results obtained in the present study for the flow past rings with Ar < 10. In

the experiments performed as part of this study, the vortex street in the wake was

visualised by the illumination of a Fluorescein dye with a thin laser sheet through the

centreline of the ring and the wake. The entrainment of the dye into the wake provided

a cross-sectional view of the process of vortex shedding into the wake. Computations

were performed to provide a comparison with the experimental dye visualisations. The

computed wake was visualised by computing the entrainment of simulated particles
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(a) Comparison 1. Left: Experimental dye visualisation. Right: Simulated-

particle visualisation.

(b) Comparison 2. Left: Experimental dye visualisation. Right: Simulated-

particle visualisation.

Figure 3.11: Comparisons between experimental and numerical observations of an axisym-
metric vortex street in the wake of a ring with Ar = 4.94 at Re = 100.
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into the wake from the cross-section of the ring. The simulated-particle computations

included 50 particle injection points distributed around the cross-section of the ring.

The injection point of the particles was 0.04d from the surface of the ring, which

facilitated a rapid entrainment of particles into the wake. In a postprocessing step, the

particle positions were reflected about the wake centreline to mimic the experimental

dye visualisations.

Experiments were carried out at Re = 100 to capture an axisymmetric vortex shed-

ding street. At this Reynolds number, the vortex street in the wake saturated rapidly,

as it was significantly greater than the critical Reynolds number for the transition to

unsteady flow in the wake (ReT2 ≈ 65). A rapid evolution of the vortex street was

required, as a relatively small tank was employed for the experiments. An upper limit

on the Reynolds number chosen for the experiments was imposed by the development of

non-axisymmetric instabilities in the wake, and preliminary investigations determined

that Re = 100 provided a satisfactory compromise between the need for a rapid vortex

street evolution, and the need to avoid non-axisymmetric flows.

Two comparisons are presented in figure 3.11 at different stages in an experimental

run. Figure 3.11(a) shows a comparison near the beginning of an experimental run,

which shows the rapid formation of the vortex street. The corresponding simulated-

particle computation employed a saturated axisymmetric wake at the same Reynolds

number. Notice the good agreement in the structure of the forming vortices in the near

wake, which indicates that the experimental run was near to saturation at that early

stage. The inclination of the ring in the dye visualisation image is indicative of the early

stage of the experimental run, as the ring had yet to travel to the centre of the frame

of the camera. The inclination corresponded to approximately 10◦ of parallax error in

the plane of the laser sheet, which was not considered significant for the purposes of

qualitative comparison.

Figure 3.11(b) shows a comparison from the same experimental run as figure 3.11(a),

almost exactly two shedding cycles later. At this time, the ring is located at the centre

of the frame of the camera, and is viewed directly side-on in both the experimental

and computational visualisations. An excellent agreement between the experimental

and numerical visualisations is observed in the near-wake region, within 2d of the ring,

and the shed vortex roller pair, which is located approximately 4d–5d downstream.

The strength, position, orientation, size, shape, and dye/particle distribution are all
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consistent. Further downstream, a discrepancy is observed for the two vortex roller

pairs located farthest downstream in figure 3.11(b). The vortex pairs are aligned in

a streamwise direction in the experimental dye visualisation, convecting radially out-

wards, whereas the vortex pairs are aligned diagonally in the numerical simulated-

particle visualisation, convecting upstream and radially outwards. These are the same

vortex pairs as the shed and forming vortex pairs from figure 3.11(a). As these vor-

tex pairs were the first two pairs of vortices shed in the experimental run, they are

influenced by transient conditions in the wake prior to saturation, which explains the

observed discrepancy.

The vortex street visualisations of the wake behind a ring presented in figure 3.11

highlight several differences between the vortex street in the wakes behind rings of

moderate aspect ratio and the classic vortex street that forms in the wake behind a

circular cylinder. The vortex street in the wake behind a ring increases in diameter

further downstream of the ring. Upon closer inspection, it is apparent that relative to

the cross-section of the ring, the vortices that comprise the vortex street are shed into

the wake at an inclined angle to the direction of motion. The inclination of the vortex

street is caused by the pairing of the inner to the outer vortex roller over each shedding

cycle. The vortex street therefore comprises pairs of counter-rotating vortex rollers,

which are known to convect in a direction normal to a plane though the vortex cores

(see Marshall 1992; Garten et al. 1998; Leweke & Williamson 1998; Ortega et al. 2003,

for further discussions on the dynamics of vortex pairs).

The effects of this convection of the vortex roller pairs on the wake is displayed with

clarity in the experimental dye visualisation of figure 3.11(b). A small amount of dye is

present in the braid region between each vortex pair. The inner braid regions are swept

radially inwards towards the axis. These bands of dye are connected to the rear of each

vortex pair, giving them the appearance of mushrooms sprouting out from the axis.

This illuminates the direction of motion of the convecting pairs. It is also interesting

to compare the dye distribution in the wake cross-section for the flow past the ring

in figure 3.11(b) with the dye distribution in the wake for the antiphase shedding in

the flow past a pair of circular cylinders which was presented earlier in figure 1.9(a),

from Williamson (1985a). A similar distribution of vorticity is observed in both cases.

Importantly, no dye is transferred from one side of the wake to the other, which verifies

that the vortex street was axisymmetric in the experimental work.
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An increase in the curvature of the ring increases the inclination of the local centre-

line of the vortex street with respect to the direction of flow. This causes a deviation

from a reflective wake symmetry of the vortex street local to the ring cross-section,

when compared to the wake of a straight circular cylinder. This has ramifications for

the stability characteristics of the vortex street to non-axisymmetric modes, which will

be investigated in chapter 4.

3.2 Axisymmetric Computation of Drag on a Ring

Drag and lift coefficients are non-dimensional parameters for the drag and lift forces

acting on a body which is in motion through a fluid. The total force imposed on a body

by a fluid in motion comprises components which result from both viscous shear and

pressure. It is convenient to consider these forces in directions both parallel to, and

normal or transverse to the direction of flow (i.e. drag and lift, respectively).

The axisymmetry of a ring is such that transverse (or radial) forces imposed on the

body by the surrounding fluid sum to zero when the flow is axisymmetric. Hence lift

forces due to contributions of pressure (Flp) and viscosity (Flν ) that act in the radial

direction are of little interest for the wake flows described here. The drag force (Fd) is

significant, as it acts in the axial direction, and will be considered in this study.

Many previous studies have calculated the lift and drag coefficient variation for

the flow past both a sphere (e.g. Mittal 1999a; Johnson & Patel 1999) and a circular

cylinder (e.g. Henderson 1995, 1997), but there is very little known about the drag

coefficient variation in the flow past rings. In the literature, only Bearman & Takamoto

(1988) provide results of force measurements for the flow past rings. Their experiments

were performed on a flat ring, with a axial width 2% of its outer diameter, and aspect

ratio variation was achieved through variation in the ring hole size, and measured drag

coefficients for rings with Ar = 1, 4, 6 and 10, at a constant speed, providing Reynolds

numbers varying with aspect ratio 6.8 × 104 > Re > 1.3 × 104. The measured drag

coefficients varied continuously over this aspect ratio range from Cd ≈ 1.1 to Cd ≈ 2.0.

No previous studies have reported drag coefficient measurements over a Reynolds

number range consistent with the present study. A comprehensive study of the variation

in drag coefficient with both Reynolds number and aspect ratio for the flow past rings

was performed as part of the present study. Constant drag coefficients were computed

for steady flows past rings, and mean drag coefficients were computed for unsteady flows
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past rings. In addition, drag coefficients were computed for the flow past a sphere and

a circular cylinder. The variation in the drag coefficient was monitored with respect to

both the Reynolds number of the flow, and the aspect ratio of the rings. Comparisons

are drawn between the computed drag coefficients of the flow past a sphere and a

circular cylinder, and previous measurements of the drag coefficients of the flow past a

sphere and a circular cylinder.

3.2.1 The Drag Coefficient

The drag force is a dimensional measure of the total force imparted in the axial direction

by the fluid on the ring. In order to gain a better understanding of the relative variation

in the drag force for all aspect ratios, the drag coefficient (Cd) is considered. The drag

coefficient is a non-dimensionalised representation of the drag force, and is expressed

by the relationship

Cd =
Fd

1
2ρAfrontalU∞2 , (3.4)

where ρ, Afrontal and U∞ are the fluid density, the projected frontal area of the ring,

and the free-stream velocity of the fluid, respectively. The drag force (Fd) consists of

both a pressure contribution, and a viscous contribution such that Fd = Fdp + Fdν ,

where Fdp and Fdν are the contributions of the pressure drag force and the viscous drag

force, respectively.

From a numerical perspective, the pressure drag force (Fdp) is computed by inte-

grating the pressure over the axial projection of the surface of the ring. The viscous

drag force (Fdν ) is computed by integrating the shear force at the ring surface acting in

the axial direction over the surface area of the ring. The shear force is determined from

the spatial velocity gradients at the ring surface, and the kinematic viscosity of the

fluid. Equation 3.4 is simplified in the present numerical formulation, as ρ and U∞ are

non-dimensionalised. Furthermore, the frontal area is expressed as a function of aspect

ratio if the length is non-dimensionalised with respect to the cross-section diameter d,

written as

Afrontal =

{ π
4 (Ar2 + 2Ar + 1) for 0 ≤ Ar ≤ 1,

πAr for Ar > 1.
(3.5)

Substitution of equation 3.5 into equation 3.4 provides simplified non-dimensional re-

lationships for the drag coefficient as a function of both the aspect ratio and the drag
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force,

Cd =





8Fd

π(Ar2+2Ar+1)
for 0 ≤ Ar ≤ 1,

2Fd
πAr for Ar > 1.

(3.6)

These equations were used to calculate the drag coefficients for the flow past rings in

the present study.

3.2.2 Drag Coefficients for the Flow past Spheres and Circular Cylin-
ders

The computed drag coefficients for the axisymmetric flow past a sphere and the two-

dimensional flow past a circular cylinder are presented in figure 3.12.

The computed drag coefficients for the flow past a sphere in figure 3.12(a) are

within 1% of the measured and computed data from other studies. The computed

drag coefficients for the flow past a circular cylinder in figure 3.12(b) are generally

within 10% of the measured and computed data from other studies. A number of

studies of the low-Reynolds-number flows past a circular cylinder discuss the effect on

measured parameters such as Cd of experimental conditions such as end-effects (Leweke

& Provansal 1995; Williamson 1996c) and the associated wake dynamics such as vortex

dislocations (Williamson 1992) and oblique shedding modes (Williamson 1989). These

effects add to the uncertainty of the experimental measurements, and are suppressed

in the two-dimensional computations.

The computed drag coefficients for the flow past a sphere are compared in fig-

ure 3.12(a) to the computed data from Tomboulides et al. (1993), Johnson & Patel

(1999) and Mittal (1999a), experimental measurements from Roos & Willmarth (1971),

and an experimental collocation from Clift et al. (1978). The computed drag coefficients

for the flow past a circular cylinder are compared in figure 3.12(b) to the computed

data from Henderson (1995) and Henderson (1997), and experimental measurements

from Wieselberger (1921).

As shown in figure 3.12(a), the present numerical results are consistent with the

experimentally obtained Cd values beyond the non-axisymmetric transition Reynolds

number of approximately Rec ≈ 211. This is despite the employment of axisymmetric

computations, which exclude the evolution of non-axisymmetric modes in the wake. By

contrast, as observed in figure 3.12(b), the present two-dimensional drag coefficients for

the flow past a circular cylinder and those from Henderson (1995) increase from Cd ≈ 1.4

at Re = 100 to Cd ≈ 1.5 at Re = 1000, whereas the experimental measurements from
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Figure 3.12: Comparison between computed drag coefficients from the present study with
existing experimental and numerical data. The present data is coloured blue, and the data
from previous studies are coloured red.
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Wieselberger (1921) and the three-dimensional computations from Henderson (1997)

decrease from Cd ≈ 1.4 at the onset of three-dimensional flow at Rec ≈ 188.5, to Cd ≈ 1

at Re = 1000.

3.2.3 Drag Coefficients for the Flow past Rings

The drag coefficients for the flow past rings were computed, and are analysed here. In

figure 3.13, the computed drag coefficients for the flow past rings are compared with

the computed drag coefficients for the flow past a sphere and a circular cylinder. The

figure includes a plot of both Cd versus log Re and log Cd versus log Re for clarity.

The profiles presented in figure 3.13(a) show a significant decrease in Cd with an

increase in Reynolds number for the flow past rings and the flow past a sphere and

a circular cylinder. The decrease in the computed drag coefficients is attributed to

the decrease in the viscous component of the drag as the Reynolds number increases.

Interestingly, there is a significant difference between the computed drag coefficient

profile for the flow past a sphere and the flow past rings with Ar ≥ 1. For the flow past

a ring with Ar = 1, the drag coefficient profile is similar in gradient, but is significantly

smaller in magnitude than the drag coefficient profile for the flow past a sphere. At

first inspection this result appears surprising, but it may be explained in terms of the

Reynolds number length scale. The Reynolds number for the computations was based

on the cross-section diameter, d, and not the projected frontal diameter, D + d, which

effectively shifts the drag coefficient profiles for rings with 1 . Ar . 3 to the left

in figure 3.13. From the computed results, the computed drag decreases for a given

Reynolds number as the aspect ratio is increased from Ar = 0 to Ar = 1.

Figure 3.13 shows that at Reynolds numbers Re . 5, a decrease in the computed

drag coefficient is found for an increase in aspect ratio from Ar = 1 to Ar ≈ 3. An

increase in the computed drag coefficient towards the drag coefficient computed for the

flow past a circular cylinder is found for an increase in aspect ratio from Ar ≈ 3 to

Ar →∞. At higher Reynolds numbers (Re & 20), the computed drag coefficients that

were obtained for Ar = 1 were the smallest obtained for any aspect ratio included in

the study. It can be observed in figure 3.13(b) that for Re & 20, the drag coefficients–

Reynolds number profiles computed for the flow past rings with Ar > 1 approach

constant values. For Ar ≥ 5, the computed drag coefficients reach a minimum of

Cd ≈ 1.2. This is interesting, as for unsteady wakes the drag coefficient does not
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Figure 3.13: Computed drag coefficients for the flow past a sphere and a circular cylinder
(blue and red lines, respectively) compared with the computed drag coefficients for the flow
past rings (coloured symbols and dotted lines).
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Figure 3.14: Constant Reynolds number variation in Cd versus Ar . Colours are chosen
to show a smooth variation between the low Reynolds numbers (Re = 1 is blue) and high
Reynolds numbers (Re = 250 is red).

continue to decrease with an increase in Reynolds number; instead, it reaches some

near-constant value.

To develop an understanding of the drag coefficient variation with aspect ratio

for a given Reynolds number for the flow past rings, the computed drag coefficients

are presented in figure 3.14. The plot reveals some striking features of the drag of

rings. As previously discussed, the computed drag coefficients decrease in magnitude

as the Reynolds number is increased. For aspect ratios Ar ≥ 5, the drag profiles for

all Reynolds numbers remain approximately constant, which suggests that the wake

dynamics of the flow past rings over this range of aspect ratios is consistent with the

wake dynamics of the flow past a circular cylinder. It is pertinent to note that for

all Reynolds numbers Re ≥ 50 over the range of aspect ratios Ar ≥ 5, the computed

drag coefficient profiles are almost equal. This corroborates the previous observations

of the mean drag coefficient measurements of the unsteady flow past a circular cylinder

(see figure 3.12(b)), which showed limited variation in total drag for Reynolds numbers

Re & 50.

An additional point of interest occurs in the small aspect ratio regime. For all
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Reynolds numbers, a minimum in the computed drag coefficient is found over the range

of aspect ratios 0 < Ar ≤ 5. At Re = 1, the minimum computed drag coefficient is

found for the flow past a ring with an aspect ratio Ar = 5. At Re = 10, the minimum

computed drag coefficient is found for the flow past a ring with Ar = 2. For all Reynolds

numbers Re ≥ 50, the minimum computed drag coefficient is found for the flow past a

ring with Ar = 1. This observation is interesting, as an open ring with an aspect ratio

in the vicinity of Ar = 1 is similar to a vented bluff body. Drag reductions in the order

of 40% have been obtained for the flow past spheres with an axial vent aligned with the

direction of flow, even with vent diameters as small as 0.02d (e.g. see Lu et al. 1999;

Grosche & Meier 2000; Grosche et al. 2003).

3.2.4 Pressure and Viscous Components of the Drag Coefficient for
the Flow past a Circular Cylinder

The pressure and viscous components of the drag coefficient of the flow past a circular

cylinder from both steady and unsteady two-dimensional computations was studied

by Henderson (1995). He showed that beyond the transition to unsteady flow (Re ≈
48.6), the mean pressure component of the drag coefficient increased, whereas the mean

viscous component of the drag coefficient decreased. The reduction in the total drag

coefficient due to the decrease in the viscous component continued beyond Re ≈ 1×102.

For Re & 200, the total mean drag coefficient increased, as the pressure drag increase

outweighed the viscous drag decrease. In figure 3.15, the computed mean pressure

and viscous components of the drag coefficient for the flow past a circular cylinder are

presented. These are compared with the reported pressure and viscous components of

the drag coefficient for the flow past a circular cylinder computed by Henderson (1995).

An excellent agreement is obtained. The present computed values adhere to the steady

profiles for Re . 48, and for Re & 48, the present values are consistent with the mean

profiles computed by Henderson.

3.2.5 Pressure and Viscous Components of the Drag Coefficient for
the Flow past Rings

The contribution of pressure and viscous components to the drag coefficient of the

flow past a circular cylinder has been discussed in § 3.2.4. The contribution of these

components to the drag coefficients of the flow past rings is examined in this section.

The pressure and viscous components of the drag coefficients for the flow past rings
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Figure 3.15: Pressure and viscous components of the total drag on a circular cylinder. Blue
circles and triangles represent the present numerical values for the total drag and the com-
ponents, respectively. Red lines denote the profiles obtained by Henderson (1995). Dashed
lines represent the steady wake regime and drag profiles, and “dash–dot” lines represent the
unsteady wake regime and drag profiles.

were calculated, and are plotted in figure 3.16. The pressure contribution is presented

in figure 3.16(a), and the viscous contribution is presented in figure 3.16(b).

A plot of the pressure component of the drag coefficients of the flow past rings is

presented in figure 3.16(a). Aside from the Cdp profile of the wake of a sphere (whose

large deviation from the ring with Ar = 1 due to effective length scaling has already

been discussed), all the Cdp profiles exhibit similar behaviour. At Reynolds numbers

Re ≈ 4, the ring with Ar = 3 has the lowest pressure component of the drag coefficient

of the rings considered, with Cdp ≈ 1.9. At Re = 4, the ring with Ar = 1 has Cdp ≈ 2.1,

which decreases more rapidly than the pressure component of the drag coefficient for the

other rings as the Reynolds number is increased. For Reynolds numbers Re & 20, the

profile of the pressure component of the drag coefficient is consistent with the profile of

the pressure component of the drag coefficient in the flow past a sphere. At a Reynolds

number of Re = 250, the pressure component of the drag coefficient of the flows past

both a sphere and a ring with Ar = 1 are as low as Cdp ≈ 0.35. The ring with Ar = 2
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Figure 3.16: Components of Cd for the wakes behind rings. Results for the sphere and the
circular cylinder are included for comparison. Symbols and colours are as per figure 3.13.
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decreases in a similar fashion to Cdp ≈ 0.6 at Re = 250.

At Re = 4, the pressure component of the drag coefficients for the flow past rings

with aspect ratios Ar ≥ 5 vary with an increase in aspect ratio over the range 2.1 .

Cdp . 2.5. At Re ≈ 50, the flows become unsteady, and as in the study of the

drag coefficient of the flow past a circular cylinder by Henderson (1995), the pressure

component of the drag coefficient reaches a minimum, and increases with an increase

in Reynolds number for Re & 50. Figure 3.16(a) shows this increase, with the pressure

component of the drag coefficients for the flow past rings with Ar ≥ 5 and a circular

cylinder computed between 0.85 . Cdp . 1.0 at Re ≈ 50, and between 1.0 . Cdp . 1.15

at Re = 200. For a ring with Ar = 3, the pressure component of the drag coefficient

increases with an increase in Reynolds number beyond Re & 150. In contrast to

the larger aspect ratios discussed previously, the pressure component increase is more

pronounced for the drag coefficient for the flow past a ring with Ar = 3, as it increases

from Cdp ≈ 0.7 at Re = 150 to Cdp ≈ 0.8 at Re ≈ 158.

A plot of the viscous component of the drag coefficients of the flow past rings is

presented in figure 3.16(b). A large difference can be observed between the profiles

of the viscous component of the drag coefficient for the flows past rings with Ar = 0

and Ar = 1, which follows the wake length scale issue discussed earlier. The minimum

viscous component of the drag coefficient for the flow past rings is computed for the

flow past a ring with Ar = 3. At Re = 5, for example, Cdν ≈ 1.8 for the flow past a ring

with Ar = 3, whereas Cdν ≈ 2.3 for the flow past a ring with Ar = 1 and Cdν ≈ 2.2

for the flow past a ring with Ar = 20. Interestingly, the viscous component of the

drag coefficient for the flow past a circular cylinder is a little lower for Re . 5, with

Cdν ≈ 2.0. A possible explanation for this computed discrepancy is due to the difference

between the formulation of the axisymmetric and two-dimensional models for rings and

a circular cylinder. The meshes employed to model rings have a unit velocity condition

imposed at the outer boundary 30d from the ring cross-section, which is consistent

with the mesh employed to model a circular cylinder. However, the meshes employed

to model rings have a zero normal velocity condition imposed at the inner boundary.

For the mesh employed to model a ring with Ar = 20, the inner boundary is merely

10d from the ring cross-section. For higher Reynolds numbers, where viscous effects

are not significant, these boundary effects are less significant (as can be observed in

figure 3.16(b) where the viscous component of the drag coefficients for the flow past a
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circular cylinder and a ring with Ar = 20 align closely at higher Reynolds numbers).

An alternative representation of the contribution of pressure and viscosity to the

total drag of rings is presented in figure 3.17, in which the percentage contribution of

the pressure component of the total drag coefficient is plotted with Reynolds number

for each of the aspect ratios considered in the present study.

Two important points should be drawn from the plot in figure 3.17. Firstly, the

pressure drag component percentages for all rings vary in a similar manner to those

computed for both the flow past a sphere and a circular cylinder, despite some varia-

tion in the magnitude of the percentage contribution. Secondly, the magnitude of the

percentage contribution at any given Reynolds number increases with an increase in

aspect ratio. The minimum percentage contribution of the pressure component of the

drag coefficient was computed for the flow past a sphere, and the maximum percentage

contribution of the pressure component of the drag coefficient was computed for the

flow past a circular cylinder.

This completes the analysis of the drag of rings from axisymmetric wakes. In chap-

ter 4, results of a linear stability analysis are presented, in which the critical Reynolds
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numbers for the onset of non-axisymmetric modes in the wakes behind rings were deter-

mined. As part of the non-axisymmetric computations which are presented in chapter 5,

the drag coefficients of non-axisymmetric flows past rings were computed. It is interest-

ing to compare the drag coefficients that have been calculated from both axisymmetric

and non-axisymmetric flows past rings.

3.3 Chapter Summary

In this chapter, the axisymmetric flow past rings has been examined in detail. Previous

studies have reported the transition Reynolds number for separation in the flow past

a sphere and a circular cylinder. For the first time, the variation in the separation

transition Reynolds number with aspect ratio has been established for the flow past a

ring.

The structure of the steady wakes behind rings has not previously been studied in

detail. In the present work, plots of the flow streamlines have been presented, which

have allowed a detailed analysis of the low-Reynolds-number flow past rings to be

conducted. For aspect ratios 0 ≤ Ar . 3, the wakes behind rings have been shown to

comprise a large recirculation bubble on the axis. This bubble is attached to the rear

of the closed rings with aspect ratios 0 ≤ Ar ≤ 1, and is detached in the wakes behind

rings with aspect ratios 1 < Ar . 3. For aspect ratios Ar & 3, the wakes behind rings

consist of an annular recirculation bubble attached to the rear of the open rings.

Previous studies established that the steady wake behind a circular cylinder becomes

unstable to unsteady flow at ReC2 ≈ 46. Following this transition, a wake consisting

of a Kármán vortex street is formed. An analogous annular vortex street has been

observed in the wakes behind rings with large aspect ratios (Monson 1983; Leweke &

Provansal 1995). However, the aspect ratio variation in the critical Reynolds number

for this transition in the flow past rings was only previously studied for aspect ratios

Ar & 10. For the first time, the precise variation in the unsteady flow transition in the

flow past rings has been computed over a wide range of aspect ratios (Ar & 2).

In previous studies, the flow past rings was reported to approach the flow past a

circular cylinder with an increase in aspect ratio (Monson 1983; Leweke & Provansal

1995). Vorticity contour plots are presented in the present study, which verify this

observed phenomenon with striking clarity. Vortex streets are computed at a Re = 200,

and with an increase in aspect ratio the vortices shed from alternate sides of the ring
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cross-section become more symmetrical, which results in a reduction in the inclination

of the vortex street to the flow direction.

A previous study (Leweke & Provansal 1995) has proposed a relationship for the

Strouhal–Reynolds number profile of the flow past rings as a function of aspect ratio.

In this chapter, the previous relationship has been shown to be valid only for aspect

ratios in the range Ar & 10. A new relationship has been proposed in this study, and

evidence has been presented which shows that the new relationship accurately describes

the Strouhal–Reynolds number profiles for the flow past rings for a range of aspect ratios

Ar & 3.

In the present study, detailed measurements of the drag coefficient have been made

for the flow past rings for the first time. The use of computational methods has per-

mitted the precise measurement of the viscous friction and pressure components of the

drag force, which have been analysed with respect to the total drag. This has enabled a

solid understanding of the relationship between the pressure and viscous components of

the drag coefficient to be determined for the flow past rings. In addition, the Reynolds

number variation in the drag coefficient has been computed for the flow past a sphere

and a circular cylinder, with an excellent agreement being found with previous experi-

mental and computational measurements. This favourable comparison verified that the

numerical method employed in this study accurately computes the drag coefficient.

Previous studies did not attempt to visualise the cross-section of the annular vortex

street in the wakes behind rings. Instead, experimental dye visualisation was employed

to capture the global wakes behind rings. The vortex street cross-section has been

captured experimentally in the present work. This was achieved by illuminating dye

in a plane through the centre of the wake with a thin laser sheet. To compare with

the experimental dye visualisations, a computation of the wake was performed. The

computation included simulated particles, which were injected into the flow field in

order to mimic the entrainment of dye into the wake behind the ring. The computed

and experimentally obtained wake visualisations confirmed the similarity between the

vortex street in the wake behind a circular cylinder, and the annular vortex street in

the wake behind a ring.

In the next chapter, results of a stability analysis of the axisymmetric flow past

rings to non-axisymmetric instabilities is presented.
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Chapter 4

Non-Axisymmetric Instabilities
in the Flow past Rings

The detailed dye visualisation experiments of the wake of a sphere by Magarvey &

Bishop (1961b,a), Magarvey & MacLatchy (1965) and Johnson & Patel (1999), indicate

that the axisymmetric wake becomes unstable at ReS2 ≈ 210. This instability was

shown to lead to the development of a non-axisymmetric wake beyond this critical

Reynolds number, which in turn was shown to undergo a further transition to unsteady

flow at ReS3 ≈ 270. Likewise, experiments have shown that the two-dimensional vortex

street in the wake of a circular cylinder becomes three-dimensional beyond ReC3 ≈ 180

(Williamson 1988a,b, 1996b).

Experimental observations of the flow past rings (Monson 1983; Miau et al. 1992)

indicate that similar non-axisymmetric transitions occur in these flows. To date no

computational studies have been reported in the literature for the flow past rings.

Previously, the classic linear stability analysis studies by Natarajan & Acrivos (1993)

and Barkley & Henderson (1996) successfully predicted the critical Reynolds numbers

and symmetry characteristics of the non-axisymmetric and three-dimensional instabil-

ities in the wake of a sphere and a circular cylinder, respectively. In this chapter, a

similar stability analysis technique (described in § 2.1.3) is employed to predict the non-

axisymmetric instabilities in the flow past rings. The results of this study are presented

in the following section. In addition, a detailed analysis of a previously unreported

instability mode is included in this chapter.

Some of the results in this chapter have been published in Sheard et al. (2001,

2003c).
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4.1 A Linear Stability Analysis of the Flow past Rings

Prior to presenting the results of the linear stability analysis, the applicability of pre-

dicted secondary instabilities to the physical flows around bluff bodies is discussed.

The results of the stability analysis are presented over the remaining sections. In the

first section, the stability of axisymmetric vortex streets is analysed, with results pre-

sented for rings with aspect ratios Ar = 4, 5, 10, 20 and 40. In the second section,

the stability of steady wakes over the aspect ratio range 0 ≤ Ar . 4 is examined. A

third section presents the results of a non-axisymmetric computational study used to

determine the secondary non-axisymmetric transitions in the wakes behind rings in the

range 0 ≤ Ar . 4.

4.1.1 A Comment on Predicted Secondary Instabilities

Secondary instabilities are instabilities which are predicted to occur at higher Reynolds

numbers than the first-occurring (or primary) instability in a wake. The critical

Reynolds numbers predicted for secondary instabilities should be considered qualitative

estimates at best, as the evolution of the primary instability alters the flow from the

axisymmetric base flow employed in the stability analysis. Barkley & Henderson (1996)

offer a useful discussion of the limitations of linear stability theory. To understand these

limitations in relation to the present work, the predictions of secondary instabilities in

the wakes of a circular cylinder and a sphere are discussed below.

With an increase in the Reynolds number, the first-occurring three-dimensional

mode in the flow past a circular cylinder was predicted to be Mode A by Barkley &

Henderson (1996). At a higher Reynolds number, they predicted a secondary instability,

Mode B. The topological predictions of the Mode B transition from the stability anal-

ysis compared favourably with experimental flow visualisations of the saturated mode

(Williamson 1988b, 1996b) in terms of both the spanwise wavelength of the three-

dimensional structures and their spatio-temporal symmetry. Despite the accurate pre-

dictions relating to the structure of this second instability, experimental observations

(Williamson 1988b) show evidence of Mode B structures in the wake at Reynolds num-

bers as low as Re = 230, 11% below the predicted transition Reynolds number from

the stability analysis (presumably due to the discrepancy between the two-dimensional

base flow and the actual three-dimensional wake).

A discrepancy between the prediction of the secondary three-dimensional transition
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for the flow past a sphere and computations of the non-axisymmetric wake can also be

shown. Stability analysis performed by Natarajan & Acrivos (1993) highlights a second

mode following the initial steady three-dimensional transition in the wake of the sphere.

This transition, from a steady three-dimensional flow to an unsteady three-dimensional

flow, was predicted to occur at ReS3 = 277.5. Recent numerical computations of the

flow past a sphere by Thompson et al. (2001a) computed ReS3 ≈ 272. The topology

of the transition was in agreement with the stability analysis, however the critical

Reynolds number for the transition was 2% lower in the computed wake than the

Reynolds number predicted from the stability analysis. It may be inferred that the

topology of secondary modes in the wake of the ring will be predicted accurately by the

stability analysis, however only qualitative estimates of the critical Reynolds numbers

relating to secondary transitions can be made, generally accurate to within 15% of the

actual values as determined from non-axisymmetric computations.

Non-axisymmetric instability modes of the wakes behind rings with aspect ratio

Ar ≥ 5 are presented in the next section. Later, smaller aspect ratios will be considered,

where the non-axisymmetric instabilities evolved from steady base flows.

4.1.2 Instabilities of the Vortex Street for Ar ≥ 5

The spanwise wavelengths and critical Reynolds numbers of the Mode A and B tran-

sitions for the flow past a circular cylinder (Barkley & Henderson 1996) were used as

a guide for the present stability analysis. Barkley & Henderson predicted that the

Mode A instability had a spanwise wavelength of λd ≈ 3.96d, and became unstable

at Rec ≈ 188.5. They also predicted that the Mode B instability had a spanwise

wavelength of λ ≈ 0.822d, and became unstable at Rec ≈ 259. In the present study,

Floquet multipliers were calculated at Reynolds numbers in the vicinity of the critical

transitions of the dominant modes, and polynomial interpolation was used to refine the

predicted critical Reynolds numbers and spanwise wavelengths of the instabilities.

Following a comprehensive computational study, three real instability modes were

identified in the vortex streets behind rings with 4 ≤ Ar ≤ 40. Two of these modes

agreed favourably with the Mode A and Mode B instabilities in the wake of a circular

cylinder (Barkley & Henderson 1996), in terms of the dominant azimuthal wavelengths,

spatio-temporal symmetries, and critical Reynolds numbers of the instability modes.

The third mode, referred to as Mode C in this study, had interesting symmetry proper-
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ties that will be discussed later. Profiles of the predicted transition Reynolds numbers

for these non-axisymmetric instability modes of the vortex streets in the wakes behind

rings as a function of aspect ratio are shown in figure 4.1.

For the flow past rings with aspect ratios Ar & 4, the fastest-growing modes for the

predicted Mode A and B transitions had azimuthal wavelengths which corresponded

closely with the respective wavelengths for the corresponding instability modes in the

flow past a circular cylinder. However, the fastest-growing mode of the predicted Mode

C instability had an azimuthal wavelength in the range 1.6d . λd . 1.7d. The variation

in Floquet multiplier with azimuthal wavelength in the vicinity of the critical Reynolds

numbers for the three wake instabilities is presented in figure 4.2, for the wake behind

a ring with Ar = 10.

The symmetry and structure of these three predicted instability modes is analysed

over the following sections.
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4.1.2.1 The Mode A Instability

The numerical stability analysis of the flow past a circular cylinder by Barkley & Hen-

derson (1996) predicted that the spanwise wavelength of the Mode A instability was

3.96d. The fastest-growing azimuthal wavelength of the corresponding Mode A insta-

bilities for the flow past rings with Ar = 20, 40, 100 and 1000 was within 1.1% of

the straight circular cylinder wavelength. At Ar = 5, however, the predicted wave-

length was 4.5d, which is 14.5% larger than the wavelength of the Mode A instability

in the flow past a circular cylinder. In addition, at Ar = 4, the predicted wavelength

was 4.2d. Each of these rings became critically stable in the Reynolds number range

188 ≤ Re ≤ 194. The predicted critical Reynolds number for the Mode A instability

in the flow past rings with Ar ≥ 20 was within 1.0% of the critical Reynolds number

in the flow past a circular cylinder. The critical Reynolds number increased with a

decrease in aspect ratio until at Ar = 5 it occurred at a Reynolds number 3% higher

than the critical Reynolds number for the flow past a circular cylinder. Visualisation

of the streamwise vorticity of the perturbation fields of the dominant Floquet modes
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for these wakes (figure 4.3(a) for Ar = 5 and figure 4.4(a) for Ar = 20) reveal identical

topology and time-symmetry, and show a similar distribution of vorticity to the Mode

A instability predicted by Barkley & Henderson (1996). The perturbation field of the

instability maintained the same single-period (1T ) symmetry as the Mode A wake, and

much of the perturbation streamwise vorticity is present within the vortex cores of the

base flow vortex street.

4.1.2.2 The Mode B Instability

For the flow past rings with Ar ≥ 5, an instability was predicted which had character-

istics consistent with the Mode B instability in the flow past a circular cylinder. The

critical Reynolds number for this instability was predicted to occur at Re = 301 for

the flow past a ring with Ar = 5, and for the flow past rings with Ar ≥ 20, the critical

Reynolds number was predicted to occur at Re ≈ 258, which is within 1% of the critical

Reynolds number for the Mode B instability in the flow past a circular cylinder. For

the flow past rings with Ar ≥ 5, the azimuthal wavelength of the Mode B instability

was within 2.5% of the spanwise wavelength of the Mode B instability in the flow past

a circular cylinder.

The Strouhal–Reynolds number profiles for rings found in experiment by Leweke

& Provansal (1995) are continuous over the range of Reynolds numbers for which the

Mode B instability occurs in the wake of a circular cylinder. However, they do observe

a change in gradient of the Strouhal–Reynolds number profiles in the Reynolds number

range 255 < Re < 310 consistent with critical Reynolds numbers for the Mode B

instability in the present study.

The symmetry of the Mode B instability is again of the 1T type, consistent with the

predictions of Barkley & Henderson (1996) and Robichaux et al. (1999). Figure 4.3(b)

and figure 4.4(b) show plots of the streamwise vorticity of the Mode B instability for

rings with aspect ratios Ar = 5 and Ar = 20, respectively. Small portions of the plots in

figure 4.3(b) and figure 4.4(b) appear slightly under-resolved, owing to the interpolation

of the computed vorticity over the mesh during post-processing. Despite the relatively

high Reynolds number for the computation, and the higher spatial resolution required to

resolve the perturbation field, the overall structure of the vorticity field is well defined,

indicating good convergence of the computations.
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(a) Mode A: Re = 200 and λd ≈ 3.93d.

(b) Mode B: Re = 305 and λd ≈ 0.785d.

(c) Mode C: Re = 175 and λd ≈ 1.57d.

Figure 4.3: Streamwise vorticity of the perturbation fields of the dominant azimuthal modes
in the flow past a ring with Ar = 5. A portion of the z–r plane of the flow field is shown,
and the circular ring cross-section is located at the left of each frame. The axis of symmetry
is located below each frame, the direction of flow is from left to right, and the streamwise
vorticity contours are between −0.5 (red) and 0.5 (green).

119



(a) Mode A: Re = 200 and λd ≈ 3.93d.

(b) Mode B: Re = 265 and λd ≈ 0.795d.

(c) Mode C: Re = 325 and λd ≈ 1.65d.

Figure 4.4: Streamwise vorticity of the perturbation fields of the dominant azimuthal modes
in the wake behind a ring with Ar = 20. The orientation of the plots and the streamwise
vorticity contour shading are as per 4.3.
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4.1.2.3 The Mode C Instability

The fastest-growing azimuthal wavelength of the predicted Mode C instability was

computed to lie between 1.6d and 1.7d for the flow past rings with 4 ≤ Ar ≤ 40.

Figure 4.1 shows that this mode is predicted to occur at higher Reynolds numbers as

the ring aspect ratio is increased. For rings with Ar . 8, it is predicted to be the

first-occurring non-axisymmetric transition mode in the wake. Figure 4.1 shows that at

Ar = 5, the Mode C transition is the primary non-axisymmetric instability, at Ar = 10

it is the secondary non-axisymmetric instability, and at Ar = 20 it is the tertiary

non-axisymmetric instability.

Streamwise vorticity plots of the perturbation field of the Mode C instability are

presented in figure 4.3(c) and figure 4.4(c) for the flow past rings with Ar = 5 and

Ar = 20, respectively. These plots show that the mode is characterised by a two-period

(2T ) symmetry, with the sign of the perturbation field vorticity alternating between

each successive vortex roller pair that convect downstream. The observation of this 2T

symmetry, combined with the converged Floquet multipliers obtained for the Mode C

instability, suggest that the instability is a real subharmonic Floquet mode.

The predicted azimuthal wavelength of the Mode C instability that was com-

puted for the flow past rings corresponds to the predicted wavelengths of the complex-

conjugate Floquet modes in the wakes of both square cylinders (Robichaux et al. 1999;

Blackburn & Lopez 2003), and the perturbed wakes of circular cylinders (Zhang et al.

1995). The spanwise wavelength of the instability predicted by Zhang et al. (1995) was

approximately 2d, which is 17% greater than the present result. Similarly, however,

they also over-predicted the wavelengths for the Mode A and Mode B instabilities by

between 10% and 20%.

The wavelength of the complex-conjugate Mode S instability in the wake of a square

cylinder (Robichaux et al. 1999) was around 50% greater than the present value. They

based their length scale on the side length of the square cross-section of the cylinder,

whereas the predicted Mode A and B instabilities and the vortex street scaled with the

diagonal length. The spanwise wavelength of their predicted Mode S instability is within

10% of the Mode C instability predicted in the present study for the flow past rings if

their mode is scaled with the diagonal length. Despite these similarities in wavelength,

the present Mode C instability and the Mode S instability in the square cylinder wake

evolve from fundamentally different Floquet modes, which will be discussed later.
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With a decrease in aspect ratio, the asymmetry between the inner and outer vortex

rollers of the underlying vortex street is increased. This results in a loss of the reflective

symmetry of the vortex street (i.e. the two-dimensional vortex street in the wake of a

circular cylinder at a given time is identical to the same wake shifted in time by half a

period, and reflected about the wake centreline). The Mode C instability is predicted

to become more unstable with an increase in the asymmetry of the vortex street. This

topic is treated in depth in § 4.2, but it should be noted that as part of the present

study an attempt was made to find a real instability mode in the wake of a circular

cylinder corresponding to the Mode C instability. Despite a careful investigation of the

wavelengths in the vicinity of the Mode C instability, only complex-conjugate modes

were obtained, consistent with the analysis of Blackburn & Lopez (2003).

4.1.3 Primary Instabilities in the Wakes for 0 ≤ Ar < 4

In this section, the wakes of numerous rings with aspect ratios over the range 0 ≤ Ar < 4

are studied. Careful investigation reveals that at a critical aspect ratio of Ar ≈ 3.9,

the critical Reynolds numbers for the primary Hopf and non-axisymmetric transitions

in the flow past rings intersect. Thus for aspect ratios in the range 0 ≤ Ar . 3.9,

the transition to non-axisymmetry occurs at a lower Reynolds number than does the

transition to unsteady flow.

The stability of several azimuthal mode numbers was computed for the flow past

rings to ascertain the dominant azimuthal mode number of the non-axisymmetric insta-

bility at each of the aspect ratios considered. The predictions of the critical Reynolds

numbers of these instabilities were refined by polynomial interpolation. In figure 4.5,

the computed critical Reynolds numbers are plotted against aspect ratio for the flow

past rings with Ar . 4. The critical Reynolds number profiles in figure 4.5 show that

three distinct flow regimes exist over the aspect ratio range 0 ≤ Ar < 4. As labelled

in the figure, these regimes are hereafter referred to as Mode I, Mode II and Mode III,

and occupy the aspect ratio ranges 0 ≤ Ar . 1.6, 1.6 . Ar . 1.7 and 1.7 . Ar . 3.9,

respectively.

The properties of the instabilities in each flow regime are unique to each flow regime,

and will be discussed in the following sections. In figure 4.6, plots of the streamwise

vorticity of the perturbation fields of the instability modes are presented for each of the

flow regimes under consideration.
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Figure 4.5: Asymmetric transition profile for rings with aspect ratios 0 ≤ Ar < 4. The
point at which the axial hole appears is marked by the vertical dashed line at Ar = 1. The
regular Mode I and mode III transitions are coloured blue, and are represented by triangles
and squares, respectively. The Hopf Mode II transition is coloured red, and is represented by
diamonds.

4.1.3.1 The Mode I Flow Regime (0 ≤ Ar ≤ 1.5)

The Mode I regime consists of a regular (i.e. steady–steady) transition, followed by a

Hopf transition at higher Reynolds numbers. The stability analysis formulation em-

ployed to compute these modes suppressed all but the dominant mode of a given wave-

length. Therefore the secondary Hopf transitions were determined by measurement of

the unsteady transient decay from non-axisymmetric computations, which are presented

later.

The perturbation field corresponding to the regular Mode I instability is analogous

to the regular non-axisymmetric transition mode in the flow past a sphere. In fig-

ure 4.6(a), the regular Mode I transition in the flow past a sphere is presented, which

corresponds favourably with the predicted mode from Natarajan & Acrivos (1993) and

Tomboulides et al. (1993). In figures 4.6(b) and 4.6(c), plots which show both a closed

and an open ring, respectively, in the Mode I regime are included. The perturbation

field is almost identical between figures 4.6(a–c).
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(a) Sphere wake regular Mode I transition (Ar = 0, Re = 211.5).

(b) Regular Mode I transition (closed ring, Ar = 0.6, Re = 114).

(c) Regular Mode I transition (open ring, Ar = 1.2, Re = 77.7).

Figure 4.6: Plots of the base flow vorticity (arbitrary blue contour lines), and the streamwise
vorticity of the perturbation field (red negative and green positive vorticity) of the primary
instability for rings with 0 ≤ Ar ≤ 3.

Throughout the aspect ratio range of the Mode I regime, a rapid decrease in tran-

sition Reynolds number is experienced with an increase in aspect ratio. The minimum

critical Reynolds number reached is Re = 72.6 at Ar = 1.4. The steady decrease in the

critical Reynolds number from Re = 212 at Ar = 0 indicates that the mode scales on

the outer ring diameter D + d rather than the cross-section diameter d. For example,

the critical Reynolds number for the regular Mode I transition in the flow past a ring

with Ar = 1.4 based on a length scale D + d is ReD+d ≈ 174, which is within 18%

of the critical Reynolds number for the regular transition in the flow past a ring with

Ar = 0.

The critical Reynolds number variation of the regular Mode I transition in figure 4.5

is continuous through Ar = 1. This shows that the emergence of the axial hole for open

rings, and the subsequent detachment of the recirculation bubble have no discontinuous

influence on the transition, as shown by the similarity between the perturbation fields

in figures 4.6(b) and 4.6(c). This continuity is observed as the size and position of

the downstream recirculation region remain consistent as the aspect ratio is increased

through Ar = 1. The large scale of the recirculation bubble when compared to the small

scale of the axial ring hole explains this computed behaviour. Experiments show that for
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(d) Hopf Mode II transition (Ar = 1.6, Re = 93.0).

(e) Regular Mode III transition (Ar = 2, Re = 90.1, m = 1).

(f) Regular Mode III transition (Ar = 3, Re = 98.4, m = 2).

Figure 4.6: Continued.

the flow past a sphere, the recirculation bubble becomes unstable to non-axisymmetric

perturbations. This instability shifts the recirculation bubble in a transverse direction

from the axis of symmetry in the flow, which creates the classic double-threaded wake

(Magarvey & Bishop 1961b; Johnson & Patel 1999; Thompson et al. 2001a).

4.1.3.2 The Mode II Flow Regime (1.6 ≤ Ar ≤ 1.7)

In the Mode II regime, a single non-axisymmetric Hopf transition was predicted. A

plot of the perturbation field for the instability is presented in figure 4.6(d). The expla-

nation for the suppression of a regular transition over this small range of aspect ratios,

which allows the steady axisymmetric wake to experience such a curious spontaneous

transition to an unsteady non-axisymmetric wake, is linked to the increased influence

of the hole in the ring for an increase in aspect ratio.

The effect of the axial hole on the transitions becomes apparent at aspect ratios

Ar ≥ 1.6, when the size of the hole is of the same order as the cross-section of the

ring. The base flow field is steady at this transition, and the perturbation field is also

steady to about 1d downstream of the ring cross-section. Further downstream a gentle
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oscillation of the perturbation field was observed, in the form of vorticity being shed

from the tail of the wake. This oscillation had a Strouhal frequency St = 0.00705 at

the critical Reynolds number for the transition. The experimentally measured Strouhal

frequency for the vortex-loop shedding from a sphere by Magarvey & Bishop (1961a)

was found to be approximately 12 times this value.

The suppression of a regular mode in the Mode II regime is best explained in terms

of the base flow wake structure. The base flow vorticity contours lines for the Mode II

Hopf transition in figure 4.6(d) indicate that the fluid passing through the hole travels

a complex path downstream, due to the strong inner vortex within 2d of the ring. In

fact, the initially trajectory of the fluid is aligned with the axis, however it recirculates

back up to the leeward surface of the ring, before being deflected around the axial

recirculation bubble, which is displaced approximately 2d downstream. Over the Mode

II aspect ratio range, the attached vortex located downstream of the ring hole has

altered the wake to the extent that the regular Mode I transition is suppressed. The

vortex is not sufficiently large in the Mode II regime to permit the regular Mode III

instability to occur (as discussed in the next section). Hence no regular modes appear

prior to the critical Reynolds number for the non-axisymmetric Mode II Hopf transition.

In order to understand the nature of the Mode II transition, a study of the stability

of the flow past a ring with Ar = 1.6 is discussed, and a plot of the Floquet multipliers

for the fastest-growing m = 1 mode, which were computed in the wake with Reynolds

number, is presented in figure 4.7. The axisymmetric base flow is absolutely stable

to the primary Floquet mode (a real mode corresponding to a regular asymmetric

transition of the wake). The highest Floquet multiplier for this mode is µ ≈ 0.92, for

Re ≈ 70, always below the neutral stability limit (i.e. µ < 1). A complex-conjugate

pair of Floquet multipliers (corresponding to a non-axisymmetric Hopf transition) is the

first Floquet mode to become unstable (i.e. µ > 1). This mode is unstable for Re & 94,

and is characterised by a periodic perturbation field. The plot in figure 4.7 confirms

that the Mode II transition occurs through a non-axisymmetric Hopf transition.

4.1.3.3 The Mode III Flow Regime (1.8 ≤ Ar < 4)

The regular Mode III transition arises when the recirculating vortex ring from the rear

of the body becomes unstable, as shown in figures 4.6(d–e). This transition occurs over

the aspect ratio range 1.8 . Ar . 3.9.
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Figure 4.7: The two dominant non-axisymmetric Floquet modes with m = 1 for the flow
past a ring with Ar = 1.6 with an increase in Reynolds number. The absolutely stable
real mode is represented by blue diamonds, and the complex-conjugate pair Floquet mode
(unstable for Re & 94) is represented by red squares. The neutral stability limit is indicated
by a dotted line.

The azimuthal mode number of the regular Mode III transition at Ar = 2 and

Ar = 3 are m = 1 and m = 2, respectively. These transitions are both classified

on the regular Mode III transition branch, as the corresponding axisymmetric base

flow scales on the ring cross-section (rather than the outer ring diameter as per the

Mode I transition). Hence, the azimuthal wavelength of the Mode III instability also

scales with the cross-section diameter d, and the azimuthal mode number increases with

aspect ratio to maintain the azimuthal wavelength. It is important to point out that in

terms of the classification of the mode, the perturbation fields are consistent between

the flows with Ar = 2 and 3, despite the different mode numbers m = 1 and 2 of the

instability. In figure 4.6(e), the perturbation field of the regular Mode III transition

with Ar = 2 and m = 1 is presented, and in figure 4.6(f), the perturbation field of the

regular Mode III transition with Ar = 3 and m = 2 is presented.

The dominant azimuthal mode numbers of the instabilities at different aspect ratios

are summarised in table 4.1. Both the primary asymmetric instability and the secondary
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Aspect ratio range Primary instability m Secondary instability m

0 ≤ Ar ≤ 2 m = 1 m = 1
3 ≤ Ar ≤ 3.5 m = 2 m = 2

Table 4.1: Predicted azimuthal mode number of transition modes in the wakes behind rings
with Ar < 4.

instability are included.

4.1.4 Secondary Instabilities in the Wakes for 0 ≤ Ar < 4

The critical Reynolds numbers for the secondary instabilities in the Mode I and III

regimes were determined by computing the decay rate of unsteady transients in non-

axisymmetric computations. In this respect, the critical Reynolds numbers that have

been obtained over aspect ratios 0 ≤ Ar < 1.6 and 1.7 < Ar . 3.9 correspond to the

computed transition to unsteady non-axisymmetric flow, and not the predicted critical

Reynolds number based on the stability of an axisymmetric base flow.

The computed critical Reynolds numbers for the secondary transition in the flow

past rings in the Mode I, III regimes are presented in figure 4.8. The secondary tran-

sitions are computed to be Hopf transitions, and hence the predicted critical Reynolds

numbers in Mode II regime are included. For reference, the predicted critical Reynolds

numbers for the regular Mode I and III transitions are also provided in the plot.

For the flow past a sphere, a critical Reynolds number for the Hopf transition of

ReS3 = 272.2 was obtained, in close agreement with previous studies (Johnson & Patel

1999; Tomboulides & Orszag 2000; Ghidersa & Dušek 2000; Thompson et al. 2001a).

The plot of the regular and Hopf transitions in the flow past rings with 0 ≤ Ar ≤ 4

in figure 4.8 confirms that the intersection between the non-axisymmetric and Hopf

transitions occurs for Ar ≈ 3.9.

4.2 The Subharmonic Instability: Mode C

In this section, the Mode C instability will be closely examined to verify that it is a

subharmonic instability, and a detailed description of the evolution of the instability

over two periods of the base flow will be provided to ascertain the mechanism responsible

for the subharmonic behaviour of the instability.
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Figure 4.8: Critical Reynolds number profile of the secondary non-axisymmetric Hopf tran-
sition in the wakes of rings with Ar < 4, represented by a red line. The regular Mode I and
Mode III transitions are indicated by blue dashed lines for reference.

4.2.1 Evidence Supporting Subharmonic Classification

Results are presented here from a stability analysis that was undertaken for the flow

past a ring with Ar = 5 at Re = 170. The perturbation field for a mode with m = 10

symmetry (giving λd ≈ 1.6d) was computed to saturation, where the Floquet multipliers

had converged to better than 7 significant figures. Figure 4.9 provides evidence to

support the observation that the Mode C instability is a subharmonic mode. Recall

that a subharmonic mode exists when the dominant Floquet mode of the system occurs

with µ = −1. This means that the mode alternates in sign every period, which results

in a doubling of the period of the mode. The absence of any oscillation of the computed

Floquet multipliers around a mean value also suggests that the mode was real (i.e. the

Floquet mode contains no imaginary component, see Blackburn & Lopez 2003). This

explains the observations in figure 4.9, where both an absolutely convergent Floquet

multiplier is observed for the Mode C instability, and perturbation fields obtained

exactly one base flow period apart are opposite in sign.
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Figure 4.9: Verification that the Mode C instability is subharmonic. In (a), the convergence
of the Floquet multiplier suggests that the mode has no imaginary component, and in (b),
the perturbation field is observed to alternate in sign from one period to the next.

4.2.2 Perturbation Field Evolution Characteristics

In this section, plots of the spanwise vorticity of the perturbation field of the Mode

C instability computed in the flow past a ring with Ar = 5 are analysed over two

periods of the base flow, to determine the mechanism responsible for the formation of

a subharmonic instability in the wake.

In figure 4.10, the variation in the instantaneous growth rate is plotted over two base

flow periods. The base flow period T2D is abbreviated to T in the present work. It is

useful to compare the instantaneous growth rate with the perturbation fields at various

times, which are presented in figure 4.11. Consistent with a subharmonic instability,

the growth rate variation is periodic with the base flow, whereas the perturbation field

of the instability alters in sign each period.

The base flow vorticity contours in figure 4.11 show that the asymmetry induced on

the vortex street by the curvature of the ring has the effect of pairing each lower vortex
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Figure 4.10: Variation in the growth rate over two base flow periods for the Mode C insta-
bility in the wake behind a ring with Ar = 5 at Re = 170.

roller to a previously shed upper roller. This phenomenon was observed in studies of

the vortex shedding behind rings (Monson 1983; Leweke & Provansal 1995), and relates

to the asymmetry induced by the curvature of the ring.

The pairing of the shed vortex rollers is driven by the extended attachment duration

of the upper vortex roller (with negative vorticity) to the ring body, and a streamwise

elongation of the vortex. A rapid evolution of a strong (positive vorticity) lower vortex

roller occurs over a time 0.5T . t . 0.8T . At this time, the pair of vortices is shed

downstream, with the lower vortex closely following the upper vortex.

Initially, the strain field of the flow deforms both the upper and lower vortices that

are shed (observe the pair of vortex rollers located approximately 3d downstream in

figure 4.11(c) at t = 0.5T ). As this pair of vortex rollers convect downstream (from t =

0.5T to t = 1T ), in figures 4.11(c–e), the upper vortex (further downstream) acquires

a more circular shape, while the lower vortex (further upstream) remains strained

in an elliptical shape. For times t & 0.5T , elliptic instabilities evolve in this vortex

pair. These elliptic instabilities may be identified by the counter-rotating perturbation

field vortices within the enclosed elliptical vortex rollers (for a detailed discussion of

elliptic instabilities of strained vortices refer to Bayly 1986; Landman & Saffman 1987;

Williamson 1996b; Thompson et al. 2001b). A stronger elliptic instability persists in

the lower vortex roller than in the upper vortex roller as the pair of cores convect

downstream, due to this higher strain (see figures 4.11(d–f)).

At t ≈ 0.5T in figure 4.11(c), an elliptic instability may be observed in the elliptical

core of the forming upper vortex roller, located within approximately 1d of the cross-

section of the ring. The lower vortex roller strengthens to t ≈ 0.75T in figure 4.11(d),
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(a) t = 0.0T .

(b) t = 0.25T .

(c) t = 0.5T .

Figure 4.11: Evolution of the Mode C instability (1T = one base flow period). The in-
cluded graphs plot the instantaneous growth rate of the instability over time. Arbitrary blue
contour levels show the base flow vorticity, and positive and negative spanwise vorticity of
the perturbation is represented by green and red contours, respectively.

which causes the elliptic instability perturbations to shear in the upper vortex core, as

the core loses its elliptical shape. A local clockwise rotation of the perturbation field

occurs, and the negative component of spanwise vorticity is drawn between the upper

and lower vortex cores.

132



(d) t = 0.75T .

(e) t = 1.0T .

(f) t = 1.25T .

Figure 4.11: Continued.

As t → 1T , the lower vortex roller increases in strength and detaches. Through this

detachment, which may be observed over figures 4.11(e–f), the negative perturbation

vorticity from the upper core that was forced between the upper and lower cores is

stretched in an approximately diagonal direction between the cores. The corresponding

positive perturbation field vorticity from the elliptic instability in the upper vortex core

is also stretched alongside the band of negative vorticity. The positive vorticity band is

located above the negative vorticity band, and hence is still contained within the upper
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vortex core. As the upper vortex roller is shed, this positive vorticity band stretches

from the upper side of the core of the shed roller, to the lower side of the newly forming

upper vortex. As the base flow evolves, this band of perturbation field vorticity splits

into two local regions of vorticity, with one contained in the shed upper vortex, and the

other located within the newly forming upper vortex roller.

The location of this region of positive perturbation field vorticity corresponds to the

location of the negative vorticity component of the elliptical instability that evolved in

the upper roller from the previous shedding cycle of the base flow. Thus the sign of the

perturbation field vorticity alternates for the second period, as the elliptical instability

evolves through t ≈ 1.25T , and hence a subharmonic instability is sustained, as can be

observed by comparing the signs of the perturbation vorticity between figures 4.11(b)

and 4.11(f), which are exactly one base flow period apart.

The instantaneous growth rate of the Mode C instability is highest at t ≈ 0.1T .

At this time the near-wake perturbation field consists of strong vorticity between the

core of the shed lower vortex roller, and the newly forming upper vortex roller. A

weak elliptical instability is present in the lower vortex at this time, and the band

of perturbation field vorticity from the upper vortex roller is splitting prior to the

formation of the evolution of the elliptical instability in the forming upper vortex.

4.3 The Limitations of Linear Stability Analysis

Thus far only axisymmetric computations and linear non-axisymmetric stability anal-

ysis have been performed. The stability analysis suggests that these axisymmetric

wakes are unstable to non-axisymmetric disturbances in the flow beyond certain critical

Reynolds numbers. Chapter 5 seeks to verify this prediction through non-axisymmetric

computations employing a restricted computational domain in the azimuthal direction

to isolate these pure non-axisymmetric modes. For rings with aspect ratios Ar ≤ 2,

computations will necessarily include the entire ring, as the azimuthal symmetry of the

dominant non-axisymmetric modes for these rings is m = 1.

In this fashion, the extrinsic non-axisymmetric instabilities that are expected to

exist in the wakes behind rings of larger aspect ratio, namely oblique vortex shedding

modes and vortex dislocations (as observed by Leweke & Provansal 1995; Williamson

1989) are excluded from the non-axisymmetric computations. A study which employs

computations with larger azimuthal domain sizes to include these effects is presented
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in Chapter 6.

4.4 Chapter Summary

In this chapter, a linear stability analysis technique was employed to predict the previ-

ously unknown non-axisymmetric instabilities in the flow past rings.

A previous stability analysis was reported for the axisymmetric flow past a sphere

by Natarajan & Acrivos (1993). Their study predicted that the wake behind a sphere

is unstable to a non-axisymmetric instability with an azimuthal mode number m = 1,

which was predicted to occur through a regular bifurcation at Re = 210. They also

predicted a secondary non-axisymmetric instability with an azimuthal mode number

m = 1, which was predicted to occur through a Hopf bifurcation at Re ≈ 277.5.

Likewise, a stability analysis was reported for the flow past a circular cylinder by

Barkley & Henderson (1996). Their study predicted that the wake behind a circular

cylinder is unstable to a regular Mode A instability, with a spanwise wavelength of

λ ≈ 3.96d at Re = 188.5. A second regular instability, Mode B, was predicted to occur

with a spanwise wavelength of λ ≈ 0.822d at Re ≈ 259.

Prior to the present study, no computations of the flow past rings have been re-

ported. In the stability analysis reported in this chapter, three flow regimes were

identified for the flow past rings over the aspect ratio range 0 ≤ Ar . 3.9. This range

of aspect ratios represents flows which are predicted to experience a non-axisymmetric

instability at Reynolds numbers below the Hopf transition Reynolds number for axisym-

metric vortex shedding. These three flow regimes have been classified as Mode I, II and

III. The predicted bifurcation scenarios and characteristics of the instability modes are

unique to each flow regime. In the Mode I regime, a predicted regular non-axisymmetric

transition is followed by a Hopf transition, due to instabilities of the axisymmetric recir-

culation bubble in the wake. In the Mode II regime, a non-axisymmetric Hopf transition

is predicted to occur. In the Mode III regime, a predicted regular non-axisymmetric

transition is followed by a Hopf transition, due to instabilities of the annular recircula-

tion bubble behind the open ring.

In contrast to the flow regimes predicted in the flow past rings with aspect ratios

0 ≤ Ar . 3.9, the annular vortex streets in the flow past rings with aspect ratios Ar & 4

are predicted to be unstable to non-axisymmetric perturbations. In the present study,

two real instability modes are predicted which have characteristics consistent with the
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Mode A and Mode B instabilities in the wake of a circular cylinder. An additional

mode has been discovered, which is referred to as Mode C in the present study. The

Mode C instability is predicted to occur through a subharmonic bifurcation, and its

critical Reynolds number increases with an increase in aspect ratio.

In previous studies, the Mode A and B instabilities in the wake of a circular cylinder

have been analysed in detail. These studies predict that the Mode A instability evolves

primarily from an elliptic instability in the shed vortex rollers. Conjecture exists re-

garding the instability mechanism for Mode B, with a hyperbolic instability of the braid

region of the vortex street being suggested. As the subharmonic Mode C instability

has not previously been reported, a detailed analysis of the perturbation field of the

instability over a shedding cycle is presented. This analysis shows that the asymmetric

shedding of the annular vortex street is responsible for inciting the subharmonic in-

stability. Perturbation field vorticity evolves in the attached outer vortex behind the

ring through an apparent elliptic instability. This vorticity convects into the region

between the vortex rollers during the detachment phase of the shedding process. The

alternation in sign from period to period which characterises a subharmonic instability

occurs as remnants of opposite-sign vorticity which evolved from the previous period

are located in the vicinity of the elliptic instability of the attached outer vortex.

In the next chapter, a non-axisymmetric computational study is reported, in which

the wakes that evolve beyond the critical Reynolds numbers for the non-axisymmetric

instabilities predicted in this chapter are computed.
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Chapter 5

Non-Axisymmetric Modes in the
Flow past Rings

Previous chapters have investigated the axisymmetric wakes behind rings, and a sta-

bility analysis has been presented which provides predictions for the transitions to

non-axisymmetric flow in the wakes behind rings.

This chapter aims to verify the existence of all the transition modes predicted by

the stability analysis presented in Chapter 4. Furthermore, coefficients of the Landau

model will be calculated for each of the transition modes to ascertain the non-linear

characteristics of the transition modes. In the vicinity of the transitions, an L2 norm

of the computed non-axisymmetric flow past rings is monitored to verify the hysteretic

transition properties predicted by the Landau model.

Two methods are employed to determine the amplitude |A| of the Landau model

from the non-axisymmetric computations. For the regular transitions in the Mode I and

Mode III regimes, and the non-axisymmetric vortex shedding modes, the instabilities

evolve from an axisymmetric wake which corresponds to a mode amplitude of |A| = 0.

For these modes, |A| in the Landau model is determined directly from the L2 norm of

the non-axisymmetric flow. For the Hopf transitions in the Mode I, II and III regimes,

the instabilities evolve from a steady flow to an unsteady flow. For these modes, |A|
in the Landau model is determined from the envelope of the L2 norm of the unsteady

non-axisymmetric flow.

Some of the results included in this chapter may be found in Sheard et al. (2002,

2003b, 2004a,b).
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5.1 Wake Transitions at Small Aspect Ratios (0 ≤ Ar .
3.9)

In this section, results from computations of the flow past rings with 0 ≤ Ar . 4 are

presented. The study included computations of the flow past rings in each of the three

flow regimes (Mode I, II and III). For the Mode I regime, the flow past a closed ring

with Ar = 0.6, and the flow past an open ring with Ar = 1.2 were computed. For the

Mode II regime, the flow past a ring with Ar = 1.6 was computed, and for the Mode

III regime, the flow past rings with Ar = 2 and Ar = 3 were computed. Isosurface

plots of the flow fields from these computations were constructed.

The Landau model coefficients were determined from the evolution of non-axisym-

metric flow past rings with Ar = 0.6, Ar = 1.6 and Ar = 2. As described pre-

viously, the Landau model is assumed to describe the growth and saturation of the

non-axisymmetric modes in the flow past rings at Reynolds numbers near to the transi-

tion point. The coefficients that were determined from the computations are compared

with studies which applied the Landau model to the flow past a sphere (Ghidersa &

Dušek 2000; Thompson et al. 2001a).

5.1.1 The Mode I Regime (0 ≤ Ar < 1.6)

In this section, the non-axisymmetric transitions in the wakes behind rings in the Mode

I regime are studied. Flow visualisation and Landau model predictions of the regular

transition and the Hopf transition are presented, followed by a discussion of the non-

axisymmetric bifurcations in the Mode I regime.

5.1.1.1 The Regular Transition

Isosurface plots of the saturated non-axisymmetric wakes that were computed at Rey-

nolds numbers beyond the critical Reynolds number for the regular Mode I transition are

presented in figure 5.1. For comparison, the regular non-axisymmetric mode in the flow

past a sphere was also computed, and is included in the figure. It is apparent from these

isosurface plots that a plane of symmetry exists in the wake through the centre of the

ring. This symmetry has also been observed for the steady non-axisymmetric flow past

a sphere (Johnson & Patel 1999; Tomboulides & Orszag 2000). Furthermore, the wakes

display an m = 1 azimuthal symmetry, which corresponds to an azimuthal wavelength

which spans the azimuthal domain (2π). The similarity between figures 5.1(b) and
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(a) Ar = 0, Re = 270. (b) Ar = 0.6, Re = 130. (c) Ar = 1.2, Re = 85.

Figure 5.1: Isosurface plots of streamwise vorticity which show the non-axisymmetric struc-
ture of the wakes behind rings after the Mode I transition. Blue and yellow represent positive
and negative streamwise vorticity, respectively. The ring, coloured green, is located at the
upper right corner of each frame, and flow is from the top right to bottom left.

5.1(c) indicate that the wakes are both produced by the growth and saturation of the

predicted regular Mode I instability. The similarity between the figures also confirms

that flow through the hole in the ring in this aspect ratio regime does not affect the

transition process in the Mode I regime. The wakes comprise bands of streamwise

vorticity located immediately behind the ring, which are wrapped around an opposite-

sign counter-rotating pair of streamwise vortical tails which extend far downstream.

These tails correspond to the classic “double-threaded wake” observed in the wake of

the sphere (Magarvey & Bishop 1961b,a; Tomboulides & Orszag 2000; Thompson et al.

2001a) at Reynolds numbers greater than the critical Reynolds number for the regular

non-axisymmetric wake transition.

Due to the similarity between the non-axisymmetric wake structures of the regular

Mode I wake throughout the Mode I regime, only one aspect ratio (Ar = 0.6) is used

to study the non-linear transition characteristics.

Figure 5.2 shows the non-linear evolution behaviour of the regular Mode I transition.

The negative slope near to the y–axis in figure 5.2(b) indicates that the transition occurs

through a supercritical bifurcation. This prediction suggests that no hysteresis will be

observed in the vicinity of the critical Reynolds number of the transition. This is in

agreement with the work by Ghidersa & Dušek (2000) and Thompson et al. (2001a),

who identify similar behaviour for the regular non-axisymmetric transition in the wake

of a sphere.

The critical Reynolds number of the regular Mode I transition in the flow past

a ring with Ar = 0.6 was determined from the variation in growth rate (σ) with
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sition amplitude evolution.
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Figure 5.2: Plots used to determine the coefficients of the Landau model for the regular
Mode I transition in the flow past a ring with Ar = 0.6 at Re = 120. In (b), the y–
axis intercept gives growth rate (σ) and the gradient close to y–axis gives saturation term,
l. The negative slope and linear behaviour near the y–axis indicate that the transition is
supercritical.

Reynolds number. The computed critical Reynolds number matched the predicted

transition Reynolds number from chapter 4 to within 0.5%, in which case Rec = 114

was ascertained. Figure 5.3 gives the variation in the computed growth rate of non-

axisymmetric flow with Reynolds number for the flow past a ring with Ar = 0.6. Both

the stability analysis from

chapter 4 and an independent quadratic fit to the current data verify that the

critical Reynolds number was Rec = 114 for the regular non-axisymmetric transition in

the wake.

Landau model theory (e.g. see Provansal et al. 1987; Dušek et al. 1994) predicts that

for transitions which are described by a cubic truncation of the Landau model, a linear

variation in |A|2 with Re−Rec is obtained in the vicinity of the transition. Conversely,

subcritical transitions will not exhibit a linear variation in |A|2 with Re − Rec in the

vicinity of the transition.

In figure 5.4(a), a plot of |A|2 versus Re−Rec is presented for the regular transition in

the flow past a ring with Ar = 0.6. The linear profile near to the transition (Re−Rec =

0) supports the prediction that the transition is supercritical. Furthermore, the critical
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Figure 5.3: Computed growth rate in the vicinity of the Mode I transition for the flow past
a ring with Ar = 0.6. Cubic interpolation gives Rec = 114.

Reynolds number of the regular transition is verified to be Rec ≈ 114.

5.1.1.2 The Hopf Transition

Over the aspect ratio range 0 ≤ Ar < 1.6, the regular Mode I transition is followed

by a Hopf transition to unsteady flow at higher Reynolds numbers. For the flow past

a sphere, this transition occurs at Re = 272 (Johnson & Patel 1999; Thompson et al.

2001a), and produces a planar-symmetric wake with an m = 1 azimuthal symmetry.

Numerical visualisation of the vortical wake structure typically shows hairpin shaped

vortex loops shedding alternately from opposite sides of the axis (Johnson & Patel

1999; Tomboulides & Orszag 2000; Thompson et al. 2001a), whereas experimental flow-

visualisation can indicate hairpins aligned on one side of the axis only (Magarvey &

Bishop 1961b,a), depending on the location of the dye injection point.

Interestingly, the wakes computed at Reynolds numbers above the Hopf transition

are remarkably similar in structure to the unsteady wake behind a sphere. Figure 5.5(a–

c) shows isosurface plots of the vortical structure of the wakes behind a sphere, and

rings with aspect Ar = 0.6 and Ar = 1.2, respectively. The plots show that the hairpin

vortex structures, the vertical plane of symmetry, and the m = 1 azimuthal symmetry

141



Re - Rec

|A
|2

0 5 10 15 20 25
0

2E-06

4E-06

6E-06

8E-06

1E-05

1.2E-05

(a) Non-hysteretic behaviour of the regular
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Figure 5.4: Plots of |A|2 with Re−Rec in the vicinity of the transition for both the regular
(a) and Hopf (b) transitions in the flow past a ring with Ar = 0.6 in the Mode I flow regime.
The dots represent the measured amplitudes, and the lines provide a linear fit to the data
through Re − Rec = 0.

of the wakes are consistent throughout the Mode I regime.

The non-linear evolution of the Hopf transition in the Mode I regime is presented in

figure 5.6. The negative slope in figure 5.6(b) indicates that the Hopf transition occurs

through a supercritical bifurcation, which again suggests that no hysteresis will be

observed in the vicinity of the critical Reynolds number for the transition. The wiggles

near to the y–axis result from transients in the flow after a Reynolds number shift at

the beginning of the computation from a Reynolds number below the Hopf transition

to a Reynolds number above the Hopf transition. The prediction of supercritical flow

is in agreement with previous studies of the flow past a sphere, which predicted that

the Hopf transition that follows the regular non-axisymmetric transition is supercritical

(Thompson et al. 2001a).

In figure 5.4(b), a plot of |A|2 versus Re−Rec is presented which shows the envelope

of the Hopf transition as the non-axisymmetric wake saturates in the flow past a ring

with Ar = 0.6. The linear profile in the vicinity of Re − Rec = 0 supports the Landau

model prediction that the transition occurs through a supercritical bifurcation. The

critical Reynolds number for this transition is Rec ≈ 137.7.

The Landau constant, c, was calculated in the vicinity of the secondary transition
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(a) Ar = 0, Re = 300. (b) Ar = 0.6, Re = 160. (c) Ar = 1.2, Re = 120.

(d) Ar = 1.6, Re = 100. (e) Ar = 2, Re = 150. (f) Ar = 3, Re = 138.

Figure 5.5: Isosurface plots of the unsteady wakes observed following the Hopf transition
over the Mode I (a–c), Mode II (d) and Mode III (e–f) regimes. The method of Jeong &
Hussain (1995) is used to capture the vortical structure of the wakes. Note the plane of
symmetry through centre of each ring, and similar vortical structure of the wakes. Flow is
from top right to bottom left of each frame.
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Figure 5.6: Plots used to determine the coefficients of the Landau model for the regular
Mode I transition in the flow past a ring with Ar = 0.6 at Re = 139. In (b), the negative
slope and linear behaviour near the y–axis indicate that the transition is supercritical.
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for the ring with Ar = 0.6. The value of the Landau constant was approximately

c = −0.50± 0.05. For comparison, the Landau constant for the Hopf transition in the

flow past a sphere was found to be c = −0.55 (Ghidersa & Dušek 2000; Thompson

et al. 2001a), which is close to the value found for the Hopf transition in the flow past

a ring with Ar = 0.6. This result supports the classification of these transitions in the

Mode I regime.

5.1.1.3 Mode I Regime Bifurcations

To verify the predicted hysteretic properties of the regular and Hopf transition modes in

the Mode I regime, saturated amplitudes were computed at several Reynolds numbers

close to the transitions. For the unsteady wakes that evolved beyond the Hopf transition

Reynolds number, maximum and minimum amplitudes were obtained to determine the

envelope of the amplitude.

In figure 5.7, a plot of the non-axisymmetric mode amplitude over a Reynolds

number range which encompasses the regular and Hopf transitions in the flow past a

ring with Ar = 0.6 is presented. The figure shows that both the regular and Hopf

transitions occur through supercritical bifurcations, as no hysteresis is computed in the

vicinity of either transition. This is consistent with the predictions of the Landau model

in previous sections.

5.1.2 The Mode II Regime (1.6 ≤ Ar ≤ 1.7)

The non-axisymmetric Hopf transition in the wake behind a ring in the Mode II regime

is studied here. Following flow visualisation and Landau model predictions of the post-

transition wake, a discussion of the non-axisymmetric bifurcation scenario of the Mode

II regime is presented.

5.1.2.1 The Hopf Transition

The flow past a ring with Ar = 1.6 was computed at a Reynolds number greater than

the critical Reynolds number for the Mode II Hopf transition to model the growth

and saturation of the transition with the Landau model. An isosurface plot of the wake

structure is presented in figure 5.8. The plot shows that the non-axisymmetric structure

of the near wake in the Mode II regime is similar to the structure of the near wake in the

Mode I regime, after the evolution of the regular transition. However, in this case the

wake comprises wings of streamwise vorticity of opposing sign wrapped around longer
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Figure 5.7: Non-axisymmetric regular and Hopf mode bifurcations of the wake behind a
ring with Ar = 0.6. Blue dots represent the computed mode amplitudes for the regular
transition, and red dots show the maximum and minimum computed mode amplitudes of the
envelope of oscillation of the Hopf transition. Lines show the likely transition branches.

Figure 5.8: Streamwise vorticity isosurface plot of the wake behind a ring with Ar = 1.6
at Re = 100, after the saturation of the Mode II transition. Isosurface contours and flow
direction are as per figure 5.1.
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Figure 5.9: Plots used to determine the coefficients of the Landau model for the Mode II
Hopf transition in the flow past a ring with Ar = 1.6 at Re = 98. In (b), the negative slope
near the y–axis indicate that the transition is supercritical.

tails of streamwise vorticity which extend downstream. The computed vortex tails were

unsteady, and were observed to convect downstream with a Strouhal frequency of St ≈
1×10−2. This observed behaviour was in agreement with the behaviour of the Mode II

transition predicted by the linear stability analysis in chapter 4. The stability analysis

predicted that the dominant Floquet mode of the Mode II instability was complex,

which suggested that the transition occurred through a spontaneous non-axisymmetric

Hopf bifurcation. The planar symmetry and the m = 1 azimuthal symmetry which

were observed for the flows in the Mode I regime are preserved in the Mode II regime.

The vortical structure of the computed flow past a ring with Ar = 1.6 is also

presented in figure 5.5(d). In figure 5.5, the wake structure is compared to the unsteady

wakes behind rings in the Mode I and III regimes. The Mode II wake differed from the

unsteady wakes computed in the Mode I and Mode III regimes in that the saturated

wake had a Strouhal frequency which was approximately 30% of the Strouhal frequency

of the saturated wakes behind rings in the Mode I and III regimes. Structurally, the

Mode II wake was different to the other wakes which evolved from Hopf transitions.

Instead of a vortex-loop wake structure, with vortex loops shed on alternating sides of

the axis, long bands of vorticity were observed to be cast into the wake on one side of

the axis only.
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Figure 5.10: Plots of the evolution of the Mode II transition in the wake behind a ring with
Ar = 1.6. In (a) the dash-dot line shows a possible linear fit to the data in the vicinity of
Re−Rec = 0, and dots show the computed data points. In (b), dots represent the maximum
and minimum computed mode amplitudes at a given Reynolds number, and lines approximate
the maximum and minimum limits to the oscillation envelope of the mode amplitude.

To model the non-linear behaviour of the Mode II transition, the envelope of the

oscillation of the L2 norm was calculated. Figure 5.9 shows the non-linear evolution

of the non-axisymmetric Hopf transition in the wake behind a ring with Ar = 1.6, at

Re = 98.

The negative slope observed near to the axis in figure 5.9(b) indicates that the Mode

II transition occurs through a supercritical bifurcation. The evolution of the mode in

figure 5.9(a) shows that despite the large period of oscillation, sufficient data points

have been obtained to predict the transition bifurcation type. The Landau constant

measured within the vicinity of the Mode II transition was found to be c = −0.60. This

value was obtained at Re −Rec = 3.5, for the flow past a ring with Ar = 1.6, and was

measured from the velocity signal at a point in the wake approximately 4d downstream

of the ring cross-section. The variation in the Landau constants which were computed

at different aspect ratios is discussed in § 5.2.
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5.1.2.2 Mode II Regime Bifurcations

The evolution of a non-axisymmetric and unsteady wake in the Mode II regime is

highlighted by the plots in figure 5.10. Figure 5.10(a) shows the variation of the envelope

of the amplitude with Re −Rec, and verifies that the Landau model correctly predicts

that the Mode II transition occurs through a supercritical bifurcation. Figure 5.10(b)

shows the variation in |A| with Reynolds number, and again shows the supercritical

nature of the transition, with both the maximum and minimum amplitude profiles

observed to become non-zero (|A| ≥ 0) continuously with an increase in Reynolds

number through Rec ≈ 93. The absence of a region of steady non-axisymmetric flow for

Re > Rec supports the prediction in chapter 4 that the first-occurring non-axisymmetric

instability in the Mode II regime has a complex-conjugate Floquet mode.

5.1.3 The Mode III Regime (1.7 . Ar . 3.9)

The computed wakes that evolve from the non-axisymmetric regular and Hopf transi-

tions in the flow past rings in the Mode III regime is presented here. Firstly, flow visu-

alisations and Landau model predictions of the computed wakes is presented. Following

this, the non-axisymmetric bifurcation scenario in the Mode III regime is discussed.

5.1.3.1 The Regular Transition

Isosurface plots of the computed wakes that evolve from the regular Mode III transition

in the flow past rings in the Mode III regime are presented in figure 5.11. The computed

wakes have a different structure to the steady non-axisymmetric wakes computed in the

Mode I regime. The long tails of streamwise vorticity which were observed in the wakes

behind rings in the Mode I regime are not observed in the wakes behind rings in the

Mode III regime. The wakes behind rings in the Mode III regime consist of bands of

vorticity which are localised in the wake directly downstream of the ring body.

The computations in the Mode III regime suggest that the regular Mode III tran-

sition occurs in the flow past rings with 1.8 . Ar . 3.9. In the flow past rings with

larger aspect ratios (Ar & 3.9) the non-axisymmetric transition is preceded by a Hopf

bifurcation to a periodic axisymmetric wake, which is similar to the von Kármán vortex

street in the flow past a circular cylinder. The m = 1 azimuthal symmetry of the insta-

bility associated with the Mode III transition is not maintained throughout the Mode

III regime (1.8 ≤ Ar . 3.9). In chapter 4, stability analysis predicted that the flow past
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(a) Ar = 2, Re = 90. (b) Ar = 3, Re = 115.

Figure 5.11: Streamwise vorticity isosurface plots of the asymmetric wakes following the
Mode III transition. Note the difference in azimuthal symmetry between the two aspect
ratios. Isosurface contours as per figure 5.1.

a ring with Ar = 3 was unstable to an azimuthal mode with m = 2 symmetry, which is

consistent with the symmetry of the non-axisymmetric wake structure in figure 5.11(b).

The m = 2 azimuthal symmetry is associated with perpendicular planes of symmetry

which intersect along the axis. The wake structures in figure 5.11(a) corresponds to an

instability with m = 1 symmetry.

The wake structures presented in figure 5.11 do not appear to be consistent with a

common instability mode. A better indication of the consistency between the wakes is

achieved if the wakes are viewed from directly behind the ring, as shown in figure 5.12.

If an imaginary cut is made through the top of the ring in figure 5.12(a), and the ring

and wake are bent outwards into a semicircle, then the wake structures are similar

to the wake structures present in the bottom half of the ring in figure 5.12(b). This

observation confirms that the wakes behind these rings were both correctly identified

as regular Mode III transitions in the Mode III regime. Furthermore, the observation

suggests that the mode scales with a length scale based on the cross-section of the ring

(d), rather than the outer diameter of the ring (D + d).

In the computation of the evolution of the regular Mode III transition to saturation

in the flow past a ring with Ar = 2 at Re = 93, the amplitude of the non-axisymmetric

wake was recorded. Plots of the growth and saturation of the amplitude are presented in

figure 5.13. In figure 5.13(b), the distinct non-linearity and positive gradient at the y–

intercept suggest that the Mode III transition occurs through a subcritical bifurcation.

This indicates that higher-order terms are required for the Landau model to completely
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(a) Ar = 2.

(b) Ar = 3.

Figure 5.12: Isosurface plots of streamwise vorticity indicating m = 1 and m = 2 azimuthal
symmetry of the Mode III transition. The flow is viewed from directly behind the rings, and
isosurface shading is as per figure 5.1.

describe the saturation of this transition.

To verify that the regular Mode III transition occurs through a subcritical bifurca-

tion, a plot of |A|2 versus Re − Rec is provided in figure 5.14(a). It is clear that the

mode amplitude does not approach zero as Re−Rec → 0. The plot shows that a steady

non-axisymmetric wake was computed at Re −Rec = −1, which verifies that the onset

of the regular transition in the Mode III regime is hysteretic.

5.1.3.2 The Hopf Transition

The flow past rings with Ar = 2 and Ar = 3 were computed at Reynolds numbers

greater than the critical Reynolds numbers for the Mode III Hopf transition. Isosur-

face plots which show the vortical structure of the computed wakes are presented in

figure 5.5(e–f). The plots show that for the Hopf transition in the Mode III regime, a

change in symmetry with an increase in aspect ratio is observed, which maintains the

azimuthal symmetry properties of the regular Mode III transition that was discussed

earlier. Azimuthal symmetries of m = 1 and m = 2 are observed in the wakes behind

rings with Ar = 2 and Ar = 3, respectively. A hairpin structure and wake symme-

try is observed in figure 5.5(e), which is analogous to the post-Hopf transition wakes

computed in Mode I regime. A more complex vortex-loop structure is observed in fig-
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Figure 5.13: Plots used to determine the coefficients of the Landau model for the regular
Mode III transition in the flow past a ring with Ar = 2 at Re = 93. In (b), the non-linear
profile and positive slope near the y–axis indicate that the transition is subcritical.
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Figure 5.14: Plots of |A|2 with Re − Rec in the vicinity of the transitions for both the
regular (a) and Hopf (b) transitions in the wake behind a ring with Ar = 0.6 in the Mode I
flow regime. The dots represent the measured amplitudes, and the lines provide a linear fit
to the data through Re − Rec = 0.
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Figure 5.15: Plots used to determine the coefficients of the Landau model for the Mode III
Hopf transition in the flow past a ring with Ar = 2 at Re = 96. In (b), the linear profile and
negative slope near the y–axis indicate that the transition is supercritical.

ure 5.5(f), which shows a symmetry consistent with an m = 2 instability, with both

horizontal and vertical planes of symmetry. Interestingly, miniature hairpin structures

are also observed near to the core of the wake, which are shed from the inner surface of

the ring, and appear to increase in prominence with an increase in the size of the hole

in the ring.

In the previous sections, the Hopf transitions in the Mode I and II regimes were

shown to occur through supercritical bifurcations. The evolution of the non-axisym-

metric mode that evolved from a Hopf transition in the Mode III regime for a ring with

Ar = 2 is presented in figure 5.15(a). The real coefficients of the Landau model are

determined from figure 5.15(b), which shows behaviour consistent with a supercritical

bifurcation. The wiggles present in the vicinity of the y–axis in figure 5.15(b) are

an artefact of the initial conditions for the computation, where a steady-state non-

axisymmetric flow field computed just below the unsteady transition Reynolds number

(Re = 93 < Rec ≈ 94) was employed.

In figure 5.14(b) a plot of |A|2 versus Re−Rec is presented. The plot shows a linear

evolution of the square of the mode amplitude envelope with Re−Rec. The continuous

mode evolution is consistent with a supercritical bifurcation, which supports the Landau

model prediction that the transition is supercritical.
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Figure 5.16: Mode amplitude variation versus Reynolds number for the non-axisymmetric
transitions for a ring with Ar = 2. The dashed line highlights the hysteretic onset of the
regular transition, and solid lines show the regular and Hopf transition branches. Computed
data points for the regular transition branch, and the Hopf transition envelope are represented
by blue and red dots, respectively.

The Landau constant was calculated for the Hopf transition in the Mode III regime

at aspect ratios of Ar = 2 and Ar = 3. For the flow past a ring with Ar = 2, the

Landau constant was calculated to be c = −0.92, and for the flow past a ring with

Ar = 3, the Landau constant was calculated to be c = −4.1. See § 5.2 for a discussion

of these computed Landau constants.

5.1.3.3 Mode III Regime Bifurcations

The non-axisymmetric bifurcations in the Mode III regime are the most interesting of

the three regimes presented so far. Figure 5.16 shows the variation in non-axisymmetric

mode amplitude with Reynolds number for the flow past a ring with Ar = 2. From the

present computations it was observed that a regular non-axisymmetric mode evolved

in the wake for Re > Rec, where Rec ≈ 90.1. A region of hysteresis was observed

for a small range of Reynolds numbers below Rec, which supports the Landau model

prediction that the regular Mode III transition occurs through a subcritical bifurcation.

The steady non-axisymmetric wake became unstable to a Hopf transition for Rey-
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nolds numbers beyond Re ≈ 94. With a reduction in Reynolds number, the unsteady

wake decayed to a steady wake for all Reynolds numbers below the transition Reynolds

number, which confirmed the prediction that the Hopf transition is supercritical in the

Mode III regime.

5.2 Variation of Landau Model Constants with Aspect
Ratio

The previous section presented the calculated Landau constant (c) values that were

obtained for the first-occurring Hopf transition for rings with aspect ratios in the range

0 . Ar . 3.9. In this section, the results of calculations of c for the axisymmetric

Hopf transition in the flow past rings with Ar & 3.9 are presented. Specifically, Landau

constants were calculated for the Hopf transitions in the flows past rings with Ar = 4,

5, 10, 20 and 40.

In addition, the Landau diffusivity constant (ηdiff) was evaluated for the Hopf tran-

sitions in the flow past rings over the entire aspect ratio range considered in the present

study. Previously, a Landau diffusivity constant of ηdiff ≈ 5 was calculated for the Hopf

transition in the flow past a circular cylinder by Provansal et al. (1987). A Landau

diffusivity constant of ηdiff ≈ 1.86 can be calculated for the Hopf transition in the flow

past a sphere using data provided in Thompson et al. (2001a).

A complete profile of the variation in the Landau constant with aspect ratio is

presented in figure 5.17(a), for the Hopf transition in the flow past rings. The values

calculated from the computed unsteady transition in the flow past rings with Ar = 6 and

Ar ≥ 5 are consistent with known values of the Landau constant for the Hopf transition

in the flow past a sphere (c = −0.55) and a circular cylinder (−3.0 < c < −2.6),

respectively. The most interesting feature of the Landau constant variation is the large

magnitude of the Landau constant at Ar = 4 when compared with the Landau constant

at other aspect ratios. The flow past a ring with Ar = 4 is in the vicinity of the crossover

point in aspect ratio parameter space for the Hopf and non-axisymmetric transitions.

The large amplitude resulted from a combination of a larger frequency shift as the mode

saturated, as well as a smaller growth rate of the instability, than were measured at

other aspect ratios.

For Ar & 4, where the Hopf transition occurs prior to the non-axisymmetric tran-

sition, a small variation in the measured Landau constant was observed. This is con-
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Figure 5.17: Variation of Landau model constants with aspect ratio for the first Hopf
transition in the wakes behind rings. Blue dots represent the Hopf transition of the non-
axisymmetric wakes behind rings with small aspect ratios, and red dots represent the Hopf
transition of the axisymmetric wakes behind rings with large aspect ratios. The constants
are calculated in the vicinity of the primary Hopf transition of the wake at each aspect ratio.

sistent with the observed similarity in the Strouhal–Reynolds number profiles and the

critical Reynolds numbers for the transition to unsteady flow described in chapter 3.

For Ar . 4, the structures of the post-Hopf transition wakes differ greatly, and it is

therefore unsurprising that a large variation in the Landau constant is computed in the

Ar . 4 regime, when compared with the Landau constants computed in the Ar & 4

regime.

Figure 5.17(a) shows that for the Hopf transition in the flow past rings with 0 ≤
Ar . 4, the Landau constant decreases from c = −0.554 to c = −9.8. For the Hopf

transition in the flow past rings with Ar & 4, the Landau constant asymptotes towards

a constant, with a decrease from c ≈ −2.37 at Ar = 5 to c ≈ −2.55 at Ar = 40.

Figure 5.17(b) shows the variation in ηdiff with aspect ratio. The computed con-

stants rapidly asymptote with an increase in aspect ratio over the axisymmetric Hopf

transition range Ar & 4 to ηdiff ≈ 5. There is no clear trend in the computed constants

for the non-axisymmetric Hopf transition rage Ar . 4, with ηdiff ≈ 1.8, ηdiff ≈ 7 and

ηdiff ≈ 3.5, computed in the Mode I, II and III regimes, respectively. A proposed expla-

nation for the lack of a trend in the Landau diffusivity constant for Ar . 4 is that the
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Ar First mode Second mode Third mode

5 Mode C (Rec ≈ 163.3) ? Mode A (Rec ≈ 194.0) Mode B (Rec ≈ 301.4)
10 Mode A (Rec ≈ 194.3) Mode C (Rec ≈ 222.1) Mode B (Rec ≈ 270.0)
20 Mode A (Rec ≈ 189.2) Mode B (Rec ≈ 261.2) ? Mode C (Rec ≈ 310.9)

Table 5.1: The order in which the non-axisymmetric instabilities are predicted to occur in
the flow past the rings selected for the present study. Predicted critical Reynolds numbers
from Floquet analysis are also provided. Modes marked with a “?” are not included in the
present study as pure modes could not be computed.

(a) Mode C: Re = 170, λd ≈ 1.7d.

Two azimuthal periods are shown. (b) Mode B: Re = 310, λd ≈ 0.8d.

Four azimuthal periods are shown.

Figure 5.18: Vortex structure of the saturated non-axisymmetric wakes of a ring with Ar =
5 following the Mode C (a) and Mode B (b) instabilities. Blue and yellow contours represent
positive and negative streamwise vorticity, respectively. A pressure level of −0.1 is represented
by a translucent red isosurface, which shows the rollers in the vortex street. The ring is
coloured green, and is located at the upper right corner of each frame, with the flow direction
towards the lower left corner.

Hopf transitions evolve from different wakes in each of the Mode I, II and III regimes.

A pleasing result was achieved for the Hopf transition in the Mode I regime. For the

flow past a ring with Ar = 0.6, a constant of ηdiff ≈ 1.72 was obtained, which is similar

to the constant of ηdiff ≈ 1.86 that has been determined for the flow past a sphere.

5.3 Wake Transitions at Large Aspect Ratios (Ar & 3.9)

The existence of non-axisymmetric instability modes in the vortex streets behind rings

was predicted by the stability analysis presented in chapter 4. Experimental Strouhal

profiles have also indicated the presence of transitions in the vicinity of the critical

Reynolds number for the Mode A and Mode B transitions for the circular cylinder
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(Leweke & Provansal 1995). The results of non-axisymmetric computations are pre-

sented here to verify the predictions of the earlier stability analysis, and to classify the

structural and hysteretic properties of the modes.

Rings with Ar = 5, 10 and 20 were chosen to study the non-axisymmetric vortex

shedding modes in the flow past rings. These aspect ratios were selected as the predicted

order in which the instabilities occur with an increase in Reynolds number differs for

the flow past each of the rings. The different orders of the instability modes result

from the wide variation in the critical Reynolds number for the onset of the Mode C

instability, which varies between Rec = 163.3 at Ar = 5 to Rec = 310.9 at Ar = 20.

Table 5.1 summarises the order in which the instabilities are predicted to occur for the

rings chosen for the non-axisymmetric computations.

It is desired that only pure modes be considered in the present study, to assist in

calculating the Landau model coefficients. The azimuthal domain size of the computa-

tions are therefore limited to the predicted dominant wavelength of the instability being

modelled. It is not useful to attempt to compute transition modes where a shorter-

wavelength instability exists at a lower Reynolds number, as the desired mode will be

contaminated even if it does develop. The wakes behind rings with aspect ratios Ar = 5

and 20 both contain such “impure” modes, as highlighted in table 5.1.

5.3.1 Instability Mode Path C-A-B (Ar = 5)

In this section, isosurface plots and Landau model predictions are presented for the pure

Mode C and Mode B wakes computed in the flow past a ring with Ar = 5. A bifurcation

diagram which shows the respective evolution of the two modes is also provided, and

the variation in drag coefficient through the pure bifurcations is investigated.

5.3.1.1 The Mode C Transition

The first non-axisymmetric mode to occur in the vortex street behind a ring with

Ar = 5 is Mode C. An isosurface plot which shows the structure of a Mode C wake

is provided in figure 5.18(a). The Mode C instability is interesting in that it is not

observed in the circular cylinder wake (Barkley & Henderson 1996; Williamson 1996b),

and it is predicted to be associated with a subharmonic Floquet mode.

The structure of the Mode C instability presented here highlights some interesting

features of the saturated non-axisymmetric wake. Notice firstly that pairs of broad

bands of opposite-sign streamwise vorticity are located above each vortex roller. Sig-
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Figure 5.19: Plots used to determine the coefficients of the Landau model for the Mode C
transition in the flow past a ring with Ar = 5 at Re = 170. In (b), the negative slope near
the y–axis indicates that the transition is supercritical.
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Figure 5.20: Plots of |A|2 with Re −Rec in the vicinity of the transitions for both the pure
Mode C (a) and Mode B (b) instabilities in the wake behind a ring with Ar = 5. The dots
represent the measured amplitudes, and the lines provide a linear fit to the data through
Re − Rec = 0.
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nificantly, the sign of these vorticity bands alternates from one shedding cycle to the

next. The vortex rollers are deformed into a wavy shape by the development of the

streamwise vorticity. However, at every shedding cycle the axial direction of deforma-

tion alternates with the sign of the vortex structures. The high curvature of a ring

with Ar = 5 (relative to larger aspect ratios) alters the shape of the corresponding

streamwise vortices which form on the underside of the wake, however, an identical

sign alternation takes place, with the same sign vorticity observed in the streamwise

structures located above and below the wake centreline.

The azimuthal wavelength of the saturated Mode C wake is approximately 1.7d.

This is consistent with the most unstable wavelength of the Mode C instability predicted

earlier.

Consistent with previous applications of the Landau model, an L2 norm is computed

for the evolution of the non-axisymmetric vortex shedding modes. In figure 5.19(a),

the evolution of the amplitude of Mode C at Re = 170 is shown. Figure 5.19(b) is

used to determine the cubic coefficients of the Landau model. The negative gradient

at the y–axis suggests that the Mode C transition occurs here through a supercritical

bifurcation. The variation in |A|2 is non-linear over the entire range, suggesting that

at least fifth-order terms need to be included for the Landau model to better describe

the evolution of this Mode C instability.

The amplitude of the saturated Mode C instability was computed at several Rey-

nolds numbers in the vicinity of the transition for the flow past a ring with Ar = 5.

Figure 5.20(a) is a plot of |A|2 against Re − Rec for the Mode C transition. The

amplitude of the instability approaches zero with Re − Rec, again indicating that the

transition in non-hysteretic and occurs through a supercritical bifurcation.

5.3.1.2 The Mode B Transition

The saturated flow associated with the Mode B instability has also been computed

for Ar = 5. An isosurface plot of the computed wake is presented in figure 5.18(b).

Two features of this wake that are immediately identifiable as being consistent with

the Mode B instability observed in a circular cylinder wake (Thompson et al. 1996;

Henderson 1997) are the azimuthal wavelength of the instability (approximately 0.8d),

and the spatio-temporal symmetry of the non-axisymmetric structures in the wake.

The orientation of the isosurface plot allows the spatio-temporal symmetry charac-
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Figure 5.21: Plots used to determine the coefficients of the Landau model for the Mode B
transition in the flow past a ring with Ar = 5 at Re = 310. In (b), the linear profile and
negative slope near the y–axis indicate that the transition is supercritical.

teristics of the wake to be observed. The far wake (the lower end of the image) shows

that the sign of the streamwise vortical braid structures above and below the wake

are identical, whereas the sign alternates in the azimuthal direction. This particular

vorticity distribution means that the following qualitative spatio-temporal symmetry

applies to the velocity field: a wake shifted by a half-period in time, and by a half-span

in the azimuthal direction is (approximately) identical to the same wake reflected about

the wake centreline. Note however that the absence of a reflective symmetry about the

wake centreline due to the curvature inherent in the ring geometry renders it impossible

for the Mode B wake here to exactly satisfy a phase-shifted reflective symmetry about

the wake centreline. Qualitatively, the spatio-temporal symmetry observed here for

the Mode B wake is consistent with the symmetry described by Barkley & Henderson

(1996) for the Mode B instability in the wake of a circular cylinder.

In figure 5.21(a), the evolution of the amplitude of the Mode B instability during

linear growth and saturation at Re = 310 is shown. Figure 5.21(b) is used to determine

the Landau model coefficients. The approximately linear profile and negative gradient

in figure 5.21(b) indicate that the Mode B transition occurs through a supercritical

bifurcation.

To verify that the transition is supercritical, a plot of |A|2 versus Re − Rec is
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Figure 5.22: Mode amplitude |A| versus Reynolds number plot which shows the pure mode
bifurcations in the wake behind a ring with Ar = 5. Mode A is not included as it is preceded
by the shorter-wavelength Mode C instability. Solid lines indicate the pure mode branches,
and the dashed lines relate the solution branches. Circles show the computed data points,
with Mode C and Mode B coloured green and red, respectively, consistent with preceding
chapters.

presented in figure 5.20(b) for the Mode B transition. There is a high degree of linearity

present in the vicinity of the transition, and the amplitude of Mode B tends to zero

with Re − Rec, indicating that the transition is non-hysteretic, confirming that the

transition occurs through a supercritical bifurcation.

5.3.1.3 Non-Axisymmetric Mode Bifurcations

A bifurcation diagram for the non-axisymmetric transitions for Ar = 5 is presented

in figure 5.22. The continuous supercritical evolution of the Mode C and Mode B

transitions is apparent. It is interesting to note the relative magnitude of the two

modes, with the longer wavelength Mode C wake reaching approximately twice the

magnitude of the shorter wavelength Mode B wake over the same distance from the

critical transition Reynolds number.

5.3.1.4 Drag of Non-Axisymmetric Wakes

As an extension to the analysis of the drag coefficients for the axisymmetric flow past

rings which was presented in chapter 3, drag coefficients were computed for the non-
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Figure 5.23: Total and component drag coefficients computed for the non- axisymmetric
bifurcations in the flow past a ring with Ar = 5. The previous axisymmetric drag profiles are
represented by white circles. The Mode C bifurcation is represented by green squares, and
the Mode B bifurcation is represented by red triangles, for consistency with earlier figures.
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(a) Mode A: Re = 200,

λd ≈ 4.0d.

(b) Mode C: Re =

235, λd ≈ 1.7d. Two

azimuthal periods are

shown.

(c) Mode B: Re =

280, λd ≈ 0.8d. Four

azimuthal periods are

shown.

Figure 5.24: Vortex structure of the saturated non-axisymmetric wakes of a ring with Ar =
10 following the pure Mode A (a), Mode C (b) and Mode B (c) instabilities. Contour shading
is as per figure 5.18.

axisymmetric bifurcations in the flow past rings as part of the present study.

In figure 5.23, the total drag coefficient (a) and the pressure (b) and viscous (c)

components of the drag coefficient are presented, which show the deviation in the

computed drag coefficient from the axisymmetric profile of the drag coefficient as the

non-axisymmetric modes evolve in the wake. With an increase in Reynolds number, the

computed drag for the wakes following the Mode C and Mode B instabilities decrease

continuously from the axisymmetric drag profiles. This is consistent with the previous

analysis of the modes, which suggested that these instabilities occur through continuous

supercritical bifurcations.

Notice that the deviation from the axisymmetric drag profile in figure 5.23 is more

pronounced following the Mode C instability than the Mode B instability. As the Mode

B instability evolves over a shorter azimuthal wavelength, viscous diffusion limits the

non-axisymmetry of the saturated wake. Therefore there is only a small difference

between the non-axisymmetric Mode B wake and the axisymmetric wake, in terms of

the physical structure and drag coefficient properties. It must be stressed that these

computations pertain to the pure non-axisymmetric transition modes. The influence of

the Mode C wake on the development of the Mode B instability, and the subsequent

effect on the drag characteristics is the subject of work presented in chapter 6.

It is clear from the plots of the components of the drag coefficient in figure 5.23(b)

and figure 5.23(c) that the evolution of the non-axisymmetric modes alters the pressure
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Figure 5.25: Plots used to determine the coefficients of the Landau model for the Mode A
transition in the flow past a ring with Ar = 10 at Re = 200. In (b), the non-linear profile
and positive slope near the y–axis indicate that the transition is subcritical.

component of the total drag coefficient far more significantly than the viscous compo-

nent. This is not unexpected, as the base pressure coefficient (Cpb) has been shown to be

sensitive to the vortex shedding phenomenon and the development of three-dimensional

transitions in the flow past a circular cylinder by Williamson & Roshko (1990). Use-

ful reviews on the subject are also included in Roshko (1993), Norberg (1994) and

Williamson (1996c).

5.3.2 Instability Mode Path A-C-B (Ar = 10)

In this section, isosurface plots and Landau model predictions are presented for the

pure Mode A, C and B instabilities in the flow past a ring with Ar = 10. A bifurcation

diagram which shows the respective evolution of the modes is also included, and the

variation in drag coefficient through the bifurcations is investigated.

5.3.2.1 The Mode A Transition

In figure 5.24, an isosurface plot illustrates the structure of the Mode A wake in the

flow past a ring with Ar = 10. Features in common with the Mode A wake in the flow

past a circular cylinder (Thompson et al. 1996; Barkley & Henderson 1996) that are

readily identified here are the azimuthal wavelength of the instability of approximately
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4d, the streamwise vorticity distribution, and the spatio-temporal symmetry.

The computed wake comprises spanwise vortex rollers which are deformed by the

evolution of the non-axisymmetric Mode A instability. Every half period, a counter-

rotating pair of streamwise vortices are entrained into the braid region on one side of

the wake centreline, from the vortex roller in which they first form. This in turn induces

the deformation of the underlying rollers observed in the plot. This process is repeated

on alternating sides of the wake, every half-period. This process is described in more

detail in Williamson (1996b) for the Mode A wake in the flow past a circular cylinder.

The sign of the streamwise vortices remains consistent from one period to the next,

and are opposite to the sign of the pair of vortices that form on the opposite side of

the wake centreline. Thus the spatio-temporal symmetry of the wake is qualitatively

similar to the symmetry of Mode A in the wake of the circular cylinder (Barkley &

Henderson 1996): namely a half-period shift in time and a reflection about the wake

centreline yields an identical wake.

The evolution of the L2 norm of the Mode A amplitude allows non-linear charac-

teristics of the transition to be determined.

Figure 5.25 shows both the evolution of the amplitude of the Mode A instability,

and the plot used to determine the cubic coefficients of a Landau model fit to the

data in figure 5.25(a). The positive slope near to the y–axis in figure 5.25(b), and the

approximately parabolic profile suggest that the transition occurs through a subcritical

bifurcation.

In order to verify the Landau model prediction of a subcritical Mode A instability,

a plot of |A|2 versus Re−Rec is provided in figure 5.26(a). Saturated mode amplitudes

were computed at several Reynolds numbers in the vicinity of the transition, which

confirm that the amplitude of the Mode A instability does not approach zero as Re−Rec

approaches zero. The onset of the transition is hysteretic, which is consistent with

observations of the Mode A transition in the flow past a circular cylinder (Henderson

1997).

5.3.2.2 The Mode C Transition

The saturated wake which evolves from the Mode C instability in the flow past a ring

with Ar = 10 is qualitatively similar in structure to the wake which evolves from the

Mode C instability in the flow past a ring with Ar = 5 described previously. An
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isosurface plot of the Mode C wake is presented in figure 5.24(b). Again, the Mode C

instability evolves with an azimuthal wavelength of approximately 1.7d, and the spatio-

temporal symmetry characteristics show that it is subharmonic. The distribution of

streamwise vortical structures is consistent with the Mode C wake in the flow past a

ring with Ar = 5, despite minor differences in orientation of the pairs of streamwise

vortical structures with respect to the rollers of the vortex street. These differences are

assumed to be due to the reduction in ring curvature with an increase in aspect ratio,

which increases the symmetry between the vortex rollers shed from the inner and outer

surface of the ring cross-section.

The L2 norm of the amplitude of the Mode C instability is used to determine the

coefficients of the Landau model for the growth and saturation of the transition. In

figure 5.27(a) the growth and saturation of the Mode C instability at Re = 230 is

shown. Figure 5.27(b) is used to estimate the cubic coefficients of the Landau model.

Surprisingly, a positive gradient is observed near to the y–axis, and the plot is highly

non-linear. This represents an acceleration in the growth as the instability evolves be-

yond the linear regime, which suggests that the transition occurs through a subcritical

bifurcation. Recall that the Landau coefficients which were calculated for the Mode

C transition in the flow past a ring with Ar = 5 suggested that the transition oc-

curred through a supercritical bifurcation with fifth-order terms required to describe

the transition to saturation. Here, the l–term of the Landau model has changed sign,

which requires at least a fifth-order truncation of the Landau equation to describe the

transition to saturation.

It is proposed that fifth-order terms are required to describe the evolution to sat-

uration of both the subcritical and supercritical Mode C instabilities in the flow past

rings, and that the cubic l–term changes in sign at some aspect ratio in the range

5 < Ar < 10. It is probable that the Mode C instability is supercritical in the flow past

rings with smaller aspect ratios (which includes Ar = 5), and subcritical in the flow

past larger rings (which includes Ar = 10). The physical mechanism which is respon-

sible for the change in hysteretic behaviour has not yet been determined, however, it

may be associated with the increased asymmetry in the vortex street at smaller aspect

ratios.

The variation in the square of the saturated Mode C amplitude (|A|2) with Re−Rec

is presented in figure 5.26(b). The hysteretic onset of the transition is clearly evident,
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Figure 5.27: Plots used to determine the coefficients of the Landau model for the Mode C
transition in the flow past a ring with Ar = 10 at Re = 230. In (b), the non-linear profile
and positive slope near the y–axis indicate that the transition is subcritical.

with non-zero saturated amplitudes computed at Reynolds numbers Re −Rec ≈ −2.

5.3.2.3 The Mode B Transition

An isosurface plot which shows the non-axisymmetric structure of the saturated Mode

B wake in the flow past a ring with Ar = 10 is presented in figure 5.24(c). Notwith-

standing the alteration in wake trajectory due to the difference in aspect ratio, the wake

is qualitatively similar to the Mode B wake in the flow past a ring with Ar = 5. The

azimuthal wavelength of the instability (approximately 0.8d), the spatio-temporal sym-

metry, and the distribution of non-axisymmetric vortical structures are all consistent

with both the Mode B wake in the flow past a ring with Ar = 5, and previous exper-

imental (Williamson 1988b) and numerical (Thompson et al. 1996; Henderson 1997)

observations of the Mode B wake in the flow past a circular cylinder.

Coefficients of a cubic Landau equation are evaluated for the evolution of the Mode

B instability for Ar = 10. Figure 5.28(a) shows the growth and saturation of the

amplitude of the Mode B instability in the wake, and figure 5.28(b) shows the plot

used to determine the coefficients of the Landau model. The negative gradient and

approximately linear profile indicates that the transition occurs through a supercritical

bifurcation. This prediction is consistent with both the Mode B wake in the flow past a
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Figure 5.28: Plots used to determine the coefficients of the Landau model for the Mode B
transition in the flow past a ring with Ar = 10 at Re = 275. In (b), the linear profile and
negative slope near the y–axis indicate that the transition is supercritical.
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Figure 5.29: Mode amplitude |A| versus Reynolds number plot which shows the pure mode
bifurcations in the wake behind a ring with Ar = 10. Solid lines indicate the pure mode
branches, and the dashed lines relate the solution branches. Circles show the computed data
points, and are coloured as per figure 5.22, with Mode A represented by blue dots.
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ring with Ar = 5 presented previously, and the Mode B wake in the flow past a circular

cylinder (Henderson 1997).

5.3.2.4 Non-Axisymmetric Mode Bifurcations

A bifurcation diagram for the non-axisymmetric transitions for Ar = 10 is presented in

figure 5.29. The plot is interesting, as the predicted weak hysteretic region at the onset

of the Mode A transition is shown, as is the well defined region of hysteresis at the onset

of the Mode C transition. The Landau model predictions are satisfied, as the Mode B

transition is observed to bifurcate through a continuous supercritical transition.

5.3.2.5 Drag of Non-Axisymmetric Wakes

In figure 5.30, the total and component drag coefficients measured from the non-

axisymmetric wakes that evolve from the Mode A, Mode C and Mode B instabilities in

the flow past a ring with Ar = 10 are presented.

The drag coefficients for the three instability modes bifurcate from the axisymmetric

drag profile towards smaller values. This observation, and the observation that the

magnitude of the drag reduction increases with an increase in the azimuthal wavelength

of the non-axisymmetric mode, are consistent with the previous non-axisymmetric drag

measurements from the flow past a ring with Ar = 5. The Mode A instability displays

a reduction in drag coefficient of approximately 5% over an increase in the Reynolds

number of approximately ∆Re ≈ 20.

As with the earlier observations of the flow past a ring with Ar = 5, the majority of

the drag coefficient reduction is a result of a decrease in the pressure component of the

drag coefficient for the non-axisymmetric modes, shown in figure 5.30(b). The viscous

component of the drag coefficient is almost unchanged between the axisymmetric and

non-axisymmetric measurements in figure 5.30(c).

5.3.3 Instability Mode Path A-B-C (Ar = 20)

In this section, isosurface plots and Landau model predictions are presented for the

pure Mode A and B instabilities in the flow past rings with Ar = 20. A bifurcation

diagram which shows the respective evolution of the two modes is also included, and

the variation in drag coefficient through the bifurcations is investigated.
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Figure 5.30: Total and component drag coefficients computed for the non- axisymmetric
bifurcations in the flow past a ring with Ar = 10. Colours and symbols are as per figure 5.23,
with the additional drag measurements following the Mode A instability being represented
by blue circles.
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(a) Mode A: Re = 200, λd ≈ 4.0d.

(b) Mode B: Re = 270, λd ≈ 0.8d.

Four azimuthal periods are shown.

Figure 5.31: Vortex structure of the saturated non-axisymmetric wakes of a ring with Ar =
20 following both the pure Mode A (a) and Mode B (b) instabilities. Contour shading is as
per figure 5.18.

5.3.3.1 The Mode A Transition

The saturated wake from the evolution of the Mode A instability for a ring with Ar = 20

is presented in figure 5.31(a). It may be observed that the mode has an azimuthal

wavelength of approximately 4d, consistent with the corresponding Mode A wake behind

a ring with Ar = 10. The dye visualisation experiments of Williamson (1988b) also

observe a similar wavelength for the Mode A wake behind a circular cylinder, as do the

computations of Thompson et al. (1994, 1996), and Henderson (1997).

The periodicity of the Mode A wake locked to the vortex street rollers is maintained,

as are the spatio-temporal symmetry characteristics, and streamwise vorticity distribu-

tions described earlier for the Mode A wake for Ar = 10. The small body curvature of

a ring with Ar = 20 enhances the similarity between the Mode A wake presented here,

and the Mode A wake behind a circular cylinder. A useful comparison may be made

with the isosurface plots of Mode A in the wake of a circular cylinder by Thompson

et al. (1994, 1996), which use a similar colouring scheme.

The evolution of the Mode A wake at Re = 195 for Ar = 20 is monitored to evaluate

the coefficients of the Landau model. Figure 5.32(a) shows the growth and saturation

of the Mode A amplitude, and figure 5.32(b) shows the non-linear variation in growth

rate with |A|2 that is used to evaluate the pertinent coefficients of the Landau model.
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Figure 5.32: Plots used to determine the coefficients of the Landau model for the Mode A
transition in the flow past a ring with Ar = 20 at Re = 195. In (b), the non-linear profile
and positive slope near the y–axis indicates that the transition is subcritical.

The curve in figure 5.32(b) has a positive gradient in the vicinity of the y–axis, but

over the range of |A|2 is highly non-linear. These characteristics suggest that at least

fifth-order terms are necessary for the Landau model to describe the saturation, and

suggests that the transition occurs through a subcritical bifurcation.

A plot of |A|2 against Re − Rec is presented in figure 5.33(a), and verifies the

hysteresis of the Mode A transition as indicated by the previous analysis. The computed

amplitudes do not display a linear trend towards zero as Re − Rec → 0, and hence

the transition occurs through a subcritical bifurcation. The behaviour presented in

(a) indicates that a small region of hysteresis is likely to be found in the vicinity of

Re − Rec = 0.

5.3.3.2 The Mode B Transition

The saturated Mode B wake computed for Ar = 20 is similar in structure to the Mode

B wakes computed for rings with aspect ratios Ar = 5 and Ar = 10. An isosurface

plot of the wake is presented in figure 5.31(b). The azimuthal wavelength of the mode

(approximately 0.8d) is maintained, as is the spatio-temporal symmetry and vorticity

distribution described earlier.

The streamwise vortical structures dissipate more rapidly in figure 5.31(b) than for
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Figure 5.33: Plots of |A|2 with Re −Rec in the vicinity of the transitions for both the pure
Mode A (a) and Mode B (b) instabilities in the wake behind a ring with Ar = 20. The dots
represent the measured amplitudes, and the lines provide approximate fits to the data.

the Mode B wakes observed for rings with Ar = 5 and Ar = 10. In fact the mode

appears to be concentrated within approximately 10d of the ring cross-section. This is

consistent with numerical computations of the Mode B wake behind a circular cylinder.

Both Thompson et al. (1996) and Henderson (1997) show that Mode B structures decay

rapidly after 8d to 10d downstream in the circular cylinder wake.

The evolution of the Mode B instability to saturation was monitored in the wake

behind a ring with Ar = 20 to evaluate the coefficients of the Landau model. Plots

which show the growth and saturation of the Mode B instability and the non-linear

growth rate variation are presented in figure 5.34.

In figure 5.34(b), both a negative gradient in the vicinity of the y–axis and a linear

profile throughout the |A|2 range is observed. Based on this behaviour, the Landau

model suggests that the transition occurs through a supercritical bifurcation.

The variation in |A|2 with Re − Rec, presented in figure 5.33(b), shows that the

Landau model correctly predicts the supercritical behaviour of the Mode B transition.

The continuous bifurcation from |A|2 = 0 of |A|2 beyond the transition Reynolds num-

ber (Re − Rec ≥ 0) is consistent with a supercritical bifurcation, and shows that no

hysteresis exists for the Mode B transition.
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Figure 5.34: Plots used to determine the coefficients of the Landau model for the Mode B
transition in the flow past a ring with Ar = 20 at Re = 270. In (b), the linear profile and
negative slope near the y–axis indicates that the transition is supercritical.

5.3.3.3 Non-Axisymmetric Mode Bifurcations

A bifurcation diagram for the non-axisymmetric transitions in the wake behind a ring

with Ar = 20 is presented in figure 5.35. The hysteretic region at the onset of the

Mode A transition can be observed, which is in agreement with the prediction that

this transition occurs though a subcritical bifurcation. Again, the Mode B instability

adopts the familiar continuous supercritical bifurcation behaviour observed previously.

5.3.3.4 Drag of Non-Axisymmetric Wakes

In figure 5.36, the total and component drag coefficients measured from the non-

axisymmetric wakes that evolve from the Mode A and B instabilities in the flow past a

ring with Ar = 20 are presented.

Figure 5.36 shows that the Mode A instability in the wake behind a ring with

Ar = 20 produces a sharp and discontinuous drop in the drag coefficient, owing to

the subcritical nature of the transition. This reduction is approximately 7% over a

Reynolds number range ∆Re ≈ 10. Likewise, the pure wake that evolves from the

Mode B instability results in a reduction in drag. The supercritical nature of the Mode
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Figure 5.35: Mode amplitude |A| versus Reynolds number plot which shows the pure mode
bifurcations in the wake behind a ring with Ar = 20. Solid lines indicate the pure mode
branches, and the dashed lines relate the solution branches. Circles show the computed data
points, and are coloured as per figures 5.22 and 5.29.

B transition causes the non-axisymmetric drag profile deviate continuously from the

axisymmetric profile. The subcritical nature of the Mode A transition is highlighted

again in figure 5.36(b). Comparing against figure 5.36(c), it is again apparent that the

drag reduction is caused by a loss of pressure drag, and that mean viscous drag losses

are negligible.

5.4 Experimental Verification of the Existence of a Mode
C Wake

Clearly, the most striking result to be obtained from the numerical computations per-

formed in this chapter is the existence of a subharmonic wake that evolves from the

intermediate-wavelength Mode C instability. In this section, an attempt is made to

obtain experimental dye-visualisation images of the Mode C wake. The experimen-

tal setup is described in Chapter 2, however the variance between the numerical and

experimental models used is treated here.

To gain a meaningful visual comparison with the numerical flow fields and the ex-

perimental dye visualisations achieved, the simulation of injected particles is performed,

and the three-dimensional particle fields are post-processed to replicate the Fluorescein
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Figure 5.36: Total and component drag coefficients computed for the non- axisymmetric
bifurcations in the flow past a ring with Ar = 10. Colours and symbols are as per figure 5.23
and figure 5.30.
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dye used in the experiments.

5.4.1 Comparison Between Experimental and Computational Results

The present experiments and numerical computations are limited to the aspect ratio

Ar = 4.94, which was measured from the ring employed in the experiments performed

for the present study. Although this aspect ratio is very close to Ar = 5, for which the

flow has been computed throughout this work, a special mesh was created to model a

ring with Ar = 4.94 to achieve the best possible consistency between the numerical and

experimental cases. From a linear stability analysis of the axisymmetric flow past a ring

with Ar = 5, presented in the preceding chapter, it was expected that the flow past

a ring with Ar = 4.94 would exhibit vortex shedding for Re & 60, and for Reynolds

numbers 160 . Re . 195 it was expected that a pure Mode C instability would evolve.

Experimental runs at Reynolds numbers exceeding the critical Reynolds number for

the onset of the Mode C instability produced a variety of non-axisymmetric wake flows.

These wakes included oblique (or helical) and transverse modes, where a transverse

motion was imparted on the tethered ring, and parallel vortex shedding modes with

wavelengths corresponding to both the Mode C and Mode A instabilities. The evolution

of these wakes depended on the startup conditions within the tank, as the uniformity

of the wakes was extremely sensitive to even small fluid motions within the tank, such

as convection effects from the walls. Despite this, wake structures were observed during

some experiments with an azimuthal wavelength consistent with the Mode C instability.

5.4.1.1 An Instability with an Azimuthal Wavelength which Corresponds
to Mode C

Some experiments at both Re = 200 and Re = 210 produced a consistent parallel

vortex shedding pattern, which developed non-axisymmetric instabilities which were

periodic in the azimuthal direction, with an azimuthal wavelength of 1.5d . λd .

2d. In figure 5.37 and figure 5.38, the experimental dye visualisations of these non-

axisymmetric wakes are compared with the numerical particle trace computations of a

saturated Mode C wake.

In figure 5.37, the experimental dye visualisation images show the presence of dye in

the background from a previous run, and limited dye entraining into the wake. These

images were captured as the ring was returning to the surface, and have been repro-

duced here upside-down for consistency with the other experimental dye visualisations
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(a) Comparison 1. Left: Experimental dye visualisation. Right: Simulated-

particle visualisation.

(b) Comparison 2. Left: Experimental dye visualisation. Right: Simulated-

particle visualisation.

Figure 5.37: Comparisons between experimental observations of a non-axisymmetric dis-
turbance with a Mode C wavelength, and a computed saturated Mode C wake. A ring with
Ar = 4.94 at Re = 200 is considered.

Figure 5.38: Comparison between experimental observations (left) of a non-axisymmetric
disturbance with a Mode C wavelength, and a computed saturated Mode C wake (right). A
ring with Ar = 4.94 at Re = 210 is considered.
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displayed.

The closest consistency between the experimental and numerical visualisations that

comprise figures 5.37 and 5.38 is found in the near-wake region, within 2d–3d down-

stream of the ring. The uniformity of the far wake was often lost due to non-uniformity

of the flow in the tank. The important observations to make from these figures is that

in the near-wake region, the azimuthal span of the repeating asymmetric structures,

and the orientation of the wavy deformations of the vortex rollers suggests that a Mode

C instability was captured in each case.

5.4.1.2 An Instability with an Azimuthal Wavelength which Corresponds
to Mode A

As mentioned, the instabilities of the vortex street of the ring used in the present

experiments are perturbed by non-uniformities such as slow convective cells in the tank.

During some experimental runs, an instability with a wavelength similar to Mode A

(approximately 4d) was observed to develop in the wake. Numerical computations

that are initiated from an axisymmetric wake are unable to capture this mode in the

wake, as the Mode C instability evolves with a faster growth rate. To overcome this

problem, an artificial startup condition was created by constructing a wake with a wavy

deformation in the streamwise direction of approximately 1d. This deformation decays

over long times scales (hundreds of shedding cycles) to an axisymmetric wake. The

images captured from simulated-particle computations for the comparison in figure 5.39

were obtained at an intermediate stage of the decay, and show a remarkable agreement

with the experimental dye visualisation images presented.

5.4.2 Discussion with Regard to Mode C

A significant result from the numerical studies that comprise the majority of the present

study is the discovery of the Mode C instability. The observation a subharmonic insta-

bility in a vortex shedding street without a reflective symmetry about the wake centre-

line is an important contribution to the present understanding of the three-dimensional

bifurcation scenarios of a wake comprising a two-dimensional vortex street. It is with

great satisfaction, therefore, that the numerical computations of a pure Mode C wake

in this chapter are observed to be in excellent agreement with the dye visualisation

images captured in the experiments.

Experimental runs at several Reynolds numbers provided a variety of interesting
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(a) Comparison 1. Left: Experimental dye visualisation. Right: Simulated-

particle visualisation.

(b) Comparison 2. Left: Experimental dye visualisation. Right: Simulated-

particle visualisation.

Figure 5.39: Comparisons between experimental observations of a non-axisymmetric dis-
turbance with a Mode A wavelength, and a computed wake with an artificial perturbation of
a similar wavelength. A ring with Ar = 4.94 at Re = 200 is considered.

observable wake structures. At Reynolds numbers Re ≥ 200, non-axisymmetric de-

formations in the vortex rings shed into the wake were observed with wavelengths

corresponding to both the azimuthal wavelength of the Mode A and Mode C instabili-

ties.

These observations confirm that the Mode C instability exists, and can indeed evolve

as the primary non-axisymmetric instability in the wakes behind rings with aspect ratios

Ar ≈ 5. Furthermore, the experiments show that the evolution of the vortex shedding

instabilities is very sensitive to non-uniformities in the flow.
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5.5 The Limitations of Azimuthal Computational Domain
Size

Thus far, non-axisymmetric computations have employed a computational domain no

greater than the azimuthal wavelength of the Mode A instability. It was shown that

the Mode A instability has the longest azimuthal wavelength of the three asymmetrical

vortex shedding modes of the ring (approximately 3.9d at the critical Reynolds number

of the instability.

This restriction in the computational domain has excluded any longer-wavelength

azimuthal modes to evolve in the wake. Linear stability analysis successfully showed

in chapter 4 that the axisymmetric wake of the rings is absolutely stable to all longer-

wavelength instability modes. The linear stability analysis technique employed in this

work cannot be applied to irregular long-wavelength azimuthal disturbances such as

vortex dislocations and oblique shedding modes, such as those that have been observed

experimentally in the wake of the straight circular cylinder (Williamson 1989) and

the ring (Leweke & Provansal 1995). Furthermore, the breakdown of the regular wake

patterns of the primary three-dimensional instability as the Reynolds number is further

increased (see Henderson 1997) for a study of the pattern breakdown of the wake of a

circular cylinder), due to non-linear interaction with other instability modes cannot be

described by a linear stability analysis technique.

In the chapter to follow, it is shown how the limitations of the analysis techniques

applied thus far may be overcome. Computations are performed over a larger azimuthal

domain, and a detailed analysis of the energy contributions of different azimuthal modes

to the overall wake dynamics of the larger systems is presented.

5.6 Chapter Summary

This chapter presents, for the first time, numerical computations of the non-axisym-

metric flow past rings. Flows have been computed for aspect ratios in the Mode I, II

and III flow regimes, as well as for aspect ratios that have been chosen to capture the

three vortex street instabilities in the flow past rings.

In the Mode I regime, the steady and unsteady wakes that evolve at Reynolds

numbers above the critical transition Reynolds numbers have been computed, with

the computed wakes displaying the double-threaded and vortex-loop wake structures,
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respectively, which are consistent with the wakes observed in the flow past a sphere

(Johnson & Patel 1999). In the Mode II regime, the unsteady wake that evolves be-

yond the critical transition Reynolds number was computed, with the computed wake

structure comprising a stable near-wake region, and a long-timescale oscillation further

downstream as vorticity is shed into the wake. In the Mode III regime, the steady

and unsteady wakes that evolve at Reynolds numbers beyond the critical transition

Reynolds numbers have been computed, with the steady wake displaying an asymme-

try localised to the annular recirculation ring behind the ring, whereas the unsteady

wake displayed a vortex-loop wake structure similar to the secondary instability in the

Mode I regime.

Although non-axisymmetric vortex-loop shedding was observed behind some rings

with aspect ratios corresponding to the Mode I–III flow regimes by Monson (1983), the

results presented in this chapter provide a far more detailed description of the wake

structure and bifurcation scenarios over this aspect ratio range.

An open question that remains to be answered is whether or not the vortex-loop

wakes computed here are replaced by axisymmetric annular vortex streets at higher

Reynolds numbers, as observed in the experiments of Bearman & Takamoto (1988).

The non-axisymmetric instability modes in the annular vortex streets behind rings

have been computed for aspect ratios Ar = 5, 10 and 20. The variation in vortex

street inclination angle with aspect ratio results in a variation in reflective asymmetry

about the ring cross-section, which has enabled the first reported systematic study of

the bifurcation scenario for vortex streets which lack a reflective wake symmetry to

be completed in the study presented in this chapter. The Mode A and B instabilities

have been successfully computed, and a non-linear analysis of the evolution of the

modes has confirmed that these modes bifurcate through subcritical and supercritical

transitions, respectively, consistent with the bifurcations in the vortex street behind a

circular cylinder (Henderson 1997).

This study presents the first reported computations of the non-linear bifurcation

properties of a subharmonic instability of a vortex street. This Mode C instability was

shown in the present study to bifurcate through a supercritical transition at smaller

aspect ratios, and to bifurcate through a subcritical transition at larger aspect ratios.

Furthermore, it was established that at least fifth-order terms are required to describe

the evolution of the Mode C instability with the Landau equation, for the aspect ratios
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considered in the present study.

In the experimental study by Monson (1983), flow visualisation indicated the pres-

ence of a waviness in the annular vortex streets behind rings. In the present study, the

non-axisymmetric instability modes are visualised with both simulated-particle com-

putations and experimental dye visualisation. The wavy patterns that are observed in

the vortex streets in these flow visualisations suggest that the waviness observed by

Monson may have been due to the instabilities of the type computed in the present

study.
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Chapter 6

Route to Chaos in Vortex Streets
in the Flow past Rings

In the previous chapters, axisymmetric computations have revealed features of the flow

past rings such as flow separation and vortex shedding. With application of a linear

stability analysis technique, and non-axisymmetric computations, predictions of the

non-axisymmetric modes in the flow past rings have also been verified.

In a study by Henderson (1997), the flow past a circular cylinder was computed to

determine the influence of longer-wavelength spanwise modes on the wakes associated

with the Mode A and B instabilities. In that study, Henderson addressed the question

as to the route to turbulence in a vortex street. Other studies had proposed that the

route to chaos in a vortex street was through a period-doubling cascade. A study of an

externally driven row of vortices by Braun et al. (1998) determined that the route to

chaos occurred through a period-doubling cascade. A study of the flow past a circular

cylinder by Tomboulides et al. (1992) determined that the route to chaos for a vortex

street occurred through a period-doubling cascade. In that study, three-dimensional

computations were employed with a spanwise domain of insufficient length to capture

the Mode A instability in the wake. The suppression of the Mode A instability altered

the three-dimensional bifurcation scenario, and called into question the accuracy of the

proposal for the route to chaos. A period-doubling cascade involves a succession of

doublings of the period of oscillation of a flow, which leads to a chaotic state with no

clearly defined periodicity. That behaviour is consistent with flow characteristics at the

onset of turbulence for a vortex street, where the periodicity of the wake breaks down

(Henderson 1997).

Various attempts have been made to model a vortex street as a series of coupled os-
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cillators, by applying the complex Ginzburg–Landau equation (e.g. Leweke & Provansal

1994, 1995). These systems can develop patterns through the development of spatio-

temporal chaos, where irregularities evolve in both space and time. Leweke & Provansal

modelled the vortex street in the flow past rings with aspect ratios Ar > 10 using the

Ginzburg–Landau equation. It was determined that the uniform vortex street became

unstable to long-wavelength spanwise disturbances in a manner consistent with the

development of spatio-temporal chaos. Similarly, in computational studies of the flow

past a long circular cylinder, Henderson (1997) observed behaviour consistent with

spatio-temporal chaos. Spatio-temporal chaos is displayed by systems in which non-

uniformities evolve in both space and time (see Henderson 1997).

As well as the breakdown of a uniform vortex street through spatio-temporal chaos,

experimental studies of the flow past a circular cylinder have observed chevron patterns

and oblique shedding modes (Williamson 1989; Hammache & Gharib 1991; Williamson

1996b,c). The vortex streets behind rings were shown to exhibit an analogous phe-

nomenon at large aspect ratios (Monson 1983; Leweke & Provansal 1995), with the

shedding of helical spirals into the wake.

These studies show that with an increase in Reynolds number or azimuthal domain

length, vortex streets become unstable to longer-wavelength instabilities that are not

predicted by linear stability analysis. As well as studying the route to turbulence in

the vortex streets in the flow past rings through independent variation of both the

azimuthal domain size and the Reynolds number, the phenomenon of oblique shedding

will briefly be modelled in this chapter, as will transverse shedding modes in the flow

past a tethered ring.

6.1 Methodology and Numerical Considerations

The non-axisymmetric formulation of the spectral-element code applied in chapter 5

is employed here. Extra consideration is given to the spatial resolution in both the

azimuthal direction, and the z–r plane, to ensure that sufficient Fourier modes are

included in the computations to resolve the non-axisymmetric wake, and that the el-

ements of sufficiently high order are employed to capture all the fluid scales in the

wake for the Reynolds number range considered (Re ≤ 320). A spatial resolution study

was performed to ascertain the optimum polynomial order for interpolation within the

macro elements of the grid. The maximum time step and the accuracy of the computa-
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N2 St % diff. Cdp % diff. Cdν % diff. Cd % diff.

16 0.194939 7.416% 1.11310 2.353% 0.120066 0.490% 1.23317 2.083%
25 — — — — — — — —
36 0.210479 0.036% 1.17795 3.336% 0.124825 4.473% 1.30277 3.444%
49 0.208449 1.000% 1.13895 0.085% 0.119961 0.402% 1.25892 0.038%
64 0.209611 0.448% 1.14279 0.252% 0.120143 0.554% 1.26294 0.281%
81 0.210309 0.116% 1.14023 0.027% 0.119462 0.016% 1.25970 0.024%
100 0.210554 0.0% 1.13992 0.0% 0.119481 0.0% 1.25940 0.0%

Table 6.1: Results of the spatial resolution study. N2 represents the number of nodes per
element, St gives the mean Strouhal number of the saturated wake, Cdp

is the pressure
contribution of the drag coefficient, Cdν is the viscous component of the drag coefficient,
Cd is the total drag coefficient. The percentage differences between the measured Strouhal
number and drag coefficient for each N2 are related to the most resolved model N2 = 100.

tions throughout the Reynolds number range of the study (170 ≤ Re ≤ 320) were also

evaluated, and the results of these studies are presented in the sections to follow.

6.1.1 Spatial Resolution

The highest Reynolds number at which computations were performed in this chapter

was Re = 320. A spatial resolution study was performed for the mesh employed to

model the flow past a ring with Ar = 20, and the results are summarised in table 6.1.

The study computed a single span of the Mode B instability in the flow past a ring

with Ar = 20 at Re = 320. The azimuthal mode number of this computation was

m = 79, with eight Fourier planes employed to resolve three-dimensional modes of

the flow field, corresponding to four azimuthal Fourier modes. The number of Fourier

planes was sufficient to capture all the non-axisymmetric modes of the system that are

not damped in the dissipative regime, which is discussed later.

6.1.1.1 Node Resolution Study

A maximum error of less than 0.5% was desired for the present study, to ensure con-

fidence in the presented computations. Based on the results of the spatial resolution

study which are presented in table 6.1, macro-elements of order N2 = 81 were found to

achieve sufficient accuracy, and were employed throughout the computations presented

in this chapter.

The computations with element order N2 = 16 and N2 = 25 from the node res-

olution study require some discussion. The computations which employed elements

with N2 = 16 were stable, but the spatial resolution was so poor that no azimuthal
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modes evolved in the wake, which rendered the solution axisymmetric to the limits

of computational error. The computations which employed elements with N2 = 25

diverged regardless of the size of the time step. A detailed analysis of these computa-

tions revealed that the non-axisymmetric modes in the flow grew exponentially until

the computations diverged. It is likely that the solution was inadequately resolved to

allow the non-axisymmetry in the flow to saturate. All computations that employed

elements with N2 ≥ 36 converged to saturated non-axisymmetric wakes.

6.1.1.2 Azimuthal Fourier Modes and the Dissipative Regime

From Henderson (1997), the dissipative effects of viscosity dominate for azimuthal mode

numbers m proportional to Re1/2. The minimum number of Fourier modes (Md) re-

quired to adequately resolve a flow field over an azimuthal span (λd) are therefore related

by Md ∼ λdRe1/2/(2π). From this relationship, it was determined that the computa-

tions in the present study which employed an azimuthal span equal to the wavelength

of a single Mode A instability (λd = L0 ' 4d) required 32 Fourier planes which resolved

the 16 Fourier modes which were outside the dissipative regime. Likewise, it was de-

termined that computations in the present study which employed an azimuthal span

equal to twice the wavelength of Mode A (λd = 2L0) required 64 Fourier planes which

resolved the 32 Fourier modes which were outside the dissipative regime.

6.1.2 Methodology of the Reynolds Number Variation Study

To study the effect of an increase in Reynolds number on the transitions which lead to

turbulence in the wakes behind rings, computations were performed with an azimuthal

domain chosen to compute a single period of the longest-wavelength instability mode of

the system (Mode A), and the vortex street was computed at a Reynolds number greater

than each of the critical Reynolds numbers for the non-axisymmetric instabilities in the

wake that were predicted in chapter 4.

Two factors influenced the selection of suitable aspect ratios for this study. Firstly,

consistent with the linear stability analysis of chapter 4, and the non-axisymmetric

analysis comprising chapter 5, aspect ratios were required to capture the three possible

non-axisymmetric transition paths with an increase in Reynolds number.

Secondly, the azimuthal symmetry of the ring limited the practical choice of az-

imuthal mode numbers (m) of the flows to integer values. Aspect ratios were chosen

such that the dominant azimuthal mode number of the Mode A instability was a power

188



Aspect ratio L0 domain 2L0 domain

5 m = 4 m = 2
10 m = 8 m = 4
20 m = 16 m = 8

Table 6.2: Azimuthal mode numbers of the computational domains employed in both the
Reynolds number study (L0), and the (2L0) domain of the domain size study.

of 2 (i.e. m = 2n where n = 0, 1, 2, . . .). This allowed a more precise study of the effect

of an increase in the azimuthal domain length on the dynamics of the vortex streets in

the flow past rings, which is presented in § 6.2.

From the analysis in previous chapters, it was found that aspect ratios Ar = 5, 10

and 20 satisfied these requirements. For the flow past a ring with Ar = 5, Reynolds

numbers Re = 190, 220 and 320 were chosen to model the wake dynamics beyond the

critical Reynolds numbers for each of the linear non-axisymmetric transitions. Similarly,

for the flow past a ring with Ar = 10, Reynolds numbers Re = 205, 240 and 280 were

chosen, and for the flow past a ring with Ar = 20, Re = 205, 280 and 320 were chosen.

6.1.3 Methodology of the Azimuthal Domain Variation Study

The final solutions from the highest-Reynolds-number computations from the Reynolds

number variation study were used to construct an initial solution for computations with

an azimuthal domain size 2L0, and for consistency, the Reynolds number remained

unchanged.

The construction of the initial flow field resulted in a magnitude of zero for the

odd-numbered Fourier modes of the wake. To facilitate a rapid evolution of these odd-

numbered modes, a small random perturbation was added to the velocity field at the

start of the computations.

The azimuthal mode numbers of the computational domains employed for the com-

putations at each aspect ratio are summarised in table 6.2.

An important point must be made regarding the ring geometry in relation to the

study of the variation of the azimuthal domain size. The ring is distinct from the

straight circular cylinder in that the largest azimuthal domain is limited by the az-

imuthal symmetry of the ring. The longest-wavelength azimuthal mode that may be

included in the wake is defined by the relationship λdmax = πAr . It follows that the on-

set of long-wavelength non-axisymmetric modes in the wakes behind rings with smaller
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aspect ratios may be delayed by the suppression of long-wavelength instabilities. This

is consistent with the observations of Monson (1983) and Leweke & Provansal (1995),

who observed helical shedding modes with higher mode numbers in the flow past large

rings than in the flow past smaller rings.

6.2 Reynolds Number Variation Study

Some of the isosurface plots of streamwise vorticity presented in chapter 5 showed

that wake structures corresponding to multiple linear instability modes can coexist

simultaneously. In the computations presented in this study, the azimuthal wavelength

of the computation is equal to the longest-wavelength linear instability predicted for

each ring. A primary goal of this study is to determine if the subharmonic Mode C

instability initiates a route to chaos through a period-doubling cascade. In § 6.2.1,

the flow past a ring with Ar = 5 is considered, where Mode C is the primary non-

axisymmetric instability. In § 6.2.2 the flow past a ring with Ar = 10 is considered,

where Mode C is the secondary non-axisymmetric instability, and in § 6.2.3 the flow

past a ring with Ar = 20 is considered, where Mode C is the tertiary non-axisymmetric

instability.

For analysis of the computations, time histories of a point velocity approximately

4d downstream of the ring cross-section, and the drag force, were recorded. A time

history of the azimuthal Fourier components of the velocity field at a point in the z–r

plane approximately 4d downstream of the ring cross-section was also recorded, from

which the energy corresponding to each azimuthal Fourier mode was monitored. In

addition, the flow fields were stored for flow visualisation.

6.2.1 Ar = 5: A Primary Subharmonic Mode

The flow past a ring with Ar = 5 was computed at Re = 190, Re = 220 and Re = 320,

to determine the wake transitions to turbulence with an increase in Reynolds number.

6.2.1.1 The Primary Instability: Mode C at Re = 190

The growth of the Mode C instability in computations of the flow past a ring with

Ar = 5 at Re = 190 saturated within 700 time units. Figure 6.1 shows the saturation

of the mean periodic kinetic energy components of the azimuthal modes commensurate

with the Mode C instability. The modes incommensurate with the Mode C instability
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Figure 6.1: Evolution of the mean kinetic energy per period (Eq) for each azimuthal mode
in the flow past a ring Ar = 5 with Re = 190. Measurements of Eq were taken at a point
in the r–z plane approximately 4d downstream of the ring cross-section. Each azimuthal
Fourier mode of the w–velocity was averaged over each shedding cycle. The fundamental
Fourier mode is represented by a dotted black line, the modes which correspond to the
wavelengths of Modes A, B and C are represented by blue, red and green lines, respectively.
Shorter-wavelength modes are represented by light grey lines.

are observed to grow with the azimuthal modes of the Mode C instability over the

first 700 time units of the computation. At the point of saturation of the azimuthal

modes of Mode C, these modes are shown to decay at a constant rate. Figure 6.1

verifies that the non-axisymmetric wake structures correspond to the span of the Mode

C instability, with an azimuthal wavelength of approximately 2d shown to dominate at

saturation.

Figure 6.2 provides a striking verification of the effect of a subharmonic instability

on the flow past a ring with Ar = 5. The frequency variation of the velocity at a point

in the wake shows clearly that a bifurcation occurs from the single frequency of the

axisymmetric wake (t−t0 < 200) to two distinct frequencies in the wake that saturate for

t−t0 & 800. The frequency of each successive oscillation in the wake alternates between

the two frequency branches. This behaviour is consistent with a period-doubling of the

wake, as the computed wake was periodic over two shedding cycles. Significantly, no
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Figure 6.2: Time history of the variation in the Strouhal frequency for the flow past a ring
with Ar = 5 at Re = 190. The Strouhal frequency was obtained from peak-to-peak measure-
ments of the point velocity and drag force signals. Blue circles represent the Strouhal fre-
quency variation determined from the drag force signal, and red circles represent the Strouhal
frequency variation determined from the point velocity signal at a point in the wake approx-
imately 4d downstream of the ring cross-section.

evidence of a period-doubling bifurcation is measured for the drag force on the ring.

For practical purposes, this implies that regardless of the evolution of a subharmonic

instability in the wake which causes a period-doubling bifurcation, no physical effect

is encountered by the bluff body in question. A slight drop in frequency variation is

observed for the computed drag force over 600 . t − t0 . 700, which is due to the

saturation of non-axisymmetric flow in the wake.

The period-doubling in the wake is clearly presented in the point velocity spectrum

presented in figure 6.3. In the figure, Fourier spectra of both the drag force and point

velocity time histories are provided. The Fourier spectrum of the point velocity time

history indicates clearly that a subharmonic frequency is present in the wake, with a

small peak observed at f/f0 = 0.5. There is no period-doubling peak observed for the

Fourier spectrum of the drag force, which verifies the observed behaviour in the plot of

the Strouhal frequency variation.
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Figure 6.3: Fourier spectra of the computed time histories of both a point velocity (red line)
and the drag force (blue line) for the flow past a ring with Ar = 5 at Re = 190. The spectral
analysis was computed on data which was obtained after saturation of the non-axisymmetric
flow. The computed frequency (f) is non-dimensionalised by the Strouhal frequency of the
saturated flow (St = f0 = 0.1820).

The large number of higher-frequency peaks in the spectrum of the point velocity are

harmonics of the vortex shedding frequency. The drag force spectrum is more uniform

than the point-velocity spectrum, as it is a global measurement of the properties of

the wake, whereas the point velocity measurements are a local measurement of the

properties of the wake.

The results presented here show that the onset of a primary subharmonic instability

in a vortex street causes a period-doubling bifurcation in the wake. Computations

at higher Reynolds numbers are required to ascertain whether the observed period-

doubling is isolated, or in fact the first bifurcation of a period-doubling cascade.

6.2.1.2 The Secondary Instability: Mode A at Re = 220

A computation was performed at Re = 220 for the flow past a ring with Ar = 5, which

was initiated using the saturated solution computed previously at Re = 190. The

Reynolds number of the computation was approximately 10% greater than the critical
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Figure 6.4: Evolution of the mean kinetic energy per period (Eq) for each azimuthal mode
in the flow past a ring Ar = 5 with Re = 220. Axes and lines are as per figure 6.1.

Reynolds number for the linear Mode A instability, and a rapid saturation of the wake

was observed, as shown in the plot in figure 6.4. The plot indicates that the wake

structure was well organised at t − to ≈ 300, and virtually all transients had decayed

by t − t0 ≈ 600. Interestingly, the dominant wavelength of the wake at Re = 220 is

consistent with the wavelength of a Mode A instability, which is a regular mode, not a

subharmonic mode.

A plot of the frequency variation over time for the measured point velocity and drag

force is presented in figure 6.5(a). For t− t0 < 200, the twin branches associated with a

subharmonic mode can be observed for the measured point velocity frequencies, as can

the measured drag force frequency that bisects the point velocity frequency branches.

The scatter of the measured frequencies over these times shows that the wake was

unstable prior to saturation. After saturation, both sets of frequency measurements

converge to a single frequency. The plot suggests that at Re = 220, the wake has

reverted to a harmonic state, which has eradicated the period-doubling bifurcation

caused by the primary Mode C instability.

The Fourier spectra measured for the flow past a ring with Ar = 5 at Re = 220 are
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(b) Fourier spectra of the time histories of both a point velocity

and the drag force. The chart lines and axes are as per figure 6.3,

and the Strouhal frequency St = f0 = 0.1806.

Figure 6.5: Strouhal frequency variation (a) and time history spectra (b) for the flow past
a ring with Ar = 5 at Re = 220.
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plotted in figure 6.5(b). The spectra are significant for several reasons. It is evident

that the period-doubling bifurcation observed at Re = 190 is no longer present in the

wake, with no peak observed in the vicinity of f/f0 = 0.5. In addition, a peak in the

drag force spectrum is observed at f/f0 = 2. This is consistent with studies of the

drag in the flow past a circular cylinder (Henderson 1995), which show that the drag

force varies with twice the frequency of the shedding frequency. The asymmetry of

the vortex street for the flow past rings means that an additional peak is observed at

f/f0 = 1, which is not measured in the flow past a circular cylinder. It follows that

with an increase in aspect ratio, the asymmetry of the vortex street would decrease,

and hence for an increase in aspect ratio, the peak at f/f0 for the measured drag force

would also decrease.

6.2.1.3 The Tertiary Instability: Mode B at Re = 320

A computation was performed at Re = 320 for the flow past a ring with Ar = 5,

which was initiated using the saturated solution computed previously at Re = 220.

The variation in mode energy for this Reynolds number is plotted in figure 6.6. In the

plot, a markedly different behaviour is observed than for the corresponding plots at

lower Reynolds numbers. The plot shows that after saturation at t− t0 ≈ 80, a chaotic

variation in mode energy is observed for all modes.

Two points may be made regarding the mean mode energy plot in figure 6.6: Firstly,

the modes corresponding to Mode A, Mode B and Mode C all contribute a similar

amount of energy to the wake, with domination of one mode over the others observed

for periods of up to 50 time units. This observed behaviour suggests that the structure

of the wake is highly disordered. Secondly, the fundamental (zero frequency) azimuthal

Fourier mode is observed to contribute significantly to the mode energy spectrum. In

previous computations, the fundamental mode was consistently orders of magnitude

smaller than the non-zero frequency modes of the system.

In figure 6.7, plots of the Strouhal frequency variation and the spectral density of

the computed point velocity and drag force are presented. The plot of the Strouhal

frequency variation in figure 6.7(a) shows a large scatter of the data. This is due to the

emergence of small-scale structures in the wake, which cause small intermediate peaks

to appear in the signals of the computed point velocity and drag force. The drag force

is a global quantity, whereas the point velocity is a local quantity obtained at a point
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Figure 6.6: Evolution of the mean kinetic energy per period (Eq) for each azimuthal mode
in the flow past a ring with Ar = 5 at Re = 320. Axes and lines are as per figure 6.1.

in the wake. Therefore, less scatter is observed in the data points for the Strouhal

frequency variation in the drag force than for the Strouhal frequency variation in the

point velocity. The plot in figure 6.7(a) shows that the majority of the computed drag

force data points are grouped around three frequency bands, St ≈ 0.18, St ≈ 0.32 and

St ≈ 0.43. The point velocity data points are scattered in an almost random fashion

throughout the plot.

The Fourier spectra corresponding to the time histories of a point velocity in the

wake and the drag force for the flow past a ring with Ar = 5 at Re = 320 is provided in

figure 6.7(b). The loss of periodicity of the computed wake at saturation highlights a

limitation of the computations in the present study. The plot shows that the computed

spectral density has a jagged profile, which was due to the relatively short sample time

of the computation. Similar jagged profiles were observed in several of the spectral

density plots to follow. Unfortunately, due to the high resolution of the computations,

it was not feasible to extend the computations for sufficient time to smooth the jagged

spectral density profiles. The plots do, however, provide useful information with regard

to the peak and harmonic frequencies in the flow, and as the jagged effects are generally
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(b) Fourier spectra of the time histories of both a point velocity

and the drag force. The chart lines and axes are as per figure 6.3,

and the Strouhal frequency St = f0 = 0.1885.

Figure 6.7: Strouhal frequency variation (a) and time history spectra (b) for the flow past
a ring with Ar = 5 at Re = 320.
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(a) Re = 190, t− t0 = 900. (b) Re = 220, t− t0 = 750.

(c) Re = 320, t− t0 = 330. (d) Re = 320, t− t0 = 600.

Figure 6.8: Isosurface plots of the saturated wake structures in the flow past a ring with
Ar = 5 at various Reynolds numbers. The azimuthal domain size is λd = L0 ≈ 4d.
Blue and yellow contours show positive and negative streamwise vorticity, highlighting non-
axisymmetric wake structures. The translucent red isosurface represents a pressure contour
to highlight the position of the rollers which comprise the vortex street. The ring is coloured
green, and flow is from top right to bottom left in each frame.

isolated to regions of the spectrum with low energy, the plots were considered to be

worthy of inclusion here.

The loss of periodicity of the saturated wake is shown in figure 6.7(b) by the shallow

and narrow peaks at f/f0 = 1 and 2, and the increased amount of high-frequency noise

in the spectrum, when compared to the spectra presented previously for the lower-

Reynolds-number flows. Despite the presence of a number of small jagged peaks over

the frequency range 0 < f/f0 < 1, no evidence of a period-doubling bifurcation, or

indeed a period-doubling cascade is observed in the flow.

Isosurface plots of the wakes computed as past of the present study of a ring with

Ar = 5 are presented in figure 6.8. Plots of four wake states observed in the satu-

rated regimes are provided. Figures 6.8(a) and (b) show the uniform saturated wakes
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Figure 6.9: Evolution of the mean kinetic energy per period (Eq) for each azimuthal mode
in the flow past a ring with Ar = 10 at Re = 205. Axes and lines are as per figure 6.1.

corresponding to the Mode C and Mode A instabilities at Re = 190 and Re = 220,

respectively. The subharmonic nature of the Mode C wake in figure 6.8(a) is shown

by the alternating sign of streamwise vortical structures from one shedding cycle to

the next, and the alternating deformation of successive vortex streets (represented by

red pressure contours). These aspects are not observed in the wake in figure 6.8(b),

which clearly shows a periodic wake. Figures 6.8(c) and (d) show the disordered wake

at Re = 320, for times t− t0 = 330 and 600, respectively. Notice the localised regions

in the wake with vortical structures consistent with each of the Mode A, Mode B and

Mode C instabilities.

6.2.2 Ar = 10: A Secondary Subharmonic Mode

The flow past a ring with Ar = 10 was computed at Re = 205, Re = 240 and Re = 280,

to determine the wake transitions to turbulence with an increase in Reynolds number.

6.2.2.1 The Primary Instability: Mode A at Re = 205

The flow past a ring with Ar = 10 was computed at Re = 205. Non-axisymmetry

was computed to grow and saturate in the wake. In figure 6.9, the non-axisymmetric

200



modes are observed to saturate at t− t0 ≈ 800. At saturation, the dominant azimuthal

wavelength in the wake is shown to be the wavelength associated with the Mode A

instability. The spike in the low-energy modes at t− t0 ≈ 400 corresponds to a restart

of the computations from a single-precision saved file. Note how the three modes that

contain the most energy in the wake at this time remain unaffected by this restart

condition, and even the fourth-highest energy mode contains an almost imperceptible

kink in its linear profile. The linear continuation of the mode energy profiles after the

spike indicate that these restart transients decayed rapidly, and did not influence the

final saturation of the wake.

In figure 6.10(a), a plot of the Strouhal frequency variation is presented, which

shows a shift in frequency as the flow evolves from an axisymmetric wake to a non-

axisymmetric wake. The plot shows that non-axisymmetric wake retained the same pe-

riodicity as the axisymmetric wake, which is consistent with a transition to non-axisym-

metric flow through a regular bifurcation. A high uniformity of the non-axisymmetric

wake is suggested by the linear frequency profile observed at saturation for t− t0 & 800,

and by the similarity between the Strouhal frequency for saturated flow from the time

histories of the point velocity and the drag force.

The spectra presented in figure 6.10(b) emphasise the uniform nature of the sat-

urated non-axisymmetric wake at Re = 205. In the plot, many harmonic peaks are

observed in the point velocity spectrum, whereas little evidence of harmonic peaks is

observed in the drag force spectrum for f/f0 > 2.

6.2.2.2 The Secondary Instability: Mode C at Re = 240

A computation performed at a Reynolds number greater than the predicted critical

Reynolds number for the secondary instability, Mode C, provides a striking and unex-

pected result. Computations were initiated from the saturated non-axisymmetric wake

at Re = 205, and the Reynolds number was increased to Re = 240. A plot of the mode

energy in figure 6.11 shows that the wake rapidly assumes a quasi-periodic state, which

is characterised by a fluctuation in the azimuthal mode energy over a period of approxi-

mately 120 time units. The fluctuation is characterised by a linear growth of the longest

wavelength azimuthal mode that contains the most energy, over approximately 60 time

units. During this time, the lower-energy shorter-wavelength modes initially experi-

ence a decrease in energy over approximately 30 time units. The shorter-wavelength
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(b) Fourier spectra of the time histories of both a point velocity

and the drag force. The chart lines and axes are as per figure 6.3,

and the Strouhal frequency St = f0 = 0.1840.

Figure 6.10: Strouhal frequency variation (a) and time history spectra (b) for the flow past
a ring with Ar = 10 at Re = 205.
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Figure 6.11: Evolution of the mean kinetic energy per period (Eq) for each azimuthal mode
in the flow past a ring with Ar = 10 at Re = 240. Axes and lines are as per figure 6.1.

modes then grow at a faster rate than the dominant longest-wavelength mode. All of

the modes reach a maximum energy at approximately 90 time units. At this time,

the longest-wavelength mode rapidly loses energy, and reaches a minimum energy at

approximately 120 time units. For a short time during this final phase, the longest-

wavelength mode contains less energy than the shorter-wavelength modes, which decay

more slowly between approximately 90 and 120 time units.

A plot of the Strouhal frequency variation is presented in figure 6.12(a). The plot

provides additional information about the dynamics of the wake throughout the long-

timescale fluctuations. The point velocity frequency data and the drag force frequency

data are approximately equal, and show a cyclic change in the Strouhal frequency

over a period of approximately 120 time units. The cycle was initially characterised

by a Strouhal frequency of approximately St = 0.2. That frequency corresponded

to the linear growth regime described for the first 60 time units of the cycle from

the mode energy profiles of figure 6.11. The frequency rapidly decreased with the

evolution of the non-axisymmetric flow in the wake. Instead of reaching a constant

saturated frequency, the frequency then returned to St ≈ 0.2, as the energy of the
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non-axisymmetric modes in the wake decayed. A possible explanation for this is that

the dominant non-axisymmetric mode is unstable, and is dissipated by the evolution of

other competing modes in the wake.

An additional observation which may be drawn from the plots in figures 6.11

and 6.12(a) is that the cyclic mode evolution alternates between a deeper and more shal-

low decay every second cycle. The plot of the Strouhal frequency variation supports this

observation, as the frequency associated with the linear high-frequency regime is sus-

tained for more shedding cycles every second cycle of the non-axisymmetric mode evo-

lution. This behaviour was observed at every second cycle, where the non-axisymmetric

mode evolved from a flow with a smaller component of non-axisymmetry, when com-

pared with the alternate cycles.

A plot of the Fourier spectra of the measured time histories of the point velocity

and drag force are presented in figure 6.12(b). The plot exhibits broader peaks than

are observed in the spectral density plot for the flow at Re = 205, which shows that

the flow was not uniform and periodic at Re = 240. A low-frequency peak was also

detected, with a frequency that corresponded to the frequency of the long-timescale

cyclic mode energy fluctuation.

Figure 6.13 shows the non-axisymmetric wake structures that were computed at

various stages throughout the cyclic mode energy fluctuations. The isosurface plots

show the evolution of non-axisymmetric flow in the wake over one full cycle of the

mode energy fluctuation. The plots correspond to the cycle from t − t0 ≈ 180 to

t− t0 ≈ 300. The spatio-temporal distribution between the plots from successive peaks

in the non-axisymmetric mode energy cycle in figures 6.13(a) and (e) indicates that

the sign of the non-axisymmetric wake alternates every second cycle. Furthermore, it

may be observed in figures 6.13(b–d) that between the peaks, the non-axisymmetric

wake structures dissipate completely, before a subsequent evolution of the instability

with a reversed sign. The computed wake structure shown in figures 6.13(a) and (e) is

consistent with a Mode A instability. However, instead of the broad streamwise vorticity

isosurfaces in the braid regions of the vortex street that are observed for a Mode A wake,

pairs of co-rotating streamwise vortices are observed. This observed wake structure is

consistent with the addition to the wake of vortical structures associated with the Mode

B instability.

Although only five repetitions of the cyclic evolution of the non-axisymmetry in
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(b) Fourier spectra of the time histories of both a point velocity

and the drag force. The chart lines and axes are as per figure 6.3,

and the Strouhal frequency St = f0 = 0.1961.

Figure 6.12: Strouhal frequency variation (a) and time history spectra (b) for the flow past
a ring with Ar = 10 at Re = 240.
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(a) t− t0 = 180.

(b) t− t0 = 210. (c) t− t0 = 240. (d) t− t0 = 270.

(e) t− t0 = 300.

Figure 6.13: Isosurface plots of the saturated wake structures in the flow past a ring with
Ar = 10 at Re = 240, at several times throughout the computation. The azimuthal domain
size and contour shading are as per figure 6.8.

the wake at Re = 240 were computed, both the non-linear nature of the mechanism of

non-axisymmetric mode destruction, and the long timescale of the phenomenon, lead

to a conclusion that the cyclic evolution will not reach a periodic state. No further

computations of the wake at Re = 240 were attempted, due to the high computational

expense of the simulations.

6.2.2.3 The Tertiary Instability: Mode B at Re = 280

The flow past a ring with Ar = 10 at Re = 280 was computed. A plot of the variation in

the non-axisymmetric mode energy is presented in figure 6.14. Saturation to a chaotic

state occurred at t− t0 ≈ 200. The longest-wavelength azimuthal mode competes with

the modes corresponding to the Mode B and Mode C wavelengths. Consistent with the

flow past a ring with Ar = 5 at Re = 320, there are significant temporal regions that are

dominated by modes other than the longest-wavelength mode (e.g. 360 < t− t0 < 450

and 580 < t− t0 < 610).
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Figure 6.14: Evolution of the mean kinetic energy per period (Eq) for each azimuthal mode
in the flow past a ring with Ar = 10 at Re = 280. Axes and lines are as per figure 6.1.

A plot of the Strouhal frequency variation is presented in figure 6.15(a). The plot

shows that at saturation, oscillations occur over a frequency range of 0.191 < St < 2.04

over times t− t0 > 200.

The Fourier spectra for the flow past a ring with Ar = 10 at Re = 280 in fig-

ure 6.15(b) is similar to the spectra presented in figure 6.7(b) for the flow past a ring

with Ar = 5 at Re = 320. The chaotic fluctuations in the wake contribute a broad

spread of energy over a wide range of frequencies. In the plot, harmonic peaks are

visible in the point velocity spectrum up to frequencies of f/f0 = 3. For the flow past

a ring with Ar = 5 at Re = 320, spectral peaks are only detected up to f/f0 = 2,

which further indicates that the computation at Re = 320 is more chaotic than the

computation at Re = 280.

At Re = 280, the point velocity spectrum exhibits a small rise in the vicinity of

the subharmonic frequency f/f0 = 0.5. The absence of a well-defined peak at this

frequency implies that it is improbable that the route to chaos for the flow past a

ring with Ar = 10 occurs through a period-doubling cascade. Instead, the increase in

the energy of incommensurate frequencies in the spectra with an increase in Reynolds
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(b) Fourier spectra of the time histories of both a point velocity

and the drag force. The chart lines and axes are as per figure 6.3,

and the Strouhal frequency St = f0 = 0.1974.

Figure 6.15: Strouhal frequency variation (a) and time history spectra (b) for the flow past
a ring with Ar = 10 at Re = 280.
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(a) t− t0 = 390. (b) t− t0 = 540. (c) t− t0 = 720.

Figure 6.16: Isosurface plots of the saturated wake structures in the flow past a ring with
Ar = 10 at Re = 280, at several times throughout the computation. The azimuthal domain
size and contour shading are as per figure 6.8.

number suggests that the route to chaos is through the development of small scales in

the wake. This behaviour is consistent with the observed behaviour in the flow past a

ring with Ar = 5 with an increase in Reynolds number.

Three velocity fields were captured during the computation of the flow past a ring

with Ar = 10 at Re = 280. Isosurface plots of these flow fields are presented in

figure 6.16.

The flow visualisation plots presented in figure 6.16 show some interesting character-

istics. It may be observed from figures 6.16(a–c) that the wake structures approximately

4d and further downstream of the ring cross-section are dominated by wake structures

consistent with the Mode C instability. In figure 6.16(a), the near wake is dominated

by wake structures consistent with the Mode B instability. In figure 6.16(b), the near-

wake Mode B structures are not observed, and in figure 6.16(c), the near-wake Mode

B structures are only observed over half of the azimuthal span of the computation.

The Mode C wake structures observed further downstream are non-uniform, due to the

competing longer-wavelength azimuthal mode in the computation, which in figure 6.14

is shown to dominate the wake for a significant proportion of the computation. The plot

in figure 6.16(c) appears to be the most disordered of the three plots. The fundamental

azimuthal mode had the highest energy of the non-axisymmetric modes in the wake at

the time at which the flow field of the plot was captured.

6.2.3 Ar = 20: A Tertiary Subharmonic Mode

The flow past a ring with Ar = 20 was computed at Re = 205, Re = 280 and Re = 320,

to determine the wake transitions to turbulence with an increase in Reynolds number.
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Figure 6.17: Evolution of the mean kinetic energy per period (Eq) for each azimuthal mode
in the flow past a ring with Ar = 20 at Re = 205. Axes and lines are as per figure 6.1.

6.2.3.1 The Primary Instability: Mode A at Re = 205

The computed flow past a ring with Ar = 20 at Re = 205, with an azimuthal domain

size λd = L0, saturated at t − t0 ≈ 470, as shown in figure 6.17. The plot shows

that the saturated state for the primary non-axisymmetric mode is dissimilar to the

primary modes that evolve in the wakes of rings with Ar = 5 and Ar = 10, in that an

equilibrium is not reached, which corresponded to a small variation in the computed

Strouhal frequency in the wake. Figure 6.17 shows that after saturation of the non-zero

azimuthal modes, the fundamental azimuthal mode of the system continues to evolve.

The effect of the aforementioned fundamental azimuthal mode evolution on the

non-axisymmetric wake pattern is shown in figure 6.18, which presents isosurface plots

of the wake when saturation of the azimuthal modes first occurs at t − t0 = 450 in

figure 6.18(a), and when the fundamental mode had evolved considerably at t−t0 = 750

in part (b). The wake structures in part (a) are observed to be similar to both the

computed Mode A wake for the flow past a circular cylinder (Thompson et al. 1996), and

the visualisation of the Mode A wake in the flow past rings with Ar = 10 and Ar = 20,
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(a) t− t0 = 450. (b) t− t0 = 750.

Figure 6.18: Isosurface plots of the saturated wake structures in the flow past a ring with
Ar = 20 at Re = 205, at the initial saturation point (a), and after the evolution of the
fundamental azimuthal mode (b). The azimuthal domain size and contour shading are as per
figure 6.8.

which were presented in chapter 5, figures 5.24(a) and 5.31(a). In figure 6.18(b), it

is clear that the evolution of the fundamental azimuthal mode has altered the wake

pattern from figure 6.18(a). A disruption of the 4d azimuthal symmetry of the mode

is observed in the streamwise vortical structures stretching between the second pair

of vortices downstream of the ring cross-section. Furthermore, the non-axisymmetric

pattern is less defined, with the thickness of the streamwise vortical structures and their

distribution being noticeably less uniform than in figure 6.18(a).

The time history of the Strouhal frequency variation for the flow past a ring with

Ar = 20 at Re = 205 is presented in figure 6.19(a). Instead of a constant Strouhal fre-

quency being computed at saturation, both the point velocity and drag force frequency

measurements show that the Strouhal frequency varies considerably once the non-

axisymmetric wake achieves saturation. The drag force oscillation measurements show

that the wake oscillates over a narrow band of Strouhal frequencies 0.180 < St < 0.186.

The Fourier spectra of both the point velocity measurements and the drag force

measurements in figure 6.19(b) are indicative of the chaotic fluctuation of the wake at

Re = 205. Despite the short sample time for the saturated flow, which resulted in the

jagged spectral density profile, the shedding frequency f/f0 = 1 and the first harmonic

f/f0 = 2 are both well-defined in the drag force spectrum.

The cause of the variation in the shedding frequency of the flow at saturation of

the non-axisymmetric Mode A wake is unknown. Long-timescale computations would

assist to determine if any equilibrium state is reached in the wake with regard to the
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(b) Fourier spectra of the time histories of both a point velocity

and the drag force. The chart lines and axes are as per figure 6.3,

and the Strouhal frequency St = f0 = 0.1821.

Figure 6.19: Strouhal frequency variation (a) and time history spectra (b) for the flow past
a ring with Ar = 20 at Re = 205.
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Figure 6.20: Evolution of the mean kinetic energy per period (Eq) for each azimuthal mode
in the flow past a ring with Ar = 20 at Re = 280. Axes and lines are as per figure 6.1.

fundamental azimuthal mode, as it was still observed to increase when the computation

was terminated. This underlying variation does not appear to correspond to an alter-

native non-axisymmetric instability mode, as the magnitude of the mean azimuthal

mode energy corresponding to the wavelength of the Mode B and Mode C instabilities

remains well below the energy of the azimuthal mode corresponding to the Mode A

wavelength.

6.2.3.2 The Secondary Instability: Mode B at Re = 280

Figure 6.20 shows that the increase in Reynolds number from Re = 205 to Re = 280 has

caused a significant change in the behaviour of the non-axisymmetric modes in the wake.

The computation at Re = 280 saturated at t−t0 ≈ 300. For brief periods, an azimuthal

wavelength which corresponds to the Mode C instability is observed to dominate in the

wake for times 280 < t− t0 < 380, 430 < t− t0 < 500 and 600 < t− t0 < 720.

The Strouhal frequency variation of the flow past a ring with Ar = 20 at Re = 280 in

figure 6.21(a) shows an increase in frequency of approximately 10% from the saturated

Mode A wake at Re = 205. This is consistent with experimental observations of

the flow past a circular cylinder (Williamson 1988b, 1996b), and the flow past a ring
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(b) Fourier spectra of the time histories of both a point velocity

and the drag force. The chart lines and axes are as per figure 6.3,

and the Strouhal frequency St = f0 = 0.2010.

Figure 6.21: Strouhal frequency variation (a) and time history spectra (b) for the flow past
a ring with Ar = 20 at Re = 280.
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(Leweke & Provansal 1995), which both show a reduction in Strouhal number as the

non-axisymmetric Mode A wake saturates at Re ≈ 190, as well as a subsequent rise

in Strouhal number as the secondary non-axisymmetric instability evolves for 230 .

Re . 260. The Strouhal frequencies at Re = 280 are scattered over the range 0.191 <

St < 0.207, with the majority of frequencies in the range 0.197 < St < 0.207. As

with the majority of examples presented here, the point velocity measurements of the

Strouhal frequency variation are far more widely scattered, due to local oscillations

from small-scale wake structures.

The point velocity and drag force spectra presented in figure 6.21(b) show a similar

distribution of spectral density to the flow past a ring with Ar = 10 at Re = 280, and

the flow past a ring with Ar = 5 at Re = 320, with two significant exceptions. These

exceptions include a stronger drag force peak at f/f0 = 2, and a small rise in the point

velocity spectrum at f/f0 = 0.5.

The previous discussion of the frequency of the drag force oscillation described how

the drag force peak at f/f0 = 1 vanishes as Ar → ∞, with the curvature-induced

asymmetry of the vortex street. Hence, with an increase in aspect ratio, the peak at

f/f0 = 2 grows as the wake approaches the wake behind a circular cylinder. For the

spectrum obtained from the flow past a ring with Ar = 20, this effect is more apparent

than for the smaller aspect ratios considered. In this case, the peak at f/f0 = 2 is

higher and more broad than the peak at f/f0 = 1.

The second observation of interest pertains to the presence of a small rise in the

vicinity of the subharmonic frequency f/f0 = 0.5 in the point velocity spectrum. This

observation is significant, as it is the strongest evidence presented thus far to suggest

the influence of a subharmonic instability on a non-axisymmetric wake. Only the spec-

trum of the flow past a ring with Ar = 5 at Re = 190 presents a more well-defined

subharmonic spectral peak, however, in that case the subharmonic Mode C instability

was the only unstable non-axisymmetric mode. Here the Reynolds number is greater

than both the critical Reynolds numbers of the linear Mode A and Mode B instabilities,

and is still less than the critical Reynolds number of the Mode C instability. As the

difference between the saturated non-axisymmetric wake at this Reynolds number, and

the corresponding axisymmetric wake used for the linear stability analysis calculations

is significant, it is not surprising that evidence of the tertiary non-axisymmetric vortex

shedding mode in the flow past a ring with Ar = 20, Mode C, is observed at Reynolds

215



(a) t− t0 = 690. (b) t− t0 = 840.

Figure 6.22: Isosurface plots of the saturated wake structures in the flow past a ring with
Ar = 20 at Re = 280, with the Mode C wavelengths dominating the wake (a), and where
Mode A, Mode B and Mode C contribute a similar amount of energy to the wake (b). The
azimuthal domain size and contour shading are as per figure 6.8.

numbers below the critical Reynolds number of the instability.

In figure 6.22, isosurface plots of the wakes computed for the flow past a ring

with Ar = 20 at Re = 280 are presented. An attempt to visualise the different wake

patterns that emerge throughout the saturated regime was made by analysing the mean

azimuthal mode energy plot (figure 6.20). Two wake flow fields were captured, at times

t− t0 = 690, and t− t0 = 840, corresponding to a wake that was dominated by a Mode

C wavelength mode, and a wake where the wavelengths corresponding to the three

non-axisymmetric instability modes contribute a comparable amount of energy.

The isosurface plot in figure 6.22(a) is consistent with the mean azimuthal mode

energy plot, with well-ordered subharmonic wake patterns observed with both symme-

try and azimuthal wavelength consistent with the Mode C instability in the far wake,

and in the near wake (within 4d to 5d of the ring cross-section), shorter-wavelength

streamwise vortical structures which correspond to the Mode B instability are visible.

The poor definition of the streamwise vortical structures associated with Mode B is

probably due to the competition with the Mode C instability in the near wake.

The mode energy distribution at a time t− t0 = 804 shows a competition between

all three of the non-axisymmetric vortex shedding modes, and the isosurface plot of the

non-axisymmetric wake at this time in figure 6.22(b) is consistent with this observation.

Downstream of the ring cross-section, the computational domain shows five sets of

streamwise vortical structures on the upper side of the wake, corresponding to the braid

region between each set of vortex cores. The apparent azimuthal symmetry for each of

216



Figure 6.23: Isosurface plot of the saturated non-axisymmetric wake structures in the flow
past a ring with Ar = 20 at Re = 320, at a time t− t0 = 510. The azimuthal computational
domain size and contour shading is as per figure 6.8.

these braid regions is as follows (upstream to downstream): Mode B, Mode A, Mode

C, Mode A and Mode A. This behaviour in the wake reflects the competition between

the azimuthal modes that is predicted from the mode energy plot from figure 6.20, and

the irregularity of the wake over time is reflected in the Fourier spectra of time history

presented in figure 6.21.

6.2.3.3 The Tertiary Instability: Mode C at Re = 320

To compare with the isosurface plot presented for the flow past a ring with Ar =

20 at Re = 280, an isosurface plot for the flow past the same ring at Re = 320 is

presented in figure 6.23. The wake at Re = 320 shows the presence of smaller scales

in the wake, which are visualised by both small-scale isosurfaces, and irregularities and

inconsistencies in the larger-scale streamwise vortical structures. The asymmetry of the

wake can be observed from the drastically deformed underlying vortex street, which in

turn has disrupted the distribution of streamwise vortical structures in the wake.

A time history plot of the mean azimuthal mode energy for the flow past a ring with

Ar = 20 at Re = 320 is presented in figure 6.24. The plot shows that the distribution

of energy in the wake was similar to the flow past the same ring at Re = 280, which

was presented in figure 6.20, with a chaotic energy fluctuation visible throughout the

saturated regime. A distinction between this plot and the plot of computations at Re =

280 is the absence of temporal regions dominated by Mode C wavelengths. The plot
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Figure 6.24: Evolution of the mean kinetic energy per period (Eq) for each azimuthal mode
in the flow past a ring with Ar = 20 at Re = 320. Axes and lines are as per figure 6.1.

shows that at Re = 320, the three linear non-axisymmetric instability modes contain

a similar proportion of the overall azimuthal energy in the wake. The fundamental

azimuthal mode also contains a significant proportion of the azimuthal mode energy,

indicating a lack of ordered patterns in the wake, in agreement with the wake isosurface

visualisation presented in figure 6.23.

A plot of the Strouhal frequency variation in the flow past a ring with Ar = 20 at

Re = 320 is presented in figure 6.25(a). The plot is remarkably similar to the plot for

the flow past the same ring at Re = 280. In this plot, the Strouhal frequencies from

drag force measurements are concentrated in the range 0.199 < St < 0.210, whereas

the Strouhal frequencies from point velocity measurements are scattered over a large

range of frequencies.

Spectra of the point velocity and drag force time histories are presented in fig-

ure 6.25(b). The distribution of spectral density for both the drag force and the point

velocity time histories is similar to the spectra presented for the flow past a ring with

Ar = 20 at Re = 280. The drag force peak at f/f0 = 2 is more strongly defined at

Re = 320 than at Re = 280, which suggests a the reduction in the pairing of vortices
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(b) Fourier spectra of the time histories of both a point velocity

and the drag force. The chart lines and axes are as per figure 6.3,

and the Strouhal frequency St = f0 = 0.2035.

Figure 6.25: Strouhal frequency variation (a) and time history spectra (b) for the flow past
a ring with Ar = 20 at Re = 320.
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in the vortex street due to the ring curvature at this higher Reynolds number. The

subharmonic peak in the point velocity spectrum at f/f0 = 0.5 is absent, which is

consistent with the absence of temporal regions dominated by subharmonic Mode C

wavelengths in the mean azimuthal mode energy plot at Re = 320 in figure 6.24.

6.3 Azimuthal Domain Variation Study

Results are presented in this section from computations which were initiated from the

computed flow fields obtained in the Reynolds number variation study. The Reynolds

number from the computations of the tertiary instability regime is preserved for this

study. To hasten saturation of the flow, the new modes introduced by the azimuthal

Fourier expansion over the domain size λd = 2L0 are perturbed by the addition of

random noise at the commencement of the computations.

6.3.1 Ar = 5 with λd = 2L0

The flow past a ring with Ar = 5 is computed to saturation at Re = 320, with an

azimuthal domain size λd = 2L0.

In figure 6.26 the mean azimuthal mode energy is presented for the flow past a

ring with Ar = 5 at Re = 320, computed over a domain size λd = 2L0. Saturation is

observed occurring at t− t0 ≈ 100, and the computation is continued for approximately

550 further time units, providing over 100 vortex shedding cycles. The plot shows

that upon saturation, a consistent random variation is present in the azimuthal energy

of each mode, however individual modes only occupy a certain band of energies, and

on average, it is the longer-wavelength azimuthal modes that contain the most energy

in the saturated wake. Interestingly, in agreement with the findings of Henderson

(1997) for the circular cylinder wake, the longest-wavelength mode (λd ≈ 8d) was

the highest-energy azimuthal mode in the present computation. Coupled with the

significant amount of energy contained in the fundamental azimuthal mode, it is likely

that the wake will exhibit a lack of coherence between any repeated non-axisymmetric

wake structures in the azimuthal direction.

Isosurface plots which show the non-axisymmetric structure of the wake have been

captured at times t− t0 = 300 and t− t0 = 650, and are presented in figure 6.27. It is

obvious from the plots that there is little evidence of coherent non-axisymmetric wake

patterns in the flow past a ring with Ar = 5. The near wake displays a distribution of
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Figure 6.26: Evolution of the mean kinetic energy per period (Eq) for each azimuthal mode
in the flow past a ring with Ar = 5 at Re = 320, with an azimuthal domain size λd = 2L0. The
fundamental Fourier mode is represented by a dotted black line, and the longest-wavelength
azimuthal mode (λd ≈ 8d) is coloured orange. The azimuthal modes which correspond to
the wavelengths of the Mode A, B and C instabilities are represented by blue, red and green
lines, respectively, and shorter-wavelength modes are coloured light grey.

Mode B wake structures in the near wake behind the ring cross-section at t− t0 = 300.

However, at t−t0 = 650 these Mode B structures appear to break down at the azimuthal

mid-point of the computational domain, in a fashion similar to the observed bursting of

a Mode A wavelength wake structure among Mode B wake structures in the computed

straight circular cylinder wake at Re = 265 (Henderson 1997) with a large spanwise

computational domain.

Further downstream, isolated portions of the wakes at both times exhibit non-

axisymmetric structures corresponding to either Mode B or Mode C type wake struc-

tures, however the high proportion of wake energy contained in the fundamental and

longest-wavelength azimuthal modes destroy any large-scale repetitive wake patterns

of these vortex shedding modes.

The Strouhal frequency variation measured from a point velocity time history and

the drag force time history (see figure 6.28(a)) shows a high similarity to the Strouhal
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(a) t− t0 = 300. (b) t− t0 = 650.

Figure 6.27: Isosurface plots of the saturated wake structures in the flow past a ring with
Ar = 5 at Re = 320. An azimuthal domain size of λd = 2L0 was employed, and contour
shading is as per figure 6.8.

frequencies determined from the corresponding computations with an azimuthal do-

main size λd = L0, in that there is a wide scatter in the point velocity Strouhal

frequencies, and the drag force Strouhal frequencies occupy three distinct frequency

bands. A greater number of drag force frequencies occupy the shedding frequency band

at approximately St = 0.17, while the harmonic frequency bands occupy frequencies

St ≈ 0.325 and St ≈ 0.45.

Two significant alterations to the Fourier spectra of the saturated time histories

of the point velocity and the drag force measurements shown in figure 6.28(b) have

occurred when compared with the spectra obtained from computations with λd = L0.

Firstly, the drag force spectrum peaks have become broader, and higher frequencies

contain a greater proportion of spectral density than for the drag force measurements

over the shorter azimuthal domain. Secondly, the point velocity peak at f/f0 = 1 is far

smaller than for the point velocity peak obtained from the computations with λd = L0,

and the peak at f/f0 = 2 is imperceptible. This agrees with the observation from

figure 6.28(a) that shows no perceptible grouping of point velocity Strouhal frequencies

near the base shedding frequency from the drag force measurements of St ≈ 0.17.

The discrepancy between the point velocity and drag force Fourier spectra show

that with the larger computational domain, and the induced breakdown of the regular

patterns that correspond to non-axisymmetric vortex shedding modes, time histories

recorded at a point in the wake will appear random due to the chaotic nature of the

wake, whereas the drag force retains the shedding frequency information, as it is a
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figure 6.2.
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(b) Fourier spectra of the time histories of both a point velocity

and the drag force. The chart lines and axes are as per figure 6.3,

and the Strouhal frequency St = f0 = 0.1896.

Figure 6.28: Strouhal frequency variation (a) and time history spectra (b) for the flow past
a ring with Ar = 5 at Re = 320, with an azimuthal domain size of λd = 2L0.
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global measure of the wake dynamics. The broader peak in the drag force spectrum

indicates a loss in periodicity of the wake, which likely results from the influence on the

wake of the longer-wavelength azimuthal mode introduced into the computations.

In the numerical study of the flow past a circular cylinder by Henderson (1997), the

route to chaos in the vortex street was proposed to occur through the development of

spatio-temporal chaos. In computations of the flow past a ring with Ar = 5, the wake

was observed to experience a period-doubling bifurcation. With an increase in Reynolds

number, this subharmonic instability was replaced by a harmonic non-axisymmetric

Mode A instability, which eradicated the period-doubling bifurcation in the wake. A

further increase in Reynolds number caused a competition between Mode A, B and C

wake structures, but no evidence of a subharmonic peak was observed in the spectral

density plots at higher Reynolds numbers, which showed that a period-doubling cascade

was not observed in the flow past a ring with Ar = 5.

An increase in the azimuthal span caused a breakdown of the non-axisymmetric

wake patterns due to the influence of longer-wavelength azimuthal modes. These modes

contained a higher proportion of energy than the azimuthal modes of the Mode A, B

and C instabilities. This phenomenon indicated that the route to turbulence in the flow

past a ring with Ar = 5 occurred through the development of spatio-temporal chaos,

rather than through a period-doubling cascade, despite the period-doubling bifurcation

that occurred with the primary non-axisymmetric instability.

In figure 6.29, time history plots of the reconstructed spatial w–velocity variation

in the wake are presented. The data was originally obtained at a point in the wake

approximately 4d directly downstream of the ring cross-section, and these plots were

reconstructed from the mode energy (Eq) plots presented in this chapter. The az-

imuthal phase of the Fourier modes of the velocity have been omitted, and the velocity

modes have been averaged over each shedding cycle. This is important, as these time

history plots do not display the physical spatio-temporal wake patterns (such as those

presented by Henderson (1997)); instead, they provide an alternative means to visualise

the contribution of the azimuthal modes to the non-axisymmetric wakes.

Figure 6.29(a) shows the evolution of the Mode C instability in the flow past a ring

with Ar = 5 at Re = 190. The dominant azimuthal wavelength of the saturated wake

(λd = L0/2) is consistent with that of a Mode C instability, and the observed structure

of the non-axisymmetric wake (see figure 6.8). The uniformity of the plot at saturation

224



t - t0

L
0

500 600 700 800 900
0

0.5

1

(a) Re = 190.

(b) Re = 220.

(c) Re = 320, λd = L0.

(d) Re = 320, λd = 2L0.

Figure 6.29: Reconstructed time history plots of the mean w–velocity variation over a span
at a z–r location in the wake per shedding cycle, for a ring with Ar = 5. Positive and negative
velocities are indicated by green and red contours, respectively. Arbitrary contour levels are
used, and azimuthal phase information is disregarded for clarity. The dominant mode at a
time t − t0 can be determined from the azimuthal (y–direction) wavelengths of the cycles
between positive and negative velocities (i.e. Modes A, B and C have λd ≈ L0, L0/4 and
L0/2, respectively).
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(t− t0 & 750) is indicative of the periodicity of the wake.

When the Reynolds number is increased to Re = 220 in figure 6.29(b), the Mode C

wake pattern became unstable, as observed by the variation in strength of the azimuthal

wake velocity for t − t0 . 200. For t − t0 & 200, the Mode C pattern dissipated,

and was replaced by a wake pattern dominated by a Mode A wavelength (λd = L0)

which was stable and periodic. The velocities observed for t − t0 & 200 show that

the stable wake which formed after the dissipation of the Mode C wake had a smaller

non-axisymmetric energy than the Mode C wake. In chapter 5, it was shown that

the amplitudes of successive pure non-axisymmetric modes of a wake decreased with an

increase in Reynolds number, and the computed pure Mode A wakes had approximately

double the amplitude when compared to the pure Mode C wakes. The observation here,

though, suggests that the amplitude of the non-axisymmetric wake structure decreased

with an increase in Reynolds number throughout the laminar regime, irrespective of

the order of the instability modes.

The time history plot in figure 6.29(c) shows the wake at Re = 320. At this

Reynolds number, each of the non-axisymmetric vortex shedding modes are linearly

unstable to the axisymmetric wake, and the chaotic pattern that is observed in the plot

indicates that structures corresponding to each of the three instabilities exist in the

wake, albeit briefly. The large regions of positive and negative velocity for L0 = 0 and

1, respectively, indicate that the longest-wavelength mode dominates the wake upon

saturation at t− t0 ≈ 50. At several instances in the time history, a pattern consistent

with a Mode C wake is shown to dominate the wake. These include 45 . t − t0 . 60,

225 . t − t0 . 250 and 300 . t − t0 . 350. For far more brief periods, the presence

of wavelengths consistent with Mode B (L0/4) can be observed (e.g. t − t0 ≈ 255 and

t− t0 ≈ 645).

An increase in the azimuthal span to λd = 2L0 had an interesting effect on the

wake, as shown by the plot in figure 6.29(d). The wake with λd = L0 which was used

for the initial condition rapidly breaks down, and by t− t0 ≈ 90, a chaotic wake state

dominated by the longest-wavelength mode is sustained. The high irregularity and

aperiodicity of the wake is evidenced by the fluctuation in velocity throughout the time

history. Significantly, however, only for very brief durations can evidence of the presence

of wake structures corresponding to the vortex shedding instabilities be observed. A

possible Mode A wake may exist at t − t0 ≈ 300, or t − t0 ≈ 450, and at t − t0 ≈ 510
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a wavelength corresponding to Mode C briefly emerges. The limited presence of wake

structures which correspond to the linear vortex shedding modes, and the domination

of the chaotic wake by the longest-wavelength mode, are consistent with the flow past

a circular cylinder (Henderson 1997) and rings (Leweke & Provansal 1995), in terms of

the development of spatio-temporal chaos in the wake.

Despite the period-doubling of the wake caused by the initial non-axisymmetric

bifurcation, evidence of a period-doubling cascade with an increase in Reynolds number

is not observed. Instead, the temporal wake fluctuations are induced by the non-linear

interaction between the vortex shedding modes with an increase in Reynolds number.

An increase in the azimuthal span introduces longer-wavelength modes, which dominate

the wake dynamics, and initiate a route to turbulence through the development of

spatio-temporal chaos.

6.3.2 Ar = 10 with λd = 2L0

The mean azimuthal mode energy plot obtained from computations of the flow past

a ring with Ar = 10 at Re = 280 bears some subtle differences to the corresponding

plot of the flow past a ring with Ar = 5 which employed an azimuthal domain size

λd = 2L0. The plot is presented in figure 6.30.

The magnitude of the mode energies is significantly lower for the present compu-

tations, with the saturated mode energies varying between 10−29 . Eq . 10−8, rather

than 10−22 . Eq . 10−3 for the flow past a ring with Ar = 5. The longest-wavelength

azimuthal mode (8d) contains a great majority of the azimuthal mode energy in the

wake, averaging an energy of order O(103) greater in magnitude than the next highest

energy mode, corresponding to the wavelength of Mode A.

The fundamental azimuthal mode of wake asymmetry contains a far lower propor-

tion of the overall energy than for the computation of the flow past a ring with Ar = 5

which employed an azimuthal domain size λd = 2L0, with a magnitude Eq ≈ 10−20.

The Strouhal frequency variation from the present computations of the flow past a

ring with Ar = 10 at Re = 280 is presented in figure 6.31(a). The distribution and mag-

nitude of the Strouhal frequencies is very similar to the corresponding measurements

of the Strouhal frequencies with a computational domain size λd = L0.

The spectra obtained from the computations with an azimuthal domain size λd =

2L0 are presented in figure 6.31(b). The drag force Fourier spectrum of the saturated
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Figure 6.30: Evolution of the mean kinetic energy per period (Eq) for each azimuthal mode
in the flow past a ring with Ar = 10 at Re = 280, with an azimuthal domain size λd = 2L0.
Line colouring is as per figure 6.26.

wake computed for the flow past a ring with Ar = 10 at Re = 280, with an azimuthal

domain size λd = 2L0, is almost identical in profile to the corresponding spectrum

measured from the wake computed with an azimuthal domain size λd = L0. The point

velocity spectrum is somewhat different to the corresponding spectrum obtained from

computations with λd = L0. In those computations, the magnitude of the shedding

frequency and harmonic peaks were larger than those observed in the present compu-

tations. It is also observed that there is a more pronounced reduction in the spectral

density of the point velocity signal than the drag force signal at higher frequencies from

computations with an azimuthal domain λd = 2L0.

Isosurface plots which show the non-axisymmetric wake structures for the flow past

a ring with Ar = 10 at Re = 280 computed with an azimuthal domain size λd = 2L0

are presented in figure 6.32. As with the isosurface plots generated from the computa-

tions with λd = 2L0 for the flow past a ring with Ar = 5, there is little consistency in

terms of the non-axisymmetric structures in the wake in either the azimuthal direction,

or between the pair of plots which were obtained at different times throughout the

computation. The near wake again consists largely of Mode B type wake structures,
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(b) Fourier spectra of the time histories of both a point velocity

and the drag force. The chart lines and axes are as per figure 6.3,

and the Strouhal frequency St = f0 = 0.1971.

Figure 6.31: Strouhal frequency variation (a) and time history spectra (b) for the flow past
a ring with Ar = 10 at Re = 280, with an azimuthal domain size λd = 2L0.
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(a) t− t0 = 360. (b) t− t0 = 630.

Figure 6.32: Isosurface plots of the saturated wake structures of the flow past a ring with
Ar = 10 at Re = 280. The computations employed an azimuthal domain size λd = 2L0, and
contour shading is as per figure 6.8.

although the uniformity of the structures is not maintained over the azimuthal span.

At distances downstream of greater than approximately 4d to 5d from the ring cross-

section, the Mode B streamwise vortical structures are replaced by wake patterns which

exhibit a spatio-temporal symmetry consistent with Mode C. These Mode C structures

are better defined in figure 6.32(a), at t− t0 = 360. The plot in part (b) shows a down-

stream wake region which consists of structures with a longer azimuthal wavelength,

which likely result from interference of the Mode A instability, and longer-wavelength

non-linear modes.

The isosurface plots in part (a) and part (b) show a loss of any discernable wake

patterns at distances downstream greater than approximately 15d.

The flow past a ring with Ar = 10 shows some curious characteristics as the

Reynolds number increases through the critical Reynolds numbers of the linear in-

stability modes.

The evolution of the primary instability, Mode A, produces a periodic wake, as may

be observed from the time history plot in figure 6.33(a). The wake at Re = 205 is

fully saturated and periodic for t− t0 & 840, with the wake dominated by an azimuthal

wavelength which corresponds to the Mode A instability (λd = L0). This is in good

agreement with the results presented earlier in figures 6.9 and 6.10. The regions of

weak positive and negative velocity at approximately 0.3L0 and 0.7L0 result from the

contribution of shorter-wavelength modes to the structure of the saturated wake.

The plot in figure 6.33(b) shows the result of a Reynolds number increase to Re =
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Figure 6.33: Reconstructed time history plots of the mean w–velocity variation over a span
at a z–r location in the wake per shedding cycle, for the flow past a ring with Ar = 10.
Contour colours and levels are as per figure 6.29.
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240. The wake adopts a cycle of evolution and self-destruction over a timescale in

the order of T = 1.5 × 102 time units (which corresponded to approximately 3 × 101

shedding cycles). This cycle was discussed earlier, in terms of the azimuthal mode

energy variation and the non-axisymmetric wake structure, but a useful contribution is

made by the plot in figure 6.33(b). Clearly, the evolution of the non-axisymmetric modes

is represented by the shaded regions. Notice that the evolution of each of these regions

is dominated initially by the Mode A wavelength, and after some time 50 . ∆t . 80,

shorter wavelength modes (such as Mode C and Mode B) evolve. It is most clearly

apparent at times t − t0 ≈ 200 and 310, that the destruction of the non-axisymmetric

wake structures occurs immediately upon saturation of structures with an azimuthal

wavelength consistent with the Mode B instability.

In chapter 7, the stability of the saturated three-dimensional wakes of a circular

cylinder is investigated. The observation here of the destruction of a Mode A wake

caused by the evolution of a competing Mode B instability is a key result which pertains

to that study.

A further increase in Reynolds number causes another dramatic alteration in the

observed time history in figure 6.33(c). The long-timescale cyclic evolution of the non-

axisymmetric wake is no longer observed. Instead, for t− t0 . 100, evidence of a Mode

B wavelength is observed to evolve in the wake. For times 100 . t − t0 . 150, this

wavelength is unstable and dissipates, instead replaced by a chaotic saturated wake

state characterised by a rapid switching between vortex shedding modes for all times

t− t0 & 150. An exception is the region 360 . t− t0 . 440, which is dominated solely

by a Mode C wavelength. The overall dynamics of the time history bears a striking

resemblance to that of the flow past a ring with Ar = 5 in figure 6.29(c).

A time history of the wake computed with an increased azimuthal domain size is

presented in figure 6.33(d). As with the plot shown in figure 6.29(d), the wake is

dominated by the additional longer-wavelength mode λd = 2L0 in the computations.

A chaotic variation in flow structures is observed in the saturated wake at t− t0 ≈ 150,

and no evidence of shorter-wavelength modes which correspond to Mode A, B or C are

observed.

The flow past a ring with Ar = 10 has revealed some interesting phenomena which

pertain to the non-axisymmetric transitions in the wake. Despite the periodic Mode

A wake which evolved from the primary non-axisymmetric transition, the subsequent
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competition between instability modes with an increase in Reynolds number first ini-

tiated a long-timescale cyclic evolution and destruction of the non-axisymmetry in the

wake, which was followed by a chaotic wake characterised by the rapid switching be-

tween the various unstable vortex shedding modes. An increase in the azimuthal span

introduced longer wavelengths to the wake that produced dynamics consistent with a

route to turbulence through the development of spatio-temporal chaos.

6.3.3 Ar = 20 with λd = 2L0

The wake computed for the flow past a ring with Ar = 20 at Re = 320, with an

azimuthal domain size λd = 2L0 exhibited an almost identical behaviour to the wake

in the flow past a ring with Ar = 10 at Re = 280.

The mean azimuthal mode energy plot for the flow past a ring with Ar = 20

is presented in figure 6.34. It is immediately obvious that the relative trends and

magnitudes of the individual azimuthal modes is very similar to those of the flow past

a ring with Ar = 10 presented previously in figure 6.30. Notice specifically the high

proportion of energy contained within the longest-wavelength (λd ≈ 8d) mode of the

system compared to the other azimuthal modes of asymmetry. It is also of interest

to observe the linear decay of the fundamental mode to a magnitude of approximately

10−25 for t− t0 & 190.

Isosurface plots of the non-axisymmetric wake structure of the flow past a ring with

Ar = 20 at Re = 320 have been captured at times t − t0 = 390 and t − t0 = 750.

These plots are presented in figure 6.35, and show a strong correlation with the non-

axisymmetric wake structure computed for the flow past a ring with Ar = 10 at Re =

280, with an azimuthal domain size λd = 2L0. Similarities include the concentration of

streamwise vortical structures with an azimuthal wavelength which corresponds to the

Mode B instability, which are located within approximately 5d of the ring, and a chaotic

wake observed further downstream, with isolated instances of structures with azimuthal

wavelengths which correspond to both Modes A and C. The chaotic behaviour observed

in the far wake explains the high proportion of azimuthal mode energy contained by

the longest-wavelength mode in the computation.

In both parts (a) and (b) of figure 6.35, a large deformation of the vortex rollers along

the azimuthal span of the wake is observed. This deformation results in a maximum

deviation of the vortex cores from the mean position in the r–z plane of between
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Figure 6.34: Evolution of the mean kinetic energy per period (Eq) for each azimuthal mode
in the flow past a ring with Ar = 20 at Re = 320, with an azimuthal domain size λd = 2L0.
Line colouring is as per figure 6.26.

1d to 2d. The shorter-wavelength non-axisymmetric wake structures deform with the

deformation of the vortex street, and this corresponds with the breakdown of coherent

wake patterns which correspond to the linear instability modes.

The frequency variation plot in figure 6.36(a) reiterates the similarity between the

computations which employed an azimuthal domain size λd = 2L0, for the flow past a

ring with Ar = 10, and the present computations of the flow past a ring with Ar = 20. A

diverse scatter of the point velocity frequency measurements is observed, which relates

to the chaos observed in the wake. The drag force frequency measurements provide a

reasonable estimate of the vortex shedding frequency of the wake, with a great majority

of the measured frequencies calculated in a range 0.199 < St < 0.205, centred around

St ≈ 0.202.

It can be observed from the Fourier spectra of figure 6.36(b) that both the drag force

time history and the point velocity time history behave in a fashion similar to the time

histories computed from the flow past a ring with Ar = 10 with an azimuthal domain

size λd = 2L0. The point velocity spectrum exhibits a single peak at f/f0 = 1. For

lower frequencies (f/f0 → 0) the spectral density of both the point velocity and the drag
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(a) t− t0 = 390. (b) t− t0 = 750.

Figure 6.35: Isosurface plots of the saturated wake structures in the flow past a ring with
Ar = 20 at Re = 320. The azimuthal domain size is lambdad = 2L0, and contour shading is
as per figure 6.8.

force time histories increase, which suggests the presence of large-timescale disturbances

in the wake. This may be due to the influence of the longest-wavelength azimuthal

mode included in the computations. The spectrum of the drag force contains a strong

harmonic peak at f/f0 = 2, which relates to the drag force frequency of two-dimensional

vortex streets. In addition, a small peak at the harmonic frequency f/f0 = 4 is also

visible. In keeping with the aspect ratio trend towards a circular cylinder, it may be

noted that the peak at f/f0 = 2 is stronger here than the corresponding peaks measured

from the flow past rings with higher curvatures (Ar = 5 and Ar = 10).

The time history plot in figure 6.37(a) provides an interesting visual representation

of the saturated Mode A wake for a ring with Ar = 20. Recall that upon saturation, the

wake displayed a small chaotic frequency fluctuation. After saturation of the mode with

an azimuthal wavelength λd = L0 in the wake at t−t0 ≈ 460, shorter-wavelength modes

are observed to cause a small aperiodicity in the wake. The small amplitude of these

modes compared to the Mode A wavelength means that they can only be observed,

in figure 6.37(a), in the region 0.35L0–0.65L0. The observed frequency fluctuation

indicates that the Mode A wake is unstable, as at this Reynolds number no evidence of

an alternative instability, such as the evolution of the Mode B or the Mode C instability

is observed.

In figures 6.37(b) and 6.37(c), time histories of the wake are presented for Re = 280

and Re = 320, respectively. These plots indicate a similar dynamical behaviour of

the wake, with a chaotic competition between the longest-wavelength Mode A in-
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(b) Fourier spectra of the time histories of both a point velocity

and the drag force. The chart lines and axes are as per figure 6.3,

and the Strouhal frequency St = f0 = 0.2027.

Figure 6.36: Strouhal frequency variation (a) and time history spectra (b) for the flow past
a ring with Ar = 20 at Re = 320, with an azimuthal domain size λd = 2L0.
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(a) Re = 205.

(b) Re = 280.

(c) Re = 320, λd = L0.

(d) Re = 320, λd = 2L0.

Figure 6.37: Reconstructed time history plots of the mean w–velocity variation over a span
at a z–r location in the wake per shedding cycle, for the flow past a ring with Ar = 20.
Contour colours and levels are as per figure 6.29.
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stability, and wavelengths associated with the Mode C and Mode B instabilities. A

higher prevalence of regions dominated by Mode C wavelengths may be observed (e.g.

200 . t − t0 . 350 and 425 . t − t0 . 480) in figure 6.37(b), when compared with

figure 6.37(c), which appears to be dominated by the longest-wavelength mode (e.g.

t − t0 . 200), as well as comprising several regions with a significant proportion of

wavelengths corresponding to the Mode B instability (e.g. t− t0 ≈ 400).

These time history plots bear a remarkable similarity to the plots obtained at Re =

320 for the flow past a ring with Ar = 5, and at Re = 280 for the flow past a ring with

Ar = 10, in figures 6.29(c) and 6.33(c), respectively. This indicates that irrespective

of the order in which the linear vortex shedding instabilities are predicted to occur,

the non-linear interaction between the non-axisymmetric modes will incite a similar

chaotic competition in the wake. In figure 6.37(d), a plot of the time history of the

wake computed with an azimuthal span of λd = 2L0 is presented. Consistent with

previous computations with a span of λd = 2L0, a chaotic time history is observed,

which indicates that the wake is dominated by the longest-wavelength mode, and no

evidence can be observed of the formation of non-axisymmetric wake structures which

correspond to the Mode A, B or C instabilities.

In the present work, the vortex streets in the wakes behind rings have been studied

which have both a subharmonic and a regular first-occurring non-axisymmetric insta-

bility. From the observed behaviour of the computed wakes, it is concluded that turbu-

lent flow develops in a vortex street through the development of spatio-temporal chaos,

irrespective of the spatio-temporal symmetry of the first-occurring non-axisymmetric

mode. This conclusion is in agreement with the study by Henderson (1997), who pro-

posed that the route to chaos for the vortex street in the flow past a circular cylinder

was through the development of spatio-temporal chaos.

6.4 Drag and Strouhal–Reynolds Number Measurements

In this section, both the mean drag coefficients from the computations performed in

this chapter, and the Strouhal frequencies obtained, will be compared with earlier work.

6.4.1 Drag Coefficients with Mode Interaction

In chapter 3, drag coefficients were presented from axisymmetric computations of the

flow past rings, a sphere, and a circular cylinder. The results were compared to pre-

238



Re

C
d

100 150 200 250 300 350
1

1.1

1.2

1.3

1.4

(a) Total drag (Cd).

Re

C
dp

100 150 200 250 300 350
0.8

0.9

1

1.1

1.2

(b) Pressure component (Cdp).

Re

C
dν

100 150 200 250 300 350
0.1

0.2

0.3

0.4

(c) Viscous component (Cdν).

Figure 6.38: Total and component drag coefficients computed for the non- axisymmetric
bifurcations in the flow past a ring with Ar = 5, with azimuthal domain sizes λd = L0 and
2L0 (represented by orange line and diamonds). The previous axisymmetric drag profile is
represented by a black line, and the non-axisymmetric instabilities are shown by blue, red
and green lines, for Mode A, Mode B and Mode C, respectively.
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Figure 6.39: Total and component drag coefficients computed for the non- axisymmetric
bifurcations in the flow past a ring with Ar = 10. Colours and symbols are as per figure 6.38.
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Figure 6.40: Total and component drag coefficients computed for the non- axisymmetric
bifurcations in the flow past a ring with Ar = 20. Colours and symbols are as per figure 6.38.
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vious experimental and numerical studies, and a discrepancy was observed between

mean two- and three-dimensional drag measurements of the flow past a circular cylin-

der. In Chapter 5, drag coefficients were presented from computations of the pure

non-axisymmetric vortex shedding modes in the flow past rings, which showed that

the evolution of non-axisymmetric vortex shedding modes caused a reduction in the

drag coefficient due to a reduction in the pressure component of the drag force. The

suppression of mode interaction in those results limited the scope of the results.

In the present chapter, computations were employed with a sufficient azimuthal span

to permit all the linear instabilities in the wake to evolve. The data from figures 5.23,

5.30 and 5.36 are reproduced here, with the inclusion of the measured mean drag

coefficients from the present study. Drag coefficients computed in the flow past rings

with Ar = 5, Ar = 10 and Ar = 20 are presented in figures 6.38, 6.39 and 6.40,

respectively.

For the flow at each aspect ratio, there is a significant decrease from the axisymmet-

ric Cd profile for each of the rings as the Reynolds number is increased (figures 6.38(a),

6.39(a) and 6.40(a)). It is apparent from the plots of the pressure and viscous compo-

nents of the drag coefficient that the decrease in the drag is almost solely the result of

a reduction in the pressure component of the drag coefficient (compare figures 6.38(b),

6.39(b) and 6.40(b) with figures 6.38(c), 6.39(c) and 6.40(c), respectively).

The hysteretic onset of the first-occurring non-axisymmetric transitions in the flow

past rings with Ar = 10 and 20 can be observed in figures 6.39 and 6.40. In figure 6.38,

the continuous bifurcation of the non-axisymmetric drag coefficient profile from the axi-

symmetric drag coefficient profile verifies the non-hysteretic onset of the first-occurring

non-axisymmetric transition in the wake. In figures 6.39 and 6.40, the onset of non-

axisymmetric flow induces a sharp and discontinuous reduction in the measured drag

coefficient with an increase in Reynolds number. The drag coefficient profiles increase

with an increase in Reynolds number for a short time, before they decrease with a

further increase in the Reynolds number.

6.4.2 Strouhal–Reynolds Number Profiles with Mode Interaction

Mean Strouhal frequencies have been determined for the saturated wakes obtained

from the computations performed in this chapter. Data were obtained through the

non-axisymmetric flow regimes in the flow past rings with Ar = 5, 10 and 20. For
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Figure 6.41: Strouhal–Reynolds number profiles over the non-axisymmetric flow regimes
in the flow past rings. Squares and circles represent computed axisymmetric and non-
axisymmetric data, respectively. Lines represent the experimentally measured profiles from
Leweke & Provansal (1995). The Strouhal–Reynolds number profile for the flow past a circu-
lar cylinder (black line, Williamson 1988a, 1996b) is included for reference. Blue represents
numerical results with Ar = 20, and experimental data with Ar = 18.8. Red represents
numerical and experimental data with Ar = 10, and green represents numerical data with
Ar = 5.

comparison, the experimental Strouhal–Reynolds number profiles presented by Leweke

& Provansal (1995) are presented. Their study included Strouhal number measurements

for the flow past rings with Ar = 10.0 and Ar = 18.8, which are compared to the

computed Strouhal numbers for the flow past rings with Ar = 10 and Ar = 20.

A Strouhal–Reynolds number plot which illustrates this comparison is provided in

figure 6.41. Observe the laminar axisymmetric shedding profiles for Re . 180. The

numerical computations consistently predict Strouhal frequencies at a given Reynolds

number approximately 2% higher than the experimental data. As this discrepancy lies

outside the error bounds of the numerical computations, a probable explanation for

this discrepancy is the influence of long-wavelength instabilities on the experimental

measurements, which were recorded over many shedding cycles.

The limited number of numerical Strouhal frequencies obtained through the non-
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axisymmetric flow regime make comparisons with the experimental profiles difficult.

The computed values for the wakes behind rings with Ar = 10 and 20 at Re = 205 are

close to the experimental profiles, which indicates that a uniform Mode A wake was

likely to have been captured experimentally in the flow past rings with these aspect

ratios.

The discontinuous drop in Strouhal frequency at the onset of the Mode A transition

is captured by the non-axisymmetric computations of the flow past rings with Ar = 10

and 20. Compare these Strouhal–Reynolds number profiles to the continuous variation

in the Strouhal–Reynolds number profile observed for the flow past a ring with Ar = 5,

where St ≈ 0.18 was obtained for 160 . Re . 220, before an increase to St ≈ 0.188 at

Re = 320.

To properly include all possible wake dynamics in the computations, an azimuthal

span sufficient to model the entire ring (requiring some 250 azimuthal Fourier modes)

would be required, which is not feasible with the present computational resources.

The small difference between the Strouhal numbers obtained from computations which

employed azimuthal domain sizes of λd = 1L0 and 2L0 verify the earlier assumption that

the important wake dynamics through the non-axisymmetric flow regime (excluding

oblique shedding modes) are captured with an azimuthal span of λd ≈ 8d.

6.5 Oblique and Non-Linear Shedding Modes

In this section, an attempt to compute oblique shedding modes in the flow past a ring

is presented. Experimental work carried out as part of this study observed evidence

of both oblique shedding spirals, and a transverse shedding mode, which initiated a

side-to-side motion of the ring.

6.5.1 Computation of an Oblique Shedding Mode

An oblique shedding mode was artificially constructed in the flow past a ring with

Ar = 4.94 at Re = 100. An investigation of the number of azimuthal planes required to

model a single-helix oblique vortex shedding mode was conducted. Strouhal frequency

measurements from computations which employed 16 Fourier planes or greater varied

by approximately 2%, and therefore 16 Fourier planes was considered sufficient for

qualitative computations. The computed single-helix mode reached a steady state in

the flow past rings, which verified that oblique shedding modes are stable at Reynolds
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(a) t = 0.25T . (b) t = 0.5T .

(c) t = 0.75T . (d) t = 1.0T .

Figure 6.42: Simulated-particle computations of an artificially induced single-helix oblique
shedding mode in the flow past a fixed ring with Ar = 4.94 at Re = 180, over a single
shedding cycle.

numbers significantly in excess of the critical Reynolds number for the onset of vortex

shedding, which was predicted in the application of the Ginzburg–Landau model by

Leweke & Provansal (1995). Plots of a single-helix oblique mode in the flow past a ring

with Ar = 4.94 at Re = 180 are shown throughout a period of shedding in figure 6.42.

6.5.2 Experimental Observations of a Transverse Mode

In the experimental setup, the buoyant ring was towed by a tether in a vertical direction.

The arrangement permitted asymmetrical shedding modes to develop, which imposed

a transverse oscillatory motion on the ring as it was towed through the tank. Both

oblique and side-to-side oscillations were observed. In the sections to follow, the results
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of tethered-body computations of the flow past a ring are presented, to compare with

the experimentally observed modes.

6.5.2.1 The Numerical Technique Employed to Model a Tethered Body

A numerical scheme was employed to model the flow past a tethered ring. The numerical

scheme was validated and successfully applied to model the flow past tethered spheres

by Pregnalato (2003). Briefly, the numerical technique permits the body to move about

a fixed tether of length Lteth. To calculate the motion, the viscous and pressure forces

acting on the body are calculated, and from a given mass ratio m?, the acceleration of

the body may be determined. A predictor–corrector method is employed to accurately

determine the spatial shift of the body as the flow is computed.

For simplicity in the present computations, the mass ratio of the ring was set to

unity, and a tether length Lteth = 10 was employed to approximate the experimental

conditions. Artificial flow fields were employed as initial conditions, which were designed

to initiate both oblique and transverse modes of shedding in the wake.

6.5.2.2 A Comparison Between Computations and Experimental Flow Vi-
sualisation

Figure 6.43 shows comparisons between the experimental dye visualisations and numer-

ical simulated-particle tethered-body computations for flow past a ring with Ar = 4.94

at Re = 180.

The plots appear qualitatively similar, but upon close inspection, subtle differences

may be observed between the vortex structure in the vicinity of the ring, and the

location of the ring relative to the wake. These differences result from the choice of

parameters in the numerical computations. The nature of the experimental setup was

such that the tether shortened continuously as the ring descended through the tank. A

mean value was selected as an approximation for the numerical study. There appears

to be more motion in the experimental visualisations, which can be discerned from the

images by the shearing of the near wake in the transverse direction within approximately

1d of the ring body. The motion in the numerical study was damped due to the selection

of a mass ratio m? = 1.0. This was necessitated as the numerical code was formulated

with gravity imposed in the transverse direction, rather than the axial direction as was

required here. A mass ratio of unity was selected to overcome this buoyancy problem,

whereas in fact the mass ratio was approximately m? = 0.5.
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(a) Comparison 1. Left: Experimental dye visualisation. Right: Simulated-

particle visualisation.

(b) Comparison 2. Left: Experimental dye visualisation. Right: Simulated-

particle visualisation.

Figure 6.43: Comparison between experimental observations of a vortex-induced side-to-
side motion of a ring, and numerical tethered-body computations. A ring with Ar = 4.94
at Re = 180 is shown. The tether length continuously reduced over the experimental run,
whereas the computation employed a constant tether length that was approximately equal
to the mean experimental tether length. In addition, the ring mass ratio was approximately
0.5 in the experiments, and was unity in the computation.
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The overall structure of the wake in figure 6.43 shows a shedding of vorticity on al-

ternate sides of the wake every half period, which is consistent with the unsteady wakes

shed from rings with aspect ratios Ar . 3.9. It should be noted that computational

attempts to artificially induce this transverse shedding mode in the flow past a fixed

ring proved fruitless. In those computations, the vortex-loop structure quickly broke

down, and the wake reverted to an axisymmetric vortex street. It is concluded that

for fixed rings with aspect ratios Ar & 3.9, oblique shedding modes are the only stable

shedding modes which may be observed in the place of a parallel vortex street.

6.6 Chapter Summary

In this chapter, the development of non-uniformities in the parallel vortex streets in

the flow past rings was investigated. The existence of other non-linear shedding modes

has also been considered, with both helical and transverse shedding modes being suc-

cessfully computed.

The development of non-uniformity in a vortex street has previously been studied

in relation to the flow past a circular cylinder by Henderson (1997). In that study,

computations were performed to analyse the wake in the context of pattern formation

and the route to chaos for the wake. It was observed that chaotic flow developed in the

wake with both an increase in Reynolds number, and the spanwise wavelength of the

computations, through the development of spatio-temporal chaos.

In chapters 4 and 5, it was predicted and verified that the Mode C instability evolved

through a subharmonic instability, which caused a period-doubling of the wake. It is

known that a cascade of period-doubling bifurcations is a possible mechanism for the

development of chaos in two-dimensional flows. Evidence is presented in this chap-

ter which shows that the subharmonic instability does not initiate a period-doubling

cascade in the vortex street for the flow past rings. Instead, it is proposed, based on

the analysis of the wakes computed for this study, that the route to chaos in vortex

streets behind rings occurs through the development of spatio-temporal chaos, which is

consistent with the mechanism for the development of chaos in the vortex street behind

a circular cylinder. It is proposed that regardless of whether or not the primary non-

axisymmetric mode causes a period-doubling of the wake, the non-linear evolution of

the mode introduces an azimuthal variation in the wake. This adds a spanwise variation

to the wake, which is analogous to the addition of an extended spatial dimension to a
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dynamical system. This feature invalidates the two-dimensional requirement necessary

for a period-doubling cascade in the vortex street (Braun et al. 1998).

The existence of other possible modes of shedding in the flow past rings has also

been studied in this chapter. Through application of both experimental dye visual-

isation, and numerical simulated-particle computations, a helical mode of shedding

was visualised, which has been previously observed by Monson (1983) and Leweke &

Provansal (1995). Through the implementation of numerical tethered-body computa-

tions, the experimental rig was accurately modelled, and a transverse mode of shedding

was visualised which initiated a side-to-side motion of the ring both experimentally

and computationally. The existence of this mode has not previously been reported,

and the wake structure bears a similarity to the vortex distribution of the in-phase

vortex streets behind a pair of circular cylinders from Williamson (1985a).

Previous computational studies have provided measurements of the drag coefficient

for the three-dimensional flow past a circular cylinder (e.g. Henderson 1995). Those

computations showed that the drag coefficients obtained from three-dimensional com-

putations provided estimates of the drag coefficients which agreed more closely with

experimental measurements. No measurements of the drag coefficients for the flow past

rings has yet been reported for the Reynolds number range considered in the present

study. Drag coefficients for the non-axisymmetric flow past rings have been computed

as part of this study, and the results have been presented in this chapter. It was shown

that in computations with an azimuthal domain size sufficiently large to capture the

three non-axisymmetric instabilities of the vortex street, drag coefficients were obtained

that were smaller than the drag coefficients obtained from axisymmetric computations

over the non-axisymmetric flow regimes.
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Chapter 7

Three-Dimensional Flow Regime
for the Flow past a Circular
Cylinder

The stability of vortex streets to both linear and non-linear three-dimensional instabil-

ities was studied in chapters 4 to 6. In this chapter, the three-dimensional transition

regime of the vortex street in the wake of a circular cylinder is studied. Through a se-

ries of classic experimental studies (Williamson 1988a,b, 1989, 1996b,c), the Strouhal–

Reynolds number profile for the laminar flow past a circular cylinder was mapped. The

measured profiles included discontinuities in the vicinity of the onset of Mode A and B.

The discontinuity at the onset of Mode A was due to the hysteretic onset of the mode,

and the discontinuity at the onset of Mode B was due to a gradual energy transfer be-

tween wake structures consistent with Mode A to Mode B. The computational studies

of Barkley & Henderson (1996) and Henderson (1997) agreed with these experimental

observations.

The Mode A and B instabilities were modelled as a coupled pair of evolution equa-

tions by Barkley et al. (2000). They determined coefficients of their model from three-

dimensional computations of the pure Mode A and Mode B wakes. Their model showed

that the development of three-dimensional flow in the wake of a circular cylinder, in-

cluding the hysteretic onset of Mode A and the energy shift from Mode A to Mode B,

could be described by a simple set of equations.

This chapter comprises two studies. Firstly, an extension of the evolution equations

is developed, whereby frequency information is incorporated to model the Strouhal–

Reynolds number profile of the wake of a circular cylinder through the three-dimensional

transitions. Secondly, a linear stability analysis will be performed on spanwise-averaged
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three-dimensional flows, to attempt to describe the three-dimensional bifurcations of

the wake of a circular cylinder in terms of the stability of the pure three-dimensional

flows.

The formulation of the coupled Landau model which is presented here has been

discussed in Sheard et al. (2003a).

7.1 A Coupled Landau Model Describing the Three-Di-
mensional Modes in the Wake

This section details the extension of an existing set of coupled evolution equations for

the amplitude of the three-dimensional Mode A and Mode B transitions in the wake

of a circular cylinder, to describe the Strouhal–Reynolds number profile through the

Reynolds number range of the transitions.

7.1.1 Characteristics of the Three-Dimensional Modes in the Wake

Williamson (1988b) identified two stages in the transition to three-dimensionality of the

wake behind the circular cylinder. These stages are characterised by discontinuous tran-

sitions in the Strouhal–Reynolds number profile, coupled with the evolution of spanwise

periodic deformations of the two-dimensional vortex street. The first transition, which

resulted in a discontinuous and hysteretic reduction in the Strouhal frequency of shed-

ding, has become known as Mode A. The Mode A wake comprises streamwise vortex

loops in the braid region between successive rollers in the vortex street, and the spanwise

wavelength of the repeating three-dimensional structures is approximately four cylinder

diameters (4d). The transition to Mode A occurs over a hysteretic Reynolds number

range of approximately 180 < Re < 190, and the subsequent transition to the Mode B

wake occurs gradually over an approximate Reynolds number range 230 < Re < 265

(Henderson 1997). The Mode B wake pattern has a much shorter spanwise wavelength

(approximately 1d), and the transition to Mode B occurs through a gradual transfer

of energy from Mode A to Mode B wake structures, coupled with an increase in the

Strouhal frequency of shedding.

Three-dimensional numerical computations by Thompson et al. (1994, 1996) pro-

vided striking visualisations of the three-dimensional structure and spanwise wavelength

of the Mode A and Mode B wake structures, as well as divulging the spatio-temporal

symmetry of the wakes. Visualisations from similar computations have been presented
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by Zhang et al. (1995) and Henderson (1997).

A landmark application of a linear Floquet stability analysis to the two-dimensional

wake of a circular cylinder by Barkley & Henderson (1996) gave predictions of the

critical Reynolds numbers for the three-dimensional transitions pertaining to both Mode

A and Mode B, as well as correctly identifying the respective spanwise wavelength

and spatio-temporal symmetry characteristics of the transition modes. They predicted

Mode A to first occur with a spanwise wavelength of 3.96d at Re u 188.5, and the onset

of Mode B to occur with a spanwise wavelength of 0.822d at Re u 259.

Three distinct flow regimes have been identified as the flow past a circular cylinder

becomes three-dimensional. A Mode A regime exists for 180 . Re . 230, where the

wake is dominated by the Mode A instability. A mixed Mode A/B regime exists for

230 . Re . 265, where a gradual transfer from Mode A to Mode B structures occurs,

with both Mode A and B structures observed intermittently. A Mode B regime exists

for Re & 265, where the wake is dominated by the Mode B instability.

7.1.2 Non-Linear Transition Behaviour

The non-linear behaviour of the three-dimensional transition modes of the wake of the

circular cylinder was first investigated by Henderson & Barkley (1996). They deter-

mined the complex Landau coefficients and ascertained whether the modes occurred

through supercritical or subcritical bifurcations. The linear coefficients of the Landau

equation were in agreement with the growth rates determined from stability analysis,

and an analysis of the cubic coefficients provided the criticality of the transitions. Con-

sistent with previous observations, the Mode A transition was found to occur through

a subcritical bifurcation, indicating an hysteretic transition. The Mode B transition

was found to occur through a supercritical bifurcation, consistent with a non-hysteretic

transition.

The Landau model was applied successfully to various two- and three-dimension-

al transition modes in fluid mechanics applications. Provansal et al. (1987) used the

Landau equation to model the Hopf transition of a steady circular cylinder wake to

an unsteady wake at around Re = 48.6. The criticality of the asymmetric regular and

Hopf transitions of the wake of a sphere were also accurately determined by Ghidersa

& Dušek (2000) and Thompson et al. (2001a).

Barkley et al. (2000) suggested a bifurcation scenario consisting of coupled evolution
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equations for the amplitudes of the Mode A and Mode B instabilities in the wake of a

circular cylinder. The coupled evolution equations

An+1 = µA(Re)An + αA
1 |An|2An + γA

1 |Bn|2An + αA
2 |An|4An,

Bn+1 = µB(Re)Bn + αB
1 |Bn|2Bn + γB

1 |An|2Bn,
(7.1)

are, essentially, truncated discrete Landau equations, incorporating additional coupling

terms for An and Bn. A fifth-order truncation is sufficient to model the subcritical

onset of Mode A, and a third-order truncation is sufficient to model the supercritical

onset of Mode B. These Landau equations, incorporating third-order coupling, are a

normal form for the simultaneous bifurcation of modes A and B.

7.1.3 Extension of the Coupled Evolution Equations

In order to model Strouhal frequency variation of the transition modes, the coefficients

in equation 7.1 are expanded into the complex plane, and are evaluated for computed

Strouhal frequencies of the saturated three-dimensional modes.

The values of the coefficients will be determined later. In equation 7.1, An and Bn

represent the complex amplitudes of Mode A and Mode B, respectively, for the nth

period of oscillation. The µA and µB coefficients are the real Floquet multipliers of the

linear instabilities of the cylinder wake, and the αA
1 and αB

1 coefficients are the cubic

coefficients of the Landau model from the Henderson (1997) study. The αA
2 term is

the additional quintic coefficient required to describe the saturation and hysteresis of

Mode A, and finally the γA
1 and γB

1 coefficients determine the mode coupling of the

system, and have been estimated from experimental observations (Williamson 1988b)

of the transition from Mode A to Mode B in the circular cylinder wake.

In order to incorporate temporal information into the coupled amplitude equations,

the evolution amplitudes An and Bn are replaced with complex amplitudes A and B,

and in addition, the evolution equations are recast in the familiar differential equation

form of the Landau equations. From the definition of the Floquet multiplier,

µ ≡ e(σT ), (7.2)

the linear growth rate coefficient (σ) is substituted into the Landau equations, where

T is the period of oscillation of the two-dimensional shedding mode. This substitution
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gives

dA

dt
= [σA(Re) + iωA]A + αA

1 (1 + icA
1 )|A|2A

+ γA
1 (1 + idA

1 )|B|2A + αA
2 (1 + icA

2 )|A|4A,
dB

dt
= [σB(Re) + iωB]B + αB

1 (1 + icB
1 )|B|2B + γB

1 (1 + idB
1 )|A|2B.

(7.3)

In equation 7.3, the angular frequency of the modes for infinitesimal amplitudes is given

by ωA = ωB = ω ≡ 2π/T , where T is the period of oscillation.

7.1.4 Evaluation of the Model Coefficients

The linear complex coefficients, ωA and ωB, are functions of Reynolds number, and

provide the angular oscillation frequency in the linear regime of the transition modes,

corresponding to the laminar Strouhal number profile of the two-dimensional vortex

street. The complex coefficients, cA
1 , cA

2 and cB
1 , determine the frequency behaviour of

the modes through saturation. The calculation of these coefficients is relatively simple,

as they may be calculated independently for Mode A and Mode B. The cB
1 term is

simply the Landau constant of the Mode B transition, and as the Mode B transition is

described by a cubic truncation of the Landau model, the value of the coefficient may

be determined by following the analysis of Dušek et al. (1994), and Le Gal et al. (2001).

By assuming at saturation B = ρB
sate

(iΦB) in a cubic truncation of the Landau equation

for Mode B alone, where ρB
sat = |B| and dΦB/dt = ωB, the Landau constant can be

expressed as a function of the global system parameters cB
1 = (ωB − ωB

sat)/σB, where

ωB
sat is the saturated oscillation frequency. These global parameters are determined

from a three-dimensional computation including only Mode B.

For calculation of the αA
1 , αA

2 , cA
1 and cA

2 terms of the quintic Mode A transition

model, two pairs of equations are formed for separate computations of the Mode A wake.

By substituting A = ρA
sate

(iΦA) in the quintic Mode A Landau equation, neglecting the

coupling term and grouping real and imaginary parts, the relationships

0 = σA + αA
1 (ρA

sat)
2 + αA

2 (ρA
sat)

4,

0 = ωA − ωA
sat + αA

1 cA
1 (ρA

sat)
2 + αA

2 cA
2 (ρA

sat)
4,

(7.4)

result for the sine and cosine coefficients.

The global parameters, ωA, ωA
sat, σA and ρA

sat, are determined for computations

at two discrete Reynolds numbers in the Mode A flow regime, not far in excess of

the critical Reynolds number, and the two pairs of equations are solved for the four
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unknown coefficients: αA
1 , αA

2 , cA
1 and cA

2 . From the calculated values of αA
1 and αA

2 ,

the predicted Reynolds number range of hysteresis (∆ReA) may be found from

∆ReA =
−(αA

1 )2

4mAαA
2

, (7.5)

where mA is the gradient of the growth rate, σA(Re). The values determined for the

present study predict ∆ReA u 16.2, which is of the same order as the estimation of

∆ReA ≈ 10 from Henderson (1997). Note that this figure is solely determined from the

pair of computations of Mode A above the critical Reynolds number.

The real coupling coefficients are determined by using the experimentally observed

(Williamson 1988b) Reynolds numbers for the first-occurring instance of Mode B, and

the last-occurring instance of Mode A, in the cylinder wake. The coupled Mode A

and Mode B equations are each evaluated at the Reynolds numbers at which their

corresponding wake structures are last observed and first observed, respectively. For

Mode A and Mode B, these critical Reynolds numbers are ReA
last ≈ 260 and ReB

first ≈
230, respectively. Substituting |A| = 0 and |B| = 0 in the Mode A and Mode B

equations, respectively, and solving for the coupled coefficients gives

γA
1 =

−σA
Re=ReA

last

|BRe=ReA
last
|2 =

αB
1 σA

Re=ReA
last

σB
Re=ReA

last

,

γB
1 =

−σB
Re=ReB

first

|ARe=ReB
first
|2 =

2αA
2 σB

Re=ReB
first

αA
1 +

√
(αA

1 )2 − 4αA
2 σA

Re=ReB
first

.

(7.6)

The mode amplitudes |A| and |B| are determined from a norm of the three-dimen-

sional velocity component from computations of the evolution of the three-dimensional

Mode A and Mode B wakes. The amplitude norm is computed using the method

employed in chapter 5, which also contains a discussion of the benefits of applying this

(near) global measure of the amplitude of the mode to the Landau model.

The present amplitude norm integrates the w–velocity component over the computa-

tional domain. This is slightly different to the method applied by Henderson & Barkley

(1996) and Henderson (1997), who integrated the longest-wavelength Fourier mode of

the three-dimensional velocity component over their computational domain. The differ-

ent integrals employed for the norms employed in these studies explains the quantitative

difference between the magnitude of the amplitudes obtained for the present study, and

the study of Barkley et al. (2000). The choice of integrals also produces the large dis-

crepancy between the present α and γ parameters, and the values obtained previously
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Coefficient Value

σA 1.699× 10−3(Re − 187.41)
σB 4.868× 10−3(Re − 258.24)

ωA and ωB 2π(8.539× 10−5Re + 0.1999− 4.009/Re)
αA

1 1.203× 103

αA
2 −1.313× 107

αB
1 −7.297× 103

γA
1 −1.048× 105

γB
1 1.033× 103

cA
1 −1.055

cA
2 −0.3276

cB
1 8.342× 10−2

dA
1 −0.2

dB
1 −0.25

Table 7.1: Values of coefficients determined for the present model.

by Barkley et al. (2000). The magnitude of these amplitudes is in fact arbitrary, it

is important only to achieve a qualitative consistency between the amplitude profiles.

The consistency between the predicted mode amplitude variation with Reynolds num-

ber from the present model, and the previous work (Barkley et al. 2000) in figure 7.1

is very good, indicating a high degree of computational accuracy for both studies.

Table 7.1 summarises the values of the coefficients of the complex amplitude equa-

tions employed in this investigation. All the real coefficients have been calculated from

three-dimensional computations which were performed as part of the present study.

The complex coefficients of first-order terms are derived from a Strouhal–Reynolds

number relationship determined from the present numerical calculations, employing

the same form as the universal laminar Strouhal–Reynolds number profile proposed by

Williamson (1988a).

The higher-order complex coefficients are determined from computations of the

evolution and saturation of three-dimensional wakes corresponding to the Mode A and

Mode B instabilities. Computations at Reynolds numbers Re = 195 and Re = 200

were employed to evaluate the coefficients cA
1 and cA

2 for the Mode A instability. A

computation of the Mode B wake at Re = 265 was used to evaluate the coefficient

cB
1 . Values for the complex coupling coefficients, dA

1 and dB
1 , were chosen to equate

the computed Strouhal frequencies at the last appearance of Mode A, and the onset of

Mode B, respectively, with experimentally obtained frequencies (Williamson 1988b).

The coupled complex amplitude equations proposed here are solved simultaneously
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Figure 7.1: Bifurcation diagram which shows the predicted
√
|A|2 + |B|2 variation with

Reynolds number from the coupled models. The blue line represents the prediction of the
present model, and the dotted red line shows the prediction of the coupled evolution equations
from Barkley et al. (2000).

by employing a third order Adams-Bashforth scheme, giving

Ai+1 = Ai +
∆t

12
[23fA

i − 16fA
i−1 + 5fA

i−2],

Bi+1 = Bi +
∆t

12
[23fB

i − 16fB
i−1 + 5fB

i−2],
(7.7)

where fA
i and fB

i denote the right hand sides of the complex coupled Landau equations

evaluated at the ith timestep. The asymptotic frequency information may be evaluated

from the saturated mode amplitudes directly, but in a future expansion of the present

model, a spanwise diffusion term is to be included to model long-wavelength three-

dimensional wake patterns, in a fashion similar to the complex Ginzburg-Landau model

applied to the wakes behind rings by Leweke & Provansal (1995). The future expan-

sion necessitates temporal integration of the model, and the Adams-Bashforth method

is implemented here for the purpose of validation. The Adams-Bashforth method main-

tains an accuracy of order ∆t4, as verified by a brief temporal resolution study that

determines the stability and accuracy of the present numerical formulation. Temporal

stability was achieved for time steps ∆t ≤ 0.125. The computed Strouhal frequency
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Figure 7.2: A plot of the Strouhal–Reynolds number profile for the flow past a circular
cylinder. The blue line represents the computed Strouhal frequencies from the proposed
coupled Landau model, and the open red circles represent the experimental universal Strouhal
frequency curve from Williamson (1988a).

was used to monitor convergence of the model. At a time step of ∆t = 0.125, the

computed Strouhal frequency was within 0.032% of the Strouhal frequency computed

at ∆t = 9.766 × 10−4. The present study employed a time step of ∆t = 0.1, which

maintained both an accuracy of better than 0.025%, and temporal convergence, over

the Reynolds number range which was investigated.

The evolution equations of Barkley et al. (2000) predict a bifurcation diagram which

shows the three distinct three-dimensional mode branches for an increase in Reynolds

number. Their model is compared to the present model, which predicts qualitatively

the same behaviour, in figure 7.1. Notice the hysteresis at the onset of the Mode A

branch for 180 . Re . 188, and the mixed Mode A/B branch for 230 . Re . 260 as

energy is transferred from Mode A to Mode B.

The present model evaluates the frequencies associated with the modes from the

evolution equations in equation 7.1 (Barkley et al. 2000). Strouhal frequencies are de-

termined at increments of ∆Re = 1 through the Reynolds number range 48 < Re < 300.

Over the mixed Mode A/B regime (230 . Re . 260), discrete oscillation frequencies
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were present for the Mode A and Mode B amplitudes. This corresponds to the discon-

tinuous region of the Strouhal–Reynolds number profile of the circular cylinder wake

where energy is transferred from Mode A wake structures to Mode B. The predicted

Strouhal–Reynolds number profile from the present model is presented in figure 7.2.

The experimental circular cylinder wake Strouhal–Reynolds number data, corrected for

parallel shedding by Williamson (1988a), is included for comparison.

7.1.5 Concluding Remarks and Future Extensions

Despite only evaluating the complex model coefficients for Strouhal frequencies in the

vicinity of the Mode A and Mode B transitions, the computations presented here show

that a remarkable qualitative agreement is observed between the experimental Strouhal–

Reynolds number profile of a circular cylinder wake through the three-dimensional flow

regime, and the Strouhal frequencies determined using the present coupled Landau

model. The Strouhal frequency of both Mode A and Mode B are very well predicted

by the present model for Re . 260. The constant Strouhal frequency of St ≈ 0.203,

observed experimentally for Re & 260, differs from the predicted increase in Strouhal

frequency by the model, probably due to longer-span instabilities that lower the shed-

ding frequency from that of the pure Mode B wake computed for the coefficients of the

present model. The two-dimensional Strouhal profile also lies in good agreement with

the corrected experimental data for parallel shedding.

The possibilities for extending the present formulation of this coupled Landau model

are numerous. One possibility is to include a third equation for the base flow amplitude,

which would incorporate a spanwise expansion to form a complex Ginzburg-Landau

equation (see Leweke & Provansal 1995). It would be interesting to study the effects

of various long-wavelength vortex street effects such as oblique shedding and vortex

dislocations on the evolution and behaviour of a spanwise series of coupled Landau

equations for the Mode A and Mode B instabilities. Of interest would also be attempts

to model the bursting and mode switching between Mode A and Mode B in the mixed

Mode A/B regime. Despite being appealing in theory, the application of these proposed

extensions is difficult, as consideration of the change in growth rate of the instability

modes must be made for both the strength and alignment of the underlying vortex

street, and frequency feedback terms must be included in the base flow equation to

shift the Strouhal frequency to the saturated Mode A and Mode B frequencies.
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A second alternative expansion is to include a third Landau equation for a Mode C

instability, and adapting the σ terms to the wake behind a ring by introducing functions

of aspect ratio, σ(Ar). Such an expansion requires two coupling terms per equation,

and at present insufficient data is available to derive the twelve coupling coefficients (six

real, six imaginary) required. Adding further complexity to the model, the saturation

terms of at least the Mode C equation, and for good accuracy the Mode A and Mode

B equations also, would be required to be expressed as functions of aspect ratio.

It would be useful to ascertain the precise range of validity of the non-linear models

investigated here in terms of the reduced Reynolds number (Re−Rec)/Rec, where Rec

is the critical Reynolds number of the relevant transition (Provansal et al. 1987). This

could provide an explanation for the discrepancy between the computed and predicted

Strouhal frequencies at Reynolds numbers beyond Re ≈ 300 from the coupled Landau

model for Modes A and B.

Such extensions lie beyond the scope of the present work, but it is felt that they

would provide worthwhile contributions to the understanding of the transition processes

for the wake of a circular cylinder and a ring.

7.2 A Spanwise-Averaged Linear Stability Analysis of the
Three-Dimensional Modes in the Wake

In this section a method to determine the stability of three-dimensional modes in a wake

is presented. The method is applied with varying success to the modes that evolve from

the pure Mode A and Mode B instabilities in the wake of a circular cylinder.

7.2.1 Introductory Remarks

A comprehensive review paper (Williamson 1996b) detailed the characteristics of the

three-dimensional wake transition for a circular cylinder, and an analysis of non-linear

transition dynamics and longer-wavelength effects was provided by Henderson (1997).

From these studies, and the large preceding body of research on the low-Reynolds-

number flow past a circular cylinder, it appeared that the flow past a circular cylinder

was well-understood for Reynolds numbers Re < 300. Despite these studies, questions

remained regarding some aspects of the three-dimensional transition scenario in the

wake. For instance, the stability of the three-dimensional wakes to the linear Mode A

and B instabilities of the vortex street had not been considered. Furthermore, upon
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saturation of a pure Mode A wake, a small frequency fluctuation was observed, whereas

upon saturation of a pure Mode B wake, the flow was perfectly periodic. This phe-

nomenon is not described by the Landau model. Finally, the process responsible for

the local switching between Modes A and B throughout the mixed Mode A/B regime

230 . Re . 265 was not well-understood.

The dynamics of the wake of a circular cylinder through the three-dimensional

transitions was discussed in detail earlier in this work. In the section to follow, a method

which approximates the stability of the saturated three-dimensional wakes which evolve

from the Mode A and B instabilities in the vortex street behind a circular cylinder is

described . The technique was applied to predict the stability of the saturated wakes

to linear perturbations with wavelengths which corresponded to the Mode A and B

instabilities. It is proposed that the results assist to explain some of the open questions

posed previously.

7.2.2 A Technique for Spanwise-Averaged Linear Stability Analysis

In the formulation of the spanwise-averaged stability analysis technique, the spanwise

variation in the three-dimensional vortex streets in the flow past a circular cylinder is

assumed to be small. For a spanwise-averaged stability analysis of the three-dimensional

modes in the flow past a circular cylinder to be appropriate, the physical instability to

a saturated three-dimensional wake must be a global instability of the vortex street,

rather than a local instability to the flow at a given point along the cylinder span. Such

an assumption is valid for flows such as the stability of the Mode B instability to the

saturated three-dimensional Mode A wake, as experimental observations (Williamson

1996b, e.g. ) and numerical computations (e.g. Thompson et al. 1994, 1996) confirm

that the saturated three-dimensional Mode B wake has a spatio-temporal symmetry

and a spanwise wavelength which are consistent with those of the the linear Mode B

instability predicted by Barkley & Henderson (1996).

A Cartesian version of the linear Floquet stability analysis technique applied in

chapter 4 is employed in the spanwise-averaged stability analysis formulation. The

present formulation replaces the periodic two-dimensional base flow field (u2D) with a

saturated periodic span-averaged three-dimensional flow field (ū3D). Recall from § 2.1.4

that the present formulation of the three-dimensional spectral-element scheme employs

a Fourier expansion of the domain in the spanwise direction. The span-averaged velocity
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field is simply obtained from the fundamental (m = 0) Fourier mode of the u and v

components of velocity in the three-dimensional flow field.

A series of span-averaged velocity fields are captured over a single period of the

saturated three-dimensional wake, and Fourier interpolation is employed to extract the

span-averaged solution at any time t over the period T3D, for the stability analysis

computations. This Fourier interpolation step replaces the temporal integration of the

base flow from the previous application of the stability analysis, but the method for

computing the perturbation field remains the same.

Several steps are required in the application of this method. Following a stabil-

ity analysis of a two-dimensional wake to determine the dominant wavelength of the

three-dimensional instability to be investigated, the instability mode must be evolved

to saturation using the three-dimensional formulation of the code. At this point a

set number (Nt) of spanwise-averaged frames are obtained over a single period. The

spanwise-averaged stability analysis code is then applied to determine the stability of

the mean wake.

Prior to assessing the accuracy of the spanwise-averaged formulation, the optimum

number of spanwise-averaged frames (Nt) needs to be determined. Obviously, smaller

values of Nt provide more efficient computations, and larger values of Nt provide better

resolution of the mean wake.

The base flows computed in the present work have a spatial error in the order of 0.1%

when compared with computations which employ elements of a higher order. A similar

accuracy was desired for the Fourier interpolation of the temporal spanwise-averaged

velocity fields. A test case was developed based on a saturated three-dimensional Mode

B wake at Re = 270. This case was chosen as a perfectly periodic saturated wake could

be computed at this Reynolds number, and the Reynolds number was higher than the

Reynolds number range of interest in this study (230 . Re . 265). Spanwise-averaged

solutions were obtained with Nt = 8, 16, 32, 64 and 128. The stability of these spanwise-

averaged solutions to spanwise wavelengths corresponding to the Mode A instability was

determined, and with cubic interpolation was employed to approximate the dominant

spanwise wavelength and Floquet multiplier of the instability. Figure 7.3 shows the

convergence trends for the dominant spanwise wavelength and Floquet multipliers of

the Mode A instability with an increase in the number of temporal Fourier interpolation

frames Nt.
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Figure 7.3: Convergence of the computed dominant spanwise wavelength (blue line) and
Floquet multiplier (red line) for the Mode A instability of a saturated Mode B wake at
Re = 270, with an increase in the number of temporal interpolation fields per period (Nt).

The stability analysis with Nt = 32 achieved dominant spanwise wavelengths and

Floquet multipliers within 0.1% of a similar analysis with Nt = 128. From this result,

Nt = 32 was employed throughout the spanwise-averaged stability study.

To verify that the spanwise-averaged stability analysis code indeed produced results

consistent with the regular formulation of the stability analysis code employed in chap-

ter 4, a two-dimensional flow was computed with a three-dimensional spectral-element

code, and a spanwise-averaged solution with Nt = 32 was obtained at Re = 240. The

size of the computational domain in the spanwise direction was approximately 0.81d,

which excluded the Mode A instability. Table 7.2 compares the dominant spanwise

wavelengths and Floquet multipliers predicted for a Mode A instability of both a two-

dimensional base flow and a spanwise-average of a two-dimensional base flow. The

results differ by less than 1%, which shows that the spanwise-averaged stability analy-

sis technique can provide useful and accurate results.
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2D stability 3D spanwise-averaged stability % difference

λA 3.645 3.6446 0.011
µA 1.45 1.4582 0.562

Table 7.2: Comparison between the two-dimensional and three-dimensional spanwise-
averaged stability analysis techniques. The stability of a two-dimensional solution at Re = 240
to the Mode A instability is tested using both techniques.

7.2.3 Stability of the Saturated Mode A Wake

The saturated wake evolving from the Mode A instability presented a significant chal-

lenge, as it spontaneously evolved, upon saturation of the linear growth of the mode,

to a chaotically fluctuating state. Although the Strouhal frequency fluctuated over a

narrow frequency band, the periodicity was inadequate for the purpose of applying the

linear stability analysis.

A further complication was presented by the dominance of the Mode B instability

over the Mode A instability. When initiating the three-dimensional computations from

a random perturbation at Reynolds numbers Re & 250, both the Mode A and Mode B

instabilities evolved. To ensure the evolution of a pure Mode A wake, a velocity field

with a small three-dimensional component was constructed from the perturbation field

of the Mode A instability. Despite the evolution and saturation of a pure Mode A wake,

the aperiodic saturation still occurred.

The aperiodic saturation was observed at all Reynolds numbers for which saturated

Mode A computations were made. Earlier computations of the Mode A wake by Hen-

derson (1997) suggest that the saturated Mode A wake is perfectly periodic. That

study utilised a small transverse computational domain (boundaries approximately 8d

from the cylinder), and periodic boundary conditions at the walls, essentially modelling

an array of equi-spaced cylinders aligned normal to the direction of flow. The present

study employs a transverse domain size of approximately 30d. With the recent ad-

vancements in computational resources, it was possible to match or exceed the spatial

resolution and domain sizes of the previous computational studies, and as a result it is

likely that the restrictive domains that were previously employed artificially suppressed

the development of the frequency fluctuation observed here. The computation of the

Mode A wake of Henderson (1997) was performed at Re = 195, just slightly in excess

of the critical Reynolds number for the onset of the Mode A instability (Rec ≈ 188.5),
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lt 8d 30d % diff.

T2D (St2D) 4.895 (0.204) 4.974 (0.201) 1.59%
Periodic 3D wake Yes No —

T3D (St3D) ≈ 5.530 (0.181)

Table 7.3: Comparison between the computations of Mode A employing meshes with trans-
verse domain lengths lt = 8d and lt = 30d. For both computations, the Reynolds number
Re = 220, elements of order N2 = 81 are used, and the azimuthal domain λd = 3.731d.

and the computation was not continued beyond the initial saturation of the shedding

frequency or mode amplitude.

In order to verify the hypothesis that the frequency fluctuation of the saturated

Mode A wake may be artificially suppressed by restricting the domain size, a test case

is computed here employing a similarly restrictive mesh with a transverse domain size

of 8d. The computation is compared to a computation over the less restrictive mesh

employed throughout this investigation, as summarised in table 7.3.

An attempt was made to capture a spanwise-averaged period of a Mode A wake

immediately that saturation occurred, to exclude the frequency fluctuation. Figure 7.4

shows the evolution of the Mode A instability in terms of both the Strouhal frequency

variation, and the growth of the three-dimensional mode amplitude norm. The point

at which the spanwise-averaged solution was captured for this case is indicated in

the figure. Stability analysis of the span averaged periodic wakes captured using this

method proved inconclusive. The shift in Strouhal frequency does not reach a constant

frequency as the mode amplitude appears to saturate. A peak in the frequency shift

occurs, corresponding to a minimum in the Strouhal frequency, followed by a sharp

drop in the magnitude of the frequency shift, as the Strouhal frequency approaches the

mean values observed in experiments for the Mode A wake. Unfortunately, a perfect

periodicity of the Mode A wake is never achieved over the Reynolds number range

of interest, and an ad-hoc approach was applied to approximate a periodic solution.

Various indicators were monitored near to saturation, such as the mode amplitude, the

drag force, and point velocity measurements in the wake, to best estimate a temporal

range over which approximately one period of shedding occurred.

A natural alternative for suppressing the frequency fluctuation is to limit the trans-

verse domain size of the grids, as already discussed. The measured Strouhal frequencies

for the large grids with lt = 30d differ by approximately 2% when compared with the
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Figure 7.4: A plot of the Strouhal frequency (red line) and Mode A amplitude norm (blue
line) for the evolution of the Mode A instability in the wake of a circular cylinder at Re = 220.
The range over which the spanwise-averaged solution was obtained is labelled.

restricted grids with lt = 8d. However, it is widely known that the Strouhal frequency

is sensitive to variation in blockage, which is being increased here from 0.0167 to 0.0625.

It is felt that the wake structure and stability computed using the restricted transverse

domain will provide a useful quantitative approximation to the stability of the pure

Mode A wake.

Spanwise-averaged solutions have been obtained, using the restricted meshes for

Mode A, and the large meshes for Mode B, at several Reynolds numbers over the three-

dimensional flow regime of the circular cylinder, covering each of the three important

regions identified earlier, namely the exclusive Mode A region (180 . Re . 230), the

mixed Mode A/B region (230 . Re . 265), and the exclusive Mode B region (Re &

265). From two-dimensional stability analysis, the dominant spanwise wavelengths of

Mode A and Mode B at each Reynolds number were determined, as were the dominant

Floquet multipliers for each mode.

Figure 7.5 presents a comparison between the Floquet multiplier variation for two-

dimensional and spanwise-averaged Mode A stability analysis. The plot shows the

stability of the three-dimensional Mode A wake to perturbations corresponding to the
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Mode A and B instabilities.

Notice that as the Reynolds number increases, the dominant Floquet multipliers of

the Mode A instability reduce in magnitude, until they intersect the two-dimensional

Mode A trend-line. This is due to the physical transition in structure of the saturated

wake used to generate the periodic spanwise-averaged flow field from a Mode A wake

to a Mode B wake, as illustrated by the wake flow field plots in figure 7.6.

A striking observation may be made concerning the Mode B instability. Notice

that the Mode B instability is predicted to grow for Re & 245 ± 5, as the magnitude

of the Floquet multipliers is greater than unity. This transition Reynolds number is

significantly less than the prediction of the critical Reynolds number of the Mode B

transition from two-dimensional stability analysis, suggesting that the observation of

Mode B structures in the mixed Mode A/B Reynolds number range 230 . Re . 265

may be qualitatively predicted by the linear instability of Mode B wavelengths to the

spanwise-averaged saturated Mode A wake.

A possible explanation for the quantitative discrepancy between the critical Reynol-
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ds number for the onset of Mode B predicted by the present analysis (ReB
crit ≈ 245± 5,

and the observed critical Reynolds number for the onset of Mode B in experiments

ReB
crit ≈ 230), is that it was impossible to capture exactly one period of the saturated

Mode A wake.

7.2.3.1 The Mode A Frequency Fluctuation

The linear growth of the Mode A instability in the wake of a circular cylinder is char-

acterised by a reduction in Strouhal frequency. As three-dimensional streamwise struc-

tures evolve, they induce a deformation of the vortex street rollers, the magnitude of

which is of the order O(1d) downstream of the cylinder.

Upon saturation of the three-dimensional instability, a stable periodic state is not

achieved. Instead, immediately following the peak in the evolution of the mode ampli-

tude, a small random fluctuation in shedding frequency develops. The mean Strouhal

frequency of this fluctuating wake lies between the two-dimensional Strouhal frequency

and the Strouhal frequency reached at the point of initial saturation, and is in good

agreement with the mean Strouhal frequency obtained experimentally for the Mode A

wake by Williamson (1988b).

A hypothesis for the development of the fluctuating Strouhal frequency for the Mode

A wake is suggested here. The fluctuation may be due to a local instability of the

highly deformed vortex rollers in the wake downstream of the cylinder. The spanwise-

averaged stability analysis, although providing only qualitative predictions, suggests

that spanwise modes associated with the Mode A instability will grow in the presence

of a Mode A wake near to saturation. It is possible that the frequency fluctuation

results from a non-linear competition between the evolving streamwise structures which

increase the waviness of the vortex street, and some instability of the deformed rollers,

which would attempt to reduce the spanwise non-uniformity of the rollers. Williamson

(1996a) observed that the saturated Mode A wake was unstable, which adds credence

to this proposed hypothesis. A more detailed study of this phenomenon lies beyond

the scope of the present work, and hence verification of the mechanism for frequency

fluctuation remains an open question.

7.2.3.2 The Dominance of Mode B over Mode A

The non-linear interaction between the Mode A and Mode B instabilities is interesting,

in that despite the Mode B instability having a higher growth rate than the Mode
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(a) Re = 220: Mode A

dominating.

(b) Re = 280: Mode B

interference.

(c) Re = 300: Mode B

dominating.

Figure 7.6: Isosurface plots which show the three-dimensional structure of the wakes of a
circular cylinder immediately upon saturation. The span of the computation corresponds with
the dominant mode of the Mode A instability at each Reynolds number. Contour colouring
is consistent with previous chapters, and streamwise vorticity levels are equal in each frame
for comparison purposes.

A instability only for Reynolds numbers Re & 295, computations at lower Reynolds

numbers show clearly that the non-linear evolution of the Mode A instability can be

impeded significantly by the Mode B instability. Figure 7.6(a) shows a saturated wake

dominated by Mode A wake structures. In figure 7.6(b), a wake is shown at a time

when the non-linear evolution of the three-dimensional modes at Re = 280 continued.

The wake shows a significant reduction in Mode A wake structures from the wake in fig-

ure 7.6(a). Only a small amount of vortex roller deformation was detected downstream,

and weaker streamwise vortex structures are observed. The dominance of Mode B over

Mode A when both instabilities are unstable is highlighted by the plot shown in fig-

ure 7.6(c) at Re = 300. The plot shows that as the three-dimensional wake evolved, no

Mode A structures were detected, and the wake was dominated by Mode B structures.

Downstream, the vortex rollers were almost devoid of any wavy deformation. Although

at Re = 300 both Mode A and B instabilities are predicted to occur, the Mode A insta-

bility has a higher growth rate than Mode B. Previous computations (especially those

by Thompson et al. 1994, 1996; Henderson 1997) which studied the evolution of, and

competition between, the Mode A and B instabilities in the flow past a circular cylinder

support the observation that at higher Reynolds numbers (Re & 260), the near-wake

region is dominated by Mode B structures, and the far wake contains remnants of Mode

A structures.
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7.2.4 Stability of the Saturated Mode B Wake

Spanwise-averaged solutions of saturated Mode B wakes were obtained for several dis-

crete Reynolds numbers in the range 260 ≤ Re ≤ 300. The Mode A instability was

excluded from computations of the Mode B wakes as the size of the computational

domain was limited in span to correspond with the spanwise wavelength of the Mode B

instability (approximately 0.814d). The saturated wake which evolved from the Mode

B instability was time-periodic, and hence spanwise-averaged solutions were obtained

with a high degree of confidence that the periodic wake was well-represented by the

spanwise-averaged solution.

Results of the linear stability analysis of the spanwise-averaged Mode B wake are

presented in figure 7.7. In contrast with the results achieved from the spanwise-averaged

stability analysis of the saturated Mode A wake, the results for the saturated Mode B

wake show a smooth continuous bifurcation of the dominant Floquet multipliers from

the two-dimensional profiles. The quality of these results highlight two points with

regard to the suitability of the spanwise-averaged stability technique to the analysis of

the saturated Mode B wakes. Firstly, the smaller variation in the spanwise direction for

the saturated Mode B wake when compared with the saturated Mode A wake makes it

more appropriate for the spanwise-averaged stability analysis. Secondly, the periodicity

of the saturated wakes made the application of the technique far more straightforward.

The plot in figure 7.7 shows that the Mode A instability has higher growth rates than

the Mode B instability throughout the Reynolds number range considered. Previously,

it was shown that when both Modes A and B are unstable, Mode B structures tended

to dominate the wake. Therefore, the point at which the Mode B instability is first

unstable to the saturated Mode B wake is important, as it determines the physical

flow transition from the mixed Mode A/B regime to the Mode B regime. The plot in

figure 7.7 suggests that for Re . 264, negative growth rates are predicted for the Mode

B instability to the saturated Mode B wake. As the bifurcation to Mode B is continuous,

the two-dimensional and spanwise-averaged Floquet multiplier trends for the Mode B

instability should be coincident at µ = 1 at the critical Reynolds number for the linear

Mode B instability, Rec ≈ 258.5. This discrepancy is either due to a small error in the

spanwise-averaged stability technique, or alternatively, it is possible that for a small

range of Reynolds numbers above Re ≈ 258.5, the Mode B instability is not unstable
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Figure 7.7: Reynolds number variation of the dominant spanwise-averaged Floquet multi-
pliers of the Mode A (blue) and Mode B (red) instabilities of the saturated Mode B wake.
Dotted lines show the two-dimensional wake stability for comparison. A dashed line indicates
the neutral stability threshold at µ = 1.

to the spanwise averaged three-dimensional Mode B wake. The former explanation is

more likely, but the discrepancy between these predicted critical Reynolds numbers is

less than 2%, so in terms of a qualitative description of the transition scenario, the

precise value is unimportant.

7.2.5 The Transition from a Two-Dimensional Vortex Street to a Sta-
ble Mode B Wake

The spanwise-averaged stability analysis of the saturated three-dimensional flow past a

circular cylinder has shed light onto some interesting characteristics of the transitions

in the flow from a two-dimensional wake to a stable Mode B wake.

7.2.5.1 The Mode A Regime (180 . Re . 240)

The wake of a circular cylinder is two-dimensional up to Re ≈ 190, where an hysteretic

transition to the Mode A instability occurs. The Mode A instability is characterised

by a spanwise wavelength of approximately 4d for Re & 190. The growth of the Mode

A instability causes significant wavy deformation of the vortex rollers of the underlying
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vortex street, in the order of 1d several cylinder diameters downstream. The frequency

fluctuation observed at saturation is possibly due to a local instability of the wavy

deformation of the vortex street in the wake.

7.2.5.2 The Mixed Mode A/B Regime (240 . Re . 2.6 × 102)

The present analysis suggests that the saturated spanwise-averaged Mode A wake is

unstable to the Mode B instability for Re & 245 ± 5: that is, Mode B structures

may evolve in the presence of a saturated Mode A wake at Reynolds numbers below

the predicted critical Reynolds number for the onset of the Mode B instability in a

two-dimensional wake (Rec ≈ 259). As a pure three-dimensional Mode B wake is

devoid of any large-scale wavy deformation of the vortex street, and Mode B structures

are observed to dominate the wake when both Mode A and Mode B are unstable,

the growth of the Mode B instability causes localised switching to Mode B structures

in the wake, which suppresses the Mode A wake structures. The spanwise-averaged

stability analysis has also predicted that a saturated Mode B wake is only self-stable for

Re . 2.6×102. Thus over a range of Reynolds numbers as large as 240 . Re . 2.6×102,

the Mode B wake structures will decay towards a two-dimensional wake, which permits

the subsequent evolution of the Mode A instability again. This cycle of switching

modes repeats, and may be localised due to the non-linear stability characteristics of

the competing modes. This explains the experimental observations of a mixed Mode

A/B regime over this approximate Reynolds number range.

It is of interest to compare this proposed scenario for the mixed Mode A/B regime

with the computed flow past a ring with Ar = 10 at < = 240, from chapter 6, § 6.2.2,

where λd ≈ 4d. There a similar competition between modes was observed, which in

that case caused a cyclic evolution and decay of non-axisymmetry in the wake.

The transfer of energy from Mode A to Mode B that is widely reported over the

mixed Mode A/B regime with an increase in Reynolds number is supported by the

scenario proposed here. At lower Reynolds numbers, the Mode B instability will decay

more rapidly after it develops from the saturated Mode A wake, and thus the wake

consists of Mode A structures for a greater duration. At higher Reynolds numbers, the

opposite is true, and thus the wake consists of Mode B structures for a greater duration.
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7.2.5.3 The Mode B Regime (Re & 2.6 × 102)

For Re & 2.6×102, the wavelengths associated with the Mode B instability are predicted

to grow in the presence of a saturated Mode B wake, which explains the observations

from experimental studies of a wake dominated by Mode B structures for Reynolds

numbers over this range.

In summary, a key mechanism for the complex dynamics associated with the three-

dimensional transitions in the flow past a circular cylinder is the possible instability of

the wavy deformation of the vortex street brought about by the evolution of the Mode

A wake. The proposed local instability of this deformed wake would explain both the

fluctuation in Strouhal frequency of the saturated Mode A wake, and the potential for

spontaneous local switching between Modes A and B over the mixed Mode A/B regime.

7.3 Chapter Summary

In this chapter, the three-dimensional bifurcations in the vortex street behind a circular

cylinder have been investigated for Reynolds numbers in the range Re . 300. The

flow past a circular cylinder over this range of Reynolds numbers has been studied

exhaustively, since the experimental work by Williamson (1988a,b). Despite the large

body of work in the literature devoted to the three-dimensional transitions in the flow

past a circular cylinder, some avenues for further investigation remained.

A previous study has modelled the evolution of the Mode A and B instabilities as

a coupled pair of evolution equations (Barkley et al. 2000). The previous model de-

scribed the variation in amplitude of the Mode A and B instabilities through the flow

regimes, and comprised a fifth-order evolution equation for the amplitude of the Mode

A instability, and a third-order evolution equation for the amplitude of the Mode B

instability. Third-order coupling terms were included in each equation, which modelled

the decrease in the amplitude for Mode A through the mixed Mode A/B regime. The

previous model was extended here to include complex amplitudes and coefficients. The

new model provides an excellent description of the Strouhal–Reynolds number profile

through the three-dimensional flow regimes. The Strouhal number discontinuity as-

sociated with the hysteretic onset of the Mode A instability is accurately predicted,

as is the energy transfer from Mode A to Mode B over the mixed Mode A/B regime.

The model is remarkable for its simplicity, with only fifth- and third-order equations

being employed to model the evolution of the Mode A and B instabilities, respectively.
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Furthermore, the coefficients were evaluated from a small number of computations of

the pure wakes which evolve from the Mode A and B instabilities, so the mode coupling

is described solely from the third-order coupling terms included in the equations.

It has been long understood that the discrepancy between the Reynolds number

for the observed onset of Mode B in the wake of a circular cylinder, and the predicted

critical Reynolds number from linear stability analysis, results from the difference be-

tween the two-dimensional base flow of the stability analysis, and the highly three-

dimensional flow in practice at the onset of Mode B. In this chapter, the stability of

the saturated three-dimensional wakes in the flow past a circular cylinder has been

analysed. Periodic spanwise-averaged base flow fields have been constructed from the

saturated three-dimensional wakes, and a linear stability analysis has subsequently been

performed.

The analysis was partially successful, however not all of the bifurcation dynamics of

the flow is adequately described by the linear stability analysis. The analysis provides

a qualitative prediction that the saturated Mode A wake is unstable to the Mode B

instability at Reynolds numbers as low as Re ≈ 240, which is in much closer agree-

ment with the experimentally observed Reynolds number than the predicted Reynolds

number from two-dimensional stability analysis. Analysis predicted that the Mode

B instability decays in the presence of a saturated Mode B wake for Re . 2.6 × 102,

and three-dimensional computations have shown that Mode B wake structures suppress

Mode A structures when both modes are unstable. It follows that over a Reynolds num-

ber range 240 . Re . 2.6 × 102, neither Mode A or B wake structures can dominate,

and instead a mode switching would be observed, consistent with the experimentally

and computationally observed behaviour over this Reynolds number range.

The mode evolution scenario proposed for the mixed Mode A/B regime is sum-

marised as follows: Assume firstly that a saturated Mode A wake evolves in the mixed

Mode A/B regime. As Mode B structures are predicted to grow in the presence of Mode

A in this regime, the Mode A structures are suppressed by the non-linear competition

between the instabilities. The wake then consists of saturated Mode B structures which

soon decay, as Mode B is not self-stable in this regime. Finally, this decay then permits

the subsequent evolution of Mode A structures, and the cycle continues. At greater

Reynolds numbers (Re & 2.6× 102), both Mode A and B instabilities are predicted to

grow in the presence of a saturated Mode B wake. As computations suggest that Mode

275



B wake structures dominate in the wake when both Modes A and B are unstable, re-

gardless of the growth rates of the instabilities, only Mode B structures are expected to

exist in the wakes for these Reynolds numbers. This explains the previous observations

of a vortex street dominated by Mode B structures for Re & 2.6× 102.
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Chapter 8

Summary and Conclusions

The majority of this study has focused on the investigation of the flow past rings to

better understand the fluid dynamics of low-Reynolds-number bluff body flows with a

continuous variation in the geometry. No previous computational studies have been

reported for the flow past rings. The few experimental studies which have investigated

the flow past rings have presented either high-Reynolds-number measurements (e.g.

Bearman & Takamoto 1988), or measurements of the vortex shedding in the laminar

flow regime (e.g. Leweke & Provansal 1995). The present study provided for the first

time a detailed investigation of the axisymmetric and non-axisymmetric flow regimes

computed in the flow past rings with a wide range of aspect ratios.

The investigation may be divided into three main areas. These are an investigation

of the axisymmetric flow past rings, an investigation of the non-axisymmetric flow past

rings, and an investigation of the three-dimensional flow past a circular cylinder. Over

the sections to follow, the major conclusions from each of these areas of investigation

is discussed.

8.1 The Axisymmetric Flow past Rings

Three axisymmetric flow regimes exist in the flow past rings. These are attached steady

flow, separated steady flow and unsteady flow.

The separation of flow from the ring creates an axial recirculation bubble behind

closed rings (Ar ≤ 1), and an annular recirculation ring behind open rings (Ar > 1).

However, it is appropriate to classify the wakes into two categories, based on the length

scale of the wakes. For Ar . 3 the wake scales with the outer ring diameter, D + d,

and comprises either an attached or a detached recirculation bubble with Ar ≤ 1 or

Ar > 1, respectively. For Ar & 3, the wake scales on the ring cross-section diameter,
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Ar range Flow regimes Critical Re

0 ≤ Ar ≤ 1 Attached axial recirculation bubble 21 & ReT1 & 0

1 < Ar . 3 Detached axial recirculation bubble
Attached annular recirculation ring

Re > 0
∞ > ReT1 & 16

3 . Ar < ∞ Attached annular recirculation ring 16 & ReT1 & 6

Table 8.1: A summary of the axisymmetric flow regimes for the flow past rings. The tran-
sition types and critical Reynolds number ranges are provided for each aspect ratio range.
The order in which the critical Reynolds numbers are given in the critical Reynolds number
range follows the order in which the aspect ratios are given in the aspect ratio range.

d, and comprises an annular recirculation bubble. These flow regimes are summarised

in table 8.1.

Vortex shedding is observed in the axisymmetric flow past rings with Ar > 1.

In fact, a linear stability analysis predicts that for Ar . 3.9, the flow becomes non-

axisymmetric at a lower Reynolds number than the critical Reynolds number for the

axisymmetric Hopf transition. For Ar & 3.9, the flow is predicted to become non-

axisymmetric at a higher Reynolds number than the critical Reynolds number for the

axisymmetric Hopf transition.

The Strouhal number for vortex shedding in the wakes behind rings with Ar ≥ 3

is well-described by a relationship developed in this study. The computed Strouhal–

Reynolds number profiles show that unsteady flow past rings with Ar & 5 is very similar

in terms of shedding frequency and critical Reynolds number to the flow past a circular

cylinder. With a decrease in the aspect ratio, the angle at which vortices are shed to

the direction of flow increases, due to the self-induced motion of counter-rotating vortex

pairs in the vortex street. At smaller aspect ratios, the pairing of vortices in the vortex

street is more pronounced.

8.2 The Non-Axisymmetric Flow past Rings

For the flow past rings with Ar . 3.9, non-axisymmetric flow occurs over three distinct

flow regimes, which are classified as Mode I, II and III. In the Mode I and III regimes,

steady non-axisymmetric flow is observed for a range of Reynolds numbers, and at

higher Reynolds numbers, unsteady flow is observed in the form of vortex-loop shedding.

In the Mode II regime, a non-axisymmetric unsteady flow is observed.

For the vortex streets behind rings with Ar & 3.9, three non-axisymmetric insta-
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Non-axisymmetric transition mode

Ar range

Primary transition Secondary transition Tertiary transition

Regular Mode I Hopf Mode I
0 ≤ Ar < 1.6 Supercritical Supercritical

m = 1 symmetry m = 1 symmetry

Hopf Mode II
1.6 ≤ Ar ≤ 1.7 Supercritical

m = 1 symmetry

Regular Mode III Hopf Mode III
1.7 < Ar . 3.9 Subcritical Supercritical

4.7d < λd < 7.9d 4.7d < λd < 7.9d

Mode C Mode A Mode B
3.9 . Ar . 8 Supercritical (Not determined) Supercritical

λd ≈ 1.7d λd ≈ 4.0d λd ≈ 0.8d

Mode A Mode C Mode B
8 . Ar . 13 Subcritical Subcritical Supercritical

λd ≈ 4.0d λd ≈ 1.7d λd ≈ 0.8d

Mode A Mode B Mode C
13 . Ar < ∞ Subcritical Supercritical (Not determined)

λd ≈ 4.0d λd ≈ 0.8d λd ≈ 1.7d

Table 8.2: A summary of the non-axisymmetric transition modes which occur in the flow
past rings over different aspect ratio ranges. For each transition, the classification of the
transition is provided, the non-linear evolution behaviour of the transition is provided, and
the azimuthal symmetry of the instability which causes the transition is provided.

bilities are identified. These instabilities include the Mode A and B instabilities, with

properties which correspond to the Mode A and B instabilities in the flow past a circular

cylinder, and a subharmonic Mode C instability.

The non-axisymmetric bifurcations in the flow past rings is summarised in table 8.2.

The vortex streets in the wakes behind rings with Ar = 5, 10 and 20 are each

unstable to the three non-axisymmetric instabilities in a different order. The Mode

C instability causes a period-doubling bifurcation in the vortex street when it is the

first-occurring instability. Despite this, with further increases in the Reynolds number,

the vortex streets in the wakes behind rings develop small scales in a manner similar

to the vortex street in the wake of a circular cylinder: the development of small-scale

structures in the wake leads to a loss of the periodicity of the vortex street, and energy

is transferred to higher frequencies in the spectrum. When computational domains

which are sufficiently large in the azimuthal direction to capture each of the linear

instability modes are employed, computations show that the linear stability analysis
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correctly predicted the first non-axisymmetric instability in the wake. However, with

an increase in Reynolds number, the non-linear interaction between the modes in the

vortex street leads to a more complex series of flow transitions than predicted by the

linear stability analysis.

An increase in the azimuthal span of the computations suggests that the vortex

streets in the wakes behind rings become non-uniform through the development of

spatio-temporal chaos, which has been proposed as a possible route to turbulence in

the wake of a circular cylinder by Henderson (1997). Additional computations and

experimental dye visualisation have confirmed the findings of previous work, which

show that helical modes of shedding can occur in the flow past rings at Reynolds

numbers beyond the critical Reynolds number for unsteady axisymmetric flow.

8.3 The Three-Dimensional Flow past a Circular Cylinder

A pair of coupled Landau equations is developed to predict the Strouhal–Reynolds

number profile through the three-dimensional transitions in the flow past a circular

cylinder. The model is based on an existing model, which incorporated coupled evo-

lution equations for the amplitudes of the Mode A and B instabilities. The present

model introduces complex variables and coefficients, which are evaluated from three-

dimensional computations. A remarkable agreement with existing experimental data

is obtained, and the model provides accurate predictions of both the hysteresis at the

onset of the Mode A instability, and the energy shift from Mode A to Mode B over the

mixed Mode A/B regime.

A linear stability analysis of the spanwise-averaged three-dimensional wakes in the

flow past a circular cylinder predicts that the Mode B instability is unstable to the three-

dimensional Mode A wake at Reynolds numbers below the predicted critical Reynolds

number from linear stability analysis of the two-dimensional wake (Barkley & Hender-

son 1996). The analysis also predicts that the Mode B instability is unstable to the

three-dimensional Mode B wake at Reynolds numbers Re & 2.6 × 102. In addition,

three-dimensional computations show that Mode B structures suppress Mode A struc-

tures when both linear instabilities occur in a wake. These results provide a possible

explanation for both the observed three-dimensional bifurcations in the wake of a circu-

lar cylinder, and the discrepancy between the linear stability analysis predictions and

the experimentally measured observations of the critical Reynolds number for the onset
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of the secondary Mode B instability.

8.4 Directions for Future Work

The low-Reynolds-number flow regimes in the flow past rings have been investigated in

detail in this study. Even so, some unanswered questions remain.

In experimental studies (e.g. Monson 1983), for the flow past rings with aspect

ratios which probably correspond to the Mode III regime in the present study, it was

suggested that the non-axisymmetric vortex-loop shedding was replaced by an axisym-

metric vortex street at higher Reynolds numbers. Higher-Reynolds-number computa-

tions were not performed in the present study for the flow past rings with Ar . 3.9. It

would be useful, therefore, for a series of long-timescale computations to be performed

for the flow past a ring with an aspect ratio Ar < 3.9 (e.g. Ar = 3), over a range of

Reynolds numbers which extends past both the computed critical Reynolds numbers

for the non-axisymmetric Hopf transition and the axisymmetric Hopf transition. This

would provide additional information about the higher-Reynolds-number dynamics of

the wakes behind rings with Ar . 3.9.

The identification of the subharmonic Mode C instability in the vortex street be-

hind rings was a significant result from this study. A bifurcation scenario was proposed

whereby vortex streets which lack a reflective symmetry about their centreline are

unstable to real Mode A and B instabilities, as well as a subharmonic Mode C insta-

bility. Further investigation is required to determine if indeed the proposed bifurcation

scenario is valid for general asymmetrical bluff bodies. It is proposed that such an

investigation be performed on the flow past a cylinder with a square cross-section, as

with variation in the angle of attack of the cross-section, the asymmetry in the vortex

street can be introduced continuously. The square cylinder is an ideal candidate for

such a study, as the stability of the symmetrical vortex street at an angle of attack of

0◦ is already well-known (Robichaux et al. 1999; Blackburn & Lopez 2003).

In the present investigation, the study of the development of chaos in the wake was

limited in scope to the vortex streets in the flow past rings with Ar ≥ 5. A possible

direction for future investigation would be to complete a similar investigation for the

flow past rings with Ar . 3.9, with a view to providing a comparison between the

wake transitions to turbulence in the flow past a sphere, and the flows past rings with

Ar . 3.9.
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The spanwise-averaged stability analysis technique employed in this study is some-

what speculative at this stage. The technique was difficult to apply to the Mode A

wake, due to the aperiodic behaviour of the saturated wake. Furthermore, the Mode

A wake varied markedly in the spanwise direction. There is a necessity for a more

detailed stability analysis of the three-dimensional wake which evolves from the Mode

A instability, to allow a better prediction of the Reynolds number at which the Mode

B instability may first occur in the flow past a circular cylinder.
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