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SUMMARY

This thesis presents the results of a numerical investigation on state selection in Taylor

vortex flow. The cylinders were assumed infinite in axial extent and so periodic axial

boundary conditions were used. The outer cylinder was assumed stationary. In the nu-

merical experiment, the inner cylinder Reynolds number was linearly increased in time

from an initial subcritical value to a final supercritical value over a finite ramp time, and

then held fixed at the final value. The final value was assumed to be close to the critical

value. The numerical simulations were repeated for different ramp times where the initial

conditions, initial and final Reynolds numbers were held fixed. A high aspect ratio was

used in order to numerically model the interaction of many discrete axial modes.

Of interest were:

1. the behaviour of the amplitude of the axial modes with ramp time,

2. the change in the preferred axial mode with ramp time,

3. why the axial mode corresponding to the critical wavelength was always preferred

when the ramp time was sufficiently long, and

4. how Taylor vortex flow can exhibit final state nonuniqueness.

A linear model was developed which explained the behaviour of the modes in their in-

dependent stage of growth. This was based on the assumption that the instantaneous

growth rate at a particular instantaneous Reynolds number during the ramp was equal to

the growth rate obtained for that Reynolds number held fixed. To first order, a Reynolds

number which increases linearly with time leads to a growth rate which increases linearly

with time. Hence the logarithm of the amplitude varies quadratically with time during

the ramp while the amplitude is small.

When the final Reynolds number is reached after a finite ramp time, in comparison to being

reached suddenly, the amplitude of each mode is delayed from reaching high amplitudes.
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This delay is mode-dependent and has a lowest-to-highest ordering corresponding to the

lowest-to-highest ordering of the critical Reynolds number for each mode. The delay is

also linearly dependent to the ramp time. Thus, when the ramp time is increased the

delay gives an increasing bias in the order at which the modes reach high amplitudes. In

turn this leads to a change in the preferred mode with ramp time.

When the ramp time is sufficiently long, the order at which the modes reach high ampli-

tudes corresponds to the lowest-to-highest ordering of the critical Reynolds number for

each mode. The difference in the delay time between modes also increases with ramp time.

The lowest critical Reynolds number corresponds to the critical wavelength. Hence, for a

sufficiently long ramp time the mode with the critical wavelength will always reach high

amplitudes earliest and become the preferred mode.

A dynamical systems approach was used to conceptualise the feature of state nonunique-

ness of Taylor vortex flow. Coupled nonlinear amplitude equations were used to account

for several of the features observed in the behaviour of the amplitude of modes for different

ramp times. One of the nonlinear effects observed was that, prior to the saturation of the

preferred mode, the lower modes exhibited a region of rapid growth. It is suggested this

happens because the two modes adjacent to the preferred mode resonate with the first

harmonic of the preferred mode.

The numerical methods used were operator splitting and spectral methods. In the initial

development of the numerical code, two-dimensional driven cavity flow was modelled.

Then, for Taylor vortex flow, the incompressible Navier-Stokes equations were expressed

in cylindrical coordinates and axisymmetry was assumed, which reduced the equations to

two dimensions. The numerical method was shown to give second-order time accuracy.

The method was extended to three dimensions and a code for Taylor-Couette flow was

developed. Periodicity was assumed in the azimuthal direction. Wavy vortex flow was

simulated as a test case. Again, second-order time accuracy was demonstrated.
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1 Introduction

Taylor-Couette flow, the flow of the fluid between two concentric rotating cylinders,

has been studied extensively for over a century. It was, and continues to be, of interest

because it is one of the simplest situations for studying instability and transition of fluid

flow for varying Reynolds number, and close comparisons between experiments and theory

can be made conveniently. Usually the fluid is assumed viscous and incompressible.

Currently, two major areas of research in fluid mechanics are (i) the transition to tur-

bulence and (ii) the study of state selection as a nonlinear problem. Taylor-Couette flow

has been used as a test case for both of these areas. This thesis is concerned with the

latter, particularly applied to Taylor vortex flow.

The field chosen for study arose from an interest in chaos and nonlinear dynamics. The

Taylor-Couette flow problem is attractive because it provides a rich and diverse range of

fluid flow structures, as is discussed in Chapter 2. How states are selected and whether

these states are unique are questions of significance in fluid mechanics in general. Taylor

vortex flow, which is axisymmetric, and therefore two-dimensional, thus provides a rel-

atively “simple” example of a flow which exhibits multiple states at the same Reynolds

number.

Some fundamental questions about Taylor vortex flow were posed by Koschmieder

(1993).

1. Why is the wavelength of supercritical axisymmetric vortices independent of the

Taylor number and equal to the critical wavelength when the Taylor number is increased

slowly from subcritical values ?

2. Why can supercritical axisymmetric vortices be nonunique ?

To investigate these questions, we considered a numerical experiment whereby the inner

cylinder speed was linearly increased in time from an initial subcritical value to a final

supercritical value, over a finite ramp time, and then held fixed at the final speed. The

numerical simulations were repeated for different ramp times but for the same initial
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conditions and the same initial and final speeds. To clarify the behaviour of the modes

with different ramp time, it was necessary to simulate Taylor vortex flow with a large

aspect ratio, twenty times the gap size. This allowed us to study the independent growth

and subsequent nonlinear interaction of many discrete axisymmetric modes. Computer

simulations of Taylor vortex flow with such a large aspect ratio was possible on a high-end

workstation.

The numerical method was based on operator splitting and spectral methods. Such

approaches had previously been successfully applied to the Taylor-Couette cylindrical ge-

ometry by Marcus (1984) and Moser, Moin and Leonard (1983).

In industry, Taylor-Couette vessels with axial through-flow are being used to study the

global mixing properties of different flow regimes when particles are immersed in the fluid

(Rudman(1995)). A computer program that simulates Taylor-Couette flow accurately and

efficiently would therefore be of great benefit in predicting the performance of flow regimes

with regard to mixing efficiency.

The work described in this thesis can be briefly summarised by the following points.

1. Operator splitting and spectral methods have been used to develop a two-dimensional

code to simulate Taylor vortex flow.

2. This two-dimensional code has been used to investigate state selection and nonunique-

ness of Taylor vortex flow.

3. A linear model has been developed to explain the behaviour of the amplitude of the

modes and how the state selection varies with ramp time.

4. An approach based on dynamical systems has been used to provide a nonlinear

model for the nonuniqueness and the process of state selection.

5. Operator splitting and spectral methods have been used to develop a three-dimensional

code to simulate Taylor-Couette flow in general. In particular, wavy vortex flow has been

simulated.

An outline of the thesis is presented below.

Chapter 2 contains a review of the literature relevant to the study.
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Chapter 3 describes the governing equations for Taylor-Couette flow, and Taylor vor-

tex flow and the analytic solution for steady circular Couette flow.

Chapter 4 describes a numerical method for two-dimensional driven cavity flow, based

on operator splitting and spectral methods. This was an important step in the development

of a code for Taylor vortex flow.

Chapter 5 describes the numerical method used to develop the computer code for

Taylor vortex flow. The operator splitting method is designed as a second-order time-

accurate scheme. The Poisson and Helmholtz equations are solved using a spectral Tau

method.

Chapter 6 describes the results obtained for the amplitudes of the modes for different

ramp times. A linear model is used to explain the behaviour of the modes and the change

in preferred mode with different ramp time. A nonlinear model is then developed based

on a dynamical systems approach.

Chapter 7 describes the numerical method for Taylor-Couette flow, which is three-

dimensional. It is an extension of the method used for Taylor vortex flow. Numerical

tests are presented showing second-order time-accuracy. Results of a simulation of a wavy

vortex flow are presented.

Chapter 8 concludes and makes recommendations for future work.
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2 Literature Review

The literature on Taylor-Couette flow is extensive and review articles can be found in

DiPrima and Swinney (1985), Stuart (1986) and Koschmieder (1993).

Taylor-Couette flow has been studied from different perspectives in disciplines such as

fluid mechanics, chaos, nonlinear dynamics and computational fluid dynamics. The focus

in this chapter will be more on Taylor vortex flow, although an overview of different flow

regimes will be presented.

2.1 Taylor-Couette flow

A sketch of the Taylor-Couette flow system is shown in Figure 2.1 . The cylindrical co-

ordinate system has axial z, azimuthal φ and radial r directions. The velocity components

are uz, uφ and ur. Consider inner and outer cylinder radii of rin and rout respectively which

rotate with corresponding angular velocities Ωin and Ωout respectively. The radius ratio is

defined as η = rin/rout and the angular velocity ratio is µ = Ωout/Ωin. The cylinders can

co-rotate or counter-rotate. However, most work has been done with the outer cylinder

stationary and only the inner cylinder moving.

We consider a length scale equal to the gapsize d = rout − rin. With the velocity

scale equal to the inner cylinder speed rinΩin, the Reynolds number is Re = rinΩind/ν,

where ν is the kinematic viscosity of the fluid. As an alternative to Reynolds number, one

often defines the Taylor number T , which is a nondimensional measure of rotation rate.

Usually one takes T = 4Ω2

ind4/ν2. The Taylor number is proportional to the square of the

Reynolds number, that is, T /Tc = (Re/Rec)
2, where the subscripts denote critical values

for the onset of Taylor vortex flow.

The nondimensional height of the cylinders, Γ, is also called the aspect ratio. If the

cylinders are finite in axial extent, as they are in real experiments, there will also be

end conditions that will apply at the top and bottom end of the annulus. When the

cylinders are of infinite height, where the majority of the computational work has been

done, one cannot have an infinitely sized computational domain. Here, the Taylor-Couette
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flow pattern is assumed periodic in its axial extent and Γ sets the value for the maximum

allowed axial wavelength.

φ

z

r

Ω
Ω

rr

Γ

in

out

in
out

Figure 2.1: A diagram of the Taylor-Couette flow system.

2.2 Transition to turbulence

Andereck et al. (1986), Andereck and Baxter (1988) explored experimentally the rich

variety of flows existing in cylindrical Taylor-Couette flow, depending on the inner and

outer cylinder Reynolds numbers. They used η = 0.883 and Γ = 30. The flow regimes

are illustrated in Figure 2.2. The theoretical studies have not kept pace with these exper-

imental observations. The figure demonstrates that the route to turbulence depends in a

complex way on the inner and outer cylinder speeds.

For a stationary outer cylinder, as the inner cylinder speed is increased quasi-steadily

from rest, Andereck et al. (1986) observed the following series of transitions: circular

Couette flow → Taylor vortex flow → wavy vortex flow → modulated wavy flow → chaos

→ turbulent Taylor vortex flow.
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.

Figure 2.2: Diagram of Rein versus Reout showing the different flow regimes in Taylor-

Couette flow obtained experimentally by Andereck et al. (1986) for η = 0.833.

2.2.1 Steady circular Couette flow

For sufficiently low Re, steady circular Couette flow is observed. This flow has an analytic

solution of the form ur(z, φ, r, t) = 0, uφ(z, φ, r, t) = V (r) and uz(z, φ, r, t) = 0, where

V (r) = Ar + B/r (1)

and

A =
Ωin(µ − η2)

1 − η2
B =

Ωinr2

in(1 − µ)

1 − η2
(2)

2.2.2 Taylor vortex flow

When Re reaches a critical value Rec, Couette flow becomes unstable with respect to

infinitesimal axisymmetric disturbances and Taylor vortex flow forms. This is named after

G. I. Taylor (Taylor (1923)) who was first to make a detailed comparison between theory
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and experiment of this flow. The instability represents a supercritical steady bifurcation

from Couette flow to Taylor vortex flow. At steady state, the flow resembles a series of

axisymmetric toroidal vortex cells, which are periodically spaced along the axial direction,

each circulating alternately in direction. This is illustrated in Figure 2.3 by the picture on

the left. The Taylor vortex flow state is defined by its axial wavelength.

2.2.3 Wavy vortex flow

When Re reaches a second critical value Re′c, Taylor vortex flow becomes unstable

with respect to infinitesimal disturbances with azimuthal periodicity and wavy vortex

flow forms. This nonaxisymmetric flow was experimentally observed by Taylor but it

was Coles (1965) who made an extensive experimental study of wavy vortex flow, through

photography and flow visualization. The wavy vortices had a definite frequency and moved

with a definite wave velocity in the azimuthal direction. This instability is a time-periodic

supercritical bifurcation (a Hopf bifurcation) from Taylor vortex flow to wavy vortex flow.

Observed in the proper rotating frame, wavy vortex flow appears steady-state. This is

illustrated in Figure 2.3 by the picture on the right. The wavy vortex flow state is defined

by its axial wavelength and azimuthal wavenumber.

2.2.4 Modulated wavy vortex flow

When Re reaches a third critical value Re′′c , a second azimuthal wave with a discrete

frequency appears, making the flow quasi-periodic. This was noticed by Fenstermacher et

al. (1979) who performed laser-Doppler measurements of the periodicity of wavy vortices.

The second frequency is incommensurate with the first frequency and it marks the ap-

pearance of modulated wavy vortices. It was Gorman and Swinney (1982) who identified

this new flow as modulated wavy vortex flow.
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.

Figure 2.3: Left picture: Flow visualization of Taylor vortex flow at T = 1.16Tc. Taken

from Koschmieder (1993). The parameters are η = 0.896 and Γ = 122. Right picture:

Flow visualisation of wavy vortex flow at T = 8.49Tc . Taken from Koschmieder (1993).

The parameters are η = 0.896, Γ = 122 and axial wavelength of λ = 2.6. There are six

azimuthal waves.
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2.2.5 Chaos and turbulence

Brandstater and Swinney (1987) studied experimentally the transition from quasi-

periodic flow to weakly turbulent flow of Taylor-Couette flow with the inner cylinder

rotating only. They plotted velocity power spectra, phase space portraits and circle maps

to show that the nonperiodic behaviour was deterministic (i.e. chaotic) and could be de-

scribed by strange attractors. They estimated the onset of chaotic flow at about 11.7Rec,

after which the dimensions of the flow become noninteger, increasing above the value of

2.0. At this same Reynolds number broadband noise appeared in the power spectrum.

The exponential decay of the power spectrum provided additional evidence that the ob-

served nonperiodic behaviour corresponded to low-dimensional deterministic chaos, not

stochastic behaviour (which itself would follow a power law). They made the comment

that the route to chaos via period doubling, intermittency and the break-up of a 2-torus

as described by circle maps did not occur in the Taylor-Couette system. The behaviour of

the circle maps of Taylor-Couette flow was apparently quite different from the maps that

exhibited frequency locking. In turbulent Taylor vortex flow, the axial periodicity persists

in the time-averaged sense.

2.3 Linear stability of steady circular Couette flow

In the analysis of Taylor (1923) the incompressible and axisymmetric Navier-Stokes

equations were used. The velocity was set equal to the Couette flow velocity plus the

perturbed velocity, u′. After linearization of the resulting disturbance equations, normal

mode solutions were sought, of the form

u′(z, r, t) = u(r) cos

(

2π

λ
z

)

eσt (3)

v′(z, r, t) = v(r) cos

(

2π

λ
z

)

eσt (4)
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w′(z, r, t) = w(r) sin

(

2π

λ
z

)

eσt (5)

where λ is the axial wavelength and σ is the growth rate of the normal mode. As Taylor

vortex flow is not oscillatory, σ is a real number. With some manipulation the disturbance

equations are written as an eigenvalue problem, the solution of which gives the growth

rate of each mode for the chosen Reynolds number (or Taylor number).

The outer curve in Figure 2.4 describes the variation of critical Reynolds number with

axial wavelength of the axisymmetric perturbation. For a particular Re above a minimum

critical value, Rec, there is a linearly unstable band of axial wavelengths. Infinitesimal

axisymmetric perturbations with wavelengths in this band will grow exponentially. Out-

side the band, circular Couette flow is stable and infinitesimal axisymmetric perturbations

decay exponentially.

2.4 Moderately supercritical Taylor vortex flow

Coles (1965) conducted experiments for wavy vortex flow. He was able to achieve

states with different axial and azimuthal wavenumbers at the same Reynolds number,

thus demonstrating nonuniqueness. He found that, in accelerating or decelerating from

one Re to another, the rate at which a particular Reynolds number is reached can influence

the wavy vortex flow state that appears. Also, if this rate is large enough an hysteresis

can result which does not occur for slower rates.

Snyder (1969) subsequently demonstrated nonuniqueness of the axial wavelength in

Taylor vortex flow. He conducted an experiment in an apparatus with a large aspect ratio

and small gap width. By varying the inner and outer cylinder Reynolds numbers, Rein

and Reout, slowly with time via different paths through the critical Reynolds number Rec,

he was able to achieve stable Taylor vortex flows of different wavelengths at the same final

Rein and Reout. However, Snyder had experimentally been able to achieve stable Taylor

vortex flows for a much smaller band of wavelengths than the band derived from linear

theory.
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Figure 2.4: Stability diagram for Taylor vortex flow for η = 0.727, µ = 0. Taylor num-

ber versus axial wavelength. The solid line is the neutral curve from the linear stability of

steady circular Couette flow Chandrasekhar (1961). The dashed line shows the stability

boundary from a weakly nonlinear analysis Kogelman and DiPrima (1970). The open cir-

cles represent Taylor vortex flow states observed for sudden start experiments Burkhalter

and Koschmieder (1974). The filled circles represent Taylor vortex flow states observed

for an experiment where the annulus was filled with fluid after inner cylinder was rotating

at fixed speed. From Burkhalter and Koschmieder (1974).
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Kogelman and DiPrima (1970) undertook an analysis of Taylor vortex flow to third

order based on the weakly nonlinear stability theory of Eckhaus (1965). They found that

stable Taylor vortex flows are achievable only for wavelengths within a band roughly 1/
√

3

times the width of the band from linear theory.

The inner band, shown in Figure 2.4, has inner and outer limits given by

λnl =
λcλl

√
3

λc + λl(
√

3 − 1)
(6)

where λl is the corresponding band limit from linear theory. The critical wavelength λc is

defined as the wavelength corresponding to a minimum in the critical Reynolds number

and takes a value of 2.0 in Figure 2.4. The inner band is called the Eckhaus stable

band. Taylor vortex flows with wavelengths outside this band are unstable with respect

to axisymmetric perturbations. Kogelman and DiPrima showed that these observations

of Snyder lied well within the Eckhaus stable band.

Later, Stuart and DiPrima (1978) analysed the flow using a Landau amplitude equation

with a dispersive term which allowed for slow spatial variations in the axial direction. They

described the Eckhaus mechanism of instability as being when sideband perturbations

resonate with the first harmonic of the fundamental mode of the periodic flow to mutually

reinforce each other, leading to an instability.

Burkhalter and Koschmieder (1973) conducted experiments whereby the inner cylinder

was increased quasi-steadily from rest and found that the preferred wavelength of the

Taylor vortex flow was equal to the critical wavelength, λc. Experiments by Burkhalter

and Koschmieder (1974) for an inner cylinder impulsively increased from rest showed that

the preferred wavelength, λs, was smaller than the critical wavelength. This is illustrated

in Figure 2.4, where their data are represented by the open circles. Figure 2.5 also shows

the variation of preferred axial wavelength with Taylor number for sudden starts.
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Figure 2.5: Taylor number versus axial wavelength for η = 0.727. From Burkhalter and

Koschmieder (1974).

In addition, stable Taylor vortex flows with wavelengths longer than the critical wavelength

were produced by a filling experiment. In these experiments the annulus was filled with

fluid when the inner cylinder was rotating at a particular speed.

Koschmieder (1993) stated that stable Taylor vortex flows with preferred wavelengths

between λs and λc can be achieved by applying different inner cylinder acceleration rates to

the same final Reynolds number. Thus, Taylor vortex flows with different axial wavelengths

within the Eckhaus stable range can be achieved depending on how the experiment is

performed.

Nakaya (1974) extended the weakly nonlinear analysis to fifth order for η = 0.5. The

band of stable Taylor vortex flows was found to be narrower than the one derived by Ko-

gelman and DiPrima, but still wider than the range of experimentally observed nonunique

flows.
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Figure 2.6: Stability diagram for stable Taylor vortex flow for η = 0.75. A plot of

ǫ = (Re − Rec)/Rec versus wavenumber q, where q is the critical wavenumber. The

dashed curve is the Eckhaus boundary from Kogelman and DiPrima (1970). The solid

curve is the nonlinear boundary according to Riecke and Paap (1986). The solid circles

show the experimental results for the Eckhaus boundary. The triangles, open circles, and

vertical bars near the centre give the band of states selected by spatial ramps of two

different slopes in ǫ. From Dominguez-Lerma et al. (1986).

Riecke and Paap (1986) applied a Galerkin procedure to solve the axisymmetric Navier-

Stokes equations for the stability of Taylor vortex flow with respect to axisymmetric per-

turbations. They considered η = 0.892, 0.75 and 0.5, an infinite cylinder aspect ratio and

stationary outer cylinder. For Re ≤ 1.1Rec the band of stable wavenumbers was consid-

erably smaller than predicted from the amplitude expansions of Kogelman and DiPrima,

as shown in Figure 2.6.

Dominguez-Lerma et al. (1986) investigated the stability of Taylor vortex flow ex-
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perimentally in an apparatus with η = 0.75 and Γ = 40. Although quantitatively, the

agreement to the numerical results by Riecke and Paap is remarkable, Koschmieder (1993)

comments that the experimental uncertainty would have been of the order of at least 1%.

2.5 Wavelength selection criteria

Snyder (1969) described a number of theories of wavenumber selection. These were:

(1) Theories based on Bénard convection.

(2) Models based on the linearised Navier-Stokes equations, already discussed.

(3) Variational methods for the nonlinear problem. For example, selection based on an

extremum principle where the criterion is:

(a) minimum total heat transport for the Bénard convection problem,

(b) minimum mean square vertical thermal gradient for the Bénard convection

problem,

(c) minimum rate of entropy production,

(d) maximum viscous dissipation,

(e) Coles (1965) suggested that for wavy vortex flow the trajectory of the preferred

state corresponds to a path of steepest ascent on a surface of dissipation rate plotted

against inner cylinder Reynolds number and wavenumber.

Snyder commented that a common characteristic of the variational principles is that

no unique wavenumber is obtained and the principles are not derived directly from the

governing equations so it is not known whether any of the above criteria are directly

derivable from the governing equations.

(4) Weakly nonlinear models developed from the governing equations. Stuart (1960)

developed a perturbation scheme which differed from previous work in that the time

variable was included. The notable feature of Stuart’s method, pointed out by Segel

(1962), was that the final equilibrium state must depend upon the initial state.

DiPrima and Eagles (1977) calculated theoretically the wavenumbers corresponding to

maximum amplification rate λa and maximum torque λt for different radius ratios and
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Taylor numbers. The calculations were made for an infinite aspect ratio with the outer

cylinder stationary using an analytical, weakly nonlinear approach. Their results contra-

dicted Coles’ conjecture with respect to his own experiments. However, they concluded

from their own results that it is possible that λa or λt is a preferred wavenumber. They

suggested the problem of final state selection does not require going outside the frame-

work of the Navier-Stokes equations. “ Rather, it requires the solution of the initial value

problem, or even a succession of initial value problems to match some experiments ”.

Benjamin and Mullin (1982) varied the inner cylinder rotation rate and the aspect

ratio, keeping the outer cylinder stationary. They argued that the presence of ends in

the Taylor-Couette apparatus will always bear crucially on what wavelength is selected,

regardless of how long the finite cylinders are. Also, the presence of ends gives rise to a

quantisation condition for the possible wavelengths so that only wavelengths corresponding

to integer wavenumbers are observed (like a standing wave pattern). As the aspect ratio is

increased to infinity the multiplicity of wavenumbers increases to a continuum of possible

wavenumbers. The authors describe two types of possible flows: the primary flow, selected

by slow (quasi-steady) increases of Reynolds number and secondary flow, selected by other

methods e.g. variations of Reynolds number combined with variations of aspect ratio to

the same final Reynolds number and aspect ratio. For every given finite aspect ratio, a

unique primary flow exists.

2.6 Stability of unsteady circular Couette flow

When the Reynolds number is constant in time the state that develops is a time-

periodic state. For time-periodic base states, Floquet theory guarantees the existence of

an exponential temporal factor and hence a well-defined growth rate. Linear theory may

then be applied in a relatively straightforward fashion. However, in the situation with a

linearly ramped inner cylinder one has a time-aperiodic basic state. For time-aperiodic

basic states Floquet theory no longer applies.
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Figure 2.7: RI,c/Rs versus R0/Rs for η = 0.5 and A > 0. The acceleration rate A labels

each curve. R0 is the initial Reynolds number. —— —— steady-state linear limit, – – –

Eagles’ enhanced limit for A = 1.6. From Neitzel (1982b).

In cases with time-aperiodic states one’s attention can be restricted to slowly varying

flows to allow the use of the WKBJ approximation, making further assumptions regarding

a stability criterion. In the WKBJ approximation the temporal part of the solution is

expressed as an exponential function of time. When the inner cylinder speed is increased

slowly, Eagles (1974) applied the WKBJ approximation to show that the instantaneous

critical Reynolds number is slightly higher than their critical Reynolds numbers in the

steady situation. He predicted an increase of approximately 6% for η = 0.5 and 10% for

η = 0.95.

Alternatively for time-aperiodic states, one can base a stability decision upon some
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arbitrary quantity such as a disturbance amplification factor. From this approach, Neitzel

(1982b) applied energy-stability theory to unsteady circular Couette flow. He considered

the situation of an inner cylinder Reynolds number increased linearly with time from

subcritical to supercritical values at different rates, A. His results showed that the instan-

taneous critical Reynolds number, RI,c, increases relative to the steady result, Rs, as A,

increases. This is shown in Figure 2.7. For A = 1.6 the increase is about 5% for η = 0.5

compared with 4% for η = 0.95.

2.7 Amplitude equations

The results from linear theory assume indefinite exponential growth of disturbances.

In reality, nonlinear effects will eventually make the growing mode saturate and tend to

a steady-state Taylor vortex flow pattern. Landau (1944) replaced the exponential time

factor in Equations (3) to (5) with an amplitude time factor A(t). In general, A(t) can be

a complex number.

Following Drazin and Reid (1989), A(t) is determined from the Landau equation

dA

dt
= σA − lA|A|2 (7)

where l is the Landau constant. The analytic solution is

|A(t)| =

√

√

√

√

A2
o

l
σ
A2

o +
(

1 − l
σ
A2

o

)

exp(−2σt)
(8)

|A| → Ae =

√

σ

l
as t → ∞ (9)

where Ae is the equilibrium amplitude.

This equation describes the growth and eventual saturation of the amplitude of a pure

mode. Initially the mode grows exponentially and then it self-interacts, generating higher

harmonics.

Davey (1962) first made a weakly nonlinear analysis of Taylor vortex flow using an

amplitude expansion technique applied to the axisymmetric Navier-Stokes equations. The
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amplitude expansion technique was previously used by Stuart (1960) where it was applied

to plane Poiseuille flow and by Watson (1960) where it was applied to plane Poiseuille

flow and plane Couette flow. Davey derived an amplitude equation of the form given in

Equation (7).

Eagles (1971) and DiPrima and Eagles (1977) extended the analysis to fifth order

amplitude terms but found no significant differences in the results.

To first order one can write

σ = K(Re − Rec) (10)

and deduce from Equation (9) that

Ae =
√

K(Re − Rec)/l (11)

This means that the equilibrium amplitude increases in a first approximation as
√

Re − Rec.

In his theoretical analysis, Davey confirmed this relationship for the wide gap case

(η = 0.5) and outer cylinder at rest.

Despite these agreements Koschmieder (1993) makes the important point that the

derivation of the Landau equation in Taylor vortex flow is valid only for two-dimensional,

weakly nonlinear flow. In other words, for Reynolds numbers close to the critical. His view

is that, in general, the amplitude is unlikely to be the only parameter that determines the

characteristics of nonlinear flow.

When more than one mode is considered, an extension can be made to the Landau

equation to include coupling terms:

dAj

dt
= σjAj − ljAj|Aj|2 −

∑

l 6=j

αjl|Al|2Aj (12)

where the subscripts label the modes. The negative sign means that energy is drawn from

mode j by mode l. The coefficient αjl is a coupling constant.

The modelling of the behaviour of two coupled generators was discussed by Abarbanel,

Rabinovich and Sushchik (1993). The problem has applications in convective flow in a
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fluid, electrical circuits, and coupled modes in a laser resonator, for example. The model

is often called a two-frequency Van der Pol generator or the kinetic equations. From

Equation (12), consider two coupled amplitude equations of the form

dA1

dt
= (1 − |A1|2 − α12|A2|2)A1 (13)

dA2

dt
= (1 − |A2|2 − α21|A1|2)A2 (14)

This model shall be applied in a more general way in Chapter 6.

If it is further assumed that, α12 = α21 = 2. When dA1

dt
= 0 and dA2

dt
= 0, the equilibrium

points are:

(1) |A1|2 = 0, |A2|2 = 0

(2) |A1|2 = 0, |A2|2 = 1

(3) |A1|2 = 1, |A2|2 = 0

(4) |A1|2 = 1

3
, |A2|2 = 1

3

In the phase space spanned by |A2|2 against |A1|2, the system has two stable equilibrium

states, the coordinates of which are given by points (2) and (3). Which of the two states

becomes preferred depends on the initial conditions. If the inital amplitude of mode 1 is

sufficiently larger than the initial amplitude of mode 2 then after a certain time the system

tends to the state given by point (3). In other words, mode 1 survives and suppresses mode

2. So for some initial conditions mode 1 wins and for other initial conditions mode 2 wins.

This is what is called mode competition.

When α12 < 1 and α21 > 1 mode 1 wins, and when α12 > 1 and α21 < 1 mode 2 wins,

regardless of the initial conditions. When α12 < 1 and α21 < 1 the modes do not affect

each other and both modes grow to a finite amplitude.

In an application to the Rayleigh-Bénard thermally driven convection experiment, Abar-

banel, Rabinovich and Sushchik (1993) wrote an extension of Equation (12) to the form
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dAj

dt
= σjAj − ljAj|Aj|2 −

∑

l 6=j

αjl|Al|2Aj +
∑

βlqA
∗
qA

∗
l (15)

where the asterisk refers to a complex conjugate quantity.

In the quadratic term, the sum is taken over all harmonics which satisfy the resonance

condition: kj + kq + kl = 0, where k is the wavevector and the general expression for the

temperature or fluid velocity has the form

Φ(r, t) =
N

∑

j=1

aj(t) exp(i(kjr − ωjt)) + complex conjugate (16)

The coefficient βlq is a coupling constant. The quadratic term models resonant three-

wave interactions. Physically, such interactions can occur if the viscosity coefficient is

dependent on temperature in a fluid convection. Consider three modes. If initially there

is only mode 1 and 2, they will make mode 3 grow to a larger amplitude. Also, If βlq is

large enough all three modes will grow simultaneously.

2.8 Computational methods

Taylor (1923) solved the linearised form of the axisymmetric Navier-Stokes equations

by expressing the velocity of the perturbation in terms of Bessel functions, where the

coefficients where determined via matrix manipulation. By assuming a small gapsize, he

represented the exact matrix for the coefficients in terms of approximate expressions for

the Bessel functions. He calculated the variation of the value of the critical Reynolds

number with different choices of inner and outer cylinder angular velocities and obtained

excellent agreement with his experimental results from flow visualization.

Meyer (1967) applied finite differencing to solve the axisymmetric Navier-Stokes equa-

tions to simulate Taylor vortex flow. The equations were expressed in terms of stream-

function and vorticity. The critical Reynolds number agreed to within 3% of that obtained

from linear theory.

Alonso and Macagno (1973) used an alternating direction implicit (ADI) scheme to

solve the axisymmetric Navier-Stokes equations which were expressed in terms of tangen-
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tial velocity, vorticity and stream function. An infinite cylinder case was assumed with

stationary outer cylinder. For η = 0.833 and for a wide range of Reynolds numbers it was

shown that the scheme had a satisfactory rate of convergence and was stable even for a

coarse mesh and large time increments.

Liu and Chen (1973) simulated Taylor vortex flow with impulsive starts of the inner

cylinder. The axisymmetric Navier-Stokes equations were solved in vorticity-streamfunction

notation using explicit finite difference approximations. Random small perturbations were

applied in space initially, to more accurately reproduce the development of Taylor vortex

flows in a real experiment.

Alziary de Roquefort & Grillaud (1978) computed the Taylor vortex flow for an appara-

tus with rotating end walls using a finite difference method. The Navier-Stokes equations

were expressed in stream function, vorticity and tangential velocity formulation. The

scheme involved implicit fractional steps and fast Fourier transforms while upwind differ-

encing was used for the convective terms.

Meyer-Spasche and Keller (1980) traced the bifurcation from circular Couette flow to

Taylor vortex flow by solving the steady, axisymmetric Navier-Stokes equations. They used

Fourier expansions in the axial direction and a centred finite difference approximation

in the radial direction. The discretised equations were solved using a pseudoarclength

continuation method; such methods are commonly used to detect bifurcations. Good

agreement was obtained for the Torque as a function of Reynolds number between the

numerical and experimental results for η = 0.5 and η = 0.95.

Spectral methods have been shown to have high accuracy (exponential convergence)

and efficiency for a relatively low number of gridpoints, as compared with finite differ-

ence methods. The use of spectral methods to solve problems with solid boundaries did

not emerge until the late 1970s, when reliable Fourier-Chebyshev algorithms were avail-

able. Finite difference methods were not preferred because of the numerical problem of

cumulative phase errors, which did not occur with spectral methods.

Marcus, Orszag and Patera (1982) used a pseudo-spectral (or collocation) technique
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to simulate Taylor-Couette flow with infinite cylinder length, and finite gap size, fixed

outer cylinder and moving inner cylinder. The boundary conditions were assumed to be

viscous and no-slip. The velocity was expressed as a Fourier series in the axial direction

(due to periodicity), a Fourier series in the azimuthal direction (due to periodicity) and a

Chebyshev series in the radial direction (due to the solid boundaries formed by the inner

and outer cylinder walls). The velocity was computed by integrating the Navier-Stokes

equation in cylindrical coordinates forward in time using a fractional-step time-splitting

(or operator splitting) technique. The first step dealt with the nonlinear term and made

a second order Adams-Bashforth approximation. The solution of this step was then used

in the second step together with an Euler approximation of the pressure term, to obtain a

pressure corrected velocity. The pressure was expressed as an inviscid pressure term plus

a viscosity-corrected pressure component (Greens function). The inviscid pressure term

was determined assuming that the velocity at the second fractional step was divergence

free, leading to a Poisson equation, and satisfied the inviscid boundary conditions (that the

radial derivative of the inviscid pressure term equalled the radial component of the velocity

at the first fractional step at the cylinder walls). The Greens function was evaluated by

solving another Poisson-like equation (with right hand side equal to zero), at the end of

the viscous step (the final fractional step). It was computed by evaluating a diagonal

capacitance matrix once in a pre-processing stage and inverting the capacitance matrix

after each viscous step. The use of a Greens function removed the time-splitting errors.

The final fractional step was the viscous step which made a Crank-Nicolson approximation

of the viscous term. The authors simulated steady-state, periodic and quasi-periodic

Taylor-Couette flows and verified that the time-splitting error was less than 10−6 for 33

radial collocation points, 32 axial points and 16 azimuthal points (per azimuthal span of

2π/6 radians). Checks were made with results from other researchers on Taylor-Vortex

flow for torques and wavespeeds, the later being the more severe test. At small values of

the Reynolds number (about 2Rec) the boundaries had to treated very carefully. At large

Reynolds numbers (about 10Rec) the wave speed was insensitive to the exact value of the
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Reynolds number.

Moser, Moin and Leonard (1983) developed a spectral method which was classified by

Canuto et al (1988) as a Petrov-Galerkin method. The velocity was written as a Fourier se-

ries in the azimuthal and axial directions. In the radial direction a spectral expansion was

used which inherently satisfied the boundary conditions and the continuity equation. The

resulting radial component of velocity contained components which were quasi-orthogonal

functions constructed from Chebyshev polynomials. The procedure transformed the three-

dimensional Navier-Stokes equation to three independent equations in spectral space con-

taining banded matrices which were efficiently solved at each time step. The pressure term

was eliminated from the Navier-Stokes equation. The three equations in spectral space are

integrated forward in time by assuming Crank-Nicolson time-differencing for the viscous

terms and Adams-Bashforth time-differencing for the nonlinear terms. The procedure was

tested with application to Taylor-Couette flow with axisymmetric Taylor vortex flow and

wavy vortex flow. In all cases good agreement was obtained with available experimental

and theoretical results, although the discretization of the grid was much coarser than in

Marcus (1984b).

Marcus (1984a, 1984b) further developed the pseudospectral technique used by Mar-

cus, Orszag and Patera (1982). The difference to that method lay mainly in a different

choice of boundary conditions when solving the Poisson equation for the viscous-corrected

pressure term. The boundary condition chosen was that the radial derivative of the total

pressure was equal to the radial component of velocity at the first fractional step plus

the radial component of the diffusion term evaluated after the viscous fractional step, at

the cylinder walls. He tested the code by comparing his numerically determined growth

rates and wave speeds with linear theory and by comparing his computed torques with

experimentally measured values. He used a grid with 33 radial Chebyshev points, 32 axial

Fourier points and 32 azimuthal Fourier points. In his code he also used the symmetry

characteristics of wavy vortex flow to investigate flows with fixed azimuthal wavenumber.

He used his code to study Taylor vortex flows and wavy vortex flows by computing energy,
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angular momentum, torque, wave speed, energy dissipation rate, enstrophy, and energy

and enstrophy spectra. Using these results he argued that the azimuthal travelling waves

are a secondary instability caused by the strong radial motion in the outflow boundaries

of the Taylor vortices and are not shear instabilities associated with inflection points of

the azimuthal flow. The travelling wave mixes together the fluid in the cores of neigh-

bouring Taylor vortices and thereby creates nonaxisymmetric vortical motions in the (z,

φ) plane centred at the outflow and inflow boundaries. Marcus also commented that time

splitting does not cause appreciable error in pipe flow, but does cause a large error in

Taylor-Couette flow. This is because the forcing terms for Taylor-Couette flow are at the

radial boundaries while in pipe flow the radial boundaries are rather unimportant. The

use of supercomputers made it possible to extend the simulations of wavy vortex flows

to fairly large Reynolds numbers. The computations were in excellent agreement with

experiments for the critical Reynolds number for the onset of wavy vortex flow and the

angular velocities of the waves. Coughlin and Marcus (1991, 1992a, 1992b) used their

method to simulate modulated wavy vortex flow.

Street and Hussaini (1991) developed two numerical methods to study Taylor-Couette

flow with a fixed outer cylinder and a finite length to gap ratio. The first was a time-

split spectral collocation scheme, used in both axisymmetric and three-dimensional time

accurate forms. The second was a staggered mesh scheme. In the time-split scheme,

Chebyshev series were used in the radial and axial directions (due to solid boundaries)

and Fourier series was used in the azimuthal direction (due to periodicity). Collocation

was used due to its

1. straightforward treatment of nonlinear terms and boundary conditions,

2. capability to include coordinate stretchings, and

3. ability to solve the resulting discrete equations rapidly.

Coordinate stretching was used in the radial direction to resolve the large gradients

near the inner cylinder. The axial direction was not stretched. In the first fractional step,

the nonlinear terms and the diffusion terms were treated together. It involved a third
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order Runge-Kutta scheme for the nonlinear terms and Crank-Nicolson for the diffusion

terms. In the second and final fractional step, the velocity solution of the first step was

used together with a backwards Euler approximation of the pressure term. The pressure

was determined from a Poisson equation, assuming the velocity at the second step was

divergence free. The boundary conditions for pressure were that the normal component

of pressure gradient at the boundaries be zero. The error involved in this specification of

boundary conditions was related to the overall time-splitting error of the scheme. Each

time step required the solution of nine positive-definite Helmholtz equations with Dirichlet

conditions and one Poisson equation with pure Neumann boundary conditions (per Fourier

azimuthal mode). A tensor-product decomposition technique was used to solve for the

Helmholtz equations in which the eigenvectors of the one-dimensional spectral operators

were used to diagonalize the multidimensional operator (see Canuto et al (1988), Haidvogel

and Zang (1979), Gottlieb and Orszag (1977)). The Poisson equation was solved using an

influence matrix method. These two techniques appear to be the same techniques used

by Marcus (1984a, 1984b). Computations were done on a Cray 2 supercomputer with a

Chebyshev - Chebyshev - Fourier discretization of 65 × 45 × 32 points, including physical-

space stretchings in both Chebyshev directions. Very small time steps were required to

keep splitting errors small at high spatial resolution levels.
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3 Governing Equations

3.1 Taylor-Couette flow

The Navier-Stokes equations written in cylindrical coordinates are:

∂ur

∂t
+ (u.∇)ur −

uφ
2

r
= −1

ρ

∂P

∂r
+ ν

(

∇2ur −
ur

r2
− 2

r2

∂uφ

∂φ

)

(1)

∂uφ

∂t
+ (u.∇)uφ +

uruφ

r
= −1

ρ

1

r

∂P

∂φ
+ ν

(

∇2uφ − uφ

r2
+

2

r2

∂ur

∂φ

)

(2)

∂uz

∂t
+ (u.∇)uz = −1

ρ

∂P

∂z
+ ν∇2uz (3)

which are subject to the incompressibility constraint

∇.u = 0 (4)

where ur(z, φ, r, t), uφ(z, φ, r, t) and uz(z, φ, r, t) are the radial, azimuthal and axial com-

ponents of velocity, respectively. Also, P (z, φ, r, t) is the pressure.

The equations are solved in an annular domain (rin ≤ r ≤ rout, 0 ≤ φ ≤ 2π , 0 ≤ z ≤ Γ)

with periodic boundary conditions in the axial (z) direction and azimuthal (φ) direction,

and the radial velocity boundary conditions of rinΩin at the inner cylinder and routΩout

at the outer cylinder. The radius ratio is defined as η = rin/rout and the angular velocity

ratio as µ = Ωout/Ωin. Then µ = 0 if the outer cylinder is stationary. The periodic height

of the cylinders, Γ, defines the aspect ratio.

A transformation from r to r′ is made using r′ = r/α − γ where the length scale

α = (rout − rin)/2 and γ = (η + 1)/(1 − η). This is done because use will be made of

the Chebyschev polynomials to model the radial variation in velocity and pressure. The

variable z is therefore transformed to z′ using z′ = z/α. The variable φ is unchanged.

Also, define the velocity scale as rinΩin and the pressure scale as ρ(rinΩin)2. The Reynolds
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number is then Re = Ωinrin(rout−rin)/2ν which is used to substitute in the nondimensional

form of the equations for ν. The annular domain is then defined by (−1 ≤ r′ ≤ 1,

0 ≤ φ ≤ 2π , 0 ≤ z′ ≤ Γ′). The time scale is α/(Ωinrin).

The commonly used length scale in Taylor-Couette flow is the gap size, whereas for the

purposes of our computational method half the gap size has been chosen. In this thesis,

nondimensionalised input parameters and results will always be presented with respect to

a length scale equal to the gapsize. To translate results obtained with a length scale equal

to the gap size to results obtained with half the gap size, the following were considered.

The Reynolds number and the scales of time, aspect ratio and axial wavelength are half

those defined using a length scale equal to the gap size. Consequently, the scales for axial

wavenumber and growth rate are twice those defined using a length scale equal to the gap

size.

Therefore, the nondimensional values for the length variables (including axial wave-

length and aspect ratio) and time variable are twice those defined using a length scale

equal to the gap size. Also, the nondimensional values for axial wavenumber and growth

rate are half those defined using a length scale equal to the gap size. The primes are

dropped on all variables, understanding them to be nondimensional from now on.

The form of the equations are then

∂ur

∂t
= Nr(u) − ∂P

∂r
+

1

Re
Lr(u) (5)

∂uφ

∂t
= Nφ(u) − 1

r + γ

∂P

∂φ
+

1

Re
Lφ(u) (6)

∂uz

∂t
= Nz(u) − ∂P

∂z
+

1

Re
Lz(u) (7)

subject to the incompressibility constraint

ur

r + γ
+

∂ur

∂r
+

1

r + γ

∂uφ

∂φ
+

∂uz

∂z
= 0 (8)
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The non-linear operators Nr, Nφ, Nz are

Nr(u) = −ur

∂ur

∂r
− uφ

r + γ

∂ur

∂φ
− uz

∂ur

∂z
+

uφ
2

r + γ
(9)

Nφ(u) = −ur

∂uφ

∂r
− uφ

r + γ

∂uφ

∂φ
− uz

∂uφ

∂z
− uruφ

r + γ
(10)

Nz(u) = −ur

∂uz

∂r
− uφ

r + γ

∂uz

∂φ
− uz

∂uz

∂z
(11)

and the linear operators Lr, Lφ, Lz are

Lr(u) =
1

r + γ

∂ur

∂r
+

∂2ur

∂r2
+

1

(r + γ)2

∂2ur

∂φ2
− 2

(r + γ)2

∂uφ

∂φ
+

∂2ur

∂z2
− ur

(r + γ)2
(12)

Lφ(u) =
1

r + γ

∂uφ

∂r
+

∂2uφ

∂r2
+

1

(r + γ)2

∂2uφ

∂φ2
+

2

(r + γ)2

∂ur

∂φ
+

∂2uφ

∂z2
− uφ

(r + γ)2
(13)

Lz(u) =
1

r + γ

∂uz

∂r
+

∂2uz

∂r2
+

1

(r + γ)2

∂2uz

∂φ2
+

∂2uz

∂z2
(14)

The radial boundary conditions become:

ur(z, φ,−1, t) = 1 and ur(z, φ, 1, t) = µ/η (15)

3.2 Taylor vortex flow

For axisymmetry, all derivatives with respect to the azimuthal variable are zero, which

reduces the equations to:

∂ur

∂t
= Nr(u) − ∂P

∂r
+

1

Re
Lr(u) (16)
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∂uφ

∂t
= Nφ(u) +

1

Re
Lφ(u) (17)

∂uz

∂t
= Nz(u) − ∂P

∂z
+

1

Re
Lz(u) (18)

subject to the incompressibility constraint

ur

r + γ
+

∂ur

∂r
+

∂uz

∂z
= 0 (19)

The velocity components are ur(z, r, t), uφ(z, r, t) and uz(z, r, t). Also P (z, r, t) is the

pressure.

The non-linear operators Nr, Nφ, Nz are

Nr(u) = −ur

∂ur

∂r
− uz

∂ur

∂z
+

uφ
2

r + γ
(20)

Nφ(u) = −ur

∂uφ

∂r
− uz

∂uφ

∂z
− uruφ

r + γ
(21)

Nz(u) = −ur

∂uz

∂r
− uz

∂uz

∂z
(22)

and the linear operators Lr, Lφ, Lz are

Lr(u) =
1

r + γ

∂ur

∂r
+

∂2ur

∂r2
+

∂2ur

∂z2
− ur

(r + γ)2
(23)

Lφ(u) =
1

r + γ

∂uφ

∂r
+

∂2uφ

∂r2
+

∂2uφ

∂z2
− uφ

(r + γ)2
(24)

Lz(u) =
1

r + γ

∂uz

∂r
+

∂2uz

∂r2
+

∂2uz

∂z2
(25)

30



These equations are solved in a rectangular domain (−1 ≤ r ≤ 1, 0 ≤ z ≤ Γ) with

periodic boundary conditions in the axial direction and radial velocity boundary conditions

of

ur(z,−1, t) = 1 and ur(z, 1, t) = µ/η (26)

3.3 Steady circular Couette flow

For sufficiently low Reynolds number, steady circular Couette flow is obtained with an

analytic solution ur(z, φ, r, t) = 0, uφ(z, φ, r, t) = V (r) and uz(z, φ, r, t) = 0, where

V (r) = Ar + B/r (27)

and

A =
Ωin(µ − η2)

1 − η2
and B =

Ωinr2

in(1 − µ)

1 − η2
(28)

The nondimensional form of this solution is

V (r) = A[(1 − η)r + η + 1] + B
1

(1 − η)r + η + 1
(29)

where

A =
µ − η2

2η(1 − η2)
and B =

2η(1 − µ)

1 − η2
(30)
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4 Two-dimensional Driven Cavity Flow

As an intermediate step before dealing with the numerical method for Taylor vortex

flow, a numerical method for the flow of the fluid in a two-dimensional, square, driven

cavity is described and validated with numerical tests. The numerical method for two-

dimensional driven cavity flow is simpler to implement because the equations are in Carte-

sian coordinates. For validation purposes, the essential features of the numerical tests are

the location and strength of various vortices inside the cavity which are known to arise at

certain values of Reynolds number.

4.1 Governing equations

The Navier-Stokes equations written in primitive variable form are:

∂u

∂t
= −(u.∇)u − 1

ρ
∇P + ν∇2u (1)

subject to the incompressibility constraint

∇.u = 0 (2)

where for two-dimensional flows u = u(x, y, t)x + v(x, y, t)y.

We consider a square domain Ω (|x| ≤ L, |y| ≤ L) where a constant x component

of velocity, U , is at the top boundary otherwise the components of velocity around the

boundary of the domain are zero. Choosing a length scale of L and a velocity scale of U ,

the Reynolds number is Re = UL/ν.

The results will be compared to results by Ghia et al. (1982). The length scale and

hence Reynolds number here are half the corresponding values defined by Ghia et al. That

is, Re = ReG/2 where the G subscript stands for the value defined by Ghia et al.

The nondimensional form of the boundary conditions (on the boundary ∂Ω) are
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u(x, y, t) =















1 if y = 1

0 elsewhere on ∂Ω

(3)

v(x, y, t) = 0 on ∂Ω (4)

4.2 Operator splitting method

The operator splitting procedure treats the time-advancement of the non-linear term,

the pressure term and the viscous terms separately. The velocity is advanced from time

step l to time step l+1 using three fractional steps. From Karniadakis, Israeli and Orszag

(1991), an operator splitting scheme shall be applied which has first-order time-accuracy.

The first fractional step accounts for the non-linear term and uses an explicit, second

order Adams-Bashforth approximation :

ul+ 1

3 = ul − ∆t

[

3

2

(

ul ∂u

∂x

l

+ vl ∂u

∂y

l
)

− 1

2

(

ul−1
∂u

∂x

l−1

+ vl−1
∂u

∂y

l−1
)]

(5)

vl+ 1

3 = vl − ∆t

[

3

2

(

ul ∂v

∂x

l

+ vl ∂v

∂y

l
)

− 1

2

(

ul−1
∂v

∂x

l−1

+ vl−1
∂v

∂y

l−1
)]

(6)

The second fractional step is due to the pressure term contribution:

ul+ 2

3 = ul+ 1

3 − ∆t
∂P

∂x

l+1

(7)

vl+ 2

3 = vl+ 1

3 − ∆t
∂P

∂y

l+1

(8)

These are explicit forward Euler approximations. The pressure P l+1 is solved using the

Poisson equation:

∂2P

∂x2

l+1

+
∂2P

∂y2

l+1

=
1

∆t

(

∂u

∂x

l+1/3

+
∂v

∂y

l+1/3
)

(9)

which is obtained by applying the incompressibility constraint on ul+2/3 and applying

Equations (7) and (8).
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A further assumption is that ul+2/3 satisfies the prescribed boundary conditions (Equa-

tions (3) and (4)) in the directions normal to the boundaries:

At x = ±1, ul+2/3 = u∂Ω =















1 for y = 1

0 for −1 ≤ y < 1

(10)

At y = ±1, vl+2/3 = v∂Ω = 0 (11)

From Equations (7) and (8), Neumann boundary conditions are imposed on the square

boundary:

∂P

∂x

l+1

=
1

∆t
(ul+1/3 − u∂Ω) at x = ±1 (12)

∂P

∂y

l+1

=
1

∆t
(vl+1/3 − v∂Ω) at y = ±1 (13)

The third fractional step is the viscous step:

ul+1 = ul+ 2

3 +
1

Re
∆t





∂2u

∂x2

l+1

+
∂2u

∂y2

l+1


 (14)

vl+1 = vl+ 2

3 +
1

Re
∆t





∂2v

∂x2

l+1

+
∂2v

∂y2

l+1


 (15)

where an implicit, backwards Euler approximation is made. Equations (14) and (15) are

each in the form of an Helmholtz equation, with the Dirichlet boundary conditions that

ul+1 and vl+1 take the boundary values of velocity defined by Equations (3) and (4).

4.3 Spectral method

A Tau spectral method will be described that solves:

(1) the Poisson equation for the pressure in the pressure step using Neumann boundary

conditions, and,

(2) the Helmholtz equations for the two velocity components in the viscous step using

Dirichlet boundary conditions.
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4.3.1 Poisson solver

The Poisson equation for the pressure P (x, y) at each time step, has the form

∂2P

∂x2
+

∂2P

∂y2
= F (x, y) (16)

where the Neumann boundary conditions have the form

∂P

∂x
= α(y) at x = −1 (17)

∂P

∂x
= β(y) at x = 1 (18)

∂P

∂y
= χ(x) at y = 1 (19)

∂P

∂y
= ψ(x) at y = −1 (20)

A Chebyshev-Chebyshev expansion of a function P (x, y) is

P (x, y) =
N

∑

n=0

N
∑

m=0

anmTn(x)Tm(y) (21)

where the Chebyshev polynomial is

Tn(x) = cos(n arccos x) (22)

and there are N + 1 points in the x direction and N + 1 points in the y direction.

From Gottlieb and Orszag (1977), Equation (16) in spectral form can be written as

1

cn

N
∑

p = n + 2

p + n even

p(p2 − n2)apm +
1

cm

N
∑

q = m + 2

q + m even

q(q2 − m2)anq = Fnm (23)
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for 0 ≤ n ≤ N − 2 and 0 ≤ m ≤ N − 2 where c0 = 2 and cn = 1 for n ≥ 1. This can be

written in matrix form as:

A









































a00 a01 . . . a0,N−2

a10 a11 . . . a1,N−2

...
...

...
...

aN−2,0 aN−2,1 . . . aN−2,N−2

aN−1,0 aN−1,1 . . . aN−1,N−2

aN,0 aN,1 . . . aN,N−2









































+

























a00 a01 . . . a0,N−2 a0,N−1 a0,N

a10 a11 . . . a1,N−2 a1,N−1 a1,N

...
...

...
...

...
...

aN−2,0 aN−2,1 . . . aN−2,N−2 aN−2,N−1 aN−2,N

























A
T

=

























F00 F01 . . . F0,N−2

F10 F11 . . . F1,N−2

...
...

...
...

FN−2,0 FN−2,1 . . . FN−2,N−2

























where A is the N − 1 × N + 1 matrix:









































0 0 23/2 0 43/2 0 . . . N3/2

0 0 0 3(32 − 12) 0 5(52 − 11) . . . 0

0 0 0 0 4(42 − 22) 0 . . . N(N2 − 22)

0 0 0 0 0 5(52 − 32) . . . 0

...
...

...
...

...
...

...
...

0 0 0 0 0 0 . . . N(N2 − (N − 2)2)
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The one-dimensional Chebyshev approximation of a function α(y) is

α(y) =
N

∑

m=0

αmTm(y) (24)

The spectral expressions for a(1,0)

nm and a(0,1)

nm , i.e.

a(1,0)

nm =
2

cn

N
∑

p = n + 1

p + n odd

papm (25)

and

a(0,1)

nm =
2

cm

N
∑

q = m + 1

q + m odd

qanq (26)

The spectral form of the boundary conditions then are

N
∑

n=0

a(1,0)

nm (−1)n+1 =
N

∑

n=0

(−1)nn2anm = αm (27)

N
∑

n=0

a(1,0)

nm =
N

∑

n=0

n2anm = βm (28)

for 0 ≤ m ≤ N , and

N
∑

m=0

a(0,1)

nm =
N

∑

m=0

m2anm = χn (29)

N
∑

m=0

a(0,1)

nm (−1)m+1 =
N

∑

m=0

(−1)mm2anm = ψn (30)

for 0 ≤ n ≤ N .
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Adding and subtracting Equations (27) and (28) we get:

N
∑

n = 0

n odd

n2anm =
1

2
(βm + αm) = ηm (31)

N
∑

n = 0

n even

n2anm =
1

2
(βm − αm) = θm (32)

for 0 ≤ m ≤ N , and adding and subtracting Equations (29) and (30) we get:

N
∑

m = 0

m odd

m2anm =
1

2
(χn + ψn) = δn (33)

N
∑

m = 0

m even

m2anm =
1

2
(χn − ψn) = ζn (34)

for 0 ≤ n ≤ N .

In the first term on the left hand side of the matrix Equation (23), we substitute

Equation (31) to eliminate the coefficients aN−1,m, and Equation (32) to eliminate the

coefficients aN,m, for 0 ≤ m ≤ N − 2. In the second term on the left hand side of the

matrix Equation (23), we substitute Equation (33) to eliminate the coefficients an,N−1,

and Equation (34) to eliminate the coefficients an,N for 0 ≤ n ≤ N − 2. Subsequently we

obtain a matrix equation in terms of the coefficients anm for 0 ≤ n,m ≤ N − 2, of the

form:

Aa + aAT = f (35)

where the matrices A, a and f are (N − 1) × (N − 1). The matrix f is
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f = F − Q − S (36)

where Q and S are the (N − 1) × (N − 1) matrices with elements

Qnm =















N2−n2

NCn

θm for n even

(N−1)
2−n2

(N−1)Cn

ηm for n odd

(37)

Snm =















N2−m2

NCm

ζn for m even

(N−1)
2−m2

(N−1)Cm

δn for m odd

(38)

The matrix A does not have the upper triangular structure that the matrix A has.

It is a general matrix with alternating zero and non-zero elements. Now that the matrix

equation (35) represents a system with (N − 1)2 equations in (N − 1)2 unknowns, we can

solve for the unknowns by the following procedure.

Firstly, diagonalize the matrix A to get the eigenvalues Λ and corresponding eigenvec-

tors e:

Ae = eΛ (39)

where e and Λ are (N − 1) × (N − 1) arrays. Then by using the transformations f = eg

and a = eb, Equation (35) becomes

Λb + bAT = g (40)

where g and b are (N − 1) × (N − 1) arrays. The transformed matrix equation (40) can

now easily be solved for b by taking

bk = gk[λkI + AT ]−1 (41)

for k = 0, 1, ..., N − 2, where bk and gk are the kth row of elements of b and g respectively,

and λk is the kth eigenvalue of matrix A. Once bnm are calculated, anm can be determined
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from a = eb and the boundary conditions (Equations (31) to (34)) for 0 ≤ m,n ≤ N . A

Chebyshev-Chebyshev inverse transform of anm will give the solution for P (x, y).

4.3.2 Helmholtz solver

The Helmholtz equation for a component of velocity W (x, y) at each time step, has the

form

∂2W

∂x2
+

∂2W

∂y2
− λW = F (x, y) (42)

where the Dirichlet boundary conditions have the form

W (−1, y) = α(y) (43)

W (1, y) = β(y) (44)

W (x, 1) = χ(x) (45)

W (x,−1) = ψ(x) (46)

Equation (42) in spectral form is similar to matrix Equation (23) but with the term

−λanm (for 0 ≤ n,m ≤ N − 2) added in the left hand side where anm are the spectral

coefficients for W (x, y).

Using the boundary conditions (Equations (43) to (46)) we have

N
∑

n=0

anm(−1)n = αm (47)

N
∑

n=0

anm = βm (48)

for 0 ≤ m ≤ N , and
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N
∑

m=0

anm = χn (49)

N
∑

m=0

anm(−1)m = ψn (50)

for 0 ≤ n ≤ N .

Adding and subtracting Equations (47) and (48) we get:

N
∑

n = 0

n even

anm =
1

2
(βm + αm) = ηm (51)

N
∑

n = 0

n odd

anm =
1

2
(βm − αm) = θm (52)

for 0 ≤ m ≤ N . Adding and subtracting Equations (49) and (50) we get:

N
∑

m = 0

m even

anm =
1

2
(χn + ψn) = δn (53)

N
∑

m = 0

m odd

anm =
1

2
(χn − ψn) = ζn (54)

for 0 ≤ n ≤ N .

In the spectral matrix form of the Helmholtz equation we substitute Equation (51) to

eliminate the coefficients aN,m, and Equation (52) to eliminate the coefficients aN−1,m, for

0 ≤ m ≤ N − 2. Also, we substitute Equation (53) to eliminate an,N , and Equation (54)

to eliminate the coefficients an,N−1 for 0 ≤ n ≤ N − 2. Subsequently the matrix equation

is of the form:
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Aa + aAT − λa = f (55)

where A, a and f are (N − 1) × (N − 1). The elements of A are not the same as those in

the Poisson equation case but are still alternating zero and non-zero elements.

The array f is

f = F − Q − S (56)

where Q and S are the (N − 1) × (N − 1) matrices with elements:

Qnm =















N(N2−n2
)

Cn

ηm for n even

(N−1)((N−1)
2−n2

)

Cn

θm for n odd

(57)

Snm =















N(N2−m2
)

Cm

δn for m even

(N−1)((N−1)
2−m2

)

Cm

ζn for m odd

(58)

Applying the same transformations as for the Poisson equation case, we get:

Λb + bAT − λb = g (59)

which can easily be solved for b by taking

bk = gk[(λk − λ)I + AT ]−1 (60)

for k = 0, 1, ..., N − 2, where bk and gk are the kth row of elements of b and g respectively,

and λk is the kth eigenvalue of matrix A. Once bnm are calculated, anm can be determined

from a = eb and the boundary conditions (Equations (51) to (54)) for 0 ≤ m,n ≤ N . A

double Chebyshev inverse transform of anm will give the solution for W (x, y).

4.3.3 Preprocessing calculations

The method calculates the N − 1 arrays [λkI + AT ]−1 for the Poisson solver and the

N − 1 arrays [(λk − λ)I + AT ]−1 for the Helmholtz solver, once, in a pre-processing step.
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4.4 Spatial oscillations

It is well known that when spectral methods are used to solve differential equations spa-

tial oscillations are obtained if the gridspacing is not small enough to resolve the gradients

in the solution. The use of jump discontinuous boundary conditions, such as in the case

of driven cavity flow, therefore produces spatial oscillations for any number of gridpoints

since the infinite gradient is never resolved.

One way of overcoming this problem is apply smoother Dirichlet boundary conditions

for the Helmholtz solver for u(x, y) used in the viscous step. For example, Ku, Hirsh and

Taylor (1987) replaced the top boundary condition with the discrete variation u(x, 1) =

0, 0.3, 1, ..., 1, 0.3, 0 and Shen (1991) used the continuous variation u(x, 1) = (1 − x2)2.

Such treatments of the boundary condition have resulted in more resolved solutions as the

number of gridpoints was increased. In smoothing the discontinuous boundary conditions

one has to be careful not to smooth it too much otherwise the solution may be significantly

different to the true solution. This appears to be the case with Shen’s treatment, where

the effective Reynolds number is larger than if discontinuous boundary conditions were

used. In this case, a distinction was made between the Classical Driven Cavity Flow where

discontinuous boundary conditions were used, and Regularized Driven Cavity Flow where

Shen’s smoothed boundary conditions were used.

4.5 Results and comparisons

The treatment of u(x, 1) by Shen was considerably different to the classical (discontin-

uous) boundary conditions so that no quantitative comparison to, say, the results of Ghia

et al. could be made. It is necessary to keep the same profile for the velocity at the top

boundary as the number of gridpoints is increased in order to make it possible to resolve

the flow with a sufficient number of gridpoints. Therefore rather than using Ku et al.’s

approach it was decided to use the top velocity profile u(x, 1) = 1 − exp(−20(1 − x2)),

which has a high but resolvable gradient near the top two corners of the cavity.

A simulation was considered to have reached steady state when
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∣

∣

∣ul − ul−1

∣

∣

∣

max
< 1 × 10−8 (61)

was satisfied.

Consider the relations u = ∂ψ

∂y
and v = −∂ψ

∂x
where ψ(x, y) is the streamfunction. The

Poisson equation is:

∂2ψ

∂x2
+

∂2ψ

∂y2
=

∂u

∂y
− ∂v

∂x
(62)

which, together with the Dirichlet boundary conditions of ψ = 0 everywhere on the bound-

ary of the domain, was used to calculate the streamfunction. A Tau method was used to

solve the Poisson equation of the type described in Section 4.3.2 with λ = 0.

In the calculation the streamfunctions of particular interest were: the minimum value of

streamfunction for the Primary (P) vortex, the maximum values of streamfunction for the

1st Bottom Left (BL) and 1st Bottom Right (BR) secondary vortices and, when possible,

the minimum values of streamfunction for the 2nd Bottom Left (BL) and 2nd Bottom Right

(BR) secondary vortices.

The spectral interpolation form of the Chebyshev-Chebyshev approximation to stream-

function:

ψ(x, y) =
N

∑

n=0

N
∑

m=0

ψnmTn(x)Tm(y) (63)

was used to calculate extrema in ψ and their locations for fine grid variations in x and y.

The flow was simulated till steady state for Reynolds numbers (ReG) of 100, 400 and

1000. For each Reynolds number several different numbers of gridpoints and time spacings

were tried. In Tables 4.1 to 4.3, when it was possible, the location of the centres of

the primary and secondary vortices and the corresponding streamfunction values were

calculated. These calculations were then compared to those from Ghia et al., who use a

coupled implicit multigrid (CSI–MG) method and provided high Reynolds number fine

mesh flow solutions for the driven cavity flow problem. They provided streamfunction
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solutions to five decimal place accuracy. The tables demonstrate that the computed values

converge to the results by Ghia et al. as the gridspacing and timespacing are reduced. (In

the tables, I.C. stands for initial conditions in the interior of the domain.)

Figures 4.1 to 4.15 consist of: (1) Velocity vector plots and streamfunction plots for

the primary and secondary vortices, and, (2) graphs of the horizontal component of ve-

locity through the vertical centreline and the vertical component of velocity through the

horizontal centreline, plotted against the results from Ghia et al.

Figures 4.1 to 4.3 highlight the numerical problem of spatial oscillations when insuffi-

cient grid resolution is used. This is most noticeable near the top two corners of Figure

4.1 where the sizes of the vectors alternate in sequence in the y direction. These spatial

oscillations are not present when more gridpoints are used, as illustrated in Figures 4.4 to

4.6. Figures 4.9, 4.12 and 4.15 also show good agreement with results by Ghia et al.

The run for Re = 100 with a 49 × 49 grid and ∆t = 0.01 took about 6.4 hours of

CPU time to reach steady state. The driven cavity flow simulations where made on a

Silicon Graphics Indy R3000 Workstation. The run for Re = 400 with a 65× 65 grid and

∆t = 0.01 took about 8 hours of CPU time. The run for Re = 1000 with a 65 × 65 grid

and ∆t = 0.01 took about 15.5 hours of CPU time to reach steady state. In the latter

two examples, the initial conditions were taken from solutions to coarser grids in order to

reduce the overall computation time.

Another test of the code was to demonstrate exponential convergence of the spectral

method. This was done by keeping ∆t fixed and increasing the number of gridpoints. The

test case was for the analytic solution

uan = − cos(x) sin(y) exp(−2t/Re) (64)

van = sin(x) cos(y) exp(−2t/Re) (65)
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pan = −1

4
(cos(2x) + cos(2y)) exp(−4t/Re) (66)

The value for |u−uan| was recorded after a fixed time for various values of ∆t. From this,

Figure 4.16 demonstrates the first-order time-accuracy of the (classical) operator splitting

method.
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Vortex Property Ghia et al. 17 × 17 grid 17 × 17 grid

P ψmin -0.103423 -0.099099 -0.103683

Location x, y 0.6172, 0.7344 0.6165, 0.7465 0.6157, 0.7369

1st BR ψmax 1.25374 × 10−5

Location x, y 0.9453, 0.0625

1st BL ψmax 1.74877 × 10−6

Location x, y 0.0313, 0.0391

∆t 0.1 0.01

I.C. zero zero

FIGS. 7.4 to 7.6

Vortex Property 25 × 25 grid 25 × 25 grid 33 × 33 grid

P ψmin -0.098772 -0.103011 -0.098737

Location x, y 0.6187, 0.7471 0.6161, 0.7386 0.6189, 0.7471

1st BR ψmax 3.0387 × 10−5 1.44557 × 10−5 2.97096 × 10−5

Location x, y 0.9376, 0.0802 0.9550, 0.0563 0.9385, 0.0726

1st BL ψmax 1.229 × 10−5 1.10433 × 10−5

Location x, y 0.0301, 0.0743 0.0395, 0.0468

∆t 0.1 0.01 0.1

I.C. zero zero zero

FIGS. 7.9.1 to 7.9.3

Vortex Property 33 × 33 grid 49 × 49 grid 49 × 49 grid

P ψmin -0.102966 -0.102962 -0.103474

Location x, y 0.6163, 0.7385 0.6162, 0.7385 0.6160, 0.7375

1st BR ψmax 1.5132 × 10−5 1.5020 × 10−5 1.35271 × 10−5

Location x, y 0.9427, 0.0668 0.9417, 0.0635 0.9463, 0.0619

1st BL ψmax 3.1244 × 10−6 2.9945 × 10−6 2.22989 × 10−6

Location x, y 0.0283, 0.0423 0.0358, 0.0373 0.0277, 0.0338

∆t 0.01 0.01 0.001

I.C. zero zero solution from

49 × 49 grid

with ∆t = 0.01

FIGS. 7.18.4 to 7.18.6

Table 4.1: Properties of Primary and Secondary Vortices for ReG = 100
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Vortex Property Ghia et al. 33 × 33 grid 65 × 65 grid

P ψmin -0.113909 -0.113095 -0.113024

Location x, y 0.5547, 0.6055 0.5549, 0.6068 0.5547, 0.6068

1st BR ψmax 6.42352 × 10−4 6.43051 × 10−4 6.54073 × 10−4

Location x, y 0.8906, 0.1250 0.8869, 0.1256 0.8843, 0.1234

1st BL ψmax 1.41951 × 10−5 1.39134 × 10−5 1.48628 × 10−5

Location x, y 0.0508, 0.0469 0.0559, 0.0451 0.0513, 0.0475

2nd BR ψmin −1.86595 × 10−8 −1.281 × 10−7

Location x, y 0.9922, 0.0078 0.9905, 0.0091

2nd BL ψmin −7.67738 × 10−10

Location x, y 0.0039, 0.0039

∆t 0.01 0.01

I.C. zero solution from

33 × 33 grid

and ∆t = 0.01

and linear interpolation

FIGS. 7.24.4 to 7.24.6

Table 4.2: Properties of Primary and Secondary Vortices for ReG = 400

Vortex Property Ghia et al. 33 × 33 grid 65 × 65 grid

P ψmin -0.117929 -0.118103 -0.117767

Location x, y 0.5313, 0.5625 0.5308, 0.5650 0.5310, 0.5660

1st BR ψmax 1.75102 × 10−3 1.73405 × 10−3 1.72787 × 10−3

Location x, y 0.8594, 0.1094 0.8616, 0.1112 0.8632, 0.1125

1st BL ψmax 2.31129 × 10−4 2.25550 × 10−4 2.25203 × 10−4

Location x, y 0.0859, 0.0781 0.0888, 0.0728 0.0831, 0.0777

2nd BR ψmin −9.31929 × 10−8 −1.56805 × 107

Location x, y 0.9922, 0.0078 0.9910,0.0088

∆t 0.01 0.01

I.C. zero solution from

33 × 33 grid

∆t = 0.01

and linear interpolation

FIGS. 7.30.1 to 7.30.3

Table 4.3: Properties of Primary and Secondary Vortices for ReG = 1000
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Figure 4.1: Velocity vectors for ReG = 100 using a 17 × 17 grid and ∆t = 0.01.

49



Figure 4.2: Streamlines for ReG = 100 using a 17 × 17 grid and ∆t = 0.01.
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Figure 4.4: Velocity vectors for ReG = 100 using a 25 × 25 grid and ∆t = 0.01.
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Figure 4.5: Streamlines for ReG = 100 using a 25 × 25 grid and ∆t = 0.01.
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Figure 4.7: Velocity vectors for ReG = 100 using a 49 × 49 grid and ∆t = 0.01.
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Figure 4.8: Streamlines for ReG = 100 using a 49 × 49 grid and ∆t = 0.01.
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Figure 4.10: Velocity vectors for ReG = 400 using a 65 × 65 grid and ∆t = 0.01.
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Figure 4.11: Streamlines for ReG = 400 using a 65 × 65 grid and ∆t = 0.01.
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Figure 4.13: Velocity vectors for ReG = 1000 using a 65 × 65 grid and ∆t = 0.01.
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Figure 4.14: Streamlines for ReG = 1000 using a 65 × 65 grid and ∆t = 0.01.
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.

Figure 4.16: Loge|u − uan| versus Loge∆t at a point in the domain for ReG = 0.1, and

a 25 × 25 grid.
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Figure 4.3: ReG = 100 using a 17 × 17 grid and ∆t = 0.01.

(a) Horizontal component of velocity through vertical centreline.

(b) Vertical component of velocity through horizontal centreline.

Circled points represent data from Ghia et al. (1982)

Figure 4.6: ReG = 100 using a 25 × 25 grid and ∆t = 0.01.

(a) Horizontal component of velocity through vertical centreline.

(b) Vertical component of velocity through horizontal centreline.

Circled points represent data from Ghia et al. (1982)

Figure 4.9: ReG = 100 using a 49 × 49 grid and ∆t = 0.01.

(a) Horizontal component of velocity through vertical centreline.

(b) Vertical component of velocity through horizontal centreline.

Circled points represent data from Ghia et al. (1982)

Figure 4.12: ReG = 400 using a 65 × 65 grid and ∆t = 0.01.

(a) Horizontal component of velocity through vertical centreline.

(b) Vertical component of velocity through horizontal centreline.

Circled points represent data from Ghia et al. (1982)

Figure 4.15: ReG = 1000 using a 65 × 65 grid and ∆t = 0.01.

(a) Horizontal component of velocity through vertical centreline.

(b) Vertical component of velocity through horizontal centreline.

Circled points represent data from Ghia et al. (1982)
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5 Numerical Method for Taylor Vortex Flow

An operator splitting approach will be used. In such an approach each of the discrete

spatial operators is treated separately, which effectively reduces the computational cost

in the numerical solution of the Navier-Stokes equations. Due to the success of the Tau

spectral method in simulating driven cavity flow, it was decided to apply this approach in

modelling Taylor vortex flow.

5.1 The classical splitting scheme

The operator splitting procedure treats the non-linear term, the pressure term and the

viscous terms in the Navier-Stokes equations, separately. The velocity is advanced from

time step l to time step l + 1 using three fractional steps. A classical operator splitting

scheme which has first-order temporal accuracy for velocity will now be described, following

a general operator splitting procedure described by Karniadakis et al. (1991). We proceed

with the equations for Taylor vortex flow described in Chapter 3.

The first fractional step accounts for the nonlinear term and uses an explicit, second-

order Adams-Bashforth approximation :

u
l+ 1

3

r = ul
r + ∆t

(

3

2
Nr(u

l) − 1

2
Nr(u

l−1)

)

(1)

u
l+ 1

3

φ = ul
φ + ∆t

(

3

2
Nφ(ul) − 1

2
Nφ(ul−1)

)

(2)

u
l+ 1

3

z = ul
z + ∆t

(

3

2
Nz(u

l) − 1

2
Nz(u

l−1)

)

(3)

The second fractional step is due to the pressure term contribution:

u
l+ 2

3

r = u
l+ 1

3

r − ∆t
∂P

∂r

l+1

(4)
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u
l+ 2

3

φ = u
l+ 1

3

φ (5)

u
l+ 2

3

z = u
l+ 1

3

z − ∆t
∂P

∂z

l+1

(6)

These are explicit forward Euler approximations. The pressure P l+1 is solved using the

Poisson equation:

1

r + γ

∂P

∂r

l+1

+
∂2P

∂r2

l+1

+
∂2P

∂z2

l+1

=
1

∆t

(

1

r + γ
ul+1/3

r +
∂ur

∂r

l+1/3

+
∂uz

∂z

l+1/3
)

(7)

which is obtained by applying the incompressibility constraint (Equation (19) in Chapter

(3)) at time step l + 2/3 and using Equations (4) and (6). Multiplying both sides of

Equation (7) by r + γ we get:

∂P

∂r

l+1

+ (r + γ)
∂2P

∂r2

l+1

+ (r + γ)
∂2P

∂z2

l+1

=
1

∆t

(

ul+1/3

r + (r + γ)
∂ur

∂r

l+1/3

+ (r + γ)
∂uz

∂z

l+1/3
)

(8)

The solution of Equation (8) is convenient because the spectral form of the operator

r + γ can be easily derived analytically.

A further assumption is that ul+2/3 satisfies the prescribed boundary conditions in the

directions normal to the boundaries (cylinder walls):

ul+2/3

r (z,±1, t) = 0 (9)

From Equation (4), this implies that Neumann boundary conditions can be imposed:

66



∂P

∂r

l+1

=
1

∆t
ul+1/3

r at r = ±1 (10)

Periodicity in the pressure is assumed in the axial direction.

The third fractional step is the viscous step:

ul+1

r = u
l+ 2

3

r +
∆t

Re
Lr(u

l+1) (11)

ul+1

φ = u
l+ 2

3

φ +
∆t

Re
Lφ(ul+1) (12)

ul+1

z = u
l+ 2

3

z +
∆t

Re
Lz(u

l+1) (13)

where an implicit, backwards Euler approximation is made. Equations (11) to (13) are

each in the form of an Helmholtz equation. We multiply both sides of Equations (11) and

(12) by (r + γ)2 and both sides of Equation (13) by r + γ to get:

(r + γ)
∂ur

∂r

l+1

+ (r + γ)2
∂2ur

∂r2

l+1

+ (r + γ)2
∂2ur

∂z2

l+1

−
(

Re

∆t
(r + γ)2 + 1

)

ul+1

r

= −
(

Re

∆t
(r + γ)2 + 1

)

ul+2/3

r (14)

(r + γ)
∂uφ

∂r

l+1

+ (r + γ)2
∂2uφ

∂r2

l+1

+ (r + γ)2
∂2uφ

∂z2

l+1

−
(

Re

∆t
(r + γ)2 + 1

)

ul+1

φ

= −
(

Re

∆t
(r + γ)2 + 1

)

u
l+2/3

φ (15)

∂uz

∂r

l+1

+ (r + γ)
∂2uz

∂r2

l+1

+ (r + γ)
∂2uz

∂z2

l+1

− Re

∆t
(r + γ)ul+1

z

= −Re

∆t
(r + γ)ul+2/3

z (16)
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Again, Equations (14) to (16) are convenient because the spectral form of the operators

r + γ and (r + γ)2 can be easily derived analytically. The Helmholtz equations can each

be solved with the following respective Dirichlet boundary conditions:

ul+1

r (z,±1, t) = 0 (17)

ul+1

φ (z,−1, t) = 1 and ul+1

φ (z, 1, t) = µ/η (18)

ul+1

z (z,±1, t) = 0 (19)

Periodic boundary conditions are assumed in the axial direction for each of these velocity

components.

5.2 Higher order splitting schemes

Following Karniadakis et al. (1991), the non-linear terms are approximated via an explicit

scheme, for example, a Je-order scheme from the Adams-Bashforth family as follows,

ul+1/3

r = ul
r + ∆t

Je−1
∑

q=0

βqNr(u
l−q) (20)

u
l+1/3

φ = ul
φ + ∆t

Je−1
∑

q=0

βqNφ(ul−q) (21)

ul+1/3

z = ul
z + ∆t

Je−1
∑

q=0

βqNz(u
l−q) (22)

For a 2nd order Adams Bashforth scheme (Je = 2), β0 = 3

2
and β1 = −1

2
, as in

Equations (1) to (3). For a 3rd order Adams Bashforth scheme (Je = 3), β0 = 23

12
, β1 = −4

3

and β2 = 5

12
.

The linear (viscous) terms are approximated via an implicit scheme, for example, a

Ji-order scheme from the Adams-Moulton family as follows
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ul+1

r = u
l+ 2

3

r +
∆t

Re

Ji−1
∑

q=0

γqLr(u
l+1−q) (23)

ul+1

φ = u
l+ 2

3

φ +
∆t

Re

Ji−1
∑

q=0

γqLφ(ul+1−q) (24)

ul+1

z = u
l+ 2

3

z +
∆t

Re

Ji−1
∑

q=0

γqLz(u
l+1−q) (25)

For a 1st order Adams-Moulton scheme (Ji = 1, i.e. Backward-Euler), γ0 = 1, as in

Equations (11) to (13). For a 2nd order Adams-Moulton scheme (Ji = 2, i.e. Crank-

Nicolson), γ0 = 1

2
and γ1 = 1

2
.

If a weighted approximation (with Ji = 2) is used for the linear terms then γ0 = 1

2
+ θ

and γ1 = 1

2
− θ, where θ is a weighting parameter. For example, θ = 1

2
corresponds to

a Backward-Euler approximation (Ji = 1) and θ = 0 corresponds to a Crank-Nicolson

approximation (Ji = 2).

From Equations (23) to (25), the Helmholtz equations for the three components of

velocity in the viscous step become

(r + γ)
∂ur

∂r

l+1

+ (r + γ)2
∂2ur

∂r2

l+1

+ (r + γ)2
∂2ur

∂z2

l+1

−
(

1

γ0

Re

∆t
(r + γ)2 + 1

)

ul+1

r = −
(

1

γ0

Re

∆t
(r + γ)2 + 1

)

ul+2/3

r

− 1

γ0

Ji−1
∑

q=1

γq

[

(r + γ)
∂ur

∂r
+ (r + γ)2

∂2ur

∂r2
+ (r + γ)2

∂2ur

∂z2
− ur

](l+1−q)

(26)

(r + γ)
∂uφ

∂r

l+1

+ (r + γ)2
∂2uφ

∂r2

l+1

+ (r + γ)2
∂2uφ

∂z2

l+1

−
(

1

γ0

Re

∆t
(r + γ)2 + 1

)

ul+1

φ = −
(

1

γ0

Re

∆t
(r + γ)2 + 1

)

u
l+2/3

φ

− 1

γ0

Ji−1
∑

q=1

γq

[

(r + γ)
∂uφ

∂r
+ (r + γ)2

∂2uφ

∂r2
+ (r + γ)2

∂2uφ

∂z2
− uφ

](l+1−q)

(27)
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∂uz

∂r

l+1

+ (r + γ)
∂2uz

∂r2

l+1

+ (r + γ)
∂2uz

∂z2

l+1

− 1

γ0

Re

∆t
(r + γ)ul+1

z = − 1

γ0

Re

∆t
(r + γ)ul+2/3

z

− 1

γ0

Ji−1
∑

q=1

γq

[

∂uz

∂r
+ (r + γ)

∂2uz

∂r2
+ (r + γ)

∂2uz

∂z2

](l+1−q)

(28)

If Ji = 1 and γ0 = 1 then Equations (26) to (28) become Equations (14) to (16).

In the pressure step Equation (8) is solved subject to higher order pressure boundary

conditions. That is, instead of using Equation (10) we use an explicit Jp-order scheme,

∂P

∂r

l+1

=

Jp−1
∑

q=0

βq

[

− 1

Re
(∇× (∇× u))r + Nr(u)

](l−q)

(29)

which becomes

∂P

∂r

l+1

=

Jp−1
∑

q=0

βq

[

1

Re

(

∂2ur

∂z2
− ∂2uz

∂z∂r

)

−
(

ur

∂ur

∂r
+ uz

∂ur

∂z
− uφ

2

r + γ

)](l−q)

(30)

Equation (30) is used to set the Neumann boundary conditions at r = ±1. The pressure

is assumed to be periodic in the axial direction.

For Jp = 0 we obtain zero on the right hand side of Equation (30) which is the same

result that would be obtained with Equation (10). A scheme with a Jp = 0 treatment of

the pressure boundary conditions and any value for Je and Ji is called a classical splitting

scheme. For Jp = 1, e.g. Forward-Euler, β0 = 1 and for higher Jp we can choose βq to

correspond to the Adams-Bashforth family of approximations.

From Karniadakis et al. (1991), a zeroth order time treatment of the pressure boundary

conditions is expected to produce first order time accuracy in velocity. Similarly, a first

order time treatment of the pressure boundary conditions is expected to produce second

order time accuracy in velocity.

Here, a splitting scheme labelled as (Je, Jp, Ji) denotes that the nonlinear terms are to

Je-order, the pressure boundary conditions are to Jp-order and the viscous terms are to

Ji-order.
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5.3 Spectral methods

A Tau spectral method will be described which has a Fourier approximation in the axial

direction (z) and a Chebyshev approximation in the radial (r) direction that solves the:

(1) Poisson equation for the pressure in the pressure step using Neumann boundary

conditions in r and periodic boundary conditions in z,

(2) Helmholtz equation for the radial and azimuthal velocity components in the viscous

step using Dirichlet boundary conditions in r and periodic boundary conditions in z, and,

(3) Helmholtz equation for the axial velocity component in the viscous step using Dirich-

let boundary conditions in r and periodic boundary conditions in z.

5.3.1 Spatial discretisation of the grid

A discrete Fourier-Chebyshev approximation of a function P (z, r) is

P (z, r) =

M/2−1
∑

m=−M/2

N
∑

n=0

PmnTn(r) exp(imz) (31)

where the Chebyshev polynomial is

Tn(r) = cos(n cos−1 r) (32)

In the radial direction there are N + 1 Chebyshev-Gauss-Lobatto points defined by

rj = cos(πj/N) for j = 0, ..., N (33)

where −1 ≤ r ≤ 1. The distribution of these points becomes denser as r → ±1.

In the axial direction there are M equidistant points defined by

zj =
2π

M
j for j = 0, ...,M − 1 (34)

In Equation (34), 2π radians corresponds to an aspect ratio length of Γ. Therefore, an

equivalent form of a Fourier-Chebyshev approximation of a function P (z, r) is
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P (z, r) =

M/2−1
∑

m=−M/2

N
∑

n=0

PmnTn(r) exp

(

i
2πm

Γ
z

)

(35)

where the axial direction has M equidistant points defined by

zj =
Γ

M
j for j = 0, ...,M − 1 (36)

From Equation (35), the allowed discrete axial wavenumbers are given by

κm =
2π

Γ
m for m = 0, ...,M/2 − 1 (37)

That is, the allowed discrete axial wavelengths are given by

λm =
Γ

m
for m = 1, ...,M/2 − 1 (38)

From Equation (38), the largest possible discrete axial wavelength is equal in magnitude

to the aspect ratio and the smallest possible discrete axial wavelength is in magnitude

about a factor M/2 smaller than the aspect ratio.

5.3.2 Spectral operator for variable coefficients

A function u(r) expressed in terms of Chebyshev polynomials is

u(r) =
N

∑

n=0

unTn(r) (39)

where

Tn(r) = cos(n cos−1 r) (40)

and the subscript denotes Chebyshev transform coefficient index. From Canuto et al.

(1988) there is the expression
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(uv)n =
1

2

∑

p+q=n

upvq +
1

2

∑

|p−q|=n

upvq (41)

If u(r) = r + γ then u0 = γ, u1 = 1 and un = 0 for n ≥ 2. Also, if u(r) = (r + γ)2 then

u0 = γ2 + 1/2, u1 = 2γ, u2 = 1/2 and un = 0 for n ≥ 3. By substituting this information

into Equation (41) the spectral form of the operator for (r+γ) is then the (N +1)×(N +1)

tridiagonal matrix C, where

Cpq =































































γ for p = q

1/2 for p = q + 1 and p ≤ N − 1

1/2 for p = q − 1 and p ≥ 1

1 for p = q − 1 and p = 0

0 otherwise

(42)

where 0 ≤ p ≤ N and 0 ≤ q ≤ N . Also, the spectral form of the operator (r + γ)2 is the

(N + 1) × (N + 1) pentadiagonal matrix C2, where

C2

pq =



































































































































































γ2 + 1/2 for p = q and p = 0, 2 ≤ p ≤ N − 2

γ2 + 3/4 for p = q and p = 1

γ2 + 1/4 for p = q and p = N − 1

γ2 for p = q and p = N

2γ for p = q − 1 and p = 0

γ for p = q − 1 and p ≥ 1

1/2 for p = q − 2 and p = 0

1/4 for p = q − 2 and p ≥ 1

γ for p = q + 1 and p ≤ N − 1

1/4 for p = q + 2 and p ≤ N − 1

0 otherwise

(43)
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5.3.3 Poisson solver for pressure

The Poisson equation for the pressure P (z, r) at each time step, has the form

∂P

∂r
+ (r + γ)

∂2P

∂r2
+ (r + γ)

∂2P

∂z2
= F (z, r) (44)

where the Neumann boundary conditions have the form

∂P

∂r
= α(z) at r = −1 (45)

∂P

∂r
= β(z) at r = 1 (46)

Equation (44) in matrix form in spectral space can be written as

PD + (PD2 + ΛP )C = F (47)

where P and F are M × (N + 1) matrices. The spectral coefficients Pmn and Fmn are

complex numbers in general.

D is the (N + 1) × (N + 1) matrix with elements defined by

Dpq =















2

cq

p for p ≥ q + 1 and p + q odd

0 otherwise

(48)

where 0 ≤ p ≤ N and 0 ≤ q ≤ N . The coefficients c0 = 2, cq = 1, for 1 ≤ q ≤ N − 1 and

cN = 2.

D2 is the (N + 1) × (N + 1) matrix with elements defined by

D2

pq =















1

cq

p(p2 − q2) for p ≥ q + 2 and p + q even

0 otherwise

(49)

where 0 ≤ p ≤ N and 0 ≤ q ≤ N .

Λ is a diagonal M × M matrix with elements
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Λjk =















−j2 for j = k

0 otherwise

(50)

where the Fourier indices j and k take the ordering described above.

The spectral form of the boundary conditions can be written as:

N
∑

n=0

n2PR,mn = βR,m (51)

N
∑

n=0

(−1)n+1n2PR,mn = αR,m (52)

N
∑

n=0

n2PI,mn = βI,m (53)

N
∑

n=0

(−1)n+1n2PI,mn = αI,m (54)

for −M/2 ≤ m ≤ M/2 − 1. The subscripts R and I denote real and imaginary

components.

Adding and subtracting Equations (51) and (52) we get:

N
∑

n=0, n odd

n2PR,mn =
1

2
(βR,m + αR,m) = ηR,m (55)

N
∑

n=0, n even

n2PR,mn =
1

2
(βR,m − αR,m) = θR,m (56)

Adding and subtracting Equations (53) and (54) we get:

N
∑

n=0, n odd

n2PI,mn =
1

2
(βI,m + αI,m) = ηI,m (57)

N
∑

n=0, n even

n2PI,mn =
1

2
(βI,m − αI,m) = θI,m (58)

for −M/2 ≤ m ≤ M/2 − 1.
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In the matrix Equation (47) we substitute Equation (55) and (57) to eliminate the com-

plex coefficients Pm,N−1 and Equation (56) and (58) to eliminate the complex coefficients

Pm,N , for −M/2 ≤ m ≤ M/2 − 1. Subsequently we obtain the matrix equation

PB + (PB2 + ΛP )C = f (59)

where now P takes the range −M/2 ≤ m ≤ M/2 − 1, 0 ≤ n ≤ N − 2 of its original

definition, C is the portion 0 ≤ p ≤ N − 2, 0 ≤ q ≤ N − 2 of its original definition and Λ

is the same. The matrices B and B2 are both (N − 1) × (N − 1) where

Bpq =































































−2p2

(N−1)cq

for p ≤ q − 1, q even, p odd

2p

cq

(

1 − p

N−1

)

for p ≥ q + 1, q even, p odd

−2p2

Ncq

for p ≤ q − 1, q odd, p even

2p

cq

(

1 − p

N

)

for p ≥ q + 1, q odd, p even

0 otherwise

(60)

and

B2

pq =































































−p2
((N−1)

2−q2
)

(N−1)cq

for p ≤ q, q odd, p odd

p

cq

(

p2 − q2 − p((N−1)
2−q2

)

N−1

)

for p ≥ q + 2, q odd, p odd

−p2
(N2−q2

)

Ncq

for p ≤ q, q even, p even

p

cq

(

p2 − q2 − p(N2−q2
)

N

)

for p ≥ q + 2, q even, p even

0 otherwise

(61)

where 0 ≤ p ≤ N − 2 and 0 ≤ q ≤ N − 2. The matrices B and B2 do not have the lower

triangular structure that the matrices D and D2 respectively have. They are general

matrices with alternating zero and non-zero elements.

The matrix f has real and imaginary components

fR = FR − QR − SRC (62)

and
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fI = FI − QI − SIC (63)

where Q and S are M × (N − 1) matrices with components

QR,mn =















2

(N−1)cn

ηR,m for n even

2

Ncn

θR,m for n odd

(64)

QI,mn =















2

(N−1)cn

ηI,m for n even

2

Ncn

θI,m for n odd

(65)

SR,mn =















N2−n2

Ncn

θR,m for n even

(N−1)
2−n2

(N−1)cn

ηR,m for n odd

(66)

SI,mn =















N2−n2

Ncn

θI,m for n even

(N−1)
2−n2

(N−1)cn

ηI,m for n odd

(67)

Equation (59) represents a system with M × (N − 1) equations in the M × (N − 1)

complex unknowns, Pmn. The solution is determined by taking

PR,k = fR,k[B + (B2 + λkIN−1)C]−1 (68)

PI,k = fI,k[B + (B2 + λkIN−1)C]−1 (69)

for −M/2 ≤ k ≤ M/2 − 1, where PR,k, PI,k and fR,k, fI,k are the kth row of the real

and imaginary component elements of P and f respectively, and λk is the kth diagonal

element of matrix Λ. IN−1 is the (N − 1) × (N − 1) identity matrix.

As it stands, the matrix [B + (B2 + λkIN−1)C] is not invertible for k = 0. In this

instance, it was decided to set the element [B + (B2 + λ0IN−1)C]0,0 to a constant (unity)

for k = 0. The solution for P (z, r) will only be defined to within a constant, which does

not of itself play a role in the Navier Stokes equations, since it is the pressure gradient

that is required.
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Once the Pmn are calculated for −M/2 ≤ m ≤ M/2 − 1 and 0 ≤ n ≤ N − 2, the Pmn

for −M/2 ≤ m ≤ M/2 − 1 and n = N − 1, N can be determined using Equations (55) to

(58). A Fourier-Chebyshev inverse transform of Pmn will give the solution for P (z, r).

5.3.4 Helmholtz solver for radial and azimuthal components of

velocity

The Helmholtz equation for the radial and azimuthal components of velocity at each time

step, each have the form

(r + γ)
∂U

∂r
+ (r + γ)2

∂2U

∂r2
+ (r + γ)2

∂2U

∂z2
−

(

Re

∆t
(r + γ)2 + 1

)

U = F (z, r) (70)

where the Dirichlet boundary conditions have the form

U(z,−1) = α(z) (71)

U(z, 1) = β(z) (72)

and periodic boundary conditions are assumed in the axial direction.

Equation (70) in matrix form in spectral space can be written as

U(DC + D2C2 − IN+1) +

(

Λ − Re

∆t
IM

)

UC2 = F (73)

The matrices D, D2 and C in Equation (73) are the same as those defined for Equation

(47). Here, IN+1 is the (N + 1) × (N + 1) identity matrix and IM is the M × M identity

matrix. The matrix U contains the spectral coefficients Umn of the velocity function

U(z, r).

The spectral form of the boundary conditions can be written as:
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N
∑

n=0

UR,mn = βR,m (74)

N
∑

n=0

(−1)nUR,mn = αR,m (75)

N
∑

n=0

UI,mn = βI,m (76)

N
∑

n=0

(−1)nUI,mn = αI,m (77)

for −M/2 ≤ m ≤ M/2 − 1.

Adding and subtracting Equations (74) and (75) we get:

N
∑

n=0, n even

UR,mn =
1

2
(βR,m + αR,m) = ηR,m (78)

N
∑

n=0, n odd

UR,mn =
1

2
(βR,m − αR,m) = θR,m (79)

Adding and subtracting Equations (76) and (77) we get:

N
∑

n=0, n even

UI,mn =
1

2
(βI,m + αI,m) = ηI,m (80)

N
∑

n=0, n odd

UI,mn =
1

2
(βI,m − αI,m) = θI,m (81)

for −M/2 ≤ m ≤ M/2 − 1.

In the matrix Equation (73) we substitute Equations (79) and (81) to eliminate the com-

plex coefficients Um,N−1 and Equations (78) and (80) to eliminate the complex coefficients

Um,N , for −M/2 ≤ m ≤ M/2 − 1. Subsequently, we obtain the matrix equation

U(BC + B2C2 − IN−1) +

(

Λ − Re

∆t
IM

)

UC2 = f (82)
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The matrices C and C2 take the range 0 ≤ p ≤ N − 2, 0 ≤ q ≤ N − 2 of their original

definitions. IN−1 is the (N − 1) × (N − 1) identity matrix. The matrices B and B2 are

both (N − 1) × (N − 1) where

Bpq =































































−2(N−1)

cq

for p ≤ q − 1, q even, p odd

2

cq

(p − (N − 1)) for p ≥ q + 1, q even, p odd

−2N
cq

for p ≤ q − 1, q odd, p even

2

cq

(p − N) for p ≥ q + 1, q odd, p even

0 otherwise

(83)

and

B2

pq =































































−(N−1)((N−1)
2−q2

)

cq

for p ≤ q, q odd, p odd

1

cq

(p(p2 − q2) − (N − 1)((N − 1)2 − q2)) for p ≥ q + 2, q odd, p odd

−N(N2−q2
)

cq

for p ≤ q, q even, p even

1

cq

(p(p2 − q2) − N(N2 − q2)) for p ≥ q + 2, q even, p even

0 otherwise

(84)

where 0 ≤ p ≤ N − 2 and 0 ≤ q ≤ N − 2. The matrices B and B2 do not have the lower

triangular structure that the matrices D and D2 respectively have. They are general

matrices with alternating zero and non-zero elements.

The matrix f has real and imaginary components given by

fR = FR − QRC − SRC2 (85)

and

fI = FI − QIC − SIC
2 (86)

where Q and S are M × (N − 1) matrices with components
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QR,mn =















2(N−1)

cn

θR,m for n even

2N
cn

ηR,m for n odd

(87)

QI,mn =















2(N−1)

cn

θI,m for n even

2N
cn

ηI,m for n odd

(88)

SR,mn =















N(N2−n2
)

cn

ηR,m for n even

(N−1)((N−1)
2−n2

)

cn

θR,m for n odd

(89)

SI,mn =















N(N2−n2
)

cn

ηI,m for n even

(N−1)((N−1)
2−n2

)

cn

θI,m for n odd

(90)

Equation (82) represents a system with M × (N − 1) equations in the M × (N − 1)

complex unknowns, Umn, determined from

UR,k = fR,k

[

BC + B2C2 − IN−1 +

(

λk −
Re

∆t

)

IN−1C
2

]−1

(91)

UI,k = fI,k

[

BC + B2C2 − IN−1 +

(

λk −
Re

∆t

)

IN−1C
2

]−1

(92)

for −M/2 ≤ k ≤ M/2 − 1, where UR,k, UI,k and fR,k, fI,k are the kth row of the real and

imaginary component elements of U and f respectively, and λk is the kth diagonal element

of matrix Λ. IN−1 is the (N − 1) × (N − 1) identity matrix. Once the Umn are calculated

for −M/2 ≤ m ≤ M/2 − 1 and 0 ≤ n ≤ N − 2, the Umn for −M/2 ≤ m ≤ M/2 − 1

and n = N − 1, N can be determined using Equations (78) to (81). A Fourier-Chebyshev

inverse transform of Umn will give the solution for U(z, r).

5.3.5 Helmholtz solver for axial component of velocity

The Helmholtz equation for the axial component of velocity W (z, r) in the viscous step

has the form
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∂W

∂r
+ (r + γ)

∂2W

∂r2
+ (r + γ)

∂2W

∂z2
− Re

∆t
(r + γ)W = F (z, r) (93)

where the Dirichlet boundary conditions have the form

W (z,−1) = α(z) (94)

W (z, 1) = β(z) (95)

and periodic boundary conditions are assumed in the axial direction.

Equation (93) in matrix form in spectral space can be written as

W (D + D2C) +

(

Λ − Re

∆t
IM

)

WC = F (96)

The matrices D, D2, C, Λ and IM in Equation (96) are the same as those defined for

Equation (73). The matrix W contains the complex spectral coefficients Wmn of the axial

velocity.

The spectral form of the boundary conditions can be written as:

N
∑

n=0

WR,mn = βR,m (97)

N
∑

n=0

(−1)nWR,mn = αR,m (98)

N
∑

n=0

WI,mn = βI,m (99)

N
∑

n=0

(−1)nWI,mn = αI,m (100)

for −M/2 ≤ m ≤ M/2 − 1.

Adding and subtracting Equations (97) and (98) we get:
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N
∑

n=0, n even

WR,mn =
1

2
(βR,m + αR,m) = ηR,m (101)

N
∑

n=0, n odd

WR,mn =
1

2
(βR,m − αR,m) = θR,m (102)

Adding and subtracting Equations (99) and (100) we get:

N
∑

n=0, n even

WI,mn =
1

2
(βI,m + αI,m) = ηI,m (103)

N
∑

n=0, n odd

WI,mn =
1

2
(βI,m − αI,m) = θI,m (104)

for −M/2 ≤ m ≤ M/2 − 1.

In to the matrix Equation (96) are substituted Equations (102) and (104) to eliminate

the complex coefficients Wm,N−1 and Equations (101) and (103) to eliminate the complex

coefficients Wm,N , for −M/2 ≤ m ≤ M/2−1. Subsequently we obtain the matrix equation

W (B + B2C) +

(

Λ − Re

∆t
IM

)

WC = f (105)

The matrices C, B, B2 and IM are the same as those defined for Equation (82). The

matrix f has real and imaginary components

fR = FR − QR − SRC (106)

and

fI = FI − QI − SIC (107)

where Q and S are M × (N − 1) matrices with components

QR,mn =















2(N−1)

cn

θR,m for n even

2N
cn

ηR,m for n odd

(108)
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QI,mn =















2(N−1)

cn

θI,m for n even

2N
cn

ηI,m for n odd

(109)

SR,mn =















N(N2−n2
)

cn

ηR,m for n even

(N−1)((N−1)
2−n2

)

cn

θR,m for n odd

(110)

SI,mn =















N(N2−n2
)

cn

ηI,m for n even

(N−1)((N−1)
2−n2

)

cn

θI,m for n odd

(111)

Equation (105) represents a system with M × (N − 1) equations in the M × (N − 1)

complex unknowns, Wmn, determined from

WR,k = fR,k

[

B + B2C +

(

λk −
Re

∆t

)

IN−1C

]−1

(112)

WI,k = fI,k

[

B + B2C +

(

λk −
Re

∆t

)

IN−1C

]−1

(113)

for −M/2 ≤ k ≤ M/2− 1, where WR,k, WI,k and fR,k, fI,k are the kth row of the real and

imaginary component elements of W and f respectively, and λk is the kth diagonal element

of matrix Λ. IN−1 is the (N − 1)× (N − 1) identity matrix. Once the Wmn are calculated

for −M/2 ≤ m ≤ M/2 − 1 and 0 ≤ n ≤ N − 2, the Wmn for −M/2 ≤ m ≤ M/2 − 1 and

n = N − 1, N can be determined using Equations (101) to (104). A Fourier-Chebyshev

inverse transform of Wmn will give the solution for W (z, r).

5.4 Preprocessing calculations

The matrices D, D2, C and C2 are calculated once in a pre-processing step. The matrices

B and B2 are calculated once for Dirichlet boundary conditions and once for Neumann

boundary conditions in a pre-processing step.

Then we calculate

(1) the M inversions [B + (B2 + λkIN−1)C]−1 for the Poisson solver,
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(2) the M inversions [BC+B2C2−IN−1+
(

λk − Re
∆t

)

IN−1C
2]−1 for the Helmholtz solver

for the radial and azimuthal components of velocity, and

(3) the M inversions [B + B2C +
(

λk − Re
∆t

)

IN−1C]−1 for the Helmholtz solver for the

axial component of velocity,

all done once, in a preprocessing step.

5.5 Numerical tests

The code for Taylor vortex flow was validated by comparison of exponential growth

rates and velocity profiles against the published results of other researchers.

5.5.1 Comparison of growth rates

We compared our results for the exponential growth rate of a Taylor vortex flow to that

recorded by Marcus (1984a). The parameters in the case studied were η = 0.5, µ = 0,

Re = 74.924 and Γ = λ = 1.9877208. The critical Reynolds number from linear theory is

Recrit = 68.225, as determined by Chandrasekhar (1961). The corresponding exponential

growth rate computed by Marcus was σ = 0.035636.

The growth rate was calculated using the radial component of velocity evaluated at the

centre of the domain, ur(t), and

σ =
1

∆t
loge(ur(t + ∆t)/ur(t)) (114)

where the velocity was measured in the linear stage of growth of the axisymmetric mode.

The initial conditions that were used were equal to the Couette flow plus a random

perturbation of the order 1.0 × 10−4.

Consider the relations

ur =
∂ψ

∂z
(115)

and
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uz = − 1

r + γ

∂((r + γ)ψ)

∂r
(116)

where ψ(z, r) is the streamfunction. We can write the Helmholtz equation

(r + γ)
∂ψ

∂r
+ (r + γ)2

∂2ψ

∂r2
+ (r + γ)2

∂2ψ

∂z2
− ψ = (r + γ)2

[

∂ur

∂z
− ∂uz

∂r

]

(117)

to be solved subject to Dirichlet boundary conditions of ψ = 0 at r = ±1 and periodic

boundary conditions in z. A Tau method was used to solve this Helmholtz equation, of

the type described in Section 5.3.4 (and setting Re = 0 since the term with the factor

Re/∆t in Equation (70) does not play a role in Equation (117)).

The interpolation form of the Fourier-Chebyshev approximation to streamfunction:

ψ(z, r) =

M/2−1
∑

m=−M/2

N
∑

n=0

ψmnTn(r) exp(imz) (118)

was used to calculated ψ for a finer grid variation in z and r, so that a smoother streamline

plot could be obtained.

In Figure 5.1, the steady state solution is shown in the form of a velocity vector plot

for a 32 × 33 grid and ∆t = 0.1. In Figure 5.2 is shown a graph of the streamfunction.

Coles (1965) described Taylor vortex flow as a kind of gyroscopic precession in the fluid.

In Figure 5.3 is a three-dimensional perspective view along the axial direction, showing

the precessional nature of the particle paths traced by the moving fluid. The paths spiral

around a toroidal surface.

The code took about 7.5 CPU minutes for 1500 timesteps (i.e. 0.3 CPU seconds per

timestep) for a 16 × 17 grid and 39.5 CPU minutes for 1500 timesteps (i.e. 1.58 CPU

seconds per timestep) for a 32× 33 grid. These values are for an SGI R3000 Workstation.

We considered different operator splitting schemes of order (Je, Jp, Ji) for different values

of ∆t. Tables 5.1 to 5.4 demonstrate convergence to the result by Marcus as the order of

time-accuracy of each fractional step is improved. There was virtually no improvement in

our computed growth rates when finer grids of 32 × 33 was used, meaning that a 16 × 17
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grid gave good spatial resolution for the test case considered.

Figure 5.4 shows that the (Je, Jp, Ji) order schemes (2, 0, 1), (2, 1, 1) and (2, 2, 1) effec-

tively have first-order time-accuracy because the slope has a value of about one.

In Figure 5.4, the scheme (2, 1, 2) has second-order time accuracy as the slope is about

two. Solutions for larger timespacings were not possible for the (2, 1, 2) scheme as numer-

ical error in the form of temporal oscillations were present.

Karniadakis et al. (1991) showed that the use of the Crank-Nicolson scheme in the

viscous step may lead to instabilities for large time steps. This type of instability is also

referred to as a short-wave instability. They described its occurrence for an operator split-

ting spectral element application to two-dimensional Stokes Channel Flow and Grooved

Channel Flow. The use of the unsymmetrically weighted approximation in the viscous

step was found to introduce damping and resulted in a more stable scheme.

For his applications to three-dimensional Taylor-Couette flow, Marcus (1984a) used a

Backward-Euler approximation in the viscous step rather than a Crank-Nicolson method

to avoid what he describes as a numerical neutrally stable oscillation that can occur at large

wavenumbers. He reports that the final accuracy will be of the order O((∆t)2, ∆t/Re)

where Re is the Reynolds number. However, since his calculations were done for values

of Re > 100 his method was then effectively second order. For smaller Reynolds numbers

the O(∆t/Re) error would especially become more significant compared to the O((∆t)2

error for a Backward-Euler scheme.

We now consider a higher order scheme which can be varied between the (2, 1, 1) scheme

and the (2, 1, 2) scheme. As discussed in Section 5.2, this can be achieved by using a

weighted approximation over two time steps for the viscous terms with a weighting factor

θ, henceforth referred to as a θ-method. In Table 5.5 a summary of results is presented for

σ using a scheme with Je=2, Jp=1 and a θ-method for the viscous terms. The accuracy

improved as θ was reduced from the value θ = 0.5, but for values close to θ = 0 the time

dependent solution exhibited temporal oscillations.
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Figure 5.1: Velocity vectors using a 32 × 33 grid and ∆t = 0.1.
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Figure 5.2: Streamfunction plot for a 32 × 33 grid and ∆t = 0.1.
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Figure 5.3: View of particle paths viewed along the axial direction showing

precessional motion.
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Je 2 2 2

Jp 0 1 2

Ji 1 1 1

σ for 16 × 17 grid 0.069351 0.033320 0.032980

Table 5.1: Results for ∆t = 1.0.

Je 2 2 2 2 2

Jp 0 1 2 1 2

Ji 1 1 1 2 2

σ for 16 × 17 grid 0.040518 0.035333 0.035329 0.035649 0.035644

σ for 32 × 33 grid 0.035332 0.035328

Table 5.2: Results for ∆t = 0.1.

Je 2 2 2

Jp 0 1 2

Ji 1 1 1

σ for 16 × 17 grid 0.036141 0.035612 0.035613

Table 5.3: Results for ∆t = 0.01.

Je 2 2

Jp 0 0

Ji 1 1

∆t 0.005 0.001

σ for 16 × 17 grid 0.035874

σ for 32 × 33 grid 0.035695

Table 5.4: Other results.
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Figure 5.4: Time-accuracy of different operator splitting schemes.

First-order: © : (2,0,1), 2 : (2,1,1), △ : (2,2,1).

Second-order: 3 : (2,1,2), ⊕ : (2,1,θ = 0.0125).
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Figure 5.5 shows how the size of the temporal oscillations increased as θ approached

zero, making estimates of the growth rate unreliable for those cases. This result suggests

that an optimum value of θ exists which gives sufficiently high accuracy and a tolerable

level of stability.

θ 0 0.001 0.005 0.0125 0.025

Ji 2

σ oscillates oscillates 0.035640 0.035635 0.035628

θ 0.05 0.1 0.2 0.4 0.5

Ji 1

σ 0.035616 0.035585 0.035521 0.035395 0.035332

Table 5.5: Results for σ for a 32 × 33 grid, ∆t = 0.05 and different values of θ. The

value by Marcus was 0.035636.

In Figure 5.4, the scheme (2, 1, θ = 0.0125) has second-order time-accuracy. Therefore,

with an appropriate choice of θ one can obtain second-order time-accuracy for timespacings

which are larger than those possible from using a (2, 1, 2) scheme.

From Karniadakis et al. (1991), if the nonlinear terms are expressed as

~N(~u) = −1

2
[(~u.∇)~u + ∇.(~u~u)] (= −(~u.∇)~u) (119)

this is known as a skew-symmetric form. The expression ∇.(~u~u) is in dyadic tensor nota-

tion. The non-linear terms in this case become

Nr(~u) = −1

2

[

ur

∂ur

∂r
+ uz

∂ur

∂z
− 2

uφ
2

r + γ
+

u2

r

r + γ
+

∂(u2

r)

∂r
+

∂(uruz)

∂z

]

(120)

Nφ(~u) = −1

2

[

ur

∂uφ

∂r
+ uz

∂uφ

∂z
+ 3

uruφ

r + γ
+

∂(uruφ)

∂r
+

∂(uφuz)

∂z

]

(121)

Nz(~u) = −1

2

[

ur

∂uz

∂r
+ uz

∂uz

∂z
+

uruz

r + γ
+

∂(uruz)

∂r
+

∂(u2

z)

∂z

]

(122)
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The latter terms in Equations (120) to (122) are kept in conservative form. The skew-

symmetric form of the nonlinear terms is often preferred because it minimizes aliasing

effects. The nonlinear terms were expressed in skew-symmetric form and some of the above

runs were repeated. No difference was found between these results and the corresponding

ones in Table 5.5, indicating that aliasing is not a problem with the code. Aliasing error

depends on Re. Here, the discrete system is still subject to aliasing error, but for small

Re the affected modes are strongly damped.

Figure 5.5: The computed velocity during a specific time step interval in the initial

exponential growth stage of the Taylor vortices, for three values of θ. The velocity was

taken as the radial velocity in the middle of the domain. The straight line is for θ = 0.005.

The greatest oscillation occurred for θ = 0. The smaller oscillation occurred for θ = 0.001.
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A test was also made for Γ = λ = 2.026834, η = 0.5, µ = 0.11765 and Re = Recrit =

82.557 which has the theoretical value of σt = 0. Using a 16 × 17 grid with ∆t = 0.1 and

θ = 0.5 the result was σ = 0.000106. A repeat run with a 32 × 33 grid gave the same

result.

Another test was made for Γ = λ = 2.008691, η = 0.95, µ = 0 and Re = Recrit = 184.99

which has the theoretical value of σt = 0. The result by Marcus was σt = 5.16 × 10−4. A

run with a 16 × 17 grid, ∆t = 0.1 and θ = 0.5 gave σ = 3.32 × 10−6 A 32 × 33 grid gave

the same result.

The discrepancies between our results and the results by Marcus can be considered

unimportant because they are much less than the three decimal place accuracy of our

results.

5.5.2 Comparison of velocities

From Chandrasekhar (1961) the following information was taken: η = 0.5, µ = −0.363636,

κ = 3.9, Recrit = 91.55. This example is for counter-rotating cylinders. Runs were done

for Re = 100 and Γ = λ = 2π/κ = 1.6110732.

The velocity values of the steady state solution were compared to those obtained from

an independent finite element code developed by Dr Mark Thompson. This code used

a grid with 30 × 30 points and quadratic polynomials. The solution from this code is

expected to be accurate to not more than about three decimal places in the velocity.

Nevertheless, it will be used here to indicate whether or not the code developed for this

thesis and described above gives a vastly different result.

For a 16 × 17 grid, ∆t = 0.1 and θ = 0.5 the velocity vector plot and streamline plot

are shown in Figure 5.6. Figure 5.7 shows the velocity vector plot and streamline plot for

a 32 × 33 grid, ∆t = 0.1 and θ = 0.5. Comparison of the streamline plots in Figures 5.6

and 5.7 indicates that good spatial resolution is attained with a 16 × 17 grid in the case

being studied.

Firstly, some observations are made. it can be seen in Figure 5.6 that there is a pair
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of counter-rotating vortices and a pair of much weaker counter-rotating vortices separated

by a curved nodal surface. This nodal surface is actually only vertical when Re is very

close to Recrit, as observed by Taylor (1923). The curved nodal surface approaches a

vertical nodal surface as the Reynolds number approaches the critical Reynolds number

from above.

In the streamline plots, the dashed curves represent clockwise rotating vortices and solid

curves represent anticlockwise rotating vortices. Thus, there are essentially two types of

boundaries, the strong outflow jet boundary (at for example z = 0 and z = Γ) and the

weaker inflow jet boundary (at for example z = Γ/2).

On the left hand sides of Figures 5.8, 5.9 and 5.10 we plot the axial velocity through

a horizontal line at a value of z corresponding to 0.50124, the axial span of a clockwise

rotating Taylor Vortex cell. On the right hand sides of Figures 5.8, 5.9 and 5.10 we plot

the radial velocity through the vertical centreline. In Figure 5.8 we use a 16 × 17 grid,

∆t = 0.1 and θ = 0.5. In Figure 5.9 a 32 × 33 grid, ∆t = 0.1 and θ = 0.5 are used. In

Figure 5.10 a 16×17 grid, ∆t = 0.1 and θ = 0.1 are used. The circled points (representing

results from the code developed here) appear to fit the curve (representing results from the

finite element code) reasonably well. The circled points also appear to be consistently in

the same location with respect to the curve for each of the three figures, indicating again

that good spatial resolution can be attained with a 16 × 17 grid.
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Figure 5.6: Velocity vectors and streamfunction. 16 × 17 grid, ∆t = 0.1, θ = 0.5

Figure 5.7: Velocity vectors and streamfunction. 32 × 33 grid, ∆t = 0.1, θ = 0.5
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Figure 5.8: (Left) Axial velocity through a horizontal line at a value of z corresponding

to 0.50124 the axial span of a clockwise rotating Taylor Vortex cell. (Right) Radial velocity

through the vertical centreline. The circled points represent results from the spectral code

developed here and the solid line represents results from a finite element code. Spectral

code numerical paramters: 16 × 17 grid, ∆t = 0.1 and θ = 0.5
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Figure 5.9: (Left) Axial velocity through a horizontal line at a value of z corresponding

to 0.50124 the axial span of a clockwise rotating Taylor Vortex cell. (right) Radial velocity

through the vertical centreline. The circled points represent results from the spectral code

developed here and the solid line represents results from a finite element code. Spectral

code numerical paramters: 32 × 33 grid, ∆t = 0.1 and θ = 0.5
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Figure 5.10: (Left) Axial velocity through a horizontal line at a value of z corresponding

to 0.50124 the axial span of a clockwise rotating Taylor Vortex cell. (Right) Radial velocity

through the vertical centreline. The circled points represent results from the spectral code

developed here and the solid line represents results from a finite element code. Spectral

code numerical paramters: 16 × 17 grid, ∆t = 0.1 and θ = 0.1
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6 Behaviour Of The Amplitude Of The Modes

Consider the situation of an infinite aspect ratio where the outer cylinder is stationary.

As described by Koschmieder (1993), the axial wavelength of the Taylor vortices depends

on the rate at which the inner cylinder Reynolds number is increased from an initial sub-

critical value to a final supercritical value. If the final Reynolds number is moderately

supercritical then for impulsive increases the selected wavelength is less than the critical

wavelength predicted from linear stability theory. When the acceleration rate is decreased

the selected wavelength increases and approaches the critical wavelength. This was il-

lustrated by the sudden start and quasi-steady increase experiments of Burkhalter and

Koschmieder (1974) in Figure 2.4. When the inner cylinder Reynolds number is increased

at a sufficiently slow rate the selected wavelength is the critical wavelength.

Some fundamental questions about state selection for Taylor vortex flow were posed by

Koschmieder (1993).

• An explanation is needed as to why the wavelength of supercritical axisymmetric

vortices is independent of the Taylor number and equal to the critical wavelength

when the Taylor number is increased slowly from subcritical values.

• Also, an explanation is needed as to why supercritical axisymmetric vortices can be

nonunique.

To gain insight into the evolution of the amplitude of the axial modes with different ramp

time, it was decided to simulate Taylor vortex flow numerically with a large aspect ratio.

This allowed us to study the independent growth and subsequent nonlinear interaction of

many discrete axisymmetric modes.

6.1 The numerical experiments

We considered an inner cylinder Reynolds number which was linearly increased in time

from an initial subcritical value Rei to a final supercritical value Ref over a ramp time T ,

and then kept constant at Ref . The value of Ref was taken as only slightly in excess of
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Rec because the nonlinear behaviour is not as complicated and thus the nonlinear terms in

the amplitude equations are easier to determine. In the example that will be considered,

Ref/Rec =
√

2. A number of different simulations were conducted for fixed Rei, Ref and

different T . In each simulation, initial conditions of circular Couette flow plus a random

perturbation of the order 10−4 was applied. A random perturbation was applied because

this is typical of what occurs in a physical experiment. The random number generation

sequence was kept the same for each simulation to ensure that initial conditions were

reproducible.

The nondimensional time, t, is related to the time in units of inner cylinder revolutions,

trev, via

trev =
1

2π

(

1

η
− 1

)

Re(t)

Rei

t (1)

where

Re(t) =















Rei +
Re

f
−Rei

T
t if t ≤ T

Ref if t > T

(2)

In terms of inner cylinder revolutions, the ramp time is

Trev =
1

2π

(

1

η
− 1

)

Ref

Rei

T (3)

We calculated the magnitude of the amplitude of each mode, |Aλ(t)| from the Fourier

transform of the radial component of velocity at the radial centre of the gap,

|Aλ(t)| =
√

û2
r(rc,m, t)real + û2

r(rc,m, t)imag (4)

and the representation in terms of a discrete Fourier expansion together with the finite

aspect ratio means that the allowable wavelengths are restricted to

λ = Γ/m for m = 1, ...,M/2 − 1 (5)
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where m is the axial Fourier index.

There was a slight discrepancy between the initial amplitude of the Fourier modes,

centred at a value of about e−14 (or 8.3 × 10−7), and the magnitude of the perturbation

(10−4). The random numbers were defined to lie between 0 and 1. So, the mean value

of the perturbation was 5.0 × 10−5, which was the amplitude of the m = 0 mode. The

perturbation was not divergence free.

6.2 Input data

The following choice of parameter values was made: η = 0.727, µ = 0, Rei = 70, Ref =

116.67. Koschmieder (1993) presented results of minimum critical Reynolds number and

critical wavelength versus radius ratio. Using linear interpolation, the critical wavelength

and Reynolds number were calculated to be λc = 2.00286 and Rec,λc
= 82.79 for radius

ratio η = 0.727. The aspect ratio Γ = 20.0286 was set to be ten times larger than λc. This

gave a wide range of possible modes and good definition of wavelengths near critical.

Using Equation (5), in the vicinity of λc we have the following allowed discrete wave-

lengths: 1.54066, 1.66905, 1.82078, 2.00286, 2.2254 which correspond to 13, 12, 11, 10 and

9 pairs of vortices within the domain respectively.

The numerical parameters were set to M = 324, N = 33 and ∆t = 0.1. These

parameters were chosen after extensive testing to ensure that they supplied sufficient

spatial resolution. However, for the faster ramps ∆t had to be reduced by up to an

order of magnitude for a short initial period of time in the simulation. This was done to

adequately resolve the initial stage of fast decay due to viscous damping.

6.3 Results and discussion

It is evident from Figure 6.1 that, for sudden starts, the amplitude of each mode did

not begin to grow exponentially. There was a short initial period of time of decay of the

modes. Liu and Chen (1973) attributed this initial decay to viscous damping. During this

time the base flow, being the circular Couette flow, is unsteady. Once the the base flow
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becomes steady the amplitude of the modes begin to grow exponentially.

In Figures 6.2 to 6.15 we plot |Aλ(t)| for different ramp times T for five modes in the

vicinity of the mode with the critical wavelength. The inset graphs in Figures 6.2 to 6.9

show a close-up of the region where the modes interact. Figures 6.13 to 6.15 show that λc

is preferred for sufficiently long ramp times. In Figure 6.2, for sudden starts the preferred

wavelength λ = 1.66905 is less than λc. The selected wavelength changes from 1.66905 to

1.82078 to 2.00286 for progressively longer ramp times. The wavelengths of these three

Taylor vortex flow states lie within the Eckhaus stable band. This trend agrees with the

observed behaviour from physical experiments reported by Koschmieder (1993).

Figure 6.1: |Aλ(t)| for sudden starts (T = 0).

Modes: · – · – · λ = 2.2254, ——— λc = 2.00286, – – – – λ = 1.82078,

· · · · · · · λ = 1.66905, – · · · – λ = 1.54066
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Simulations with different pseudo-random sequences had initial amplitudes for each

mode which were different, centred at a value of about e−14 (or 8.3 × 10−7). As a result,

the behaviour of the amplitudes of the modes was different for different pseudo-random

sequences. The ramp time to produce a changed preferred wavelength was different for

different pseudo-random sequences.

In Figure 6.16 to 6.20 are plots of instantaneous growth rate versus instantaneous

Reynolds number during the Reynolds number ramp for five different modes. The inset

graphs show a close-up of the intersections on the Reynolds number axis. The effect due

to the unsteady base flow is also noticeable for fast rates of increase in Re. This effect

shows up as a deviation from the linear relationship between σ and Re. As the rate of

increase of Re is slowed down, the base flow becomes steady earlier in terms of Reynolds

number and this deviation less pronounced.

Figures 6.21 to 6.23 each have plots of the instantaneous growth rate versus instanta-

neous Reynolds number during the Reynolds number ramp for three different ramp times.

For sufficiently slow rates of increase the σ versus Re profile converges to a straight line

that starts from Rei. This linear relationship between σ versus Re has a gradient and an

Re intercept which is different for each mode. In the graphs for longer ramp times the

points in the last portion of the Reynolds number ramp were not used because the modes

interacted nonlinearly there.

Figures 6.21 to 6.23 for T = 99.61 demonstrate that, for sufficiently slow rates of

increase of Re, the instantaneous growth rate at a particular Re during a ramp is equal to

the growth rate when Re is held fixed at that particular value. The results by Eagles (1977)

and Neitzel (1982), who studied the stability of unsteady circular Couette flow, indicate

that this behaviour would gradually break down as the acceleration rate is increased to

large values. As shown in Figures 6.21 to 6.23, the linear relationship between growth rate

and Reynolds number is pushed more to the right of the Re axis. Hence, the instantaneous

critical Reynolds numbers for each mode increase with larger acceleration rates, shown in

the inset graphs of Figures 6.20, 6.19, 6.18 and 6.17. For example, Figure 6.20 shows that
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when T = 99.61, the critical Reynolds number for λc is 82.8, agreeing with the result

82.79 from Koschmieder (1993), obtained by keeping the value of Re fixed. In contrast,

Figure 6.17 shows that for T = 4.98 the instantaneous critical Reynolds number for λc is

increased by about 3%.

With a grid size of 324×33, on an SGI R3000 the code took about 3.6 CPU seconds per

time step. The total computation time to produce the results for Figure 6.15, for example

was about 7.15 CPU hours.
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Figure 6.2: Aλ(t) for ramp times T = 0. Modes: · – · – · λ = 2.2254, ———
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λc = 2.00286, – – – – λ = 1.82078, · · · · · · · λ = 1.66905, – · · · – λ = 1.54066
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Figure 6.3: Aλ(t) for ramp times T = 0.498. Modes: · – · – · λ = 2.2254, ———
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λc = 2.00286, – – – – λ = 1.82078, · · · · · · · λ = 1.66905, – · · · – λ = 1.54066
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Figure 6.4: Aλ(t) for ramp times T = 4.98. Modes: · – · – · λ = 2.2254, ———
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λc = 2.00286, – – – – λ = 1.82078, · · · · · · · λ = 1.66905, – · · · – λ = 1.54066
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Figure 6.5: Aλ(t) for ramp times T = 9.96. Modes: · – · – · λ = 2.2254, ———
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λc = 2.00286, – – – – λ = 1.82078, · · · · · · · λ = 1.66905, – · · · – λ = 1.54066
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Figure 6.6: Aλ(t) for ramp times T = 19.92. Modes: · – · – · λ = 2.2254, ———
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λc = 2.00286, – – – – λ = 1.82078, · · · · · · · λ = 1.66905, – · · · – λ = 1.54066
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Figure 6.7: Aλ(t) for ramp times T = 29.88. Modes: · – · – · λ = 2.2254, ———
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λc = 2.00286, – – – – λ = 1.82078, · · · · · · · λ = 1.66905, – · · · – λ = 1.54066
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Figure 6.8: Aλ(t) for ramp times T = 39.84. Modes: · – · – · λ = 2.2254, ———
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λc = 2.00286, – – – – λ = 1.82078, · · · · · · · λ = 1.66905, – · · · – λ = 1.54066
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Figure 6.9: Aλ(t) for ramp times T = 49.81. Modes: · – · – · λ = 2.2254, ———
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λc = 2.00286, – – – – λ = 1.82078, · · · · · · · λ = 1.66905, – · · · – λ = 1.54066
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Figure 6.10: Aλ(t) for ramp times T = 69.73. Modes: · – · – · λ = 2.2254, ———
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λc = 2.00286, – – – – λ = 1.82078, · · · · · · · λ = 1.66905, – · · · – λ = 1.54066
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Figure 6.11: Aλ(t) for ramp times T = 74.71. Modes: · – · – · λ = 2.2254, ———
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λc = 2.00286, – – – – λ = 1.82078, · · · · · · · λ = 1.66905, – · · · – λ = 1.54066

126



Figure 6.12: Aλ(t) for ramp times T = 84.67. Modes: · – · – · λ = 2.2254, ———

127



λc = 2.00286, – – – – λ = 1.82078, · · · · · · · λ = 1.66905, – · · · – λ = 1.54066
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Figure 6.13: Aλ(t) for ramp times T = 89.65. Modes: · – · – · λ = 2.2254, ———
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λc = 2.00286, – – – – λ = 1.82078, · · · · · · · λ = 1.66905, – · · · – λ = 1.54066
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Figure 6.14: Aλ(t) for ramp times T = 99.61. Modes: · – · – · λ = 2.2254, ———
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λc = 2.00286, – – – – λ = 1.82078, · · · · · · · λ = 1.66905, – · · · – λ = 1.54066
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Figure 6.15: Aλ(t) for ramp times T = 149.42. Modes: · – · – · λ = 2.2254, ———
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λc = 2.00286, – – – – λ = 1.82078, · · · · · · · λ = 1.66905, – · · · – λ = 1.54066
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Figure 6.16: Instantaneous σλ(t) versus instantaneous Re(t) for T = 0.498.
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Modes: · – · – · λ = 2.2254, ——— λc = 2.00286, – – – – λ = 1.82078,

· · · · · · · λ = 1.66905, – · · · – λ = 1.54066
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Figure 6.17: Instantaneous σλ(t) versus instantaneous Re(t) for T = 4.98.
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Modes: · – · – · λ = 2.2254, ——— λc = 2.00286, – – – – λ = 1.82078,

· · · · · · · λ = 1.66905, – · · · – λ = 1.54066
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Figure 6.18: Instantaneous σλ(t) versus instantaneous Re(t) for T = 19.92.
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Modes: · – · – · λ = 2.2254, ——— λc = 2.00286, – – – – λ = 1.82078,

· · · · · · · λ = 1.66905, – · · · – λ = 1.54066
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Figure 6.19: Instantaneous σλ(t) versus instantaneous Re(t) for T = 49.81.
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Modes: · – · – · λ = 2.2254, ——— λc = 2.00286, – – – – λ = 1.82078,

· · · · · · · λ = 1.66905, – · · · – λ = 1.54066
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Figure 6.20: Instantaneous σλ(t) versus instantaneous Re(t) for T = 99.61.
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Modes: · – · – · λ = 2.2254, ——— λc = 2.00286, – – – – λ = 1.82078,

· · · · · · · λ = 1.66905, – · · · – λ = 1.54066
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Figure 6.21: Instantaneous σλ(t) versus instantaneous Re(t) for λc = 2.00286.
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Ramp times: · – · – · T = 4.98, · · · · · · · T = 49.81, ——— T = 99.61.
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Figure 6.22: Instantaneous σλ(t) versus instantaneous Re(t) for λ = 1.82078.
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Ramp times: · – · – · T = 4.98, · · · · · · · T = 49.81, ——— T = 99.61.
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Figure 6.23: Instantaneous σλ(t) versus instantaneous Re(t) for λ = 1.66905.
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Ramp times: · – · – · T = 4.98, · · · · · · · T = 49.81, ——— T = 99.61.

6.4 Linear model

If the initial perturbation is expressed as a weighted sum of eigenfunctions of the lin-

earized form of the equations, then the weighting factors assign a value for the initial

amplitude Aλ(0) for each mode. This amplitude Aλ(0) would strictly apply at a point

in time after which the base flow becomes steady and the modes begin their indepen-

dent stage of growth. However, in our model the effect of the unsteady base flow will be

neglected.

6.4.1 Constant Re

If the Aλ(0) are small, each mode will either grow or decay exponentially, depending on

whether the wavelength is inside or outside the amplification band predicted from linear

stability theory.

As the modes grow independently of each other, for a constant Reynolds number we

can write

Aλ(t) = Aλ(0)eσ
λ
t (6)

Here, the amplitude Aλ(t) is equivalent to the exponential growth factor in Equations

(3) to (5) in Chapter 2. Equation (6) is the solution to the Landau equation in its simplest

form

dAλ

dt
= σλAλ (7)

In Figures 6.21 to 6.23, when T is increased (or the acceleration of Re is decreased)

σλ approaches a linear relationship to Re. From Drazin and Reid (1989), the growth rate

can be written as linearly proportional to Reynolds number, provided it is not too far

from the critical Reynolds number. Assigning the critical Reynolds number and cofactor

of proportionality, K, with mode-dependency, we have
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σλ = Kλ(Re − Rec,λ) + O((Re − Rec,λ)
2) (8)

In Figures 6.17 to 6.20, the lines of σλ versus Re intersect each other. Therefore the

value of the slope, Kλ, can be different for each mode. Which mode has the greatest

growth rate depends on the value of Re. Indeed, the ordering of the growth rates of each

mode, greatest to smallest, varies with Re. Figures 6.17 to 6.20 show that in the linear

part of the plot, Kλ13
> Kλ12

> Kλ11
> Kλ10

> Kλ9
. That is, Kλ increases with decreasing

λ.

The values of Kλ and Rec,λ could be determined from a linear stability analysis. Alter-

natively, results from a sufficiently long ramp time can be used, for example T = 99.61 in

Figure 6.20. Subsequently, Equation (8) can be used to predict the values of σλ for each

mode as a function of Re.

6.4.2 Linearly increasing Re(t)

It will be assumed that the instantaneous growth rate σλ(t) at a particular Re during

a ramp is equal to the growth rate when Re is held fixed at that particular value. As

discussed earlier, this assumption is in practice valid for sufficiently slow rates of increase

of Re, so that the base flow becomes steady very early during the Re ramp.

We can formally integrate Equation (7) to give

Aλ(t) = Aλ(0)e

(

∫

t

0
σ

λ
(t′)dt′

)

(9)

where from Equation (8),

σλ(t) = Kλ(Re(t) − Rec,λ) (10)

The linear ramp is defined to start from t = 0. The ramp function Re(t) can be defined

as
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Re(t) =















Rei + dRe
dt

t if t ≤ T

Ref if t > T

(11)

where the ramp rate is

dRe

dt
=

Ref − Rei

T
(12)

According to Equation (11), a sudden start is equivalent to a having a constant Re =

Ref .

In terms of the instantaneous exponential growth rate we have,

σλ(t) =















−σo,λ + Cλt if t ≤ T

σf,λ if t > T

(13)

where

σo,λ = −Kλ(Rei − Rec,λ) (14)

and

σf,λ = Kλ(Ref − Rec,λ) (15)

A consequence of using an Re ramp rate is that each mode has a particular rate of

change of growth rate Cλ, where

Cλ = Kλ

dRe

dt
(16)

The solution of Equation (9) after substitution of Equation (13) for σλ(t) gives

131



Aλ(t) =































































Aλ(0)e−σ
o,λ

t+ 1

2
C

λ
t2

for t ≤ T

Aλ(0)e
1

2
(σ

f,λ
−σ

o,λ
)T+σ

f,λ
(t−T )

for t > T

(17)

The log of the amplitude of the modes will therefore vary quadratically in time during

the ramping stage. During the linear ramp in Reynolds number the instantaneous growth

rate for a mode increases linearly from an initial negative value through zero to a final

positive value. Therefore during the ramp the log of the amplitude of the mode decays

quadratically to some minimum amplitude then grows quadratically to a higher amplitude.

These features agree with the behaviour of the modes in their independent stage of growth

shown in Figures 6.2 to 6.15.

Now, consider the time, t∗λ it takes for the amplitude of each mode λ to grow to a

particular higher amplitude A∗. Then, from Equation (17) we get

t∗λ =
1

σf,λ

ln

(

A∗

Aλ(0)

)

+
T

2

(

1 +
σo,λ

σf,λ

)

(18)

For simplicity of the argument, let us assume the initial amplitudes of the modes are the

same so that no particular mode is favoured initially. This would be the case if the initial

perturbation was constructed as an equally weighted sum of the linear eigenfunctions of

each mode.

Consider the right hand side of Equation (18). The first term represents the time it

takes for each mode to reach A∗ for impulsive starts, t∗λ,impulse. The second term represents

an additional time delay, t∗λ,ramp, for each mode due to the ramp.

Now t∗λ,impulse has a shortest-to-longest ordering for each mode according to the highest-

to-lowest ordering of the final exponential growth rates σf,λ for each mode. This follows

from factor 1/σf,λ in the first term. The values of σf,λ as a function of Ref are given by

Equation (15).
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Also, t∗λ,ramp has a shortest-to-longest ordering corresponding to the lowest-to-highest

ordering of the critical Reynolds number Rec,λ for each mode. This follows from the factor

σo,λ

σf,λ

=
Rec,λ − Rei

Ref − Rec,λ

(19)

in the second term which has a smallest-to-largest ordering corresponding to the lowest-

to-highest ordering of the critical Reynolds number Rec,λ for each mode. The values Rec,λ

are given by the neutral stability curve from linear stability analysis, as illustrated by the

outer curve in Figure 2.4. The highest-to-lowest ordering of σf,λ is not the same as the

lowest-to-highest ordering of Rec,λ.

When the ramp time is increased from the impulsive start situation (T = 0) to the

situation with very slow increases (T very large), t∗λ,ramp becomes progressively more sig-

nificant in relation to t∗λ,impulsive. The shortest-to-longest ordering of t∗λ gradually changes

from the highest-to-lowest ordering of σf,λ to the lowest-to-highest ordering of Rec,λ.

For sufficiently large ramp times the shortest-to-longest ordering of t∗λ will always be

according to the lowest-to-highest ordering of Rec,λ. The smallest value being t∗λc

. These

features are observed in Figures 6.14 and 6.15, for T = 99.61 and T = 149.42 in the

portion of the independent stage of growth before nonlinear effects occur.

As the ramp time is increased further, the mode with the critical wavelength will grow

to A∗ progressively earlier than the other modes. In this sense, the critical wavelength is

being increasingly favoured, above all other modes.

6.5 Nonlinear effects

Suppose the discrepancy due to the unsteady base flow is disregarded. One can redefine

t∗λ as the time it would take a pure mode perturbation with wavelength λ to grow to an

amplitude A∗
λ where nonlinear self-interaction begins (eventually leading to saturation of

the mode). Then t∗λ,ramp represents the delay time for mode λ to grow to A∗
λ. The change

in the ordering of t∗λ with ramp time influences which state will be preferred at steady

state.
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From Figure 6.2, λ = 1.66905 is the preferred mode when T = 0. In Figure 6.4 for

T = 4.98, the delay time for λ = 1.66905 is sufficiently greater than the delay time for

λ = 1.82078 so the λ = 1.82078 mode has time to self-interact and approach the form of

a steady state Taylor vortex flow. Consequently the λ = 1.66905 mode and the remaining

modes react as if they are small perturbations to that Taylor vortex flow, and decay.

Thereby a stable Taylor vortex flow with λ = 1.82078 is achieved. The non-preferred

modes decay very slowly.

Similarly in Figure 6.14 for T = 99.61 the difference in delay time between the λ =

1.82078 mode and the λ = 2.00286 mode is great enough so that the λ = 2.00286 mode

has time to self-interact and approach the form of a steady state Taylor vortex flow.

Consequently the λ = 1.82078 mode and the remaining modes react as if they are small

perturbations to that Taylor vortex flow, and decay. Thereby a stable Taylor vortex flow

with λ = 2.00286 is achieved.

As the ramp time is increased past T = 99.61, the delay time for the λ = 2.00286 mode

will decrease relative to the delay time for the other modes. Thus the λ = 2.00286 mode

will increasingly have more time to self-interact and approach the form of a steady state

Taylor vortex flow. This is a partial explanation as to why the mode with the critical

wavelength is always preferred when the inner cylinder Reynolds number is increased

quasi-steadily from subcritical to supercritical values.

6.6 Nonlinear amplitude equations for sudden starts.

The complicated behaviour of the amplitude of the modes shown in Figures 6.2 to

6.15 demonstrate how difficult it is to mathematically account for every nonlinear effect.

However, in this thesis, attention shall be drawn to several nonlinear effects discussed

below. A dynamical systems approach is used to provide a physical nonlinear model for

the amplitude of the modes.
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6.6.1 Amplitude equations for two coupled modes.

Following the model of two-mode Van der Pol generator discussed by Abarbanel, Ra-

binovich and Sushchik (1993) for convective flow in a fluid, we can express two coupled

amplitude equations as:

dA1

dt
= σ1A1 − l1A1|A1|2 − α12A1|A2|2 (20)

dA2

dt
= σ2A2 − l2A2|A2|2 − α21A2|A1|2 (21)

where the amplitudes are complex numbers. Here, σ is the growth rate and l is the Landau

constant, which are different for each mode. The linear terms on the right hand side of

Equations (20) and (21) represent the initial stages of exponential growth of the amplitude

of each mode. The second terms represents the nonlinear self-interaction of each mode.

The third terms represents the nonlinear interaction between the modes. The second and

third terms act to decelerate the growth.

Substituting A1 = |A1| exp(iφ1) and A2 = |A2| exp(iφ2), where φ is the phase, we obtain

d|A1|2
dt

= 2(σ1 − l1|A1|2 − α12|A2|2)|A1|2 (22)

d|A2|2
dt

= 2(σ2 − l2|A2|2 − α21|A1|2)|A2|2 (23)

where the coefficients are real numbers.

At steady state, that is, when
d|A1|

2

dt
= 0 and

d|A2|
2

dt
= 0, the system has four equilibrium

points. In the phase plane of |A2|2 versus |A1|2 these have the coordinates:

(1) |A1|2 = 0, |A2|2 = 0

(2) |A1|2 = 0, |A2|2 = σ2/l2

(3) |A1|2 = σ1/l1, |A2|2 = 0

(4) |A1|2 = (σ1 − α12σ2

l2
)/(l1 − α21α12

l2
), |A2|2 = (σ2 − α21σ1

l1
)/(l2 − α21α12

l1
)
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(2)

|A  | 2
1

|A  | 2
2

(3)
(1)

(4)

Figure 6.24: Integral curves for strong coupling between modes.

When there is strong coupling between the modes, that is, when α12 > σ1l2
σ2

, α12α21 > l2l1

and α21 > σ2l1
σ1

, the integral curves are as shown in Figure 6.24. A particular curve describes

the time-dependent path taken in the phase space and the mode reached at steady state.

There are two stable equilibrium points, with coordinates given by (2) and (3). The

preferred final mode depends on the initial conditions. For some initial conditions the

paths tend to the stable point (3) where mode 1 is preferred and mode 2 has decayed

to zero. For other initial conditions the paths tend to stable point (2) where mode 2 is

preferred and mode 1 has decayed to zero. Thus, when the coupling is strong the two-mode

system exhibits nonuniqueness of the final state.
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(4)

|A  | 2
1

|A  | 2
2

(1)

(2)

(3)

Figure 6.25: Integral curves for weak coupling between modes.

When there is weak coupling between the modes, that is, when α12 < σ1l2
σ2

, α12α21 < l2l1

and α21 < σ2l1
σ1

, the integral curves are as shown in Figure 6.25. The two modes do not

affect each other much and both evolve to a nonzero final amplitude. This describes the

situation of a final state which contains mixed modes, a feature that is not observed in

Taylor vortex flow.
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(3)
|A  | 2

1

|A  | 2
2

(1)

(2)

Figure 6.26: Integral curves when mode 1 is unique.

When α12 < σ1l2
σ2

, α12α21 > l2l1 and α21 > σ2l1
σ1

, the integral curves are as shown in

Figure 6.26. In this case, regardless of the initial conditions, mode 1 is the preferred final

mode and mode 2 decays to zero. This represents the case when mode 1 is unique for the

two-mode system.
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(3)
|A  | 2

1

|A  | 2
2

(1)

(2)

Figure 6.27: Integral curves when mode 2 is unique.

When α12 > σ1l2
σ2

, α12α21 > l2l1 and α21 < σ2l1
σ1

, the integral curves are as shown in

Figure 6.27. In this case, regardless of the initial conditions, mode 2 is the preferred final

mode and mode 1 decays to zero. This represents the case when mode 2 is unique for the

two-mode system.
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6.6.2 Nonlinear model for N coupled modes.

Extending the nonlinear model to N modes, the amplitudes Ai(t) are described by the

amplitude equations

dAi

dt
= σiAi − liAi|Ai|2 −

N
∑

j=1,j 6=i

αijAi|Aj|2 for i = 1, ..., N (24)

In Equation (24), σi is the growth rate and li is the Landau constant for each mode.

The linear terms on the right hand side represents the initial stage of exponential growth

of the amplitude of each mode. The second terms represents the nonlinear self-interaction

of mode i. The third terms represent the nonlinear interaction of mode i with the other

modes j.

One can envisage an N -dimensional phase space spanned by { |A1|2, |A2|2, ..., |AN |2 }.

Solving Equation (24) for
d|Ai|

2

dt
= 0 gives the coordinates of all the equilibrium points. In

a similar manner to the two-mode system, if in the N -mode system the coupling constants

αij satisfy some set of strong coupling conditions then we obtain N stable equilibrium

points in the phase space.

We can now try to perceive the N stable equilibrium points as a model for discrete set

of N possible Taylor vortex flows within the Eckhaus stable band. The N -mode system is

nonunique because the coupling constants are sufficiently strong, in a similar manner to

the 2-mode system. The strong coupling conditions can themselves be viewed as conditions

for nonuniqueness of the N -mode system. Which state is preferred depends on the initial

conditions. Again, similar to the 2-mode system, there are also conditions for the coupling

constants which, when satisfied, would lead to uniqueness of a particular mode.

6.6.3 Resonant three-wave interactions.

The N -mode system of amplitude equations can be improved to

dAi

dt
= σiAi − liAi|Ai|2 −

N
∑

j=1,j 6=i

αijAi|Aj|2 +
∑

j,q

βjqA
∗
jA

∗
q (25)
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where the quadratic nonlinearity in the last term models resonant three-wave interactions.

The index q is taken over all harmonics and is such that the resonance condition is satisfied,

namely

i + j = q (26)

Consider the the Eckhaus mechanism of instability of a Taylor vortex flow with a

fundamental mode k and first harmonic q = 2k. When there are side-band perturbations

with modes i and j such that i + j = 2k, these perturbations resonate with the first

harmonic and mutually reinforce each other, destabilizing the Taylor vortex flow. However,

when we consider a Taylor vortex flow within the Eckhaus stable band, the resonances

still occur but they are not strong enough to destabilize the flow.

Resonance effects on many of the modes are also observed in the Figures 6.9 to 6.15

where the Reynolds number was linearly increased in time. In regions of time close and

prior to the saturation of the preferred mode, the lower amplitude modes exhibited large

accelerations followed by a much slower tendency to decay.

We can illustrate the effect of the quadratic terms with a simple model. Consider am-

plitude equations for four modes, the initial conditions being such that AF (0) ≫ AH(0) ≫

A1(0) ≫ A2(0):

d|AF |
dt

= σF |AF | (27)

d|AH |
dt

= σH |AH | (28)

d|A1|
dt

= σ1|A1| + βH,2|AH |.|A2| (29)

d|A2|
dt

= σ2|A2| + βH,1|AH |.|A1| (30)
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where |AF |, |AH |, |A1| and |A2| refer to the magnitudes of the fundamental mode, its first

harmonic, a perturbed mode 1 and a perturbed mode 2, respectively. The perturbed modes

must satisfy resonance conditions, namely i1 + i2 = iH . In Equation (25), the quadratic

terms are complex conjugates, whereas in Equations (29) and (30) it was assumed for

simplicity that the phases satisfy φ1 + φ2 = −φH and cancel out.

Initially, mode 2 grows as exp(σ2t). When the amplitude of mode 2 is large enough,

the quadratic terms will make the amplitude grow as exp((σH + σ1)t). As σH + σ1 ≫ σ2,

at some point in time following the initial exponential growth of mode 2 we begin to see

a rapid exponential growth. This is demonstrated in Figure 6.28 with selected values of

the coefficients. By inspection of Equation (30), the smaller |A2(0)| is relative to |AH(0)|

and |A1(0)|, the earlier the rapid exponential growth begins for mode 2.

We can extend the previous simple equations to include cubic coupling terms:

d|AF |
dt

= σF |AF | − lF |AF |3 (31)

d|AH |
dt

= σH |AH | − lH |AH |3 (32)

d|A1|
dt

= σ1|A1| − α1,F |A1|.|AF |2 + βH,2|AH |.|A2| (33)

d|A2|
dt

= σ2|A2| − α2,F |A2|.|AF |2 + βH,1|AH |.|A1| (34)

where a demonstration is shown in Figure 6.29. Again, the region of rapid exponential

growth for mode 2 is evident, however, strong coupling of the perturbed modes 1 and 2 to

the fundamental mode cause both perturbed modes to decay.

In practise one would expect many quadratic terms in the amplitude equation to account

for resonances with different modes and harmonics.
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Figure 6.28: A demonstration of loge|A| versus t for four modes showing the rapid

exponential growth of mode 2 following its initial slower exponential growth.

———— fundamental mode, ................ first harmonic,

– – – – – perturbation mode 1, – · – · – perturbation mode 2.
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Figure 6.29: A demonstration of loge|A| versus t for four modes showing nonlinear

effects.

———— fundamental mode, ................ first harmonic,

– – – – – perturbation mode 1, – · – · – perturbation mode 2.
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6.7 Nonlinear amplitude equations for linearly increased Re(t).

In Equation (25), we can replace σi with σi(t), defined by Equation (13). As a first

approach we can assume that li, αij and βjq do not vary with Re, although more numerical

runs will be needed to determine the degree to which this is valid. However, it is a

reasonable assumption considering that the Reynolds number is assumed to be not far

from the critical value. In theory therefore, one can use amplitude equations in an attempt

to reproduce the behaviour of the amplitude of the modes with ramp time, and compare

with the results from numerical simulations.

As a reminder, the aspect ratio was set to Γ = 10λc. In the vicinity of λc the discrete

axial wavelengths 2.2254, 2.00286, 1.82078, 1.66905 and 1.54066 correspond to the modes

9, 10, 11, 12 and 13, respectively.

In Figures 6.9 to 6.12 the preferred mode is mode 11. In these figures, during the ramp

the log of the amplitude of mode 12 varies quadratically with time whilst its amplitude is

small, followed by a rapid acceleration prior to the saturation of mode 11. It is suggested

that this is partly due to the first harmonic (iH = 22) of the fundamental mode (iF = 11)

interacting simultaneously with the smaller amplitude modes i1 = 10 and i2 = 12, bringing

about a mutual reinforcement or resonance of these two modes (since the condition under

which the resonance occurs is satisfied). One also expects mutual reinforcements of modes

i1 = 9 and i2 = 13, i1 = 8 and i2 = 14, and so on. These resonances are a result of

interactions with the first harmonic of the mode 11. These are also manifested as rapid

accelerations prior to the saturation of the fundamental mode.

In Figures 6.14 and 6.15 the preferred mode is mode 10. In these figures, the first

harmonic (iH = 20) of the fundamental mode (iF = 10) interacts simultaneously with

the smaller amplitude modes i1 = 11 and i2 = 9 bringing about a mutual reinforcement

of these two modes. With respect to the first harmonic of mode 10, resonances are also

expected for i1 = 8 and i2 = 12, i1 = 7 and i2 = 13, and so on.

It is also noticed that the lower the amplitude of the unpreferred mode, the earlier it
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begins to accelerate. This feature is accounted for by the quadratic term in Equation (30)

if the lower amplitude mode is i2.

Although we have discussed resonances with respect to interactions with the first har-

monic of the preferred mode there are also contributions to the resonance due to interac-

tions with the first harmonics of the other modes.

6.7.1 Nonuniqueness and uniqueness.

The nonlinear amplitude equations model the behaviour of the amplitude of the modes

with ramp time, and the change in preferred mode with ramp time.

Consider the situation of fixed initial conditions and variable ramp time. Using the

two-mode system with the quadratic terms ignored for simplicity, we get

dA10

dt
= σ10(t)A10 − l10A10|A10|2 − α10,11A10|A11|2 (35)

dA11

dt
= σ11(t)A11 − l11A11|A11|2 − α11,10A11|A10|2 (36)

where we are modelling modes 10 and 11 in the numerical simulations. Again, mode 10

refers to the mode with the critical wavelength.

The coordinates of the four equilibrium points are similar to those defined in Section

6.6.1, however, they now vary with time during the ramp as do the growth rates. The

equilibrium points are given by

(1) |A10|2 = 0, |A11|2 = 0

(2) |A10|2 = 0, |A11|2 = σ11(t)/l11

(3) |A10|2 = σ10(t)/l10, |A11|2 = 0

(4) |A10|2 = (σ10(t) − α10,11

l11
σ11(t))/(l10 − α11,10α10,11

l11
)

and |A11|2 = (σ11(t) − α11,10

l10
σ10(t))/(l11 − α11,10α10,11

l10
)

The ramp begins at a subcritical Reynolds number where the growth rates for both

modes are negative. Initially the only stable state is given by equilibrium point (1). That

is, all integral curves in the phase space spanned by {|A10|2, |A11|2} tend to the point given
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by (1). This state represents steady circular Couette flow. As Re increases during the

ramp point (1) remains the only stable state as long as Re is subcritical.

As Re exceeds the critical values for modes 10 and 11, in turn, two new stable equi-

librium states appear given by points (3) and (2) whilst point (1) becomes an unstable

state. Also, equilibrium point (4) appears which is a saddle-point by nature. At this stage

in time there is a region in the phase space where integral curves lead to state (3) and a

region where integral curves lead to state (2), similar to Figure 6.24. Thus, the two-mode

system is exhibiting nonuniqueness.

As Re continues to grow linearly, the growth rates and the coordinates of the points

(2), (3) and (4) also grow linearly in the phase space. The two stable states and saddle

point therefore continue to exist. For faster ramps the two-mode system continues to

exhibit nonuniqueness. However, for slower ramps the integral curve pattern changes in

that the region where curves lead to state (3) increases and the region where curves lead

to state (2) narrows out. For sufficiently slow ramps all integral curves lead to state (3),

rendering this state, which has the critical wavelength, unique. This effect of the ramp on

the integral curves was previously explained in terms of a mode-dependent time delay in

the growth of each mode.

This argument can be extended to account for an N -mode system in an N -dimensional

phase space. As the ramp time is lengthened, more integral curves lead to the state with

the critical wavelength than the other states. Thus for sufficiently long ramp times the

integral curve pattern will be deformed to the situation where all integral curves lead to

the state with the critical wavelength, exhibiting uniqueness.
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7 Numerical Method For Taylor-Couette Flow.

The numerical method for Taylor vortex flow was extended to three dimensions in the

development of a numerical method for Taylor-Couette flow.

7.1 The classical operator splitting scheme.

The operator splitting procedure treats the non-linear term, the pressure term and the

viscous terms separately. The velocity, u(z, φ, r, t) is advanced from time step l to time

step l + 1 using three fractional steps. The following is a classical (first order) operator

splitting scheme as derived from Karniadakis (1991). We proceed from the equations for

Taylor-Couette flow described in Chapter 3.

The first fractional step accounts for the non-linear term and uses an explicit, second

order Adams-Bashforth approximation :

u
l+ 1

3

r = ul
r + ∆t

(

3

2
Nr(u

l) − 1

2
Nr(u

l−1)

)

(1)

u
l+ 1

3

φ = ul
φ + ∆t

(

3

2
Nφ(ul) − 1

2
Nφ(ul−1)

)

(2)

u
l+ 1

3

z = ul
z + ∆t

(

3

2
Nz(u

l) − 1

2
Nz(u

l−1)

)

(3)

The second fractional step is due to the pressure term contribution:

u
l+ 2

3

r = u
l+ 1

3

r − ∆t
∂P

∂r

l+1

(4)

u
l+ 2

3

φ = u
l+ 1

3

φ − ∆t
1

r + γ

∂P

∂φ

l+1

(5)

u
l+ 2

3

z = u
l+ 1

3

z − ∆t
∂P

∂z

l+1

(6)

These are explicit forward Euler approximations. The pressure P l+1 is solved using the

Poisson equation:
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1

r + γ

∂P

∂r

l+1

+
∂2P

∂r2

l+1

+
1

(r + γ)2

∂2P

∂φ2

l+1

+
∂2P

∂z2

l+1

=
1

∆t

(

1

r + γ
ul+1/3

r +
∂ur

∂r

l+1/3

+
1

r + γ

∂uφ

∂φ

l+1/3

+
∂uz

∂z

l+1/3
)

(7)

which is obtained by applying the incompressibility constraint (Equation (8) in Chapter

3) at time step l+2/3 and using Equations (4) to (6). We multiply both sides of Equation

(7) by (r + γ)2 to get:

(r + γ)
∂P

∂r

l+1

+ (r + γ)2
∂2P

∂r2

l+1

+
∂2P

∂φ2

l+1

+ (r + γ)2
∂2P

∂z2

l+1

=
1

∆t

(

(r + γ)ul+1/3

r + (r + γ)2
∂ur

∂r

l+1/3

+ (r + γ)
∂uφ

∂φ

l+1/3

+ (r + γ)2
∂uz

∂z

l+1/3
)

(8)

A further assumption is that ul+2/3 satisfies the prescribed boundary conditions in the

directions normal to the boundaries (cylinder walls):

ul+2/3

r (z, φ,±1, t) = 0 (9)

From Equation (4), this implies that Neumann boundary conditions can be imposed:

∂P

∂r

l+1

=
1

∆t
ul+1/3

r at r = ±1 (10)

Periodicity in the pressure is assumed in the axial and azimuthal directions.

The third fractional step is the viscous step:

ul+1

r = u
l+ 2

3

r +
∆t

Re
Lr(u

l+1) (11)

ul+1

φ = u
l+ 2

3

φ +
∆t

Re
Lφ(ul+1) (12)

ul+1

z = u
l+ 2

3

z +
∆t

Re
Lz(u

l+1) (13)
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where an implicit, backwards Euler approximation is made. Equations (11) to (13) are

each in the form of an Helmholtz equation. We multiply both sides of Equations (11) to

(13) by (r + γ)2 to get:

(r + γ)
∂ur

∂r

l+1

+ (r + γ)2
∂2ur

∂r2

l+1

+
∂2ur

∂φ2

l+1

− 2
∂uφ

∂φ

l+1

+ (r + γ)2
∂2ur

∂z2

l+1

−
(

Re

∆t
(r + γ)2 + 1

)

ul+1

r = −Re

∆t
(r + γ)2ul+2/3

r (14)

(r + γ)
∂uφ

∂r

l+1

+ (r + γ)2
∂2uφ

∂r2

l+1

+
∂2uφ

∂φ2

l+1

+ 2
∂ur

∂φ

l+1

+ (r + γ)2
∂2uφ

∂z2

l+1

−
(

Re

∆t
(r + γ)2 + 1

)

ul+1

φ = −Re

∆t
(r + γ)2u

l+2/3

φ (15)

(r + γ)
∂uz

∂r

l+1

+ (r + γ)2
∂2uz

∂r2

l+1

+
∂2uz

∂φ2

l+1

+ (r + γ)2
∂2uz

∂z2

l+1

− Re

∆t
(r + γ)2ul+1

z = −Re

∆t
(r + γ)2ul+2/3

z (16)

These Helmholtz equations can each be solved with the following respective Dirichlet

boundary conditions:

ul+1

r (z, φ,±1, t) = 0 (17)

ul+1

φ (z, φ,−1, t) = 1 and ul+1

φ (z, φ, 1, t) = µ/η (18)

ul+1

z (z, φ,±1, t) = 0 (19)

Periodic boundary conditions is assumed in the axial and azimuthal direction for each

of these velocity components.
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7.2 Higher order splitting schemes

This section is basically an extension of Section 5.2. The points referring to the values

of the coefficients and the order of the scheme for each fractional step also apply here. Fol-

lowing Karniadakis (1991), the non-linear terms are approximated via an explicit scheme,

for example, a Je-order scheme from the Adams-Bashforth family as follows,

ul+1/3

r = ul
r + ∆t

Je−1
∑

q=0

βqNr(u
l−q) (20)

u
l+1/3

φ = ul
φ + ∆t

Je−1
∑

q=0

βqNφ(ul−q) (21)

ul+1/3

z = ul
z + ∆t

Je−1
∑

q=0

βqNz(u
l−q) (22)

The linear (viscous) terms are approximated via an implicit scheme, for example, a

Ji-order scheme from the Adams-Moulton family as follows

ul+1

r = u
l+ 2

3

r +
∆t

Re

Ji−1
∑

q=0

γqLr(u
l+1−q) (23)

ul+1

φ = u
l+ 2

3

φ +
∆t

Re

Ji−1
∑

q=0

γqLφ(ul+1−q) (24)

ul+1

z = u
l+ 2

3

z +
∆t

Re

Ji−1
∑

q=0

γqLz(u
l+1−q) (25)

From Equations (23) to (25), the Helmholtz equations for the three components of

velocity in the viscous step become

(r + γ)
∂ur

∂r

l+1

+ (r + γ)2
∂2ur

∂r2

l+1

+
∂2ur

∂φ2

l+1

− 2
∂uφ

∂φ

l+1

+ (r + γ)2
∂2ur

∂z2

l+1

−
(

1

γ0

Re

∆t
(r + γ)2 + 1

)

ul+1

r = − 1

γ0

Re

∆t
(r + γ)2ul+2/3

r

− 1

γ0

Ji−1
∑

q=1

γq

[

(r + γ)
∂ur

∂r
+ (r + γ)2

∂2ur

∂r2
+

∂2ur

∂φ2
− 2

∂uφ

∂φ
+ (r + γ)2

∂2ur

∂z2
− ur

](l+1−q)
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(26)

(r + γ)
∂uφ

∂r

l+1

+ (r + γ)2
∂2uφ

∂r2

l+1

+
∂2uφ

∂φ2

l+1

+ 2
∂ur

∂φ

l+1

+ (r + γ)2
∂2uφ

∂z2

l+1

−
(

1

γ0

Re

∆t
(r + γ)2 + 1

)

ul+1

φ = − 1

γ0

Re

∆t
(r + γ)2u

l+2/3

φ

− 1

γ0

Ji−1
∑

q=1

γq

[

(r + γ)
∂uφ

∂r
+ (r + γ)2

∂2uφ

∂r2
+

∂2uφ

∂φ2
+ 2

∂ur

∂φ
+ (r + γ)2

∂2uφ

∂z2
− uφ

](l+1−q)

(27)

(r + γ)
∂uz

∂r

l+1

+ (r + γ)2
∂2uz

∂r2

l+1

+
∂2uz

∂φ2

l+1

+ (r + γ)2
∂2uz

∂z2

l+1

− 1

γ0

Re

∆t
(r + γ)2ul+1

z = − 1

γ0

Re

∆t
(r + γ)2ul+2/3

z

− 1

γ0

Ji−1
∑

q=1

γq

[

(r + γ)
∂uz

∂r
+ (r + γ)2

∂2uz

∂r2
+

∂2uz

∂φ2
+ (r + γ)2

∂2uz

∂z2

](l+1−q)

(28)

In the pressure step Equation (8) is solved subject to higher order pressure boundary

conditions. That is, instead of using Equation (10) we use an explicit Jp-order scheme,

∂P

∂r

l+1

=

Jp−1
∑

q=0

βq

[

− 1

Re
(∇× (∇× u))r + Nr(u)

](l−q)

(29)

which becomes

∂P

∂r

l+1

=

Jp−1
∑

q=0

βq

[

1

Re

(

∂2ur

∂z2
− ∂2uz

∂z∂r
− 1

(r + γ)2

∂uφ

∂φ
− 1

r + γ

∂2uφ

∂φ∂r
+

1

r + γ

∂2ur

∂φ2

)

−
(

ur

∂ur

∂r
+

uφ

r + γ

∂ur

∂φ
+ uz

∂ur

∂z
− uφ

2

r + γ

)](l−q)

(30)

Equation (30) is used to set the Neumann boundary conditions at r = ±1.

7.3 Spectral methods

A Tau spectral method is described below with a Fourier approximation in the axial

direction (z), a Fourier approximation in the azimuthal direction (φ) and a Chebyshev

approximation in the radial (r) direction, that solves for:

152



(1) the Poisson equation for the pressure in the pressure step using Neumann boundary

conditions in r and periodic boundary conditions in z and φ,

(2) the coupled Helmholtz equations for the radial and azimuthal velocity components in

the viscous step using Dirichlet boundary conditions in r and periodic boundary conditions

in z and φ, and,

(3) the Helmholtz equation for the axial velocity component in the viscous step using

Dirichlet boundary conditions in r and periodic boundary conditions in z and φ.

7.3.1 Spatial discretization of the grid

A discrete Fourier-Fourier-Chebyshev approximation of a function P (z, φ, r) is

P (z, φ, r) =

M/2−1
∑

m=−M/2

L/2−1
∑

l=−L/2

N
∑

n=0

PmlnTn(r) exp(ilφ) exp(imz) (31)

where there are N +1 radial Chebyshev-Gauss-Lobatto points, L azimuthal Fourier points

and M axial Fourier points. The remarks made in Section 5.3.1 with respect to the radial

and axial directions also apply here. In addition, in the azimuthal direction there are L

equidistant points defined by

φj =
2π

L
j for j = 0, ..., L − 1 (32)

If wavy vortex flow of a particular azimuthal wavenumber laz is to be simulated, the

azimuthal span can be redefined as 0 ≤ φ ≤ 2π/laz and azimuthal periodicity can be used

to extend the solution to 0 ≤ φ ≤ 2π. This would reduce the overall computational cost.

In this case, there are L equidistant points in the azimuthal direction defined by

φj =
2π

lazL
j for j = 0, ..., L − 1 (33)

and the factor exp(ilφ) in Equation (31) is replaced with exp(ilazlφ)

The numerical method for the solvers will be now be described with respect to definition

in Equation (31).
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7.3.2 Poisson solver for pressure

The Poisson equation for the pressure P (z, φ, r) at each time step, has the form

(r + γ)
∂P

∂r
+ (r + γ)2

∂2P

∂r2
+

∂2P

∂φ2
+ (r + γ)2

∂2P

∂z2
= F (z, φ, r) (34)

where the Neumann boundary conditions have the form

∂P

∂r
= α(z, φ) at r = −1 (35)

∂P

∂r
= β(z, φ) at r = 1 (36)

and periodic boundary conditions are applied in the axial and azimuthal directions.

For each l, where −L/2 ≤ l ≤ L/2 − 1, Equation (34) in matrix form in spectral space

can be written as

P (DC + D2C2) − l2P − m2PC2 = F (37)

where −M/2 ≤ m ≤ M/2 − 1.

The (N + 1) × (N + 1) matrices D, D2, C and C2 are defined in Sections 5.3.2 and

5.3.3. The M × L × (N + 1) matrices P and F contain the spectral coefficients Pmln and

Fmln, which are complex numbers in general.

A discrete Fourier-Fourier approximation of a function α(z, φ) is

α(z, φ) =

M/2−1
∑

m=−M/2

L/2−1
∑

l=−L/2

αml exp(ilφ) exp(imz) (38)

where the spectral coefficients αml are complex numbers in general.

The spectral form of the boundary conditions can be written as:

N
∑

n=0

n2PR,mln = βR,ml (39)
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N
∑

n=0

(−1)n+1n2PR,mln = αR,ml (40)

N
∑

n=0

n2PI,mln = βI,ml (41)

N
∑

n=0

(−1)n+1n2PI,mln = αI,ml (42)

for −M/2 ≤ m ≤ M/2 − 1 and −L/2 ≤ l ≤ L/2 − 1. The subscripts R and I denote real

and imaginary components, respectively.

Adding and subtracting Equations (39) and (40) we get:

N
∑

n=0, n odd

n2PR,mln =
1

2
(βR,ml + αR,ml) = ηR,ml (43)

N
∑

n=0, n even

n2PR,mln =
1

2
(βR,ml − αR,ml) = θR,ml (44)

Adding and subtracting Equations (41) and (42) we get:

N
∑

n=0, n odd

n2PI,mln =
1

2
(βI,ml + αI,ml) = ηI,ml (45)

N
∑

n=0, n even

n2PI,mln =
1

2
(βI,ml − αI,ml) = θI,ml (46)

In the matrix Equation (37) we substitute Equation (43) and (45) to eliminate the com-

plex coefficients Pm,l,N−1 and Equation (44) and (46) to eliminate the complex coefficients

Pm,l,N , for −M/2 ≤ m ≤ M/2 − 1 and −L/2 ≤ l ≤ L/2 − 1. Subsequently we obtain the

matrix equation

P (BC + B2C2) − l2P − m2PC2 = f (47)

where now P is the portion −M/2 ≤ m ≤ M/2− 1, −L/2 ≤ l ≤ L/2− 1, 0 ≤ n ≤ N − 2

of its original definition. The matrices C and C2 are the portions 0 ≤ p ≤ N − 2,
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0 ≤ q ≤ N−2 of its original definitions. The matrices B and B2 are both (N−1)×(N−1)

and are defined in Section 5.3.3.

The matrix f has real and imaginary components

fR = FR − QRC − SRC2 (48)

and

fI = FI − QIC − SIC
2 (49)

where QR, QI , SR and SI are M × L × (N − 1) matrices with components

QR,mln =















2

(N−1)cn

ηR,ml for n even

2

Ncn

θR,ml for n odd

(50)

QI,mln =















2

(N−1)cn

ηI,ml for n even

2

Ncn

θI,ml for n odd

(51)

SR,mln =















N2−n2

Ncn

θR,ml for n even

(N−1)
2−n2

(N−1)cn

ηR,ml for n odd

(52)

SI,mln =















N2−n2

Ncn

θI,ml for n even

(N−1)
2−n2

(N−1)cn

ηI,ml for n odd

(53)

Equation (47) represents a system with M×L×(N−1) equations in the M×L×(N−1)

complex unknowns, Pmln. The solution is determined by taking

PR,ml = fR,ml[BC + B2C2 − l2IN−1 − m2C2]−1 (54)

and

PI,ml = fI,ml[BC + B2C2 − l2IN−1 − m2C2]−1 (55)
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for −M/2 ≤ m ≤ M/2 − 1 and −L/2 ≤ l ≤ L/2 − 1. The matrices PR,ml, PI,ml and

fR,ml, fI,ml are the (m, l)th row of the real and imaginary component elements of P and f

respectively.

As it stands, the (N − 1) × (N − 1) matrix [BC + B2C2 − l2IN−1 − m2C2] is not

invertible for l = 0, m = 0. In this instance, it was decided to set the element [BC +

B2C2− l2IN−1−m2C2]0,0 to a constant (unity) for the case l = 0, m = 0. The solution for

P (z, φ, r) will be accurate to a constant, which itself does not play a role in the Navier-

Stokes equations since it is the pressure gradient that is required. Once the Pmln are

calculated for −M/2 ≤ m ≤ M/2 − 1, −L/2 ≤ l ≤ L/2 − 1 and 0 ≤ n ≤ N − 2, the Pmln

for −M/2 ≤ m ≤ M/2 − 1, −L/2 ≤ l ≤ L/2 − 1 and n = N − 1, N can be determined

using Equations (43) to (46). A Fourier-Fourier-Chebyshev inverse transform of Pmln will

then give the solution for P (z, φ, r).

7.3.3 Coupled Helmholtz solver for radial and azimuthal

component of velocity

The two coupled Helmholtz equations for the radial component of velocity U(z, φ, r) and

azimuthal component of velocity V (z, φ, r) have the form

(r + γ)
∂U

∂r
+ (r + γ)2

∂2U

∂r2
+

∂2U

∂φ2
− 2

∂V

∂φ

+ (r + γ)2
∂2U

∂z2
−

(

Re

∆t
(r + γ)2 + 1

)

U = F (z, φ, r) (56)

and

(r + γ)
∂V

∂r
+ (r + γ)2

∂2V

∂r2
+

∂2V

∂φ2
+ 2

∂U

∂φ

+ (r + γ)2
∂2V

∂z2
−

(

Re

∆t
(r + γ)2 + 1

)

V = G(z, φ, r) (57)

where the Dirichlet boundary conditions have the form

157



U(z, φ,−1) = α(z, φ) (58)

U(z, φ, 1) = β(z, φ) (59)

V (z, φ,−1) = α(z, φ) (60)

V (z, φ, 1) = β(z, φ) (61)

and periodic boundary conditions are assumed in the axial and azimuthal directions.

For each l, where −L/2 ≤ l ≤ L/2 − 1, Equations (56) and (57) in matrix form in

spectral space can be written as

U(DC + D2C2) − l2U − 2ilV − m2UC2 − U

(

Re

∆t
C2 + IN+1

)

= F (62)

and

V (DC + D2C2) − l2V + 2ilU − m2V C2 − V

(

Re

∆t
C2 + IN+1

)

= G (63)

where −M/2 ≤ m ≤ M/2 − 1.

In Equations (62) and (63), the letter i refers to the imaginary component of a complex

number. The matrices U and V contain the Fourier-Fourier-Chebyshev spectral coefficients

of their corresponding velocity functions. The matrices C and C2 are defined in Section

5.3.3. The matrices D and D2 are defined in Section 5.3.4. IN+1 is the (N + 1)× (N + 1)

identity matrix.

Applying a Fourier-Fourier transform to the boundary conditions, in spectral form we

have:

N
∑

n=0

UR,mln = βR,ml (64)
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N
∑

n=0

(−1)nUR,mln = αR,ml (65)

N
∑

n=0

UI,mln = βI,ml (66)

N
∑

n=0

(−1)nUI,mln = αI,ml (67)

and

N
∑

n=0

VR,mln = ψR,ml (68)

N
∑

n=0

(−1)nVR,mln = χR,ml (69)

N
∑

n=0

VI,mln = ψI,ml (70)

N
∑

n=0

(−1)nVI,mln = χI,ml (71)

where the subscripts R and I denote real and imaginary components respectively.

Adding and subtracting Equations (64) and (65) we get:

N
∑

n=0, n even

UR,mln =
1

2
(βR,ml + αR,ml) = ηR,ml (72)

N
∑

n=0, n odd

UR,mln =
1

2
(βR,ml − αR,ml) = θR,ml (73)

Adding and subtracting Equations (66) and (67) we get:

N
∑

n=0, n even

UI,mln =
1

2
(βI,ml + αI,ml) = ηI,ml (74)

N
∑

n=0, n odd

UI,mln =
1

2
(βI,ml − αI,ml) = θI,ml (75)
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Also, doing the equivalent for V gives:

N
∑

n=0, n even

VR,mln =
1

2
(ψR,ml + χR,ml) = δR,ml (76)

N
∑

n=0, n odd

VR,mln =
1

2
(ψR,ml − χR,ml) = ζR,ml (77)

N
∑

n=0, n even

VI,mln =
1

2
(ψI,ml + χI,ml) = δI,ml (78)

N
∑

n=0, n odd

VI,mln =
1

2
(ψI,ml − χI,ml) = ζI,ml (79)

Using Equations (73) and (75) we eliminate the complex coefficients Um,l,N−1 and using

Equations (72) and (74) we eliminate the complex coefficients Um,l,N . Similarly, using

Equations (77) and (79) we eliminate the complex coefficients Vm,l,N−1 and using Equations

(76) and (78) we eliminate the complex coefficients Vm,l,N .

Equations (62) and (63) then become

U(BC + B2C2) − l2U − 2ilV − m2UC2 − U

(

Re

∆t
C2 + IN−1

)

= f (80)

and

V (BC + B2C2) − l2V + 2ilU − m2V C2 − V

(

Re

∆t
C2 + IN−1

)

= g (81)

where U and V are portions M × L × (N − 1) of their original definitions. The matrices

are the (N −1)×(N −1) portion of their original definitions. IN−1 is the (N −1)×(N −1)

identity matrix. The (N − 1) × (N − 1) matrices B and B2 are defined in Section 5.3.4.

The matrix f has real and imaginary components

fR = FR − QRC − SRC2 (82)

and

160



fI = FI − QIC − SIC
2 (83)

where QR, QI , SR and SI are M × L × (N − 1) matrix with components

QR,mln =















2(N−1)

cn

θR,ml for n even

2N
cn

ηR,ml for n odd

(84)

QI,mln =















2(N−1)

cn

θI,ml for n even

2N
cn

ηI,ml for n odd

(85)

SI,mln =















N(N2−n2
)

cn

ηR,ml for n even

(N−1)((N−1)
2−n2

)

cn

θR,ml for n odd

(86)

SI,mln =















N(N2−n2
)

cn

ηI,ml for n even

(N−1)((N−1)
2−n2

)

cn

θI,ml for n odd

(87)

Similarly, the M × L × (N − 1) matrix g has real and imaginary components

gR = GR − ERC − HRC2 (88)

and

gI = GI − EIC − HIC
2 (89)

where ER, EI , HR and HI are M × L × (N − 1) matrices with components

ER,mln =















2(N−1)

cn

ζR,ml for n even

2N
cn

δR,ml for n odd

(90)

EI,mln =















2(N−1)

cn

ζI,ml for n even

2N
cn

δI,ml for n odd

(91)

HR,mln =















N(N2−n2
)

cn

δR,ml for n even

(N−1)((N−1)
2−n2

)

cn

ζR,ml for n odd

(92)
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HI,mln =















N(N2−n2
)

cn

δI,ml for n even

(N−1)((N−1)
2−n2

)

cn

ζI,ml for n odd

(93)

Equations (80) and (81) are in the form

UA − 2ilV = f (94)

V A + 2ilU = g (95)

where here U , V , f and g denote the (m, l)th row of respective elements.

The (N − 1) × (N − 1) matrix A depends on the indices m and l:

A = BC + B2C2 − (1 + l2)IN−1 −
(

Re

∆t
+ m2

)

C2 (96)

Firstly, the special case l = 0 results in an uncoupled pair of equations with real and

imaginary spectral components for U and V as

UR = fRA−1 UI = fIA
−1 (97)

VR = gRA−1 VI = gIA
−1 (98)

For the case l 6= 0 we have

UR =

(

gI −
1

2l
fRA

)

T−1 UI = −
(

gR +
1

2l
fIA

)

T−1 (99)

VR =
1

2l
(UIA − fI) VI =

1

2l
(fR − URA) (100)

where

T = 2lIN−1 −
1

2l
A2 (101)
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Once the complex Umln and Vmln are calculated for 0 ≤ n ≤ N − 2, the values for n =

N − 1, N can be determined using Equations (72) to (79). A Fourier-Fourier-Chebyshev

inverse transform of Umln and Vmln will give the solution for U(z, φ, r) and V (z, φ, r).

7.3.4 Helmholtz solver for axial component of velocity

The Helmholtz equation for the axial component of velocity W (z, φ, r) has the form

(r + γ)
∂W

∂r
+ (r + γ)2

∂2W

∂r2
+

∂2W

∂φ2

+ (r + γ)2
∂2W

∂z2
− Re

∆t
(r + γ)2W = F (z, φ, r) (102)

where the Dirichlet boundary conditions have the form

W (z, φ,−1) = α(z, φ) (103)

W (z, φ, 1) = β(z, φ) (104)

and periodic boundary conditions are assumed in the axial and azimuthal direction.

Equation (102) in matrix form in spectral space can be written as

W (DC + D2C2) − l2W − m2WC2 − Re

∆t
WC2 = F (105)

The matrices D, D2, C and C2 in Equation (105) are the same as those defined in

Equation (62). The matrix W contains the complex spectral coefficients Wmln of the axial

velocity.

The spectral form of the boundary conditions can be written as:

N
∑

n=0

WR,mln = βR,ml (106)

N
∑

n=0

(−1)nWR,mln = αR,ml (107)
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N
∑

n=0

WI,mln = βI,ml (108)

N
∑

n=0

(−1)nWI,mln = αI,ml (109)

for −M/2 ≤ m ≤ M/2 − 1 and −L/2 ≤ l ≤ L/2 − 1.

Adding and subtracting Equations (106) and (107) we get:

N
∑

n=0, n even

WR,mln =
1

2
(βR,ml + αR,ml) = ηR,ml (110)

N
∑

n=0, n odd

WR,mln =
1

2
(βR,ml − αR,ml) = θR,ml (111)

Adding and subtracting Equations (108) and (109) we get:

N
∑

n=0, n even

WI,mln =
1

2
(βI,ml + αI,ml) = ηI,ml (112)

N
∑

n=0, n odd

WI,mln =
1

2
(βI,ml − αI,ml) = θI,ml (113)

In the matrix Equation (105) we substitute Equations (111) and (113) to eliminate the

complex coefficients Wm,l,N−1 and Equations (110) and (112) to eliminate the complex

coefficients Wm,l,N , for −M/2 ≤ m ≤ M/2 − 1 and −L/2 ≤ l ≤ L/2 − 1. Subsequently

we obtain the matrix equation

W (BC + B2C2) − l2W − m2WC2 − Re

∆t
WC2 = f (114)

The matrices B, B2, C and C2 are the same as those defined for Equation (80). The

matrix W contains the M × L × (N − 1) portion of its original definition. The matrix f

has real and imaginary components

fR = FR − QRC − SRC2 (115)
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and

fI = FI − QIC − SIC
2 (116)

where Q and S are M × L × (N − 1) matrices with components

QR,mln =















2(N−1)

cn

θR,ml for n even

2N
cn

ηR,ml for n odd

(117)

QI,mln =















2(N−1)

cn

θI,ml for n even

2N
cn

ηI,ml for n odd

(118)

SR,mln =















N(N2−n2
)

cn

ηR,ml for n even

(N−1)((N−1)
2−n2

)

cn

θR,ml for n odd

(119)

SI,mln =















N(N2−n2
)

cn

ηI,ml for n even

(N−1)((N−1)
2−n2

)

cn

θI,ml for n odd

(120)

Equation (114) represents a system with M×L×(N−1) equations in the M×L×(N−1)

complex unknowns, Wmln, determined from

WR = fRA−1 WI = fIA
−1 (121)

where

A = BC + B2C2 − l2IN−1 − m2C2 − Re

∆t
C2 (122)

for −M/2 ≤ m ≤ M/2 − 1 and −M/2 ≤ l ≤ M/2 − 1, where WR, WI and fR, fI are the

(m, l)th rows of the real and imaginary component elements of W and f respectively. IN−1

is the (N −1)× (N −1) identity matrix. Once the Wmln are calculated for 0 ≤ n ≤ N −2,

the Wmln for n = N − 1, N can be determined using Equations (110) to (113). A Fourier-

Chebyshev inverse transform of Wmln will give the solution for W (z, φ, r).
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7.4 Preprocessing calculations

The arrays B and B2 are calculated once for Dirichlet boundary conditions and once for

Neumann boundary conditions in a preprocessing step.

Then we calculate and store:

(1) M × L inversions of the N − 1 × N − 1 array Q for the Poisson solver.

(2) M inversions of the N − 1 × N − 1 array A, and M × (L − 1) inversions of the

N − 1 × N − 1 array T , for the coupled Helmholtz solver for the radial and azimuthal

components of velocity.

(3) M × L inversions of the N − 1 × N − 1 array A for the Helmholtz solver for the

axial component of velocity.

These three sets of inversions are done once, in a preprocessing step.

7.5 Numerical tests of wavy vortex flow.

The three-dimensional code was validated by comparing exponential growth rates for

wavy vortex flow. Using the three-dimensional code, the real and imaginary components

of the exponential growth rate for a wavy vortex flow simulation are shown in Table 7.1

to converge to their referenced values as the timespacing is reduced.

In the exponential stage of growth, the complex amplitude A(t) has a solution of the

form:

A(t) = A(0) exp(σRt) exp(iσIt) (123)

where σR and σI are the real and imaginary components of the growth rate. The amplitude

has a real component, AR(t) and an imaginary component, AI(t).

Estimates for σR were made by using

σR =
1

∆t
loge

(

|A(t + ∆t)|
|A(t)|

)

(124)

where
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|A(t)| =
√

A2

R(t) + A2

I(t) (125)

Estimates for σI were made by using

σI =
1

∆t

(

cos−1

(

AR(t + ∆t)

|A(t + ∆t)|

)

− cos−1

(

AR(t)

|A(t)|

))

(126)

The amplitudes for each mode were determined from the radial component of velocity

evaluated at the radial centre of the gap. Fourier-Fourier transforms in the z and φ

directions gave AR(t) and AI(t) as functions of mode indices m and l.

Figure 7.1 demonstrates second order accuracy for the scheme with (Je = 2, Jp = 1)

and θ = 0.0125, as the slopes for σR and σI are about two. In other words, σ − σt is

proportional to (∆t)2, where σt refers to the values of the real or imaginary components

of growth rate from Marcus (1984a). The scheme with (Je = 2, Jp = 1) and θ = 0.5 has a

slope of two for σR but a slope of one for σI , hence it is giving second-order time-accuracy

for σR and first-order time-accuracy for σI .

Consider now the simulation to steady state for a wavy vortex flow with Re = 167,

λ = 2.54, η = 0.877 and laz = 5. Using a 16× 16× 17 grid, ∆t = 0.05 and θ = 0.5 a value

of σI = 0.30097 was obtained for the fundamental frequency of the flow, which converts

to the value 2.146 Ωin. This is in reasonable agreement with the value of 2.16 Ωin from

the computations by Moser, Moin and Leonard (1983) and the value 2.11 Ωin from the

experiments of Coles (1965).

Figure 7.2 shows contours of axial velocity in an unwrapped z versus φ plane for the

azimuthal span 0 ≤ φ ≤ 2π/5. Figure 7.3 shows velocity vector plots in the z versus r plane

taken at φ = j

16

2π
5

for j = 0, ..., 15. These figures highlight the fact that, unlike Taylor

vortex flow, in wavy vortex flow fluid can move between the counter-rotating vortices.

The code was run on a high performance computer, a Silicon Graphics Indy R10000

Workstation. The previous run to steady state took about 4 CPU hours (at 0.36 CPU

seconds per time step). In comparison, on a Silicon Graphics Indy R5000 Workstation it

took 2.16 CPU seconds per time step, which is six times slower for the grid size chosen.
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laz 4

η 0.877

µ 0

Re 238.2

Γ = λ 2.3603251

σR, σI from Marcus (1984a) 0.067241 , 0.28430

θ = 0.5 ∆t = 0.225 0.067517 , 0.28164

∆t = 0.2 0.067430 , 0.28188

∆t = 0.15 0.067297 , 0.28239

∆t = 0.1 0.067218 , 0.28296

θ = 0.0125 ∆t = 0.225 0.067761 , 0.28464

∆t = 0.2 0.067645 , 0.28456

∆t = 0.15 0.067455 , 0.28442

∆t = 0.1 0.067322 , 0.28432

Table 7.1: A growth rate test for 3D code using a 16 × 16 × 17 grid.

The three-dimensional code has been validated and shown to have second-order time-

accuracy for the appropriate choice in the weighting parameter θ. The successful simu-

lation of wavy vortex flow makes it possible to undertake a future study into the effect

of nonaxisymmetric modes on state selection in Taylor vortex flow. In particular, modes

with azimuthal periodicity, that ultimately lead to a transition to wavy vortex flow when

the Reynolds number is sufficiently high.
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8 Conclusions And Recommendations For Future Work

8.1 Conclusions

Following the successful numerical treatment of driven cavity flow, a two-dimensional

code for Taylor vortex flow based on spectral methods and operator splitting was developed

and validated for second-order time accuracy.

The numerical method was extended to three dimensions to simulate Taylor-Couette

flow in general. The code was validated against wavy vortex flow and was also shown to

give second-order time accuracy.

The Poisson and Helmholtz solvers in these codes were based on the Tau spectral

method. In cylindrical coordinates there was a difficulty that was overcome, this being

the treatment in spectral space of the coefficients proportional to 1/r and 1/r2. The

equations were firstly rewritten to have factors proportional to r and r2. These factors

had matrix operators in spectral space which were derived analytically.

From the two-dimensional code, results of the behaviour of the amplitude of the modes

with ramp time were obtained. A linear model was shown to describe the behaviour of

the amplitude of the modes in their independent stage of growth. It was shown that

the ramp provides an additional time delay in the growth of the mode which is mode-

dependent. This time delay has a shortest-to-longest ordering of the modes corresponding

to the lowest-to-highest ordering of the critical Reynolds number of each mode. As the

time delay is proportional to the ramp time, progressively longer ramp times result in a

change of the ordering of the time taken for each mode to begin self-interaction. Then

for a particular ramp time, the mode which has sufficient time to self-interact will become

preferred. For sufficiently long ramp times, the critical wavelength mode always has time to

self-interact because the other modes have a significantly greater delay time from reaching

a finite amplitude.

The nonlinear effects in the results were accounted for using coupled nonlinear ampli-

tude equations. The amplitude equations for each mode accounted for several features:
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(i) the initial independent stage of growth where the log of the amplitude varies quadrat-

ically with time during the Re ramp and linearly with time for constant Re. This was

modelled using linear amplitude terms.

(ii) the three-wave resonance effects causing rapid regions of acceleration for lower

amplitude modes prior to the saturation of the preferred mode. This was modelled using

quadratic amplitude terms.

(iii) the self-interaction of each mode. In the equation for each mode, this was modelled

using cubic terms containing amplitudes of the same mode.

(iv) the coupling or interaction between different modes. In the equation for each mode,

this was modelled using cubic terms containing amplitudes of different modes.

The nonlinear amplitude equations provide a model of the behaviour of the amplitude

of the modes with ramp time, and the change in preferred mode with ramp time.

The use of amplitude equations implies we can conceptualise the phenomenon of

nonuniqueness using a dynamical systems approach. Consider the situation for sudden

starts and variable initial conditions. If the coefficients in the amplitude equations satisfy

certain conditions, then the N -mode system is nonunique. Such conditions can be consid-

ered as conditions for nonuniqueness. Then, in an N -dimensional phase space spanned by

the amplitude of each mode, we have N stable equilibrium points. These would represent

a discrete set of N stable Taylor vortex flow states spanning the Eckhaus stable band.

Which Taylor vortex flow state is preferred depends on the initial conditions.

Consider now the situation of fixed initial conditions and variable ramp time. As the

ramp time is lengthened, the structure of the integral curves in the phase space diagram is

deformed so that the integral curves from the same initial conditions go to different stable

states.

When the ramp time is sufficiently long, it was observed that the Taylor vortex flow with

the critical wavelength was always preferred. The integral curves in the phase plane have

deformed to the situation where all curves lead to the state with the critical wavelength.

This means that we have progressed from the sudden starts situation which exhibits
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nonuniqueness, to the long ramp time situation which exhibits uniqueness.

8.2 Recommendations for future work

Consider the amplitude equation suggested in Section 6.7, namely

d|Ai|
dt

= σi(t)|Ai| − li|Ai|3 −
N

∑

j=1,j 6=i

αij|Ai|.|Aj|2 +
∑

j,q

βjq|Aj|.|Aq| (1)

The growth rates σi(t) are defined as

σi(t) = Ki(Re(t) − Rec,i) (2)

where

Re(t) =















Rei +
Re

f
−Rei

T
t if t ≤ T

Ref if t > T

(3)

and the values for Ki and Rec,i for each mode i can be predetermined from a graph of

instantaneous growth rate versus instantaneous Reynolds number, plotted from the results

of the numerical simulation for a sufficiently long ramp time.

It is now of interest to test how well Equation (1) fits the |Ai(t)| from the numerical

simulation. A computer program has been written that applies a least squares approxima-

tion with user supplied basis functions. One can select the basis functions to correspond

to the terms in the amplitude equation. Using the values for |Ai(t)| from the numerical

simulation, values for
d|Ai|

dt
can be calculated. The routine would make a polynomial ap-

proximation of each
d|Ai|

dt
based on the functions |Ai|, |Ai|3, |Ai|.|Aj|2 and |Aj|.|Aq|. Thus,

the output of the routine would give the values for the coefficients li, αij and βjq such as

to provide a least squares fit.

The success of the approach would require careful judgement and trials of the appropri-

ate terms to account for the nonlinear effects from the most significant amplitudes of the

modes. For example, consider the amplitude results for T = 49.81. An initial suggestion

for the amplitude equations for mode 11, 10, 12 and the first harmonic of 11 can involve
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those modes alone.

Once the coefficients are calculated for a particular ramp time, it is then of interest to

see how well the amplitude model duplicates the behaviour of the amplitude of the modes

observed from the numerical simulation at other ramp times.

A simple datafitting application can be illustrated to the results of |Ai(t)| for T = 0. The

quadratic terms were neglected for simplicity. Only the top two modes were considered,

that is, modes 12, 11. The model considered was:

d|A11|
dt

= σ11|A11| − l11|A11|3 − α11,12|A11|.|A12|2 (4)

d|A12|
dt

= σ12|A12| − l12|A12|3 − α12,11|A12|.|A11|2 (5)

Figure 8.1 shows that the fit is very good in the linear stage of growth. The coefficients

were estimated to be σ11 = 1.76, l11 = 305.42, α11,12 = 376.09, σ12 = 1.76, l12 = 434.87

and α12,11 = 281.63. However, deviations of the fit from the true amplitudes are noticeable

where mode 12 overtakes mode 11. Thus more nonlinear terms need to be included to

improve the fit. The next step would be to include coupling to mode 13 as well as allowing

for three-wave resonance effects with the first harmonics of each mode.

Following this study, we wish to undertake an investigation into the effect of nonax-

isymmetric modes on state selection in Taylor vortex flow. Using the three-dimensional

code for Taylor-Couette flow modes that exhibit azimuthal periodicity as well as axial

periodicity can be simulated. Such modes ultimately lead to the transition to wavy vortex

flow when the Reynolds number is sufficiently high. This work would then lead to a study

of state selection in wavy vortex flow. Again, coupled nonlinear amplitude equations could

be used to explain the behaviour of the amplitude of the modes.
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Figure 8.1: Least squares fits for modes 12 (the preferred mode) and 11.

———— amplitude from numerical simulation for T = 0

– – – – – least squares fit
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9 Appendix9.1 Publications resulting from this work
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