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Abstract
Two-dimensional flow past a cylinder close to a free surface at a Reynolds number of 180 is

numerically investigated. The flow characteristics for Froude numbers between 0.00 and 0.70

and for gap ratios between 0.10 and 5.00 are examined, and a mechanism that explains the flows

behaviour is proposed. The results reveal that this problem shares many features with flow past

a cylinder close to a no-slip wall at low Froude numbers where the surface experiences little or

no deformation. This suggests that the flow is largely governed by geometrical constraints at

least in the low Froude number limit.

At the larger Froude numbers good agreement is obtained with the experimental findings of

Sheridan et al. (1995), Sheridan et al. (1997) and Hoyt and Sellin (2000). The proposed mecha-

nism suggests that the cessation of shedding at smaller gap ratios is due to a combination of lack

of fluid for discrete vortex formation, and increasing levels of skew in the wake. The metastable

wake states seen by both Sheridan et al. (1995) and Sheridan et al. (1997) are observed, and it is

speculated here that these states result from the time dependent switching between an absolute

and a convective instability.

An analogy with flow past two side-by-side cylinders and symmetrical flow past a cylinder is

made, as common aspects with both of these flows are observed.

A larger portion of the parameter space is mapped out and the forces and shedding frequencies

associated with the flow are provided, which to the author’s knowledge was largely previously

uncharted.
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Nomenclature

α volume fraction

A area

β factor by which the resolution was altered

Cd drag coefficient

C ′d root mean square of the drag coefficient

Cl lift coefficient

C ′l root mean square of the lift coefficient

Cpb base pressure coefficient

d cylinder diameter

dA integral area element

δij Kronecker delta

δ∗ displacement thickness

dl integral vector length element

ds integral surface length element

dV integral volume element

Dparticle particle diameter

er unit vector in the radial direction

eθ unit vector in the azimuthal direction

ez unit vector in the axial direction

f shedding frequency

Fr Froude Number

g gravitational acceleration

g body force vector

∇φ body force vector (g)

Γ Circulation

Γd diffusion coefficient

h submergence depth

h∗ gap ratio, or non-dimensionalized submergence depth

hr resolution parameter

κ curvature ( 1
R)

L lift force
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L1 distance from the inlet to the cylinder center

L2 distance from the outlet to the cylinder center

L3 width of the computational domain

µ dynamic viscosity of the fluid

n normal vector

nj jth component of the normal vector

ν kinematic viscosity

P pressure

φ general scalar quantity that is defined when used

r radial coordinate

R radius of curvature / radial distance

Re Reynolds Number

ρ fluid density

ρparticle particle density

s distance

St Strouhal Number

Sφ momentum source term

σ surface tension

u velocity vector

u x component of the velocity

v y component of the velocity

w z component of the velocity

ur component of the velocity in the radial direction

uθ component of the velocity in the azimuthal direction

upart particle velocity

ω vorticity

ωx x component of the vorticity

ωy y component of the vorticity

ωz z component of the vorticity

t stress vector

ti ith component of the stress

Tij stress tensor

θ azimuthal coordinate
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θ1 stagnation angle

θ2 top separation angle

θ3 bottom separation angle

θ4 rear attachment angle

∇ gradient operator

× curl operator
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Chapter 1

Introduction and Literature Review

The problem being considered here is that of flow past a cylinder close to a free surface. Prac-

tically, situations containing the same underlying physics will include flows relating to: offshore

structures, pipelines, water vehicles such as boats and submarines, and power generation equip-

ment to harness energy from both rivers and tides. A basic schematic that illustrates the problem

is shown in figure (1.1).

h

d
u

g

Figure 1.1: Schematic showing the problem setup, and some of the important parameters.

A broad discussion of some of the aspects that are potentially relevant to flow past a cylinder

close to a free surface are examined. More attention has been given to some of the areas

that are unique to this problem, such as the characteristics of the free surface, that are not as

widely covered in the literature. The first section briefly examines some of the previous work

on flow past a cylinder in an infinite medium, which is obviously of interest to the problem

under consideration. The nature of the instabilities that govern the behaviour of the wake are
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then discussed in section (1.2), as their impact on the observed flow is likely to be considerable.

Previous work relevant to the control of the wake is then discussed in section (1.3) as aspects

of this work have a direct bearing on what is observed here. Section (1.4) details previous work

relating to flow past a cylinder close to a no-slip wall, which is found to share many common

features with the current investigation, particularly at low Froude numbers. Following on from

this, section (1.5) then provides a brief introduction to free surfaces and to vorticity, with

section (1.6) highlighting some of the finding of others with regard to flow past a body close to

a free surface. Finally section (1.7) then details the scope and aims of the present investigation.

1.1 Flow Past a Cylinder in an Infinite Medium

Flow past a cylinder in an infinite medium may be considered as one of the classical problems

of fluid dynamics, with extensive investigation having been undertaken over a period of more

than 120 years. One of the earliest studies was by Strouhal (1878), who examined the frequency

response of wind blowing over a wire or a string in an Aeolian harp. As a testament to the

extensive research which has been undertaken with regard to this geometry, many textbooks

devote considerable attention to the problem, with Tritton (1988) providing just one example.

A major attraction of the cylinder is its simple geometry, along with its immediate application to

engineering problems. Indeed, the time-varying forces acting upon the cylinder are of immense

importance in the design of buildings, offshore structures, bridges, vehicles, and power generation

systems.

As considerable research has been previously undertaken in this area, the discussion here will

largely restrict itself to some of the more recent work, with the reader recommended to consult

review articles by Morkovin (1964), Berger & Wille (1972), and Williamson (1996) for more

details.

While there are many aspects of flow past a cylinder which could be discussed, it is the es-

tablishment of Kármán vortex shedding which is of interest here. Such shedding arises when

the Reynolds number of the flow (Re = ρdv/µ, where ρ is the fluid density, d is the cylinder

diameter, v is the flow velocity, and µ is the dynamic viscosity of the fluid) exceeds the critical

Reynolds number for vortex shedding, which is somewhere between 40 and 50 (the exact value

seems to vary somewhat in the literature, with Williamson (1996) giving 49, while others such

as Triantafyllou & Dimas (1989) indicate a value of about 40). At Reynolds numbers below

this critical value, the flow is found to be steady with a symmetric pair of recirculation bubbles
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observed at the rear of the cylinder.

When this critical value is exceeded, vortices form and are shed from each side of the cylinder

in an alternating fashion, with the subsequent vortex pattern produced referred to as a von

Kármán vortex street. The vortex street, which is made up of vortices (commonly referred to

as Kármán vortices), is two dimensional for Reynolds numbers less than 180, although some

three dimensional effects may be introduced experimentally by altering the end conditions on

the cylinder, as demonstrated by Williamson (1991).

Williamson (1996) discusses the influence that increasing the Reynolds number has on the wake.

For Reynolds numbers greater than 180 the flow field is found to become three dimensional,

with mode A instabilities first developing at Reynolds numbers between 180 and 230, and mode

B instabilities noted at Reynolds numbers above 230. These modes result in waviness in the

third dimension, with the wavelength varying in size (3 to 4 diameters for mode A and about 1

diameter for mode B). As the Reynolds number is increased further, Morkovin (1964) indicates

that there is a forward migration of turbulence within the shear layer and increasing three

dimensionality. Williamson (1996) notes that three-dimensional structures of the scale of both

the shear layer and of the Kármán vortices develop at the Reynolds number between 1000 and

200, 000. The distance at which the vortices form behind the cylinder (often referred to a the

formation length) also changes, with Unal & Rockwell (1988a), Lin et al. (1995) and Norberg

(1998) all finding that the formation length initially increases (from roughly 1.5 diameters to 2.5

diameters for Reynolds numbers between 200 and 2000) before decreasing again as the Reynolds

number is increased further (to roughly 1.25 diameters at a Reynolds number of 10, 000).

Gerrard (1966) and Green & Gerrard (1993) give a descriptive process of vortex shedding. For

Reynolds numbers above about 500, they describe the vortex shedding mechanism as one in

which a forming vortex remains stationary relative to the cylinder as it grows, while at the

same time drawing the shear layer from the other side of the cylinder toward itself. When the

shear layer from the other side of the cylinder crosses the centerline, it cuts off the upstream

supply of vorticity to the growing vortex, and a discrete ‘vortex’ is shed. The timing of this

entire process then effectively determines the shedding frequency. Green & Gerrard (1993) note

that this mechanism is not directly applicable at lower Reynolds numbers, as there is only very

minor cross flow observed in the near wake. At lower Reynolds numbers, vortex shedding is

characterized by a process in which the vorticity is split apart, a feature described by Freymuth

et al. (1986) as vortex nipping. Green & Gerrard (1993) indicate that the shed vortex appears

to develop from the area of vorticity bearing fluid that is subjected to the least viscous shear

3



stress. Furthermore they suggest that the Strouhal number (St = fd/u, where u is the flow

velocity, d is the cylinder diameter, and f is the shedding frequency) verses Reynolds number

relationship proposed by Williamson (1989) results from the changes in vorticity transport which

occur as the Reynolds number is increased. They also propose that at lower Reynolds numbers

the shedding mechanism involves the accumulation of vorticity from the separated boundary

layer in the wake. This vorticity is then redistributed by the velocity field and split at locations

downstream in regions of high shear. The growth of localized vorticity in the area outside of the

high shear-stress region then develops, and a vortex is formed. Green & Gerrard (1993) describe

vortex shedding as essentially a two-stage process: the first stage involves the formation of the

vortices while the second involves them being shed. For low Reynolds numbers they indicate that

it is the formation process which is the most critical, with the period of vortex shedding being

determined by the time required for a coherent vortex structure to develop outside the high shear

stress zone. At larger Reynolds numbers, the zone in which the viscous shear stress is high is

considerably smaller, and as a consequence less time is required for vortex formation (hence the

shortening of the period with increasing Reynolds number). At large enough Reynolds numbers

where the shear stress contribution becomes very small, the self-induced velocity field (cross-

flow) dominates the shedding process and the shedding frequency tends towards a constant.

Shariff et al. (1991) discuss the transport of fluid for flow past a cylinder in an infinite medium

at low Reynolds numbers. They suggest that it is the wake fluid located just behind and slightly

above the cylinder, which is shed from ‘the wake cavity’ during the course of one shedding cycle.

The fluid which is to be ejected appears to broadly coincide with region of low viscous shear

stress observed by Green & Gerrard (1993). Shariff et al. (1991) also indicate the region from

which new fluid will be supplied to replace that lost during the last shedding cycle. For the case

considered here (i.e. flow past a cylinder close to a free surface) the replacement fluid is likely

to come from locations close to the free surface.

1.2 Flow Instabilities

Some of the underlying principles associated with linear stability theory and its application to

related problems will now be discussed. Many assumptions are often made when studying fluid

mechanics so as to simplify the mathematical models used to describe the physical behaviour.

Common assumptions that are made about the nature of the fluid include: the treatment of the

fluid as if it were Newtonian, the assumption that the fluid is incompressible and the neglect
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of physical properties associated with the chemical structure of the material from which the

fluid is composed. These assumptions must always be questioned before any model derived

as a result may be applied. However, for the cases in which these assumptions are valid, the

resulting mathematical model provides a point of reference from which much physical insight

can be gained. Indeed, all numerical simulations are based upon the assumption that physical

behaviour can be accurately modelled via a set of mathematical equations, with appropriate

boundary conditions. In incompressible fluid mechanics, the flow behaviour is modelled via the

time-dependent solution of both the momentum (often referred to as the Navier-Stokes equations

for a Newtonian fluid) and continuity equations, which respectively ensure that both momentum

and mass are conserved.

Stability analysis involves the further simplification of these governing equations and as such,

caution must be taken when interpreting the results of such analysis. However, it is an invaluable

tool when used appropriately.

Stability analysis involves solving for the impulse response of an unstable system to a given per-

turbation. Practically this involves first obtaining a steady-state flow field which is a solution of

the steady Navier-Stokes equations, and then adding a small perturbation to each quantity being

solved for. The subsequent time-dependent equations are then linearized with respect to the

perturbation quantities. If the flow field is assumed to be parallel, then the resultant equations

are commonly referred to as the Orr-Sommerfeld equations, which can then be solved for the

perturbation quantities. In most instances, for a given velocity profile and Reynolds number,

the spatial and temporal growth rates are solved for an impulse disturbance. The variation of

these growth rates with Reynolds number and velocity profile can then be determined. Indeed,

it is the velocity profile that determines the nature of the instability (Koch (1985)) and not the

body itself, with vortex shedding being observed numerically in the absence of a wake producing

body (Huerre & Monkewitz (1990)). Nevertheless, it is the body and the Reynolds number

which together determine the velocity profile in the first place. This feature enables information

to be inferred about the stability characteristics of one wake flow from the results obtained for

other bluff bodies. The procedure just outlined allows for two types of instabilities to be found:

convective and absolute.

Briggs (1964) describes an absolute instability as one where the response of a system to a pulse

disturbance of finite extent is one in which the pulse grows in time without limit at every point

in space. He describes a convective instability as one in which the pulse disturbance propagates

through space, such that its amplitude diminishes in time at a fixed point in space (although such
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a disturbance may grow as it is convected with the velocity field). Briggs (1964) also suggests

that an absolute instability may be physically interpreted as a system with internal feedback,

such that disturbances can grow without the need for reflections from boundary conditions.

Convective instabilities, however, require external feedback or excitation (such as reflections or

forcing) in order for disturbances to grow in time at a fixed point in space. Hence convective

instabilities are likely to be influenced by the nature of the impulse disturbance, in that such

a disturbance is likely to be amplified within the system. Absolute instabilities on the other

hand are likely to amplify all disturbances, although some will grow faster than others, and

it is these faster growing modes that are likely to dominate. Thus convective instabilities are

likely to amplify external noise, while absolute instabilities are likely to produce oscillatory type

behaviour of a fixed frequency, or set of frequencies.

Koch (1985) examines the compressible wake behind a blunt edged plate, and notes that the

region of linear absolute instability is contained within a zone in the near wake, with Triantafyllou

et al. (1986) observing similar behaviour for a circular cylinder. For regions outside of this zone,

the wake is convectively unstable, which implies that only the disturbances within the zone of

absolute instability will be self excited, while those outside of this zone will be convected away

once the external disturbance is removed. As the zone of instability spans a region of finite size,

with the extent diminishing with increasing Reynolds number (Triantafyllou et al. (1986)), Koch

(1985) proposes a criterion whereby it is the disturbances at the transition point between the

zone of absolute and convective instability that controls the downstream shedding process. For

further discussion of other mode selection criteria see Oertel (1990). The stability of asymmetric

velocity profiles are also considered by Koch (1985), with such profiles of considerably greater

relevance to flow past a cylinder close to a free surface. For this case Koch (1985) notes that

there exists only a limited range of asymmetry, before no time-harmonic resonance (absolute

instability) is possible. Importantly this indicates that wake profiles which exhibit significant

asymmetry are more likely to be convectively unstable.

Chomaz et al. (1988) investigate the Ginzburg-Landau equation, which allows for some non-

parallel effects to be considered. They find that the zone of absolute instability must reach a

finite critical size, which is problem dependent, before self excitation can occur. This implies

that the presence of a local absolute instability is not necessarily a sufficient condition for a

global mode (term given by Chomaz et al. (1988)) to become self excited. Indeed, Monkewitz

(1988) finds that the Reynolds number at which parts of the wake for a circular cylinder first

become absolutely unstable, is less than the Reynolds number at which Kármán vortex shedding
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is first observed. This result has a number of implications, as it suggests that while stability

analysis can give an indication of the shedding frequency for a given Reynolds number and

velocity profile, this indication must be viewed only as an estimate; as parts of the non-parallel

wake may already be absolutely unstable on a locally parallel basis, at Reynolds numbers well

below that at which Kármán vortex shedding is first observed.

The stability characteristics for the interaction of separated flow with a free surface at low

Froude number is considered by Triantafyllou & Dimas (1989). The Froude number (u/
√
gd,

where u is the velocity, g is the gravitational acceleration and d is the length scale of the

body) arises, as the gravitational acceleration term is required in the momentum (Navier-Stokes

equations) for problems involving free surfaces. In this investigation, the authors find that the

wake formed behind a floating cylinder (which is half submerged) is convectively unstable at all

locations behind the cylinder at low Froude numbers. This suggests that disturbances will tend

to be convected out of the recirculation bubble which makes up the wake. They note that two

unstable branches of the dispersion relation are found for low Froude numbers: The first one,

which they label branch I, occurs at low wavenumbers (large wavelengths) and is close to the

antisymmetric stream function mode in an infinite fluid, which according to Triantafyllou et al.

(1986) corresponds to a symmetric arrangement of vortices, as opposed to a vortex street. This

mode is found to be convectively unstable. The second branch, which they label as branch II,

is deemed a hybrid mode, and is in between the symmetric and antisymmetric stream function

modes in an unbounded fluid; however this hybrid mode is found to have very small growth

rates at low Froude numbers. As the Froude number is increased (beyond a value of 1.77 for a

Froude number based on the cylinder diameter), branch I weakens while branch II approaches

the sinuous mode (absolute instability), which produces a staggered array of vortices (a Kármán

vortex street).

Dimas & Triantafyllou (1994) then go on to investigate the non-linear interaction of inviscid shear

flow with a free surface. Their analysis is of most use if the wavelength of the perturbation is

much longer than the thickness of the shear, which is potentially the case in the current study.

They indicate that at low Froude numbers, the first branch of the dispersion relation (branch

I), develops strong oval shaped vortices immediately below the free surface. Furthermore, sharp

horizontal shear is noted near the free surface, and this is found to result in sharp small amplitude

surface waves. The second branch (branch II), results in weak vortices with dimensions much

smaller than their distance from the free surface at low Froude numbers, and they suggest that

the free-surface elevation takes the form of a propagating wave. At larger Froude numbers strong
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vortices form, that result in significant surface deformation and strong vertical shear near the

free surface. They indicate that branch I instability waves are similar to the ones which would

develop beneath a non-deformable free-slip wall, while branch II instability waves are more likely

to develop considerable vertical velocities near the free surface. Each branch is also observed

to result in a different mode of surface wave breaking, with branch I surface wave breaking

resulting from significant horizontal but small vertical velocities at the free surface. Branch II

surface wave breaking on the other hand, develops from small horizontal velocities but significant

vertical ones.

1.3 Wake Control

The behaviour of the wake of a cylinder has been a topic of keen interest to many researchers,

primarily for the reason of gaining a better understanding of vortex shedding, while also for

the purpose of controlling the forces acting upon the cylinder. To control the wake, various

techniques have been employed, such as perturbing the wake via in-line, cross-flow and rotational

oscillations, and via the addition of various obstacles or modifications to the ‘cylinder in a

continuous medium’ arrangement. Some of these features are described in differing forms by

Apelt & West (1975), Griffin & Ramberg (1974, 1976), Ongoren & Rockwell (1988a, 1988b),

Unal & Rockwell (1988b), Strykowski & Sreenivasan (1990), and Griffin & Hall (1991). This

section now details some of the key findings that are likely to be of relevance to flow past a

cylinder close to a free surface.

Apelt & West (1975) note that both the forces and the frequency of vortex shedding could be

altered in a dramatic way if a thin plate, referred to as a splitter plate, was attached to the rear

of a cylinder. Its presence was found to result in a significant drop in the drag even for short

splitter plates, with plates of significant length being sufficient to suppress the instabilities that

lead to the formation of the Kármán vortex street. Unal & Rockwell (1988b) also examine the

influence of a splitter plate on the wake of a cylinder, although they consider the placement

of the splitter plate at various distances behind the cylinder (such that there is a variable gap

between the plate and the cylinder). Under these circumstances, Unal & Rockwell (1988b)

note the length at which vortices form behind the cylinder (formation length) and find that

the gap ratio required to suppress vortex shedding varies significantly with Reynolds number.

They suggest that the strength of the instability may be a function of the Reynolds number,

with their observations at a Reynolds number of 142 being the least susceptible to disturbances
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produced by the presence of the splitter plate, with either coherent shedding being observed

or none at all. This is of relevance here as the presence of vorticity at distances downstream

appears to have less of an effect at the lower Reynolds numbers, with smaller gap ratios being

required to attenuate vortex shedding. Their results at larger Reynolds numbers indicate that

the unstable disturbance growth associated with the vortex shedding frequency is still noted in

the separating shear layer. From these results they conclude that the presence of the splitter

plate acts only to inhibit the formation of large scale vortices, as opposed to extinguishing the

initial instability immediately downstream of the cylinder.

Strykowski & Sreenivasan (1990) modify the wake behaviour via the placement of an additional

small circular cylinder at positions in the near wake of the larger cylinder. They find, that they

are able to suppress shedding altogether if the smaller cylinder is placed appropriately. While

this phenomenon is only observed within a range of low Reynolds numbers, its behaviour is

consistent with that predicted by Gerrard (1966) and Green & Gerrard (1993), who indicate

that if one can diffuse the shear layer vorticity or prevent the shear layers from interacting with

one another (within a critical formation length), then it should be possible to delay or inhibit

vortex shedding. Hence, for the low Reynolds number case being examined by Strykowski &

Sreenivasan (1990), it would be expected that the diffusion introduced into the shear layer by

the additional small cylinder would be sufficient to increase the diffusion length to a point at

which shedding ceases. The notion put forward by Gerrard (1966) and Green & Gerrard (1993)

is further supported by the fact that the shedding frequency was still reduced at larger Reynolds

numbers where shedding was not suppressed. This indicates that by weakening the shear layer,

it is possible to lengthen the period of time required for one shear layer to draw its opposite

across the wake. This finding is likely to be of particular relevance to flow past a cylinder close

to a free surface, as the free surface will tend to preferentially weaken the strength of one of the

shear layers.

Fornberg (1985) discusses two-dimensional steady flow past a cylinder (a half cylinder with

symmetry condition imposed). He details the growth of the recirculatory wake bubble up to

Reynolds numbers of 600. The wake bubble is found to grow linearly with Reynolds number,

with the width initially growing as Reynolds number to the power of 0.5, before growing linearly

at Reynolds numbers greater than 300. The bubbles formed, extend over significant distances,

and depending upon the Reynolds number may also span considerable widths. While at first this

may seem completely unrelated to the problem under consideration here, the symmetry condition

(which is essentially a free slip condition) is analogous to a non-deformable free-surface boundary
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condition, which is considered later in this chapter in the section dealing with free surfaces and

vorticity. Hence the possibility exists that large recirculation bubbles may form at small gap

ratios.

Sumner et al. (1999) consider the flow behaviour associated with side-by-side circular cylinders

in cross flow. This arrangement should share some similarity with the current problem, as

potential flow models for free slip boundaries involve considering cases in which the free slip

boundary is essentially a mirror plane. Sumner et al. (1999) indicate that there are three

differing wake states observed for flow past two cylinders in a side-by-side arrangement. When

the cylinders are in contact or are close to one another, single-body type vortex shedding is

observed; at intermediate gap (or pitch) ratios biased flow is observed, whereby the flow from

between the bodies tends to be drawn towards one of the cylinders. At larger gap ratios each

cylinder produces its own vortex street, although some phase locking of the vortex formation is

detected. The flow regime of greatest interest for the current problem is the one at intermediate

gap ratios where biased flow is observed, and the one at small gap ratios. Williamson (1985)

also considers this problem, noting that the bias of the flow from between the cylinders to one

side, resulted in harmonic modes of vortex shedding between the two cylinders, such that the

shedding frequency as measured on the outer side of one cylinder was a multiple of that on the

other cylinder. No reason is given as to why two cylinder system preferentially favours one side,

however, the notion that the flow remains attached to the cylinder as a result of the Coanda

effect (a phenomenon in which a jet of fluid clings to a curved surface), is ruled out as similar

behaviour was also found for flow between two flat plates. For the cylinders in this side-by-side

arrangement, Bearman & Wadcock (1973) indicate that there is a net repulsive force acting

between the two bodies.

1.4 Flow Past a Cylinder Close to a No-slip Wall

In this section flow past cylinders close to an adjacent no-slip wall will be discussed. It will be

shown later, in the chapter dealing with flow past a cylinder close to a free surface at low Froude

numbers, that these flows share many common features.

This flow was considered by Taneda (1965), who examined the problem at a Reynolds number

of 170 and at gap ratios of 0.60 and 0.10 (where the gap ratio is simply the ratio of the distance

between the edge of the cylinder and the wall, to the diameter of the cylinder). To eliminate

the influence of the wall boundary layer that develops when a similar problem is considered in a
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wind or water tunnel, a towing tank experimental rig was used. At a gap ratio of 0.60, he found

that regular vortex shedding was observed. However, at a gap ratio of 0.10, only a single layer

of vortices were seen to be shed from the cylinder. For the smaller gap ratio case the wavelength

of the vortices was found to increase with downstream distance, and after a few wavelengths

the wake became unstable and broke down. It is assumed that this breakdown refers to the

coalescence of the vortical structures within the wake.

The lift and drag forces on a cylinder located close to a plane boundary for gap ratios between

0.00 and 6.00 were investigated by Roshko et al. (1975). The boundary layer thickness in their

experimental investigation was half a cylinder diameter. They note that at larger gap ratios

(i.e. greater than 0.60) the drag had a propensity to increase as the cylinder was moved closer

to the wall. However, as the gap ratio was reduced further (i.e. the cylinder was moved closer),

a rapid decrease in the drag was observed, with the minimum occurring when the cylinder and

the wall were in contact. They attributed this effect partly to the movement of the cylinder into

a lower energy wall boundary layer flow. The lift on the other hand was found to increase as

the gap ratio was reduced, with its maximum value being observed when the cylinder was in

contact with the wall. Similar trends were also observed by Taniguchi & Miyakoshi (1990), who

investigated the variation of the forces with boundary layer thickness. For the most part the

trends are similar, although they note that the boundary layer can have a significant influence

on the forces, particularly at small gap ratios.

Bearman & Zdravkovich (1978) investigate the frequency response of flow past a circular cylinder

near a plane boundary. They compared, as an analogy, their results with those of two cylinders

in a side-by-side arrangement, which both authors had considered previously and which has

a potential flow solution. On the basis of this analogy, they were able to make a number of

predictions regarding the directions of the forces acting on the cylinder, as well as the nature

of the shedding that would likely be observed. They suggest that for gap ratios larger than

half a cylinder diameter, that the flow would continue to shed normally with a mean force

directed away from the plane boundary. At smaller gaps they indicate that the wall boundary

layer should separate at distances both upstream and downstream of the cylinder. They also

discuss the findings of Göktun (1975), whose results largely corroborate those of Roshko et al.

(1975). Göktun (1975) also noted that the minimum drag occurred when the cylinder was in

contact with the wall, while the maximum drag, (Cd between 1.4 and 1.5) occurred at a gap

ratio of 0.50. In addition, it is reported that Göktun (1975) also observed a slight shift in the

shedding frequency as the cylinder was moved closer to the wall, such that the Strouhal number
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reached a maximum at a gap ratio of 0.50. Bearman & Zdravkovich (1978) do not observe any

similar increase in the Strouhal number, although they do find that the Strouhal number drops

quite rapidly as the gap ratio is reduced, with the contraction from the gap ratio of 0.30 to

0.20 signifying the point of dramatic change. Bearman & Zdravkovich (1978) also indicate that

the separation points were observed to shift with changing gap ratio; however the shift of the

separation point closest to the wall in the downstream direction was generally matched by an

equal shift in the separation point on the other side of the cylinder in the upstream direction.

The influence of Reynolds number was investigated by Angrilli et al. (1982), who considered

Reynolds numbers between 2860 and 7640. They found that the shedding frequency increased

when the gap ratio was decreased, with the maximum discrepancy of approximately 10% oc-

curring at a gap ratio of 0.50, which was the smallest they examined. This result compares

favourably with that of Göktun (1975), who also observed a maxima in the Strouhal number

at this gap ratio. Such agreement is significant, as the Reynolds numbers differ by a factor

of approximately 40 (i.e. Göktun (1975) approximately 2 × 105, Angrilli et al. (1982) roughly

5000), with the formation length for a fully submerged cylinder varying by almost a cylinder

diameter over this range (Norberg (1998)). The results of Angrilli et al. (1982) differ somewhat

from those of Bearman & Zdravkovich (1978), who found negligible change in the shedding fre-

quency. Angrilli et al. (1982) suggest that the thickness of the boundary layer on the wall may

noticeably influence the results (with the smallest gap ratio being more than twice the boundary

layer thickness in their findings). Little description of the flow behaviour was offered, although

they do note that the presence of the wall, results in an asymmetric flow; with the mean velocity

profile indicating that the flow in the near wake is larger on the wall side, while the opposite is

true at distances greater than 2.5 diameters downstream.

The influence of boundary layer velocity gradients were investigated by Grass et al. (1984)

and Taniguchi & Miyakoshi (1990). In considering the flow arrangement for Reynolds numbers

between 2000 and 4000, Grass et al. (1984) found that for gap ratios between 2.00 and 0.75, that

shedding was very regular; with only a slight downstream shift in the separation point on the

side closest to the wall being observed. For gap ratios smaller than 0.50, it was observed that the

vortex shedding was more intermittent and less energetic. From the basis of their visualizations

they indicate that small detached separation regions form on the solid wall at positions both

upstream and downstream for small gap ratios. This was attributed to the presence of adverse

pressure gradients on the wall, that cause the wall boundary layer to separate. Grass et al.

(1984) also suggested that the downstream separation zone deflects the fluid passing beneath
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the cylinder away from the wall to form a free jet, and that it is this action that helps to inhibit

the roll-up of vortices on the wall side of the wake. They also observe that the Strouhal number

varies with gap ratio, with changes in the order of 25% observed (although it should be noted

that the Strouhal number used by Grass et al. (1984) was based on the approach velocity at

the cylinder center position, which is influenced by the boundary layer). The gap ratio at which

shedding ceases was also found to vary with boundary layer thickness, with weakened shedding

still observed at a gap ratio of 0.25 for the case in which the approach flow is uniform, but no

shedding noted at a gap ratio of 0.50 when a roughened wall boundary was used (i.e. thicker

boundary layer).

This problem was later investigated numerically by Lei et al. (1998), who considered the be-

haviour of a two dimensional cylinder close to a no-slip wall at a Reynolds number of 1000.

They found a considerable weakening in the shedding for gaps less than 0.30, and suggest that

the Strouhal number reaches a minimum, as opposed to a maximum or near maximum seen by

others, at a gap ratio of 0.50.

Lei et al. (1999) experimentally consider the effect of a plane boundary on the forces and the

vortex shedding of a circular cylinder for Reynolds number between 1.30× 104 and 1.45× 104.

They find that the manner in which the boundary layer is developed can have a substantial

impact on the subsequent lift forces acting upon the cylinder. With regard to the Strouhal

number, they measure some change with gap ratio, and note that the boundary layer plays an

important role in the observed changes. Contrary to Grass et al. (1984), they claim that the

critical gap ratio at which shedding is suppressed decreases as the thickness of the boundary

layer increases.

Price et al. (2000) have also considered the same problem but at a Reynolds number of 1200.

They find much larger changes in the Strouhal number (of order 40%), while also observing

the presence of additional signal frequencies in the wake velocity, especially at small gap ratios.

These additional frequencies are attributed to the motion of the boundary layer as it separates

from the wall downstream of the cylinder. Price et al. (2000) suggest that the suppression of the

Kármán vortex shedding is not likely to be due to the cross annihilation of the vorticity from

the wall and the cylinder, as their PIV results suggest that the oppositely signed vorticity does

not cancel out.
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1.5 Vorticity and the Free Surface

This section briefly touches on some of issues relating to vorticity and its interaction with a free

surface. It is intended that the material presented here be treated only as a commentary on

some of the basic principles and mechanisms associated with the production and evolution of

vorticity and its interaction with a free surface. The reader is recommended to consult Green

(1995), Truesdell (1953), Morton (1984) and Rood (1991, 1994a, 1994a, 1995) for a more detailed

discussion.

1.5.1 What is Vorticity?

The vorticity, ω, is a vector quantity which is simply defined as the curl of the velocity field (u),

ω = ∇× u. (1.1)

Equation (1.1) can then be written in Cartesian component form as follows:

ωx =
∂w

∂y
− ∂v

∂z
(1.2)

ωy =
∂u

∂z
− ∂w

∂x
(1.3)

ωz =
∂v

∂x
− ∂u

∂y
(1.4)

and provided that the velocity field has continuous second derivatives these can be combined to

yield the following

∇ · ω =
∂ωx
∂x

+
∂ωy
∂y

+
∂ωz
∂z

= 0. (1.5)

This implies that once two components of the vorticity are known, the third can then be calcu-

lated. For cases in which the flow field is assumed to be two dimensional (such that the flow is

restricted to, for example, the (x,y) plane), then equation (1.4) clearly illustrates that only the

z component of vorticity need be considered.

1.5.2 Why Discuss Phenomena in Terms of Vorticity?

One of the major attractions associated with the discussion of phenomena in terms of vorticity

is that it is a quantity that is Galilean invariant, which means that irrespective of the reference

frame of the observer, the vorticity field will always appear the same.

14



1.5.3 What is a Free Surface?

In nature, free surfaces represent interfaces between two fluids of differing physical properties,

with a common example being the interface between air and water (the word ‘free’ has been

used loosely here, with its more appropriate use clarified shortly). The boundary condition that

applies at the interface between the two fluids is that the stresses at the interface be in balance.

If one fluid is designated the subscript 1 and the other the subscript 2, then this stress condition

implies that

stress1 + stress2 + stresssurface = 0. (1.6)

The stress components ti on a surface element with unit normal vector n may be written as

ti = Tijnj , (1.7)

where Tij are the elements of a stress tensor. For an incompressible Newtonian fluid, Tij is

simply

Tij = −Pδij + µ

(
∂uj
∂xi

+
∂ui
∂xj

)
, (1.8)

where P is the pressure, δij is the Kronecker delta, µ is the fluid viscosity, uk is the kth component

of u and xk is the kth component of x (the position vector in Cartesian coordinates). Hence the

ith component of the stress is

stressi = −
3∑

j=1

Pδijnj +
3∑

j=1

µ

(
∂uj
∂xi

+
∂ui
∂xj

)
nj . (1.9)

For a surface normal vector oriented like the one in figure (1.2), the stress on the surface

stresssurface (which is produced by surface tension), has an ith component of

(stresssurface)i = σ

(
1
R1

+
1
R2

)
(−ni) + (∇σ)i , (1.10)

where σ is the surface tension and R1 and R2 are the radii of curvature of any two mutually

orthogonal lines drawn on the surface (Hughes & Brighton (1991)). As in Rood (1995), the

terms in stresssurface are defined such that the positive stresses in the interface are a surface

normal pressure towards the center of curvature and a surface parallel stress in the direction of

increasing surface tension.
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Figure 1.2: Schematic illustrating the interface between fluid1 and fluid2

The stress balance at the surface as given in equation (1.6) yields

−P1δij(−nj) +
3∑

j=1

µ1

(
∂uj
∂xi

+
∂ui
∂xj

)

1

(−nj)−

P2δij(nj) +
3∑

j=1

µ2

(
∂uj
∂xi

+
∂ui
∂xj

)

2

(nj) +

σ

(
1
R1

+
1
R2

)
(−ni) + (∇σ)i = 0, (1.11)

where the normal vector is oriented as in figure (1.2).

If it is now assumed that one of the fluids, for example fluid 2, exerts a constant stress normal to

the surface, and no stress parallel to the surface, then the surface is said to be ‘free’ (Sarpkaya

(1996)). This assumption implies that ρ1 is substantially greater than ρ2, and µ1 is also signif-

icantly larger than µ2, such that µ2 can be considered 0, and that pressure changes in the less

dense phase may be ignored (i.e. height changes in the less dense phase will not result in any

pressure change at the free surface, hence p2 = constant). The influence of surface tension is

ignored in many theoretical and numerical free surface problems, with this one being no excep-

tion. In experiments, surfactant concentrations are often unknown or unreported, and it is often

assumed that the free surface is uniformly and repeatedly dirty (Valluri (1996)). More details

on the influence of surfactants are discussed later in the section dealing with the interaction

of vorticity with a free surface. These assumptions lead to the following free surface boundary

conditions in Cartesian coordinates (as stated in Rood (1995))

(
−P + 2µ

∂unormal
∂xnornal

)

1
+ constant = 0 (1.12)

µ

(
∂utangential
∂xnornal

+
∂unormal
∂xtangential

)

1

= 0. (1.13)

In nature, a technical free surface is never observed, but the assumptions made are found to

give good approximations to the reported behaviour.
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Figure 1.3: Flow schematic for the modified Couette flow problem.

It should be noted at this point that the technical definition of a free surface is equivalent to a

zero shear stress boundary condition (free slip boundary) in the absence of surface deformation.

This is true for all values of the viscosity (and hence Reynolds number), and it is in no way related

to the often made assumption that the viscosity may be ignored at high Reynolds numbers.

Before proceeding to discuss the interaction of vorticity with a free surface, a few issues regarding

definitions and the conservation/non-conservation of vorticity will now be considered.

1.5.4 Conservation / Non-Conservation of Vorticity

While equation (1.1) indicates that the components of vorticity are related in the same fashion

as the velocity components are in an incompressible fluid, it does not imply that vorticity is

conserved. Indeed, it will now be shown that the conservation of vorticity (or lack of it) is

dependent upon the boundary conditions.

Morton (1984) discusses in some detail the lack of appropriate boundary conditions for vorticity,

however, one may readily show that vorticity is free to vanish from within a computational

domain if free slip (zero shear stress) boundary conditions are employed. To illustrate this,

consider two dimensional viscous flow between flat plates (in an arrangement similar to Couette

flow), but let the problem be modified such that the top boundary is free slip (which is analogous

to a non-deformable free surface). This insightful problem is considered by Rood (1994b), and

is reproduced here to highlight its message. The problem schematic is shown in figure 1.3, with

the assumption that the surfaces extend from −∞ to +∞ in the x direction.

The boundary conditions are u = u0 and v = 0 at y = 0 and ∂u
∂y = 0 at y = h. Due to the

periodic nature of the problem, it is clear that u will only be a function of y and t.
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Continuity (conservation of mass) dictates that

∂u

∂x
+
∂v

∂y
= 0, (1.14)

but since u = u(y, t), continuity tells us that ∂v
∂y = 0 and hence v =constant= 0 everywhere.

Thus, the momentum equation (in the absence of an applied pressure gradient) becomes

∂u

∂t
= ν

∂2u

∂y2
. (1.15)

This equation can then be solved analytically using the method of separation of variables, which

gives

u = u0 +
∞∑

k=0

Ake
−νt(π

h
2k−1

2
)2

sin
(

(
π

h

2k − 1
2

)y
)
. (1.16)

Evolution of the solution forward in time will yield the familiar Couette flow results for small

times, but the eventual solution as t → ∞ will be one in which the flow throughout the entire

domain has a velocity equal to that of the bottom driving wall (u0).

Hence the vorticity that was present initially will have simply passed out of the domain through

the top boundary. Morton (1984), prefers to envisage free slip boundaries as no-slip ones in

which there is zero viscosity or as ones in which the vorticity is contained within an infinitely

thin layer at the boundary. This assumption is often made for flows at very high Reynolds

numbers, and hence under these circumstances the vorticity is still present at the wall, but due

to the restriction on the viscosity (i.e. assumed to be zero) it is unable to diffuse away from it.

A non-deformable free surface on the other hand is essentially a free slip boundary without the

assumption that the Reynolds number is very high. Hence any vorticity that would be stored in

the boundary should be free to diffuse from it, as the free-slip assumption holds at any Reynolds

number. What happens to this vorticity is hence a point of contention, with some, such as

Lundgren & Koumoutsakos (1999) indicating that the lost vorticity is stored in the surface.

However such vorticity cannot be measured directly.

It is thus apparent that for any experimental or numerical measurements in which a technical

free surface or free-slip boundary is present, there is no formal requirement that the vorticity be

conserved. Rood (1995) discusses the erroneous but often ascribed notion that the vorticity is

conserved in much the same manner as the momentum is. He indicates that while the conserva-

tion law for momentum is a physical rule which is obtained by the application of Newton’s third
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law, for vorticity there is no ‘third law of motion’, and hence no requirement that it should be

conserved in the same fashion that momentum must be.

If vorticity is not conserved globally, then circulation (which is the integral of the vorticity over a

volume) will also not be conserved. To illustrate this, a relationship for the circulation is derived

which includes the contribution of the viscous term (it should be noted that this approach largely

follows that taken by Green (1995)).

First consider the momentum equation for a Newtonian fluid,

Du
Dt

=
−∇P
ρ

+∇φ+ ν∇2u, (1.17)

where u is the velocity vector, P is the pressure, ν is the kinematic viscosity and ∇φ is the body

force vector.

Now consider the time rate of change of the circulation about a material loop in the fluid. The

circulation is simply given by

Γ =
∮

c
u · dl, (1.18)

and its time rate of change is

DΓ
Dt

=
D

Dt

∮

c
u · dl =

∮

c

Du
Dt
· dl +

∮

c
u · D(dl)

Dt
. (1.19)

According to Green (1995), D(dl)
Dt = du.

Hence equation (1.19) then becomes

DΓ
Dt

=
∮

c

−∇P
ρ
· dl +

∮

c
∇φ · dl +

∮

c
ν∇2u · dl +

∮

c
u · du, (1.20)

and by using the identities ∇P · dl = dP , ∇φ · dl = dφ and u · du = 1
2d(u · u) equation (1.20)

becomes

DΓ
Dt

=
∮

c

−dP
ρ

+
∮

c
dφ+

∮

c
ν∇2u · dl +

1
2

∮

c
d(u · u). (1.21)

As dφ and d(u ·u) are scalars, the terms containing their integral around a closed loop are zero.

If one assumes P is a function of ρ only, then the term containing the pressure will also involve

the integration of a continuous scalar around the loop, which will yield zero (incompressible

fluids and gasses may be assumed to possess a polytropic equation of state which satisfies this

constraint). This finally results in the following relation

DΓ
Dt

=
∮
ν∇2u · dl. (1.22)
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For an infinite fluid, the loop can be chosen such that ∇2u ≈ 0 on the boundaries, and hence

DΓ
Dt

= 0, (1.23)

which is the standard circulation theorem. However, for cases in which one part of the loop

cannot be chosen arbitrarily (i.e. cases in which a surface provides a boundary to the fluid),

then the influence of the ∇2u term is of importance.

This is highlighted by considering the application of this circulation theorem to two simple cases

involving the modified Couette flow; with the first having a technical free surface and the second

consisting of two fluids of differing densities and viscosities.

Problem One

This simply involves the application of the circulation theorem to the modified Couette problem

which was reproduced from Rood (1994b). Without loss of generality, consider a rectangular

loop c which is of length L in the x direction. When the lower plate is first set into motion, the

circulation is simply uL, however as t→∞, it tends towards zero. Hence while the circulation

started at a finite value, it ended at zero value, thus implying that circulation is not conserved

when one has a technical free surface.

Problem Two

Now consider the same problem as the one above, but this time replace the free (slip) surface

with an interface between two immiscible fluids. The aim of this problem will be to show that

there is a circulation loss in lower fluid. In the limit as the top fluid approaches a vacuum (i.e.

the density and the viscosity of the top fluid approach zero), the result should approach that

obtained in problem one. When the lower plate is first started, the circulation in the lower

fluid is a maximum and is zero in the upper fluid. At some later time t, in which some of

the vorticity present at the lower wall has diffused upward toward the interface between the

fluids, it is expected that some or perhaps all of the vorticity will diffuse across the surface.

To measure what happens to the circulation, only the loop around which the circulation will

be calculated needs to be considered. From equation (1.22), it is clear that rate of circulation

change in fluid one will be balanced by the change in fluid two, if ν∇2u on one side of the

interface is equal to ν∇2u on the other side. For this simple problem this is obviously the case,

as the combination of the momentum equations which indicates that ∂u
∂t = ν ∂

2u
∂y2 throughout the

flow, and the boundary condition that the velocity be continuous at the interface for all times,

simplifying to ensure that equation (1.22) is satisfied.

20



R
r

θ

Fluid 2

Fluid 1

Figure 1.4: Schematic showing a curved surface.

This result implies that there is no requirement for the vorticity or circulation in one fluid

(e.g. denser one) to remain conserved. This highlights the difference between the conservation

properties of vorticity and momentum, which is emphasized by Rood (1994b). It is clearly

apparent in the problem considered above that as t→∞, the bulk of the momentum will reside

in the denser fluid while the bulk of the vorticity will reside in the lighter fluid (with the limiting

case of a technical free surface having all of the momentum in the denser fluid, and perhaps

all of the vorticity in the lighter fluid (vacuum) or maybe even stored at the interface). Hence

the presence of a technical free surface or a numerical free-slip boundary condition implies that

vorticity will not be conserved.

1.5.5 Free Surface Vorticity

This section describes the presence of vorticity at a free surface. Lugt (1987), and Rood (1995)

both discuss the presence of surface vorticity, which arises as a result of the free tangential

stress boundary condition. The derivation of the steady surface vorticity (as discussed by Lugt

(1987)) highlights the role that the free tangential stress boundary condition plays, and is briefly

discussed below.

Consider two-dimensional flow involving a free surface with a shape shown in figure (1.4).

The vorticity, ω, in cylindrical polar coordinates is given as:

ω =
∂uθ
∂r

+
uθ
r
− 1
r

∂ur
∂θ

, (1.24)

where uθ is the azimuthal velocity, and ur is the radial velocity. The boundary condition at the
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interface between the two fluids (fluid 1 and fluid 2) is that the stresses at the interface must be

in balance. This gives at r = R the following set of conditions (Lugt (1987)):

(ur)1 = (ur)2 = 0 (1.25)

(uθ)1 = (uθ)2 (1.26)

µ1(
∂uθ
∂r
− uθ

r
)1 = µ2(

∂uθ
∂r
− uθ

r
)2 (1.27)

(P − 2µ
∂ur
∂r

)1 = (P − 2µ
∂ur
∂r

)2 +
σ

r
, (1.28)

where the subscript denotes the fluid and σ is the coefficient of surface tension. A free surface

is defined as one in which stresses in one fluid are assumed zero (in this case it is assumed that

the stresses in fluid 2 are zero), thus giving at r = R:

(ur)1 = 0 (1.29)

µ1(
∂uθ
∂r
− uθ

r
)1 = 0 (1.30)

(P − 2µ
∂ur
∂r

)1 = P2 +
σ

r
. (1.31)

At the free surface r = R, equation (1.24) becomes

ω =
∂uθ
∂r

+
uθ
r
, (1.32)

and when combined with equation (1.30) yields

ω =
2
R
uθ = 2κuθ, (1.33)

where κ = 1
R is the curvature. This is the well known expression for the vorticity at a steady

curved surface.

For a surface whose position changes with time, Rood (1994a) gives the rate of change of vorticity

at the free surface as

ν

∫

fs
n · ∇ωds = ν

∫

fs
∇ω · nds+

∫

fs
n×

(
∂u
∂t

+ u · ∇u +
∇P
ρ
− g

)
ds, (1.34)
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where
∫
fs ds represents integration along the free surface, n is the unit normal to the free surface

and the other quantities are as previously specified. Equation (1.34) relates the flux of vorticity

through the free surface to the tangential component of the acceleration of the free surface fluid.

Hence it is clearly apparent that the flux of vorticity through the free surface will vary with time

for unsteady flows.

Before continuing, it is perhaps best to restate the key points noted by Rood (1994b) with regard

to the physics associated with free-surface vorticity.

1. Vorticity appears spontaneously on free-surface boundaries. The appearance is related to

surface parallel velocity of the free-surface fluid and surface curvature.

2. The flux of vorticity through a free surface depends on the viscous acceleration of the

free-surface fluid in the direction tangential to the free surface.

3. The vorticity flux can be equated to the sum of the inertial, pressure, and gravitational

accelerations, tangential to the free surface.

4. Vorticity is not conserved. Hence it is acceptable for vorticity to vanish entirely from the

flow.

5. In the presence of a free surface, initially irrotational flow can become rotational and

rotational flow can become irrotational without external stress on the fluid.

6. Vortex lines initially connected in the flow interior, can break at the free surface.

7. Vortex interactions with a deformable free surface are not generally represented by image

vortex interactions.

1.5.6 Interaction of Vorticity with a Free Surface

Now that some of the issues relating separately to free surfaces and vorticity have been discussed,

previous studies involving the interaction of vorticity with a free surface may be considered. It

should be noted at this point that some of the following investigations have assumed that the

flow could be treated as being inviscid. Such an assumption will have a significant influence

near the free surface, with no secondary vorticity being produced as a result of the induced

curvature. This will tend to limit their usefulness to situations in which the surface curvature

is neither sharp nor substantial. In the following discussion all investigations are assumed to

include viscosity unless stated otherwise.
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Tryggvason (1988) numerically examines shear flow beneath a free surface. He assumes that the

flow is two dimensional and inviscid, and suggest that depending upon the depth and strength

of the vortex sheet, that varying levels of surface deformation can be observed. For some cases,

wave breaking is noted and the shape of the surface profile for others suggests that some form of

entrainment is likely to occur. Yu & Tryggvason (1990) also investigate the free surface signature

of unsteady two-dimensional vortex flows using a numerical approach. Their examination is

based on the assumption that the fluid may be treated as inviscid and that for most cases

surface tension may be ignored. However, they do consider the effect of surface tension in two

cases, and conclude that its main effect is that it reduces the surface deformation in regions

of high surface curvature. Their major finding is that the dominant parameter governing the

surface deformation is the Froude number, and they claim that the surface/vortex interaction

can be classified as either high or low Froude number motion. At small Froude numbers the

vortices interact with the free surface as if it were a rigid wall, with minimal surface deformation

being detected. At larger Froude numbers however, the vortices have sufficient strength to cause

marked surface deformation. Yu & Tryggvason (1990) also note that the time scale over which

a vortex develops has an influence on the resultant surface deformation.

These observations are largely corroborated by the findings of Ohring & Lugt (1991), and Lugt &

Ohring (1992), who also numerically investigate the interaction of a two-dimensional vortex pair

with a free surface, however, their investigation includes both viscous effects and the influence

of surface tension. For intermediate Froude numbers and low Reynolds numbers, the authors

indicate that the vortices were observed to rebound away from the free surface, with the degree

of rebounding diminishing with increasing Reynolds number. The inclusion of viscosity gives

a much clearer picture of what is happening near the free surface, with significant levels of

surface vorticity being generated in the regions of high curvature. The presence of this secondary

vorticity is found to have a pronounced effect on the subsequent evolution of the primary vortex,

such that the shedding of vorticity from the region of significant surface curvature results in a

considerable weakening of the primary vortex after the two interact.

The influence of surface tension is further investigated numerically by Tryggvason et al. (1991),

who considers spatial variations in the surface tension. In these instances, the subsequent

behaviour of the colliding vortices changes considerably, with the non-uniform surface tension

altering the vorticity generated at the free surface.

Sarpkaya (1996) reports on the finding of Wang & Leighton (1991), who indicate that the

presence of surfactants can alter the surface boundary condition, so that it lies somewhere
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between no slip and free slip. Furthermore, Tryggvason et al. (1991) notes that the surface

motion is often sufficient to produce an uneven contaminant distribution, which in turn gives

rise to surface shear. Such gradients in the surface tension are often sufficient to alter the

evolutionary behaviour of the vorticity as it interacts with a free surface. This is described to

some extent by Anthony et al. (1991).

1.6 Flow Past a Body Close to a Free Surface

This section will now discuss some of the previous work pertaining to flow past a cylinder close

to a free surface. While Lamb (1924) gives a potential flow solution for this problem, the absence

of viscosity is likely to alter the behaviour in a significant manner. The results of Ohring & Lugt

(1991) and Lugt & Ohring (1992) illustrate the impact that surface generated vorticity has on

evolutionary characteristics of the vorticity field. Hence the absence of a wake in the potential

solution, which otherwise indicates that a train of waves of wavelength 2πU2

g form downstream

of the cylinder (here U is the free stream velocity and g is the gravitational acceleration), is

unlikely to give a true indication of the actual behaviour.

It is perhaps best to begin the discussion that details the findings of previous investigations,

by considering the work of Valluri (1996) who examined flow past a flat circular disk (placed

normal to the flow) close to a free surface. While this geometry is obviously three-dimensional,

it is expected that it may share some common features with flow past a cylinder. Valluri (1996)

notes that the wake can exhibit two basic modes with differing stabilities, with some degree of

hysteresis also observed. The first mode involves the attachment of the fluid passing over the

disk to the free surface, while the second involves this fluid separating from the free surface (with

the flow associated with the second mode being strongly recirculatory). Valluri (1996) claims

that the first mode (mode 1) displays some time-dependent behaviour, while the second mode

(mode 2) is largely steady. He also finds that the transitions between the two states are found

to be hysteretic, such that the depth at which the flow changes from mode-1 to mode-2 as the

disk is raised towards the free surface, is different to the depth at which the flow changes back

from mode-2 to mode-1 as it is moved away from the surface.

Valluri’s (1996) measurements indicate that the drag initially increases as the disk is moved

toward the surface, before reaching a maximum and then decreasing again, in much the same

manner that the drag on the cylinder close to a no-slip wall varied in the experiments of Roshko

et al. (1975). Valluri’s (1996) comparison of the drag results for the disk placed adjacent to
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both a plane no-slip wall and a free surface, indicate that similar trends are observed. However,

the drag on the disk near a free surface is considerably larger over most of the range in which

deviations away from the fully submerged case are noted. Indeed, Valluri (1996) claims that

the magnitude of the drag increase experienced near a no-slip surface is about 25% of that

experienced near the free surface. The depth at which the peak in the drag is noted also appears

to have shifted slightly, with the peak for the free-surface case occurring at smaller submergence

depths (gap ratios).

With regard to the surface profiles and the general behaviour of the wake, Valluri (1996) indicates

that once the fluid from above the disk separates from the free surface, further alteration of the

depth was found to change the angle that the separated fluid makes with the free surface.

Flow past a circular cylinder beneath a free surface is investigated by Miyata et al. (1990) with

their experimental and numerical examination conducted at a Reynolds number of 4.96×104 and

at a Froude number (based on cylinder diameter) of approximately 0.24. They note a number of

step changes in the flow behaviour as the submergence depth (gap ratio) of the cylinder is reduced

from a value of 0.35. In particular, a sharp reduction in drag and sharp increase in the Strouhal

number was observed. The large jump in the Strouhal number occurs in conjunction with a

notable weakening in the intensity of the lift spectra (spectra of the lift forces), along with the

occurrence of a broader range of frequencies, and they suggest that the shedding at the smaller

gap ratio is less remarkable (which is assumed to mean weaker). While their visualization at this

gap ratio suggests that the flow changes with time, there is no explicit evidence that shedding

was observed. With regard to the forces acting upon the cylinder, Miyata et al. (1990) found

an increase in the lift with decreasing submergence depth. They suggest however, that the drag

is predominantly bimodal, in that it attains an almost steady value at larger gap ratios and

another value at smaller gap ratios. The variation of the lift has much in common with the

observations of Roshko et al. (1975), with the same trend noted. The trend for the drag on

the other hand differs somewhat, with Roshko et al. (1975) observing a continuous reduction in

drag with decreasing gap ratio, while Miyata et al. (1990) note a step-like reduction in the drag

as the gap ratio is reduced below 0.35.

The flow behaviour of a cylinder close to a free surface at a Froude number of 0.60 and a

gap ratio of 0.45 was considered by Sheridan et al. (1995), who indicate that at a this fixed

point in parameter space, two admissible wake states were observed. Each state was found

to possess limited stability such that transformations from one state to the other occurred in

a time-dependent manner (with this behaviour labelled as being metastable). The two states
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bear considerable resemblance to those observed by Valluri (1996), with the fluid passing over

the cylinder remaining attached to the free surface in one state and separating from it in the

other. No clear periodicity in the switching between states was measured, with Sheridan et al.

(1995) indicating that transformations between the two states occur spontaneously at a non-

dimensionalized frequency of the order of 10−3. Hysteretic behaviour was also observed by

Sheridan et al. (1995), with the artificial piercing of the free surface being sufficient to induce a

state change. The deflection of the fluid from above the cylinder, which in the forgoing will often

be referred to as a ‘jet’, appears to share common flow features with those observed by both

Valluri (1996) and Grass et al. (1984). In each investigation a jet-like structure was observed at

small gap ratios. Such observations tend to invalidate the idea of a resonance condition for wave

generation which is mentioned in Sheridan et al. (1995). The observation of a free-jet by Grass

et al. (1984) suggests that the reported behaviour is more likely due to geometrical constraints,

as opposed to being purely a function of the free surface.

A broader spectrum of the parameter space (i.e. gap ratio and Froude number) is mapped out

by Sheridan et al. (1997), with a wide variety of wake behaviour noted. The fluid from above

the cylinder (i.e., the ‘free jet’) was observed to exhibit a number of states which range from:

attachment to the free surface, separation from the free surface such that the ‘jet’ occupies a

region in between the free surface and the cylinder, and attachment to the rear of the cylinder.

The metastable characteristics observed by Sheridan et al. (1995) are also observed at a number

of other gap ratios and Froude numbers.

Both Sheridan et al. (1995) and Sheridan et al. (1997) primarily focus upon mapping out the the

wake states, and as a consequence they provide only limited details with regard to the shedding

frequency and no details with respect to the forces acting on the cylinder. As a result comparison

is limited to being almost purely pictorial (i.e. based on flow visualization).

This problem is also investigated by Warburton & Karniadakis (1997) at a Reynolds number

of 100 using a two-dimensional numerical model. They suggest from the basis of their findings

that the flow features observed by Sheridan et al. (1997) are largely two dimensional, while also

giving some detail with regard to the time dependent forces acting upon the cylinder.

Hoyt & Sellin (2000) confirm some of the findings of Sheridan et al. (1997), and provide a few

limiting details about the flows time dependence. Their major finding is that the Kármán vortex

shedding is observed at some gap ratios, and that the flow field thus varies in a time-dependent

manner.

27



1.7 Scope of the Present Investigation

As the prior discussion indicates, flow past a cylinder close to a free surface is likely to involve

the amalgamation of a considerable number of complex physical phenomena. It is hoped that

the behaviour observed by others can be elucidated by the findings presented here.

The major aims of the current investigation are as follows:

1. To confirm that the wake behaviour observed by Miyata et al. (1990), Sheridan et al.

(1995), Sheridan et al. (1997) and Hoyt & Sellin (2000) is largely two dimensional as

suggested by Sheridan et al. (1997).

2. To map out a larger region of parameter space and to examine the forces and shedding

frequencies associated with flow past a cylinder close to a free surface, which to the author’s

knowledge is largely uncharted.

3. To provide a mechanism that describes the observed transformations in the wake, such

that it may be eventually possible to predict, and hence modify, the wake behaviour. It is

hoped that the identification of this mechanism may also shed some light on the problem

of flow past a cylinder close to an adjacent no-slip boundary.

4. And finally, to infer some details with regard to the nature of the instability associated

with the wake over a range in parameter space.

It is anticipated that this problem will be governed by two primary mechanisms: with the first

being the supply of fluid into the near wake and the second involving the degree by which the

wake is skewed from being parallel.

This thesis is organized as follows: Chapter 2 details the numerical method and its validation

while also providing some discussion on the post processing of data, Chapters 3, 4 and 5 then

consider the flow at low, intermediate and large Froude numbers respectively, with chapter 6

containing some concluding remarks and suggestions for future work.
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Chapter 2

Numerical Method, Validation,

Problem Setup and Post Processing

2.1 Foreword

Initially I had hoped to investigate the problem of flow past a cylinder close to a free surface

with a numerical technique called Smooth Particle Hydrodynamics (SPH). This technique, which

has its origins in astrophysics, is Lagrangian and as a consequence no grid is required. In the

past it has been used to study the collapse of gas clouds and a review of SPH can be found

Monaghan (1992). It has only relatively recently been applied to engineering type flows (i.e.

not astrophysical) with Monaghan (1994), Takeda et al. (1994), Thompson et al. (1994), Reichl

et al. (1997a), Reichl et al. (1997b), Reichl et al. (1998a) and Reichl et al. (1998b) all considering

near incompressible flows with SPH. After spending approximately 18 to 24 months writing and

developing an SPH code, it became apparent that this was not an appropriate technique for

the flow problem being considered here. One of its major drawbacks was the difficulty in using

variable resolution in the near incompressible limit, which meant that in order to resolve the

boundary layer, one had to use fine resolution throughout the entire domain. Another drawback

was that the SPH formulation used for free surfaces (see Monaghan (1992) for a discussion of

the different formulations) had difficulty handling high shear, with the particles making up the

fluid tending to move away from one another in these regions.

It was at this point that an alternative method, the Volume Of Fluid (VOF) method (as con-

tained within the commercial computational fluid dynamics software Fluent 5) was employed.

29



2.2 Free-Surface Flows

Free surface flows occur in a wide variety of situations in both industry and the environment.

However, due to the difficulties associated with the implementation of boundary conditions on a

surface whose position is constantly changing, such flows often require special techniques to be

modelled numerically. Tsai & Yue (1996), and Yeung (1982) consider some of many techniques

which have been employed to model free surface behaviour. This chapter is split into three

parts, the first part deals with the numerical method, the second part with its validation, and

the third part with the problem setup and the post processing of data.

2.3 Numerical Method

To the author’s knowledge, little research has been undertaken with regard to flow past a cylinder

close to a free surface and the work that has been done has been predominantly experimental.

It is thus of great importance that any numerical investigation must show that it can adequately

model similar problems, and in particular problems containing the same underlying physics and

requiring similar resolution. The Reynolds number for the majority of the cases considered

within this study is 180 (unless otherwise stated), and the flow field is assumed to be two

dimensional. These assumptions are are entirely consistent for a fully submerged cylinder, as

the flow field is two dimensional for Reynolds numbers below approximately 180.

The numerical experiments in the current investigation were performed using the commercial

computational fluid dynamics software Fluent 5, which utilizes a finite-volume approach to

numerically solve the Navier-Stokes equations. This software has a wide range of models available

to simulate various physical phenomena, such as combustion, solidification of materials, porous

flows and free surface flows. As a consequence of this versatility it is not optimized for any

particular flow and tended to require considerable amounts of CPU time to yield solutions.

A brief commentary on the solution approach will now presented along with discretization and

accuracy tests. The specifics regarding the Volume Of Fluid (VOF) scheme and the interface

tracking will then be discussed. The details of the technique used here are briefly described

below, but the reader is recommended to consider Versteeg & Malalasekera (1995) for a excellent

discussion on the finite-volume method.

The fluid studied in this investigation is assumed to be incompressible and Newtonian (i.e. it

cannot be compressed, and the viscous stresses are assumed to be proportional to the rate of
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deformation), and as such the governing equations are:

ρ
∂u
∂t

+ ρ(u · ∇)u = −∇P + µ∇2u + ρg, (2.1)

subject to the constraint,

∇ · u = 0. (2.2)

Where ρ is the fluid density, u is the velocity vector, P is the pressure, µ is the dynamic viscosity,

and g is the body force (or gravity) vector.

Equation (2.1) is simply the Navier-Stokes equation (momentum equation for a Newtonian fluid),

and equation (2.2) is simply the continuity equation (i.e. the mass conservation equation for an

incompressible fluid).

The governing equations (equations (2.1)) and (2.2) have two outstanding features which make

them non-trivial to solve, the first is their non-linearity, while the second is the lack of an equa-

tion for pressure. This problem is overcome in Fluent by the use of an iterative solution strategy

which is similar to the SIMPLE (Semi-Implicit Method for Pressure-Linked Equations) algo-

rithm of Pantankar & Spalding (1972). The SIMPLE algorithm is basically a guess and correct

procedure in which the pressure is calculated and the velocities updated in an iterative fashion

until continuity is satisfied. In the current investigation a variant of the SIMPLE algorithm is

used. The actual method adopted is the PISO (Pressure Implicit with Splitting of Operators)

algorithm of Issa (1986), which is similar to SIMPLE, although it uses an additional correction

step which tends to speed up convergence.

The finite-volume technique used essentially involves converting the governing equations into

algebraic expressions which can then be solved numerically. This conversion is achieved by

integrating the governing equations over each control volume (cell), with this integration then

yielding the discretized equations which conserve each quantity on a control volume basis. As

Versteeg & Malalasekera (1995) show, the general transport equations for any quantity φ (where

φ can be u, v, or any other scalar quantity such as the volume fraction) is:

∂(ρφ)
∂t

+∇ · (ρφu) = ∇ · (Γd∇φ) + Sφ, (2.3)

where Γd is the diffusion coefficient (which is simply µ for the momentum equations), and Sφ

is the source term (which for the momentum equations are the terms containing the pressure

gradients and the body forces).
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The general transport equation (2.3) can the be integrated over each control volume to yield the

following:

∫

CV

∂(ρφ)
∂t

dV +
∫

CV
∇(ρφu)dV =

∫

CV
∇(Γd∇φ)dV +

∫

CV
SφdV, (2.4)

where
∫
CV dV signifies integration over a control volume.

Gauss’ divergence theorem can then be applied to convert to convert the second and third terms

into integrals over the surface of the volume, with the result being

∂

∂t

∫

CV
(ρφ)dV +

∫

A
n · (ρφu)dA =

∫

A
n · (Γd∇φ)dA+

∫

CV
SφdV, (2.5)

where
∫
A signifies integration over the surface of the control volume, and it should be noted that

the order of the differentiation and integration has been swapped in the first term. Equation (2.5)

then states that: the rate of increase in φ + the net rate of decrease in φ due to convection

across the boundaries = the rate of increase in φ due to diffusion across the boundaries + the

net rate of creation of φ (Versteeg & Malalasekera (1995)).

Hence for a two-dimensional control volume with center (x,y) (as shown in figure (2.1)), the rate

of increase in φ will depend upon the source, as well as the convective and diffusive fluxes across

the north, south, east and west boundaries. This balance then yields an algebraic expression for

EastWest

North

South

(x,y)

Figure 2.1: Schematic showing a two dimensional control volume.

the changes in the quantity φ, with the form of the algebraic expression then determined by the

discretization scheme adopted.

In Fluent all quantities are stored at the cell centers, however as the finite-volume scheme

requires values on cell faces, interpolation must be used.
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The current investigation uses a segregated or segmented solver. In this approach the governing

momentum equations are solved sequentially (i.e. uncoupled from one another). However, as

the governing equations are non-linear and interdependent, several sweeps or iterations through

the solution procedure need to be undertaken for a converged solution to be obtained. The

solution procedure can be described in the form of an algorithm, which is basically as follows:

1. Update fluid properties based on the current solution.

2. Solve the momentum equations for u and then v using the current values for the pressure

and face-mass flux, to get an estimate of the velocity field.

3. As the velocity estimates from the previous step will not generally satisfy continuity locally,

a ‘Poisson-type’ equation is then constructed for the pressure correction from both the

continuity equation and the linearized momentum equations. This pressure correction

equation is then iteratively solved, and the pressure and velocity is updated.

4. Update flow scalars (which for the current case includes the volume fraction).

5. Check for convergence.

These 5 steps are then repeated until a predefined convergence criteria is satisfied.

As the numerical technique just described iteratively solves for the flow variables, one must assign

a criteria, which is commonly referred to as a convergence criteria, at which point the iterative

process stops. Such a criteria effectively determines how close the numerical solution approaches

the imposed analytic constraint (i.e. the true solution of the discretized conservation equations).

At each point, the difference between the numerical solution and the solution of the discretized

equations, is referred to as a residual. The sum of these residuals over all the cells in the entire

domain is defined here to be the global residual, and its value was used to determine when to

cease iterating. The actual values used for the residuals are discussed shortly in section (2.4.6)

2.3.1 Spatial Discretization

The terms in the momentum equations which contain spatial gradients were discretized using

the Quadratic Upstream Interpolation for Convective Kinetics (QUICK) scheme of Leonard

(1979). The QUICK scheme which is discussed by Versteeg & Malalasekera (1995), and by

Fletcher (1991), is a weighted combination of both the standard second-order upwind scheme
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and the central-difference scheme (both of which are second order accurate and are described

in Fletcher (1991)). This approach which is 1
8 central-difference and 7

8 second-order upwind,

generally produces results which are more accurate than either the standard central-difference

or second-order upwind schemes, as the weighted combination minimizes the truncation error.

For non uniform meshes, QUICK will generally yield results which are some where in between

second and third order accurate.

2.3.2 Temporal Discretization

Temporal discretization is achieved by the use of the standard implicit backward difference (or

backward Euler) scheme as discussed in Smith (1985), and Chapra & Canale (1991), which

is unconditionally stable in the Lax-Richtmyer sense. It produces results which are first-order

accurate in time (it should be noted that this was the only time stepping scheme available within

Fluent for modelling free surface flows when using VOF).

2.3.3 Spatial and Temporal Accuracy Tests

The spatial accuracy was tested by considering Poiseuille flow (i.e. flow between two flat plates),

which has an analytic solution. The steady-state velocity profile obtained for a series of grids

of differing resolution was then compared with the analytical result. Figure (2.2) shows a

comparison, while figure (2.3) shows the variation of the logarithm of the L2 norm (i.e. the

square root of the average of the square of the differences) with the logarithm of ∆y. The

gradient of the line in figure (2.3) indicates that the spatial discretization has an accuracy of

order 2.55.

To test the temporal accuracy, Couette Flow (i.e. flow between two flat plates in which the

bottom plate is impulsively started) was examined with the analytical and numerical velocity

profiles compared at the time t = 1.00. Figure (2.4) shows a comparison, while figure (2.5) shows

the variation of the logarithm of the L2 norm with the logarithm of the time-step. It should be

noted that the result for the L2 norm at a time step of dt = 0.001 was then subtracted from

the other results, so as to remove the error associated with the spatial discretization. Figure 2.5

indicates that the scheme has an accuracy of order 1.025 in time.
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Figure 2.2: Plot showing the comparison between the analytical and numerical results for Poiseuille

flow, for a grid with ∆y = 0.02.

-10

-9.5

-9

-8.5

-8

-7.5

-7

-6.5

-6

-5.5

-4 -3.8 -3.6 -3.4 -3.2 -3 -2.8 -2.6 -2.4 -2.2

Log L2 norm

Log delta y

Figure 2.3: Plot showing the variation of the logarithm of the L2 norm with the logarithm of ∆y for

Poiseuille flow.

2.3.4 Modelling the Free Surface

The free surface, or more appropriately the fluid-fluid interface, was modelled using the volume-

of-fluid method as incorporated within Fluent. The variant of the volume-of-fluid method used
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Figure 2.4: Plot showing the comparison between the analytical and numerical results for Couette

flow, for a time step of 0.01.
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Figure 2.5: Plot showing the variation of the logarithm of the L2 norm with the logarithm of ∆t for

Couette flow.

by Fluent is similar that discussed by Hirt & Nichols (1981), and the reader is referred to their

paper for a more detailed description. However, because of its importance to the simulations,

some of the details concerning this model will be presented here. The volume-of-fluid, or VOF
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method as it will now be referred to, relies on the fact the two fluids (for example air and

water) do not interpenetrate (i.e. the two fluids are immiscible). While this is not always the

case, to the degree of accuracy required for the simulations considered here, this assumption is

acceptable. The validity of this assumption is to some extend borne out in the test problem

which is considered in section (2.4.1), in which a container of fluid is spun and the free-surface

profile measured. The VOF method essentially operates by assigning physical properties to a

cell based upon the volume fraction of each fluid (or phase) within that cell. The tracking of the

interface is then accomplished by solving the volume fraction equation, which seeks to ensure

that the amount of each fluid is conserved. The equation solved, is the transport equation for

the volume fraction, which is as follows:

∂α1

∂t
+ u∇α1 = 0, (2.6)

where α1 is the volume fraction of phase (fluid) 1. Clearly by definition, it follows that,

α1 + α2 = 1. (2.7)

The physical properties (i.e. density and viscosity) for each cell are then calculated by

φ = (1− α2)φ1 + α2φ2, (2.8)

where φ in this case can represent either the density ρ or the viscosity µ. A single momentum

equation is solved throughout the entire domain, resulting in a shared velocity field amongst the

phases. The major drawback associated with this shared fields approach is that if large velocity

differences exist between the two fluids, the velocities calculated near the fluid-fluid interface

become less certain, although this can be overcome by increasing the resolution in these areas.

2.3.5 Interpolation Near the Interface

The finite-volume approach employed by Fluent, requires that convective and diffusive fluxes

into a cell be balanced. For cases in which the cell is occupied partly by one fluid and partly by

another, it is necessary to apply interpolation to ensure that this balance is maintained. In the

current study the Geometric Reconstruction Scheme is used. It represents the interface using a

piecewise linear approach. This process begins by firstly calculating the position of the interface

relative to the center of each partially filled cell based on local volume fraction information. It

then calculates the amount of fluid convected through each cell face using the above interface
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positions and cell velocity field. Finally it then computes the volume fraction in each cell using

the face fluxes from the previous step.

2.4 Validation

To test the ability of this technique to model free-surface flows, two simple test problems are

considered: that of a breaking dam, and a spinning (or rotating) bowl. For the breaking dam

problem the numerical results for the height of the fluid and surge-front locations at various

times, are analyzed and compared with the experimental results of Martin & Moyce (1952). It

is hoped that this comparison will give some estimate of the capabilities and accuracy of the

numerical method employed. For the spinning bowl problem, the calculated surface position is

compared with the steady-state analytical result. To test the ability of Fluent to model relevant

viscous flows, flow past a fully submerged cylinder was also examined, as this is directly related

to the problem under consideration here, and also because it has been extensively reported on

in the literature, with Williamson (1991), Williamson (1996), Barkley & Henderson (1996) and

Thompson et al. (1996) being just a few examples.

2.4.1 Spinning Bowl

The problem of a spinning bowl has been used by others such as Hirt & Nichols (1981) as a

validation problem, and has the additional advantage in that an analytic solution also exists.

It should be noted that the analytic solution only exists if one assumes that the acceleration

is constant (constant with time) such that each fluid particle has no motion relative to its

immediate neighbor. When this is the case, one may assume that only pressure differences are

responsible for balancing the centripetal acceleration experienced by the fluid. The analytic

solution to this problem is given by Hughes & Brighton (1991), and it indicates that the free

surface position is described by a paraboloid of revolution, which has the following form:

z = z0 + ω2 r
2

2g
. (2.9)

This problem was setup by considering an axisymmetric container which initially contained two

fluids at rest. The top boundary condition was one in which the pressure was prescribed and

it allowed the lighter of the two fluids to either enter or leave the domain. The side walls were

given a prescribed velocity which, through the action of viscous shear, resulted in the gradual
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acceleration of the interior fluid. This was evolved forward in time until a steady-state solution

was obtained. The grid used for this test problem was relatively crude, in that it contained only

20 cells across the radius, and 100 over the height of the tank. The heavier fluid was initially

set to a height of 2.25 radii, and the entire tank height was 5 radii.

A number of tests were performed with this problem to establish the effect of changing the rela-

tive densities and viscosities of the two phases (fluids). The comparison between the theoretical

predictions and the numerical results for a range of different density and viscosity ratios is shown

in table (2.1). The accuracy was estimated by calculating the L2 norm. This simply involves

calculating the sum of the square of the differences between the numerical and the analytical

results, and then averaging this result before finally taking the square root. It should be noted

that no scaling was employed.

For the cases in which the density ratio was largest, the results were obtained using the ρ1

ρ2
= 100

and µ1

µ2
= 100 case (which was run from the zero velocity initial condition) as the starting

conditions. It should be noted that as the density ratio between the two fluids was increased, the

level of computation also increased markedly, and some difficulty was experienced in obtaining

converged solutions at very large ratios.

ρ1

ρ2

µ1

µ2

ν1
ν2

l2norm

10 100 10.00 2.745914986093020E-003

100 100 1.000 4.334047508819092E-004

100 60 0.600 4.157280855137843E-004

811 60 0.074 3.851848721180833E-004

811 500 0.617 3.910692863397731E-004

Table 2.1: Variation of the L2norm (comparing analytic and numeric results) with differing density

and viscosity ratios.

These results indicate that a good level of agreement is observed between the numerical and

analytical results throughout the domain for a density ratio of both 811 and 100 (with the result

for a density ratio of 100 and a viscosity ratio of 100 shown in figure (2.6)). For a density ratio

of 10 however the agreement is poorer, with notable regions of both under and over prediction

for the surface location (see figure (2.7)). This behaviour is not surprising as the analytic result

assumes that the lighter fluid is a vacuum, and hence provides no resistance to the movement

of the denser fluid.
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Figure 2.6: Plot showing the comparison between the analytical and numerical results for a spinning
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Figure 2.7: Plot showing the comparison between the analytical and numerical results for a spinning

bowl, ρ1

ρ2
= 10, µ1
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= 100.

For density ratios of both 811 and 100, it should be noted the the level of agreement tended

to diminish somewhat toward the outer edge of the bowl, as shown in figure (2.6). This is
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expected as the codes ability to interpolate for the surface position within the cell, will fall away

as the level of fluid within each cell and in the neighbouring cells lessens. Changing the viscosity

ratio appears to have little impact on the solution, as table (2.1) indicates. The density and

viscosity ratios for air and water are 811 and 60 respectively, and the kinematic viscosity ratio

is approximately 0.076. Since the behaviour of the lighter phase (air) is not of concern in the

present study, it is reasonable to suggest that provided the densities are sufficiently different

(i.e., 100 or greater), that the impact of the lighter phase is almost negligible. In the current

investigation for flow past a cylinder close to a free surface, the density and viscosity ratios used

were 100 and 100 respectively. The viscosity ratio of 100 was chosen so that the model would

approach a technical free surface (i.e. the viscosity of the lighter phase would approach 0).

2.4.2 Breaking Dam

For the breaking dam problem, both the surface height and the surge-front location are measured

as a function of time and are compared with the experimental results of Martin & Moyce (1952).

The basic setup for this problem is illustrated in figure (2.8). While figure (2.9) shows that fluids

location as a function of time. For this experiment the density and viscosity ratios were both 100.

It should be noted that these early experimental results have a fairly large error associated with

them. This uncertainty (in the time at which the various locations are recorded) is illustrated

by the error bars on the graphs. It should be noted that the experimental results have been

shifted to the left slightly, so as to match the shift Martin and Moyce themselves used in their

comparison with theory. It is clear that all the numerical results lie within the bounds of the

experimental error.

Barrier removed at t=0

Figure 2.8: Schematic showing the setup of the breaking dam problem.
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Figure 2.9: Evolution of the breaking dam.

2.4.3 Fully Submerged Cylinder

To validate the ability of the code to model bluff body viscous flows, flow past a fully submerged

cylinder was investigated. As changes in lift, drag, and Strouhal number will all be measured

for the cylinder near the surface, it is imperative that measurements of such quantities are both

accurate and comparable with the results of other authors, for example Williamson (1996). It

should be noted that all the tests within this section were performed with a time step of 0.025

unless otherwise stated.

Table (2.2) shows the comparison of the non-dimensionalized shedding frequency (Strouhal num-

ber fd/v) with the experimental results of Williamson (1989) and the numerical findings of

Barkley & Henderson (1996), at a Reynolds number of 190 (this value was used as Barkley
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& Henderson (1996) only give results at a Reynolds number of 190). The results of the cur-

rent study are slightly smaller (approximately 2%) than those of both Williamson (1989), and

Barkley & Henderson (1996). It is believed that this slight discrepancy may be due to the

artificial numerical diffusion introduced by the relatively low-order scheme used in the current

investigation. Such numerical diffusion will typically result in the flow behaving as if it were at

a slightly lower Reynolds number (which is consistent with the smaller value observed here).

Present Williamson (1989) Barkley & Henderson (1996)

Study experimental numerical

0.191 0.194 0.195

Table 2.2: Comparison of the Strouhal number with the results of other authors for a fully submerged

cylinder (Reynolds number 190).

The behaviour of the mean and root mean square (RMS) components of both the lift and drag

coefficients are also considered, with table (2.3) showing the comparison between the current

results and those of Barkley & Henderson (1996). The RMS values were obtained by squaring

all the values then taking the average of squares, before finally taking the square root of the

average.

Cd C ′d C ′l −Cpb
Present study 1.335 0.0262 0.435 0.8963

Barkley & Henderson (1996) 1.344 0.0293 0.465 0.9326

Table 2.3: Comparison of the mean and RMS components of the lift and drag acting on the cylinder

with the results of Barkley and Henderson (1996) for a Reynolds number of 190.

The discrepancy between the RMS results is bordering on being significant, with the difference

in the RMS lift being of order 6% while the RMS drag differs by 10% (albeit from a small base

value). It should be noted that Barkley & Henderson (1996) give the fluctuating lift and drag,

which one assumes to mean the RMS component. Williamson (1996) on the other hand suggests

that the mean base pressure coefficient (−Cpb) is a sensitive measure of vortex formation, and

as this varies by roughly 4%, the agreement is deemed to be acceptable.
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2.4.4 Testing Domain Sizes

To obtain an estimate of the domain size required for the full development of the flow field for

flow past a cylinder close to a free surface, a number of domain sizes were tested. The domain

size tests were all conducted at a gap ratio of 0.25 and a Froude number of 0.20. The gap ratio

(h/d) and the Froude number (u/
√
dg) are most clearly defined with reference to the schematic

in figure (1.1). The Reynolds number for all of the tests was 180.

This region in parameter space was chosen as deviations in either the gap ratio or Froude number

were found to have a significant effect on the Strouhal number, as well as the lift and drag (a

point which will be discussed in later chapters). The domain size is expected to be important

in this investigation as initial tests indicate that a restricted domain can lead to an artificial

alteration in the height of the fluid above the cylinder. Such height changes will influence

the measurements of the mean lift acting upon the cylinder, as the lift calculation involves

subtracting the buoyancy force. This matter is discussed further in the section dealing with the

lift and drag forces.

A basic schematic of the domain is shown in figure 2.12. The influence of L1 (inlet distance),

L2 (outlet distance) and L3 (blockage) is shown in tables (2.4) to (2.6).

L3

L1

L2

Figure 2.12: Schematic for the flow domain showing the critical parameters used for constructing

the mesh.

These tests indicate that a mesh with the following parameters, L1=10, L2=30 and L3=30 will

yield results which are accurate for Strouhal numbers to about 3% and for the mean lift to

about 5% and the RMS lift to about 7%. This level of accuracy is considered appropriate for
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L1 mean Cl C ′l St

10 -0.476 0.338 0.1635

15 -0.459 0.318 0.1598

20 -0.452 0.313 0.1585

Table 2.4: Comparison of the mean and RMS components of the lift and Strouhal numbers for

differing inlet distances (L1). (Reynolds number 180, gap ratio 0.25 and Froude number 0.20).

L2 mean Cl C ′l St

30 -0.476 0.338 0.1636

40 -0.481 0.342 0.1654

Table 2.5: Comparison of the mean and RMS components of the lift and Strouhal numbers for

differing outlet distances (L2). (Reynolds number 180, gap ratio 0.25 and Froude number 0.20).

L3 mean Cl C ′l St

30 -0.476 0.338 0.1635

40 -0.475 0.343 0.1633

Table 2.6: Comparison of the mean and RMS components of the lift and Strouhal numbers for

differing domain widths (L3). (Reynolds number 180, gap ratio 0.25 and Froude number 0.20).

the current investigation, which seeks to characterize the physical behaviour of each of the flow

regimes, as opposed to obtaining highly accurate (and hence expensive) results for a limited

number of cases.

2.4.5 Resolution

To examine the effect of changing the resolution, two grids having the same domain size were

tested. The grid resolution test was conducted at a gap ratio of 0.40 and Froude number of 0.20.

Two grids of differing resolution were used: the first grid (which is shown in figure (2.13)) had

52960 cells, while the second grid which is shown in figure (2.14)) had 88670 cells.

Table (2.7) shows the comparison between the two grids and it indicates that the approximately

66% increase in the number of cells has little effect on any of the quantities measured. The

maximum change recorded in each value was of order 1%.

On the basis of the results in table (2.7), one can use Richardson extrapolation to get an estimate
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Figure 2.13: Grid 1 (55960 cells)

of the asymptotic error. This process is as follows:

φtrue = φ(hr) + α(hr)2 (2.10)

φtrue = φ(βhr) + α(βhr)2 (2.11)

where φ is the quantity being measured and which is a function of the resolution hr. β is the
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Figure 2.14: Grid 2 (88670 cells)

factor by which the resolution in each direction was reduced, α is an estimate of the truncation

error coefficient and φtrue is the true value of the quantity φ. It should be noted that this

approach is only really valid for situations in which the grids are geometrically similar, which is

the case here. The result of this extrapolation suggests that the ‘true’ values of the quantities

are as shown in table (2.8).
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Number of Grid cells Strouhal number Cd C ′d Cl C ′l

52960 0.1969 1.6225 0.1526 -0.3245 0.5366

88670 0.1972 1.6209 0.1507 -0.3268 0.5229

Table 2.7: Comparison of the Strouhal number and the mean and RMS components of the lift and

drag for differing resolutions (Reynolds number 180, gap ratio 0.40, Froude number 0.20).

Strouhal number Cd C ′d Cl C ′l

Grid (52960) 0.1969 1.6225 0.1526 -0.3245 0.5366

Extrapolated result 0.1976 1.6185 0.1479 -0.3302 0.5026

% difference 0.3543 0.2471 3.1778 1.7262 6.7648

Table 2.8: Table showing the asymptotic values (from Richardson extrapolation), those obtained

using the grid with 52960 cells, and the percentage difference (Reynolds number 180, gap ratio 0.40,

Froude number 0.20).

Table (2.8) indicates that the solution for a grid of 52960 cells should yield results for all

quantities except the RMS lift which lie within approximately 3% of that expected on an grid

of infinite resolution (with the RMS lift varying by 6.76%). For the current investigation this is

deemed to be an acceptable compromise between accuracy and allowing for a sufficient number

of simulations to be performed to adequately cover the parameter space.

2.4.6 Convergence

As mentioned earlier the numerical technique used here iteratively solves for the flow variables,

and as such it is necessary to determine the point at which the iterative process stops. At each

point, the difference between the numerical solution and the solution of the discretized equations,

is referred to as the residual. The sum of these residuals over all the cells in the entire domain

is referred to as the global residual, and it was this value that was used to determine when to

cease iterating.

The actual values used for the residuals, were determined according to what fractional discrep-

ancy of the total flux of both momentum and mass was deemed acceptable. The residual used

here allowed for a global fractional discrepancy of approximately 0.0002 in the mass flux, and

0.001 in the momentum flux.

To test that an adequate level of convergence for the flow field at each time step was achieved,
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a test which varied the convergence criteria was performed. This involved simulating the same

problem, but with convergence criteria which differed by a factor of 10 (i.e. the one used in

the preceding calculations, and one 10 times smaller). Table (2.9) shows how the measured

quantities compare at both these residuals.

Residual Strouhal number Cl C ′l

standard 0.1635 -0.476 0.338

standard/10 0.1634 -0.476 0.337

Table 2.9: Comparison of the Strouhal number and the mean and RMS components of the lift for

differing convergence criteria. (Reynolds number 180, gap ratio 0.25, Froude number 0.20).

Again it is clearly seen that only very minor differences are recorded, with the maximum differ-

ence in any quantity less that 0.03%. This suggests that the convergence criteria used here was

adequate.

2.4.7 Time Step

To test the influence of the size of the time step, two identical cases were again considered, but

time steps of differing sizes were used. The time-step tests were performed at a larger Froude

number, as the surface variation is typically greater and hence is more likely to impact upon the

results. The comparison is shown in the table (2.10).

Time step Strouhal number C ′d C ′l −C ′pb
0.0250 0.1886 0.2168 0.5161 0.3936

0.0125 0.1916 0.2103 0.5272 0.4147

Table 2.10: Comparison of the Strouhal number and the mean lift and drag for differing time steps

(Reynolds number 180, gap 0.40, Fr = 0.30).

It is expected that at higher Froude numbers, (where local wave breaking can occur), that the

size of the time step will be more important. However, as almost infinite resolution in both time

an space would be required to predict the nature of the breaking wave, with its influence upon

the flow expected to be only slight, a compromise had to be made. It was decided (based largely

upon the available resources and time constraints) that a time step of 0.025 would be used.

This time step was found to give results which were deemed acceptable for the tests illustrated

in table (2.10) (i.e. all results vary within about 3% except for the RMS component of the
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base pressure coefficient which is within 5.4%), and while a smaller time step may improve the

capture of the wave breaking process, it is still unlikely to be able to predict the intricacies

associated with it.

It should be noted that the availability of resources was an influencing factor in the choice

of the larger time step. As the actual time taken to evolve the flow field forward 100 time

units, required approximately 2 days on a Intel Pentium III 500, which was the fastest machine

available at the time during which the majority of the simulations were performed. Having said

this, it is estimated that all of the simulations undertaken in this study would have required

in excess of 2.75 years of continuous run time if performed on a single computer with an Intel

Pentium III 500 processor.

2.5 Problem Setup and Post Processing

It has been shown by Sheridan et al. (1997) that the problem of flow past a cylinder close

to a free surface has two major governing parameters, namely the gap ratio (or dimensionless

submergence depth) and the Froude number (with the Reynolds number being less important).

This section will now define these parameters while also discussing how they were altered, and

the boundary conditions used.

With reference to figure (1.1), table (2.11) lists some of the important quantities.

Symbol Definition

u free stream flow velocity

d cylinder diameter

h submergence depth

ρ fluid density

µ dynamic fluid viscosity

g gravitational acceleration

Table 2.11: Table detailing the nomenclature used (also see figure (2.12)).

The dimensionless quantities were then defined as follows:

• Reynolds number, Re = ρdu
µ : It represents the ratio between the inertial and viscous

forces. The Reynolds number was varied by altering the viscosity µ.
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• Froude number, Fr = u√
dg

: It represents the ratio between the inertial and gravitational

forces. The Froude number was varied independently of the Reynolds number by altering

the gravitational acceleration g.

• Gap ratio, or dimensionless submergence depth, h∗ = h
d : It represents the ratio of between

the submergence depth (as measured between the free surface and the top of the cylinder)

and the cylinder diameter.

The boundary conditions used were as follows:

• At the inlet : prescribed constant velocity with both phases entering the domain at the

same speed. The submergence depth was set by altering the height at which each phase

enters the domain.

• On the cylinder : no-slip boundary condition.

• At the top and bottom walls : zero shear stress (free slip).

• At the outlet : prescribed pressure at the outlet boundary. This boundary condition

permits both inflow and outflow. All other conditions are extrapolated from those in the

interior of the domain. A hydrostatic pressure gradient was prescribed at the outlet, as

was the height at which each phase left the domain.

Many of the quantities obtained that are discussed in the later chapters, involved the extraction

and analysis (such as integration) of raw data. This section will discuss the procedure used to

obtain the relevant data, as well as defining any sign conventions used.

2.5.1 Lift and Drag Forces

The lift and drag forces on the boundary are calculated by integrating the dot product of the

stress vector with the force vector around the cylinder. (where the stress vector as given in

Acheson (1990) is t = −pn + µ (2(n · ∇)u + n× (∇× u)), and the force vector is simply the

unit vector in the direction one wishes to calculate the force). With regard to the lift acting

upon the cylinder, the presence of gravity in the governing equations implies that there will be

a buoyancy force acting upon the cylinder (i.e. the pressure varies around the cylinder as a

consequence of the hydrostatic pressure gradient). As such, any measurement of the lift force

will naturally include a hydrostatic contribution, and one must subtract this component to
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obtain the flow induced lift force acting upon the cylinder. Thus, the lift induced by the flow

will simply be

Lactual = Lmeasured − Lnoflow, (2.12)

where L is the lift force.

2.5.2 Moment

The moment acting on the body is calculated by summing the product of the force vectors for

each face with the moment vector. For a cylinder the moment is simply the integral of t · eθRdθ
from 0 to 2π (where t is the stress vector which was defined previously, R is the radius, and eθ

is the unit vector in the theta direction). Both the moment vector and the vorticity are defined

to be positive if they have a counter-clockwise sense of rotation.

2.5.3 Force and Moment Coefficients

The forces and moments are usually most useful when expressed as non-dimensionalized coef-

ficients. The lift and drag were both non dimensionalized by dividing the respective forces by

1/2ρu2A, where ρ is the fluid density, u is the free-stream velocity, and A is the area projected

in the appropriate direction (which is simply the cylinder diameter for the case being considered

here). The moment is non dimensionalized by dividing by 1/2ρu2Ad, where all the quantities

are as previously stated and d is the cylinder diameter.

2.5.4 Separation and Stagnation Points

Rosenhead (1963) and Blackburn & Henderson (1995) indicate that in the frame of reference

of the body, the separation and attachment points occur at locations of zero surface vorticity.

These points were then found via linear interpolation of the vorticity in the cell just outside of

the cylinder.

2.5.5 Vortex Paths and Convective Speeds

The paths and speeds of individual vortices as they are convected downstream is of interest as

they give an indication of the of the altered conditions in wake.
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The paths taken by the vortices was determined by firstly dividing part of the domain into

a series of small intervals or bins. At each time step the position of the local maximum and

minimum of the vorticity within each bin was recorded. This process was then repeated over

a number of time steps with the result yielding the locus of points (or path) traced out by the

vortex cores. The convective velocities of the vortices were then calculated by simply dividing

the distance traveled by the vortex core, by the time it took to travel that distance.

2.5.6 Time Averaged Flow and Standard Deviation

The time-averaged flow field was obtained for cases in which the flow was periodic by averaging

the velocity at each point within the flow field over one or more periods. The standard deviation

about the mean was then determined at every point by summing the squares of the residuals

between the data at each time step and the mean at the corresponding points, and then dividing

that by the n − 1, where n is the number of time intervals used to determine the standard

deviation. This approach is consistent with standard statistical sampling theory, and is discussed

in Chapra & Canale (1991).

2.5.7 Strouhal Number

The Strouhal number (or dimensionless frequency fd/u, where f is the response frequency, d

is the cylinder diameter, and u is the free stream velocity) was determined via two different

methods. The first, which is only applicable when the flow is periodic in time, involved de-

termining the time difference between successive peaks or troughs in the lift cycle via fitting a

cubic polynomial to the four closest points, and then analytically determining the maximum or

minimum. In general this method gave accurate results for data spanning only a few periods

(with its accuracy less affected by the number of available data points). The second approach

is perhaps the most standard, and is applicable to all data types (as opposed to purely periodic

ones), as it simply involved calculating the Fourier transform of the lift signal (see Chapra &

Canale (1991) for more details with regard to Fourier transforms). The Fourier transform yields

the frequency spectra and from this the dominant frequencies are determined. It should be

pointed out that the first approach is often used in numerical investigations, where the collec-

tion of a large numbers of data points is often expensive, as the second approach requires data

over many periods to achieve reasonable frequency resolution, and as such it is more commonly

used in experiments.
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2.5.8 Particle Transport Plots/Videos

To enhance ones understanding of the flow behaviour, inert tracer particles were released into

the flow. These particles which did not influence the flow field, were modelled as small spheres,

with their trajectory being determined via the integration of the force balance for each particle.

This force balance is as follows,

dupart
dt

= FD(u− uparticle) + g
(ρparticle − ρ)
ρparticle

, (2.13)

where FD(u − uparticle) is the drag force per unit particle mass and FD = 18µ
ρparticleD

2
particle

CDRe
24

and Re = ρDparticle|uparticle−u|
µ .

Here u is the fluid velocity, uparticle the particle velocity, µ the fluid viscosity, ρ the fluid density,

ρparticle the particle density, Dparticle the particle diameter, g the gravitational acceleration, Re

the relative Reynolds number and Cd the Drag coefficient. The value of Cd is determined from

the following relationship

CD = a1 +
a2

Re
+

a3

Re2
, (2.14)

which applies to spherical particles over a range of Reynolds numbers, with the constants a1,a2

and a3 being given by Morsi & Alexander (1972). The inert particles used in the current

investigation had a mass of 5.23599×10−19, and as such have almost negligible inertia associated

with them.

The particles were released at a locations 8 diameters upstream of the cylinder, and are colored

according to the height at which they were injected, which ranged from −0.50 up to the surface

height in 0.05 increments. In many instances this involved releasing particles exactly on the

surface (i.e. for cases in which the gap ratio is an integer multiple of 0.05). Hence any fluctuation,

even very slight in the surface height at positions upstream, may result in particles being released

on the other side of the free surface. When this occurs the particles typically follow the free

surface up until the point at which significant surface curvature is noted, at which point they

then tend to follow the flow structures associated with the lighter phase. This behaviour was

more prevalent at larger Froude numbers in which small scale wave breaking was observed, and

while such particles could have been removed (i.e. never injected) they serve as an effective

means of determining height variations at positions upstream of the cylinder.

It should be noted that all of the particle transport plots contained within this written document

have had the particles in the lighter phase removed, while all of the videos contained on the
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accompanying compact disk have not.

For the plots that show the particles coloured by residence time, the more red the particle the

longer it has been in the flow.

2.5.9 Vorticity Plots/Videos

As it is the behaviour of the denser fluid which is of primary importance (with the lighter phase

possessing only roughly 1% of the momentum), most of the plots showing the vorticity are

only concerned with the denser phase. The vorticity within the denser phase was obtained by

calculating the volume fraction weighted vorticity, which is found by multiplying the vorticity

at each point by the local volume fraction (which is 1 in the denser phase, and 0 in the lighter

phase). The vorticity contours plots were obtained by first contouring the negative vorticity and

then overlaying the contours for the positive vorticity. As a red to blue colour map was used

to contour both the positive and negative vorticity (with red representing the maximum value

and blue the minimum value) the vorticity close to the body will generally possess the most

extreme colour. When using this colour map the lighter the shade of the red the more negative

the vorticity and the lighter the shade of blue the more positive the vorticity. Unless otherwise

stated the vorticity contours are between −35 and −0.35 for the negative vorticity between 0.35

and 35 for the positive vorticity.

2.5.10 Free-Surface Position

The volume of fluid (VOF) approach used by Fluent prescribes characteristics to the fluid within

each cell according its volume fraction (with the volume fraction also being solved for as part

of the solution process). Hence the interface between the two fluids occurs where the volume

fraction rapidly changes from 1 to 0. This change will generally occur over a range of finite

thickness, and as such, the location of the free surface is smeared somewhat over this distance.

The thickness of the interface is largely determined by the spatial resolution in the region where

the interface exists, and hence the accuracy of the surface position is dependent upon the spatial

resolution. As the resolution tests above indicate, little variation (less than 1%) was observed

when the spatial resolution was altered (with the resolution in the region where the surface lies

being altered by 20%). The resolution in the region of the free surface, varied slightly with

horizontal location, and at its worst (near the inlet and the outlet) the cell height was 0.03 of a

cylinder diameter. While the geometrical reconstruction scheme used within Fluent calculates
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the location of the interface within each cell (hence improving the accuracy somewhat), one

must assume that the accuracy of the surface position (at its worst point) is of order 0.03 which

is slightly larger than the 0.02 of a cylinder diameter claimed experimentally by Sheridan et al.

(1997).

Plots showing the surface position were obtained by finding the location where the volume

fraction was equal to 0.50. This procedure involved interpolating within a cell to find this

location. Figure (2.15) shows a schematic that illustrates the estimated surface location found

using this piecewise linear approach (geometric reconstruction).

Figure 2.15: Actual free surface position (curved line) and the piecewise linear reconstruction (straight

lines) used to reconstruct the position of the free surface.

2.5.11 Pressure Plots

As mentioned earlier, the presence of the gravitational acceleration term in the y momentum

equation, results in the establishment of a hydrostatic pressure gradient. As also mentioned

earlier, the Froude number was altered independently of the Reynolds number by varying the

magnitude of the gravitational acceleration. Hence the hydrostatic component of the pressure

was different for each gap ratio, and each Froude number. As it is the changes in pressure on

top of the hydrostatic component which are of interest, its influence was removed by subtracting
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an imposed hydrostatic pressure field from the calculated pressure field (i.e. subtracting ρgh

from the pressure field, where h is chosen arbitrarily provided it is greater than the maximum

surface height). This approach allows the underlying relative variation in the pressure field to

be examined, but at the cost of losing information regarding the magnitude of the pressure. As

such, one must be careful when comparing the pressure fields between different gap ratios and

different Froude numbers. However having said that, it is the relative pressure differences which

are present in the Navier-Stokes (momentum) equations, and hence it is these relative differences

between different points in the flow field which are of interest, as opposed to the actual values.

2.6 Videos

The compact disk accompanying this thesis contains videos which illustrate the time dependent

behaviour of the vorticity field, the transport of particles, and the free surface position. These

videos are all in an animated gif format and should be viewable on most web browsers (i.e.

Netscape Navigator or Microsoft Internet Explorer), or via other gif animation software. It is

recommended that the reader consider these videos especially when reading the sections which

discuss the mechanism.

The naming convention used for the videos is as follows:

• The first part of the name indicates the gap ratio (so for example H 0.25, will indicate

that the gap ratio is 0.25).

• The second part of the name denotes the Froude number (so for example FR 0.25, indicates

that the Froude number is 0.25).

• The third part of the name then indicates the quantity being measured. The three quan-

tities are: ‘part’ for particles, ‘vort’ for vorticity, and ‘surf’ for surface.

• The fourth part of the name then indicates the viewable area. ‘ex’ indicates a larger

viewing area, while ‘cl’ indicates a closer view.

• And finally the last part of the file name indicates the background colour, with ‘b’ denoting

black and ‘w’ denoting white.

Hence the file with the name H 0.16 FR 0.20 part ex b.gif will contain the video which shows

an extended view of the particle transport plots with a black background for a gap ratio of 0.16

and a Froude number of 0.20.
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Most of the videos are all of a consistent size and colour, although some of the videos are only

available with a white background and the image size may also be smaller.

2.7 Summary

A brief description of the numerical method and its validation has been provided. As this

problem contains a number of complicated physical phenomena, all of which require assumptions

to be made before they can be modelled, it is hoped that predictions which are accurate to within

approximately 10% of the ideal case can be obtained.
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Chapter 3

Free Slip and Froude Number 0.20

The problem under investigation is that of a cylinder close to a free surface. As to the author’s

knowledge little work has been done in this area to date, with the exceptions being Miyata et al.

(1990), Sheridan et al. (1995), Sheridan et al. (1997), Warburton & Karniadakis (1997), and

Hoyt & Sellin (2000), comparison with the more widely investigated and related case of flow past

a cylinder close to a plane no-slip boundary will be sought. Such a comparison is considered as it

is envisaged that this problem may highlight some of the distinct similarities and key differences

between itself, and the case of a cylinder close to a free surface at low Froude numbers. For

the interaction of vortices with a free surface it has been shown by Yu & Tryggvason (1990),

Ohring & Lugt (1991), and Lugt & Ohring (1992) that the free surface at low Froude numbers

behaves remarkably like a rigid surface, with little or no large scale surface deformation being

observed. To investigate the similarities between the two cases, both flow past a cylinder close to

a free-slip boundary (which approximates a free surface in the limit as the surface deformation

tends towards zero), and flow past a cylinder close to a free surface at a Froude number of 0.20

are considered.

Before proceeding it is perhaps best to briefly re-examine some of the behaviour for flow past

a cylinder close to a no-slip wall, and to discuss the likely implications for flow past a cylinder

close to a free surface. For the case of a free surface, it is expected that the pressure gradients

on the adjacent wall that were observed by Bearman & Zdravkovich (1978), Grass et al. (1984)

and Price et al. (2000), will manifest themselves as surface deformations. As these separation

zones correspond to regions of adverse pressure gradient, it is expected that the surface is likely

to curve or deform upwards in these regions. Hence it is anticipated that the surface will rise in

the regions just upstream and downstream of the cylinder, with the size of the height changes
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being dependent upon the Froude number. However, the lack of wall vorticity and the presence

of self induced surface vorticity may alter the results in a potentially significant manner. The

comparison between the solid surface results and those for a free surface at low Froude numbers

(including the limiting case of zero Froude number which gives a flat non deformable free-slip

surface) are now considered.

3.1 Scope and Layout of the Chapter

The findings of Yu & Tryggvason (1990), Ohring & Lugt (1991), and Lugt & Ohring (1992)

suggest that the level of surface deformation is largely dependent upon the Froude number, with

the Froude number representing the ratio between the inertial forces and the gravitational forces

acting upon the fluid. Hence for cases in which the Froude number is small, gravitational forces

will dominate and the level of surface deformation will remain negligible. For these cases it is

envisaged that the flow will remain largely parallel, and it is to this portion of the parameter

space that this chapter will be largely restricted.

The Froude numbers considered here are 0.00 and 0.20. The limiting Froude number of 0.00

is obtained by assuming that the the free surface acts like a non-deformable free-slip surface,

which is approximately the case in the limit as g →∞, and hence the Froude number Fr → 0.

The Froude number 0.20 case is also considered as only limited surface deformation is observed

at this value. It is expected that these cases will share many common features with flow past

a cylinder close to a plane no-slip wall, for which there exists a wider variety of experimental

results, as the geometrical arrangement is almost identical.

Trends for the behaviour of the Strouhal number, the mean and root mean squared (RMS)

components of both the lift and the drag and the mean moment acting upon the cylinder will

all be considered. In addition, the behaviour of the pressure distribution, the position of both

the stagnation and separation points, and the paths traced out by the vortices as they are

convected downstream, will also be examined. The gap ratios (or dimensionless submergence

depths) investigated at both Froude numbers are as follows: 0.10, 0.13, 0.16, 0.19, 0.22, 0.25,

0.40, 0.55, 0.70, 0.85, 1.00, 2.50 and 5.00.

The earlier parts of this chapter will largely present the results, with some comment being

provided on how this material relates to the work of others. The later part of the chapter will

then be devoted to a discussion of a mechanism which explains the observed behaviour.
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3.2 Strouhal Number

One of the minor aims of the current investigation is to determine whether or not changes in the

Strouhal number exist as the proximity of the cylinder to the surface is altered. Miyata et al.

(1990), Angrilli et al. (1982), Grass et al. (1984), Lei et al. (1999) and Price et al. (2000) all

note that the Strouhal number does vary with gap ratio, while Taniguchi & Miyakoshi (1990)

detect only a slight change and Bearman & Zdravkovich (1978) observe no change at all.

For the authors that did observe changes in the Strouhal number with gap ratio there is some

degree of spread in their results, both with regard to the magnitude of the changes and with

respect to the asymptotic behaviour of the Strouhal number with gap ratio. Angrilli et al. (1982)

found that the normalized Strouhal number approached unity for gap ratios of approximately 5

or 6. However, Grass et al. (1984) and Lei et al. (1999) both observed the asymptote to occur

over a much shorter distance, with values approaching unity being observed at gap ratios of

approximately 1 or 2. This discrepancy is likely to be a function of the wall boundary layer

thickness and may also be a function of Reynolds number. Hence it is expected that a cylinder

close to a free surface at low Froude number should also display similar behaviour.

Table (3.1) and figure (3.1) show the numerically predicted asymptotic behaviour of the normal-

ized Strouhal number with gap ratio (with the Strouhal number for the reference cylinder being

0.1893). It is clear from these results that the changes in Strouhal number are only of order 1%

when the gap ratio is greater than or equal to 2.50, which is largely as expected. It should be

noted that no shedding was observed at some of the smaller gap ratios, with the flow behaviour

for these cases discussed in more detail later in this chapter.

The asymptotic behaviour of the Strouhal number shows good agreement with the results of

Angrilli et al. (1982) who gives the finest detail with regard to such behaviour. This agreement

is even more remarkable when one considers that there is almost a 20 fold difference in Reynolds

number between the two cases, with the current investigation being conducted at a Reynolds

number of 180. This agreement may be partially due to the roughly comparable formation

length of a fully submerged cylinder at both Reynolds numbers (see Norberg (1998) for details

on formation length). Comparison with the results of other authors is made more difficult, as

the scaling used on their plots is usually large (i.e. the data is plotted for values between 0 to

0.3, even though the changes in Strouhal number normally lie within the range of 0.20 to 0.28).

It is tentatively suggested that the asymptotic distance may vary with Reynolds number, or

more appropriately formation length, as the portion of the shear layer exposed to interference
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gap ratio St normalized St St normalized St

h/D Fr = 0.00 Fr = 0.00 Fr = 0.20 Fr = 0.20

REF 0.1893 1.0000 0.1893 1.0000

0.10 no shedding no shedding no shedding no shedding

0.13 no shedding no shedding 0.4031 pseudo shedding 2.1294

0.16 0.1292 0.6825 0.1243 0.6566

0.19 0.1441 0.7612 0.1350 0.7132

0.22 0.1604 0.8478 0.1491 0.7876

0.25 0.1738 0.9181 0.1635 0.8637

0.40 0.1988 1.0502 0.1969 1.0396

0.55 0.2054 1.0851 0.2052 1.0840

0.70 0.2064 1.0903 0.2071 1.0958

0.85 0.2054 1.0850 0.2067 1.0914

1.00 0.2037 1.0761 0.2054 1.0845

1.50 0.2000 1.0565 0.2010 1.0618

2.50 .0.1950 1.0301 0.1955 1.0338

5.00 0.1909 1.0084 0.1913 1.0106

7.67 NA NA 0.1898 1.0026

Table 3.1: Variation of Strouhal number for both the free slip (Froude number 0.00) and Froude

number 0.20 cases. The Reynolds number for each case is 180.

from the adjacent surface will vary in accordance with this length.

As figure (3.1) illustrates, the rises in the Strouhal number observed in the current investigation

are less than 10% and compare well with those found by Angrilli et al. (1982). However, others

such as Price et al. (2000) have noted changes in the Strouhal number of order 40%, while

Miyata et al. (1990) observed a change of approximately 50%.

For the no-slip cases, all authors noted that the maximum increase in Strouhal number occurred

for gap ratios in between 0.40 and 0.75, while Miyata et al. (1990) (who looked at flow past a

cylinder close to a free surface) observed that the change occurred at a gap ratio of about 0.35.

It is suggested here that the results of Miyata et al. (1990) for gap ratios less than 0.35 are in

the range at which limited or no shedding occurs, and hence the frequency detected from their

spectra is not a shedding frequency but a frequency of flow structure adjustment. This assertion
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Figure 3.1: Plot showing the variation of normalized Strouhal number (normalized with respect to

Strouhal number of the reference cylinder i.e. St
St0

) with gap ratio for Froude numbers of 0.00 and

0.20. The Reynolds number for each case is 180. The labels Angrilli 2860, Angrilli 3820 and

Angrilli 7640, refer to the results of Angrilli et al. (1982) at three different Reynolds numbers,

namely 2860, 3820 and 7640.

will be discussed later in the section dealing with the suppression of vortex shedding.

One of the key points to note is the similarity between the results at the two different Froude

numbers, with a good agreement being observed over the entire gap ratio range. This suggests

that the almost negligible surface curvature (which is illustrated later in the chapter) has little

effect on the period of vortex shedding.

3.3 Lift, Drag and Moment Coefficients

The forces and moments acting upon the cylinder are of interest as they have direct relevance

to the design and construction of a variety of offshore structures and vehicles. They are also

important as they provide a point of comparison between the current results and those of others.
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3.3.1 Lift Coefficient

Miyata et al. (1990) find that the mean lift coefficient increases as the gap ratio decreases, with

the maximum lift being measured when the cylinder just pierces the surface (i.e. at a gap ratio

of 0.00). Their observation that the lift continuously increases as the gap ratio decreases is

consistent with the results of Roshko et al. (1975), and Lei et al. (1999). Such trends are also

observed here, with the mean lift coefficient obtaining its maximum value at the smallest gap

ratio considered, namely 0.10. The favourable comparison between the current results and those

of Miyata et al. (1990), Roshko et al. (1975), and Lei et al. (1999) are shown in figure (3.2).

The results of Lei et al. (1999) suggest that the boundary layer plays an important part in

the determination of the lift, with their results for boundary layers generated using cylinders,

producing negative lift (positive in the orientation used here) at some gap ratios. Roshko et al.

(1975) also notes that the shape of the body has a notable impact on the behaviour of the lift

coefficient, with a triangular section producing different lift behaviour.

3.3.2 Root Mean Square (RMS) Lift Coefficient

Lei et al. (1999) suggest that the onset or suppression of vortex shedding is more clearly illus-

trated if the behaviour of the Root-Mean-Square (RMS) lift coefficient is considered. Figure (3.3)

illustrates the agreement in the trend between the current results and those of Lei et al. (1999)

for their thinner boundary layer (boundary layer 1) case, although a notable horizontal shift

is observed. This shift is likely due to the changes in the adjacent boundary condition, which

for the case of the no-slip boundary effectively moves the surface closer. In other words, if one

assumes that the boundary layer for the no-slip case only exerts an influence extending over

its own boundary layer thickness, then the free surface and no-slip surface results should be

comparable when a quantity resembling this boundary layer thickness is subtracted from the

gap ratio.

The major differences between the current findings and those of Lei et al. (1999) are all observed

for the cases in which the cylinder is close to the adjacent surface. In this region, Lei et al. (1999)

note that the RMS lift drops to a point and then stays relatively constant, with a slight increase

noted as the gap ratio is further reduced. For the free slip and free surface cases considered

here, this plateauing of the RMS lift coefficient is not observed and it is the altered boundary

conditions at the surface that are believed to be responsible for this difference.
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Figure 3.2: Plots showing the variation of the mean lift coefficient with gap ratio for the free slip

(Froude number 0.00) and Froude number 0.20 cases. The Reynolds number for each case is 180.

Also plotted are the results of Roshko et al. (1975), Miyata et al. (1990) and Lei et al. (1999) (the

results from Lei et al. (1999) are for their boundary layers 1 and 2).
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Figure 3.3: Plot showing the variation of RMS lift coefficient with gap ratio for the free slip (Froude

number 0.00) and Froude number 0.20 cases. The Reynolds number for each case is 180. Also

plotted are the results of Lei et al. (1999) (for their boundary layers 1 and 2).

3.3.3 Drag Coefficient

The variation of the normalized drag coefficient with gap ratio and its comparison with the results

of Lei et al. (1999), Miyata et al. (1990) and Roshko et al. (1975) are shown in figure (3.4). The

current results differ from those observed by Miyata et al. (1990) with regard to both magnitude

of the drag changes and with respect to the trend in its behaviour at smaller gap ratios. The

current study suggests that the drag continues to decrease as the cylinder is moved closer to

the free surface, while the results of Miyata et al. (1990) suggest that the drag drops to a point,

and then it gradually decreases from that point onward. The general trends observed here do

however, compare more favourably with those of Lei et al. (1999) and Roshko et al. (1975), with

the drag in all of these cases exhibiting a peak at a gap ratio close to 0.50.

It should be noted that the drag values of the other authors were normalized with respect to

the drag at the largest gap ratio they considered. Hence some degree of vertical translation may

have been introduced, although this will not effect the trends in the behaviour. The differences

observed in the trends are again for the cases in which the cylinder is at close proximity to the

surface, so the altered boundary condition will play a larger role in this region. Although this
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does not explain the differences between the current results and those of Miyata et al. (1990).

An interesting point to note from the results of Lei et al. (1999) is the slight reversal of the trend

in drag coefficient for the thinner boundary layer cases as the cylinder gets very close to the

surface. This alteration in the behaviour is likely to be due to the influence of the wall boundary

layer.

The magnitude of the forces acting upon the cylinder are also significantly larger here, than those

observed for flow past a no-slip wall. Such differences in the magnitude appear to be related to

the free surface, with other free surface investigations such as the one conducted experimentally

by Valluri (1996) also displaying this behaviour. Valluri (1996) considers flow past a flat circular

disk placed close to a free surface, and notes that the change in the normalized drag for the

case near a free surface, is significantly larger than that near a no-slip wall. The size of this

magnitude difference is substantial, with Valluri (1996) finding the peak normalized mean drag

being of order 1.25 for the free surface, while for the no-slip surface it was approximately 1.08.

The trends observed by Valluri (1996) are reproduced here in figure (3.5).

3.3.4 RMS Drag Coefficient

The behaviour of the normalized RMS drag coefficient is shown in figure (3.6). The first point

to note is the significant increase in the time varying drag force acting upon the cylinder, with

the results at both Froude numbers indicating an increase of roughly 600% (i.e. the RMS drag

measured for the cylinder close to the free surface is 600% larger than that for a fully submerged

cylinder). It is believed that these changes may in part be attributed to the time-dependent shift

in the position of the stagnation and separation points, with the larger angular shift associated

with the front stagnation point during the course of one shedding cycle, exposing a larger portion

of the cylinder to the front stagnation pressure. Thus increasing the time-dependent magnitude

of the drag experienced by the cylinder.

3.3.5 Mean Moment Coefficient

The moment acting upon the cylinder is also of interest, as the tendency for the cylinder to

spin could have a large impact on the behaviour of an unrestrained cylinder close to a free

surface. The moments behaviour may also provide some assistance in explaining the observed

vorticity distribution and its relationship to the lift and drag forces acting upon the cylinder

(as the moment is due solely to viscous effects and it is thus likely to illustrate changes in
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Figure 3.4: Plot showing the variation of normalized mean drag coefficient with gap ratio for the

free slip (Froude number 0.00) and Froude number 0.20 cases. The Reynolds number for each case

is 180. Also plotted are the results of Roshko et al. (1975), Miyata et al. (1990) and Lei et al.

(1999) (for their boundary layers 1 and 2).
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Figure 3.5: Valluri’s (1996) normalized drag data for flow past a flat disk close to both a no-slip and
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Figure 3.6: Variation of the normalized RMS drag coefficient with gap ratio for the free-slip (Froude

number 0.00) and Froude number 0.20 cases. The Reynolds number for each case is 180.
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the position of the separation points). White (1994) has shown using potential theory, that a

spinning cylinder will produce a non zero mean lift. Thus it would seem plausible that a flow

field which results in a non zero mean lift, will also result in a non zero mean moment. The

variation of the mean moment coefficient with gap ratio for both Froude numbers is shown in

the figure (3.7).

While the magnitude of the moments measured are expected to change with Reynolds number, it

is the sign and the trends which are important here. What is clearly discernible from figure (3.7),

is the tendency for the cylinder to possess a positive mean moment coefficient when the cylinder

is close to the surface. This result and the potential result in White (1994) compare favourably

with the observations, in that the theory suggests that there should exist a mean force directed

away from the surface (i.e. there should exist a negative mean lift) when there is a positive

mean moment. While the potential flow results cannot support the possibility of separation,

as the influence of viscosity is ignored, they do suggest that the angular distance between the

stagnation and separation points is likely to vary, as the angle between the two ideal stagnation

points (those at the front and rear of the cylinder) become unequal. Hence one would expect

changes in the moment to be related to changes in both the positions of the stagnation and

separation points.
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Figure 3.7: Variation of the mean moment coefficient with gap ratio for the free-slip (Froude number

0.00) and Froude number 0.20 cases. The Reynolds number for each case is 180.
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3.4 Pressure Distribution, and the Stagnation and Separation

Points

The presence of the adjacent surface will in general result in a redistribution of the pressure

field, with such a redistribution coinciding with a shift in both the stagnation and separation

points. These shifts are intrinsically tied to the changes observed in both the lift and drag, as

the pressure profiles on the surface of the cylinder in figures (3.8) and (3.9) indicate.
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Figure 3.8: Plot showing the pressure distributions around the cylinder. All figures on the left are at

maximum lift while those on the right are at minimum lift. The cases shown from top to bottom

are: the reference cylinder (fully submerged) (a and b), and the cylinder at a gap ratio of 0.70 for

the slip (Froude number 0.00) (c and d) and free surface (Froude number 0.20) (e and f) cases. The

Reynolds number for each case is 180.

What also becomes clearly apparent are the changes in the relative magnitude of the pressure
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Figure 3.9: Plot showing the pressure distributions around the cylinder. All figures on the left are at

maximum lift, while those on the right are at minimum lift, except for the cases in which no shedding

was observed (e and f). Cases shown are: free slip (Froude number 0.00) at a gap ratio of 0.25 (a

and b), free surface (Froude number 0.20) at a gap ratio of 0.25 (c and d), and the free slip (e) and

free surface (f) cases at a gap ratio of 0.10. The results shown are all for a Reynolds number of 180.

distribution around the cylinder with gap ratio. For the smaller gap ratio cases (particularly

those in which shedding has ceased) there is dominant high pressure region in the upper section at

the front of the cylinder and relatively small pressure differences everywhere else. This suggests

that the increasing lift and decreasing drag observed as the gap ratio is reduced is primarily due

to the rotation of the front stagnation point. For these conditions the stagnation region now

contributes more to lift and less to drag, than would otherwise be the case for a fully submerged

cylinder.

For the cases involving the free surface, it should be noted that the pressure distribution was
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obtained via direct measurement of the pressure around the cylinder, including the component

due to the body forces. A cylinder subject to the same body force but with no flow, was used as

a point of reference to then remove the body force contribution. It is expected that this approach

will have a tendency to highlight regions in which the surface deformation is non-negligible.

The behaviour of the separation and stagnation points is also of interest, as these values shift with

the cylinders proximity to the surface. Before proceeding to measure the angular shift in both

the stagnation and separation points with gap ratio, it is first necessary to compare the results

obtained for a fully submerged cylinder with those observed by others. Both Dimopoulos &

Hanratty (1968) (experimental investigation) and Shariff et al. (1991) (numerical investigation)

give details with regard to the position of these points. The findings of Dimopoulos & Hanratty

(1968) indicate that the position of the top separation point for a cylinder at a Reynolds number

of 180 is approximately 115 to 116 degrees (with these values being read from a graph in which

a line of best fit was drawn). This agrees reasonably well with the value measured here, in

which the top separation point shifts between a value of 109 and 117 degrees. Shariff et al.

(1991) also study a cylinder at a Reynolds number of 180 (which is the same value used in

the current investigation) and indicate that the angular difference between the two separation

points is approximately 132 degrees (a result which was also measured from a graph). The

present study gives 135 degrees for the angle between the two separation points, which indicates

agreement to within 2.27%. The angular convention used for the measurement of the stagnation

and separation points is shown in figure (3.10), while tables (3.2) and (3.3) show the variation

of these points with gap ratio.

Positive

Negative

0
+180

−180

Figure 3.10: Schematic showing the angular convention used for the measurement of the stagnation

and separation points.
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gap ratio θ1max θ2max θ3max θ4max θ1min θ2min θ3min θ4min

0.10 25.03 125.00 -98.32 -167.42 25.03 125.00 -98.32 -167.42

0.13 22.09 123.32 -98.78 -168.72 22.09 123.32 -98.78 -168.72

0.16 18.28 122.16 -100.22 -136.73 20.67 122.88 -101.65 157.72

0.19 15.77 121.84 -101.44 -135.31 19.24 122.56 -103.53 152.38

0.22 13.98 121.65 -102.63 -135.67 17.68 122.15 -104.58 151.11

0.25 12.55 121.49 -103.54 -135.91 16.30 121.74 -105.35 150.40

0.40 7.20 120.31 -105.32 -134.48 12.38 119.64 -109.65 145.06

0.55 4.33 119.76 -106.14 -134.05 9.93 117.80 -112.37 141.98

0.70 2.79 119.70 -106.73 -134.55 8.19 116.42 -113.51 140.39

0.85 1.85 119.55 -107.20 -135.11 6.82 115.13 -114.17 139.66

1.00 1.25 119.47 -107.39 -135.79 5.73 114.06 -114.61 139.52

1.50 0.42 118.48 -108.13 -137.37 4.16 112.31 -114.84 139.61

2.50 -0.54 117.05 -108.90 -138.59 2.72 110.75 -115.32 140.09

5.00 -1.24 116.30 -109.53 -139.19 1.96 110.13 -115.72 139.91

REFERENCE -1.57 115.79 -109.50 -139.59 1.59 109.56 -115.72 139.53

Table 3.2: Angular variation of the stagnation and separation points with gap ratio at the point of

both maximum and minimum lift for a Froude number of 0.00. The Reynolds number for each case

is 180.

The tables also show the shift in these values as the proximity of the cylinder to the surface is

altered. As discussed by Rosenhead (1963) and Blackburn & Henderson (1995), the separation

and attachment points must always occur in pairs. Thus it is expected that there will be at

least two attachment and two separation points at both the point of maximum and minimum

lift (with three pairs being seen at some other stages in the shedding cycle). The trends for the

behaviour of these points are shown graphically in figures (3.11) to (3.13).

With regard to the angular difference between the front stagnation point and the separation

points, clear differences are seen between the current work and that of Bearman & Zdravkovich

(1978), who mention that the angle between the two separation points remained constant as

the cylinder was moved closer to the boundary. The current study indicates that the size of the

wake varies slightly with gap ratio while also varying with time. This variation is illustrated in

figures (3.14) to (3.16) and while the difference angles do remain constant at larger gap ratios,

at smaller ones they vary quite significantly. An interesting point to note at a gap ratio of 0.25,
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gap ratio θ1max θ2max θ3max θ4max θ1min θ2min θ3min θ4min

0.10 28.88 125.97 -98.07 -167.30 28.88 125.97 -98.07 -167.30

0.13 24.26 123.56 -99.20 -168.29 24.26 123.56 -99.20 -168.29

0.16 21.80 123.29 -99.25 -146.09 22.68 123.96 -99.47 176.69

0.19 18.83 123.25 -100.64 -135.77 21.18 123.69 -101.89 155.05

0.22 16.69 123.29 -101.65 -135.17 19.31 123.67 -103.43 151.45

0.25 14.70 123.16 -102.69 -135.31 17.76 123.53 -104.29 150.09

0.40 8.70 122.05 -104.72 -134.55 13.22 121.59 -108.56 144.64

0.55 5.33 120.96 -105.87 -133.93 10.62 119.33 -111.66 141.70

0.70 3.54 120.34 -106.41 -134.49 8.79 117.55 -112.97 140.09

0.85 2.49 119.92 -106.83 -135.17 7.36 115.88 -113.76 139.33

1.00 1.78 119.45 -107.19 -135.79 6.29 114.58 -114.09 139.21

1.50 0.53 118.03 -107.97 -137.27 4.29 112.26 -114.49 139.32

2.50 -0.52 116.71 -108.62 -138.54 2.78 110.60 -114.93 139.88

5.00 -1.22 116.02 -109.23 -139.22 1.96 109.86 -115.44 139.86

REFERENCE -1.57 115.79 -109.50 -139.59 1.59 109.56 -115.72 139.53

Table 3.3: Angular variation of the stagnation and separation points with gap ratio at the point of

both maximum and minimum lift for a Froude number of 0.20. The Reynolds number for each case

is 180.

is that the angular difference between the front stagnation point and the top separation point at

maximum lift approaches a value close to that of the reference cylinder at the opposite extreme

of the lift cycle. That is, the angle between stagnation and top separation point at maximum

lift at a gap of 0.25, is similar in magnitude to the difference between front stagnation and the

top separation point for the reference cylinder at the point of minimum lift.

3.5 Surface Deformation

Another point of interest is the relation between the surface curvature and the gap ratio. The

problem being considered here is predominantly distinguished from that of a standard cylinder

by the interaction or feedback between the free surface and the instability associated with the

cylinder wake. For the most part, bluff body flows may be loosely characterized as follows: the

bulk flow sets up a boundary layer, the boundary layer then adjusts the bulk flow field, which
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Figure 3.11: Plot showing the variation in the stagnation angle with gap ratio for Froude numbers

of 0.00 and 0.20. The Reynolds number for each case is again 180.
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Figure 3.12: Plot showing the variation in the top separation angle with gap ratio for Froude numbers

of 0.00 and 0.20. The Reynolds number for each case is again 180.

in turn alters properties such as the lift and drag acting upon the body. For the case in which

a free surface is present, the adjustment stage is more complex as the surface acts in a manner
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Figure 3.13: Plot showing the variation in the bottom separation angle with gap ratio for Froude

numbers of 0.00 and 0.20. The Reynolds number for each case is 180.
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Figure 3.14: Plot showing the angular difference between the front stagnation point and the top

separation point for Froude numbers of 0.00 and 0.20. The Reynolds number for each is 180.

similar to the boundary layer in that it exerts a controlling influence on the flows behaviour.

The influence of the free surface is then governed by an additional parameter set, namely the
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Figure 3.15: Plot showing the angular difference between the front stagnation point and the bottom

separation point for Froude numbers of 0.00 and 0.20. The Reynolds number for each case is 180.
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Figure 3.16: Plot showing the angular difference between the two separation points (i.e. wake size)

for Froude numbers of 0.00 and 0.20. The Reynolds number for each case is 180.

Froude number. However, as figure (3.17) indicates, for the Froude numbers considered here the

surface remains relatively flat and this interaction is limited.
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Figure 3.17: Rescaled surface profiles for gap ratios of 0.40 (a), 0.25 (b) and 0.22 (c) at both the

point of maximum and minimum lift. The surface position at a random instant in time for a gap

ratio of 0.10 is shown in (d). The Reynolds number for each case is 180.

3.6 Formation Length

The behaviour of the formation length may help to explain why the RMS components of the

lift and drag all initially increase as the gap ratio is reduced, but later decrease as it is reduced

further. Traditionally for bodies in which the flow field is predominantly symmetric, the for-

mation length was estimated by considering the point along a line of symmetry at which the

standard deviation in the vertical velocity was a maximum (see Griffin (1995) for a more detailed

discussion of the calculation of the formation length). As the flow field considered here has an

inherent asymmetry introduced by the presence of the free surface, there is no obvious line of

symmetry and hence a larger region of the flow must be considered. To estimate the formation

length three different approaches were used. The first simply involved calculating the standard

deviation of the vertical velocity component at every point in the flow field and then locating
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the point at which this was a maximum. The second approach was similar, but it involved

calculating the point of the maximum standard deviation in the velocity azimuthal to the cylin-

der. The third method was slightly different as it involved calculating the point (away from the

body) at which the standard deviation in the vorticity was a maximum. The first two methods

yielded similar positions, while the third produced points closer to the cylinder. However, it is

the trending behaviour which is the most important and this was found to be similar for all the

techniques. The results for the standard deviation in vertical velocity and vorticity are shown

in figure (3.18).

It is clear that the increase in RMS components of the lift and drag coincide with the forward

movement of the formation length. With regard to the standard deviation of vorticity plot,

it is clear that as the gap ratio is reduced the formation length decreases. At submergence

depths of 0.85, 0.70 and 0.55 it attains its shortest value, where the closer proximity of the

forming vortices (and thus regions of lower pressure) correlate well with the subsequent increase

in the magnitude of the time-varying forces acting on the cylinder. As the gap ratio is reduced

further, the formation length begins to grow and the RMS components of the forces decrease.

At a gap ratio of 0.25 the strength of the vortex shedding weakens quite rapidly and from this

gap ratio onward the position of the formation location begins to shift vertically away from the

surface. Furthermore, the position of the formation length for the gap ratio 0.16 case, essentially

highlights the location at which the positive vortices from the underside of the cylinder roll-up.

It is expected that the formation length observed in the current investigation will differ some-

what from that observed by Sheridan et al. (1997), as the difference in Reynolds number has a

significant affect on the formation length of a fully submerged cylinder. For the fully submerged

cylinder the behaviour of the formation length initially grows at Reynolds numbers between

roughly 200 and 2000, before decreasing again as the Reynolds number is increased further (as

discussed by Unal & Rockwell (1988a), Lin et al. (1995) and Norberg (1998)).

3.7 Flow Fields

It is perhaps best at this point to examine the behaviour of the flow fields for the range of gap

ratios considered.
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Figure 3.18: Position of the formation length calculated using the standard deviation in the vertical

velocity (top) and vorticity (bottom), for a Froude number of 0.20. The Reynolds number for each

case is 180.

3.7.1 Gap Ratios 5.00, 2.50, 1.50

At these depths no discernible surface deformation is noted with the lift, drag, moment, Strouhal

number, stagnation and separation points and formation length, all tending towards the fully

submerged case. The results at these gap ratios were primarily included so as to allow an estimate
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of the range over which the observed changes occur. For the most part the measured quantities

usually lie within a couple of percent of that of the reference cylinder. This is expected, as

depending upon the quantity measured most asymptote towards the reference cylinder values

within the ranges suggested by Lei et al. (1999) and Angrilli et al. (1982) (i.e. within two to

seven diameters).

3.7.2 Gap Ratios 1.00 to 0.10

This section will now deal with the cases for gap ratios between 1.00 and 0.10 as it is within

this range that most of the interesting and significant changes take place. A series of lift plots

in figures (3.19) and (3.20) show the progressive influence of the adjacent surface. In particular,

the continuous shift in the mean lift which is denoted by the dashed horizontal lines and the

variation of the amplitude of the lift trace should be noted. The results shown in these figures

are for a Froude number of 0.20, although similar behaviour was also observed for the free-slip

case.

It is perhaps best at this point to examine the behaviour of the vorticity field, as it is expected

that these plots will highlight the viscous transport of vorticity across the free surface. Fig-

ures (3.22) to (3.32) show the vortex street at the point of maximum lift, for both the free slip

and free surface case (i.e. Froude number 0.00 and 0.20 cases respectively). As a point of com-

parison figure (3.21) shows the vorticity field for the reference cylinder at the point of maximum

lift. The reader is recommended at this point to examine the videos showing the evolutionary

behaviour of the vorticity field, that are contained on the compact disk accompanying this thesis.

It should be noted that very slight surface curvature is observed for some of the free surface

cases, and that this curvature typically gives rise to small patches of oppositely signed vorticity

near the free surface (as shown in figures (3.28) to (3.32)).
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Figure 3.19: Plots showing the variation of the lift coefficient with time for the reference cylinder

(a), and gap ratios of 1.00 (b), 0.85 (c), 0.70 (d), 0.55 (e) and 0.40 (f). The Froude number in all

cases is 0.20 and the Reynolds number is 180.
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Figure 3.20: Plots showing the variation of the lift coefficient with time for gap ratios of 0.25 (a),

0.22 (b), 0.19 (c) ,0.16 (d), 0.13 (e) and 0.10 (f). The Froude number in all cases is 0.20 and the

Reynolds number is 180.
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Figure 3.21: Vortex street for fully submerged (reference) cylinder at a Reynolds number of 180 at

the point of maximum lift.

Figure 3.22: Vortex street for the gap ratio 1.00 case at the point of maximum lift for Froude numbers

of 0.00 (top) and 0.20 (bottom). The Reynolds number in each case is 180.

For many of the larger gap ratios within this range (i.e. 1.00 and 0.85), only minor changes in

the flow field were observed as the gap ratio was reduced. One of the more notable changes was

that observed in the Strouhal number, which appears to be strongly related to the position of

the formation length (as discussed earlier). At these depths the flow fields look similar to those

obtained for a fully submerged cylinder. Although the negative vortices are restricted in their

upward movement by the free surface and this tends to result in the reorientation of the shed

vortices. As the gap ratio is further reduced, the restricted flow conditions tend to bring the

vortices closer together (as illustrated in figures (3.22) to (3.32)), with the closer proximity of

the vortices increasing the amount of cross annihilation. The increasing level of skew in the wake

with decreasing gap ratio is shown in figure (3.33), which illustrates the time-averaged velocity

fields for gap ratios between 0.85 and 0.16.
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Figure 3.23: Vortex street for the gap ratio 0.85 case at the point of maximum lift for Froude numbers

of 0.00 (top) and 0.20 (bottom). The Reynolds number in each case is 180.

Figure 3.24: Vortex street for the gap ratio 0.70 case at the point of maximum lift for Froude numbers

of 0.00 (top) and 0.20 (bottom). The Reynolds number in each case is 180.

One of the key points to note from figure (3.33) is the increasing asymmetry in the time averaged

velocity as the gap ratio is reduced. The variation of the maximum velocity for the time-

averaged flow in the gap directly above the cylinder, is shown in figure (3.34). The extent of this

asymmetry is a crucial point that is considered later in this chapter in the section discussing the

mechanism.

It should be noted that there is some uncertainty near the free surface in the time-averaged
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Figure 3.25: Vortex street for the gap ratio 0.55 case at the point of maximum lift for Froude numbers

of 0.00 (top) and 0.20 (bottom). The Reynolds number in each case is 180.

Figure 3.26: Vortex street for the gap ratio 0.40 case at the point of maximum lift for Froude numbers

of 0.00 (top) and 0.20 (bottom). The Reynolds number in each case is 180.

velocity plots, as the interface may shift slightly (from one cell to either the one above or below

it) with time and hence any time averaging may involve occasionally counting one cell which

contains the less dense fluid and then one which contains the denser fluid. Thus some anomalous

results may be recorded in this region purely as a result of the time-averaging process. However,

it is expected that these will be limited to small band near the free surface.

As the gap ratio is reduced the wake shows further signs of the influence of the free surface,
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Figure 3.27: Vortex street for the gap ratio 0.25 case at the point of maximum lift for Froude numbers

of 0.00 (top) and 0.20 (bottom). The Reynolds number in each case is 180.

Figure 3.28: Vortex street for the gap ratio 0.22 case at the point of maximum lift for Froude numbers

of 0.00 (top) and 0.20 (bottom). The Reynolds number in each case is 180.

with the vortices becoming more confined or cramped as the move downstream. The cramped

conditions then alter both the shape and strength of the vortices such that they become more

oval shaped, with their major axis no longer lying perpendicular to the free surface (see for

example the vortex street for a gap ratio of 0.70 in figure (3.24) and vortex street at a gap ratio

of 0.22 in figure (3.28)). At the smaller gap ratio (i.e. 0.22), the positive vortices take on a

more oval appearance such that their major axis is now parallel to the free surface, which is in
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Figure 3.29: Vortex street for the gap ratio 0.19 case at the point of maximum lift for Froude numbers

of 0.00 (top) and 0.20 (bottom). The Reynolds number in each case is 180.

Figure 3.30: Vortex street for the gap ratio 0.16 case at the point of maximum lift for Froude numbers

of 0.00 (top) and 0.20 (bottom). The Reynolds number in each case i s 180.

agreement with the observations of Dimas & Triantafyllou (1994).

The ability of the vortices to diffuse across the interface also becomes more important as the

cylinder approaches the free surface. As the flux of vorticity across the free surface depends upon

the viscous acceleration of the surface fluid (which varies throughout the shedding cycle), the

presence of the adjacent surface allows for the viscous transport of vorticity across it. However,

as the convective speed of the vortices is considerably greater than their diffusive speed, it is
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Figure 3.31: Vortex street for the gap ratio 0.13 case at the point of maximum lift for Froude numbers

of 0.00 (top) and 0.20 (bottom). The Reynolds number in each case is 180.

Figure 3.32: Vortex street for the gap ratio 0.10 case at the point of maximum lift for Froude numbers

of 0.00 (top) and 0.20 (bottom). The Reynolds number in each case is 180.

expected that the vortices near to the free surface will behave as if they were suddenly exposed

to the free surface boundary condition. According to Rood (1995), this would imply that the

flow in the vicinity of the free surface should accelerate and that a jump in the velocity derivative

may be seen. Such acceleration should produce vorticity of the opposite sign in the lighter fluid

on the other side of the interface and hence patches of counter signed vorticity should form in

the lighter phase. And this is indeed what is observed, with figure (3.35) showing the vorticity
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Figure 3.33: Plots showing the time-averaged velocity contours for gap ratios of 0.85 (a), 0.70 (b),

0.55 (c), 0.40 (d), 0.25 (e), 0.22 (f), 0.19 (g) and 0.16 (h). The Froude number in each case is 0.20

and the Reynolds number is 180.
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Figure 3.34: Variation of the maximum time-averaged velocity in the gap directly above the cylinder

with gap ratio for a Froude number of 0.20. The value of the Reynolds number for each case is 180.

field in both phases.

Figure 3.35: Vorticity distribution in both phases for a gap ratio of 0.55 and for a Froude number of

0.20. The Reynolds number for this case is 180.

This behaviour suggests that the free surface acts in a fashion both similar to, and distinctly

different from, a no-slip surface. The similarity is that both act in a manner to remove the

existence of locally present vorticity. So while a no-slip surface will generate oppositely signed

vorticity (which then often cross annihilates with the vorticity which was its progenitor), a free

surface will allow local surface acceleration that results in a flux of vorticity across the interface
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and hence in its subsequent removal from the fluid. The difference, apart from the fact that

the free surface is able to deform, is in the way in which the vorticity transport and generation

occurs.

For gap ratios below 0.25, the wake behaviour tends to vary more significantly, and it is perhaps

best at this point to consider each of the smaller gap ratio cases separately.

gap ratio 0.25

At this gap ratio the shedding strength as measured by the RMS lift reduces considerably. The

shear layer from above the cylinder is now forced into closer contact with the free surface, and

hence it allows for a greater level of vorticity to be transported across the interface. The removal

of this negative vorticity is highlighted by its limiting presence at locations further downstream.

Both the movie of the vorticity field and figure (3.27) indicate that no discernible negative

vorticity is observed at distances greater than approximately 16 diameters downstream.

gap ratio 0.22

As the gap ratio is reduced, the shedding strength continues to weaken and the negative vortices

decay more rapidly. The absence of negative vorticity at positions downstream results in the

wake at these distances becoming dominated by positive vortical structures. Such structures are

largely recirculatory in that they rotate in a counter clockwise manner (i.e. they tend to direct

fluid upstream at locations close to the free surface).

gap ratio 0.19

At a gap ratio of 0.19, the shedding strength weakens further and the absence of negative

vorticity moves upstream such that it is no longer observed after a mere 9 diameters. The lack

of negative vorticity tends to result in the wake becoming more recirculatory, with larger scale

positive vortical structures forming from the coalescence of previous shed positive vortices (the

reader is recommended at this point to view the video showing the evolution of the vorticity

field for this case).
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gap ratio 0.16

As the gap ratio is reduced even further, the shedding strength continues to weaken and the

close proximity of the free surface facilitates an even greater flux of vorticity across the interface.

There is now almost no negative vorticity in the wake, apart from the shear layer which is still

attached to the cylinder. This behaviour is shown in both the movie on the attached compact

disk and in figure (3.30). The location at which the positive vortices coalesce also moves upstream

and the wake is observed to become increasingly recirculatory as it is now largely dominated by

positive vortical structures.

gap ratio 0.13

At a gap ratio of 0.13 shedding is no longer observed and the wake consists of large recirculation

bubble that is dominated by positive vorticity. This behaviour is shown both in figure (3.31) and

in the movie showing the evolution of the vorticity field. The negative shear layer shows no signs

that it is attempting to roll-up and the flow field becomes considerably less time-dependent.

gap ratio 0.10

At a gap of 0.10 (the smallest gap considered in the current study), the flow largely resembles

that at a gap of 0.13 with the wake again being dominated by a large recirculation bubble. The

bubble is larger at this smaller gap as the influence of the negative shear layer from above the

cylinder is diminished.

It is interesting to note that the recirculation bubble observed here at the small gap ratios is

considerably larger than that observed for a similarly dimensioned backward facing step. The

large discrepancy between the current case and that observed for a backward facing step, arises

as a result of the free surface boundary condition. The free surface boundary condition more

easily facilitates the reversal of flow near the free surface (while the no slip boundary for a

backward facing step does not), and as a consequence it allows the recirculating bubble to grow.

The cessation of vortex shedding and the formation of a large scale recirculation bubble, im-

mediately suggests that there is some form of analogy between this problem and that of two

side-by-side cylinders in cross flow. Sumner et al. (1999) indicates that when the gap (or pitch)

ratio between the cylinders is small, that the two side-by-side cylinders then produce single body

vortex shedding (i.e. the two bodies act like one larger body). However, as there is no second
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body in the current problem, single body shedding is not permitted and the flow resembles that

of a half body with a symmetry condition imposed. Fornberg (1985) considers symmetric flow

past a cylinder (i.e. flow past a half cylinder with a symmetry condition imposed along the

centerline) and notes that for Reynolds numbers less than 600 (the maximum value he consid-

ered), large recirculation bubbles form. Such bubbles are then found to extend over considerable

distances and span significant widths.

The fact that similar structures are observed here is not surprising when one considers that

the symmetry condition and a non deformable slip boundary condition (or weakly deformable

free-surface condition) are essentially identical. A discussion of the stability characteristics of

the wake when in this form, is deferred until the chapter dealing with the flow at larger Froude

numbers (i.e. Chapter 5).

3.8 Comparison with Experiment

While most of the results of Sheridan et al. (1997) lie outside of the Froude number range

considered in this chapter, one of their results is within its scope. The flow at a gap ratio of

0.40 and a Froude number of 0.22 is considered by Sheridan et al. (1997), with figures (3.36)

and (3.37) showing the pictorial comparison between their results and those from the current

study at a gap ratio of 0.40 and a Froude number of 0.20. To obtain agreement between the

results, it is necessary to consider them both at the same point in the shedding cycle. To make

such a comparison easier, videos of the numerically predicted solution that show the evolution

of both the vorticity field and the transport of fluid were produced. The comparison between

the two cases is not particularly favourable at this Froude number, with the vorticity field of

Sheridan et al. (1997) not showing any indication of discrete vortices in the near wake. The

results do, however, compare much more favourably with those of Miyata et al. (1990), with the

comparison at a gap ratio of 0.25 shown in figures (3.38) and (3.39).

The difference between the current results and those of Sheridan et al. (1997) may be to be

due to differences in the Reynolds number and perhaps more importantly its influence upon

the formation length. The latter is asserted, as the match up between the current results and

those of Miyata et al. (1990) are particularly good, despite the more the 250 fold difference in

Reynolds number. However, it is anticipated that the formation length will tend to be shorter

at both the smaller and larger Reynolds numbers, while it is likely to be longer for the Reynolds

numbers considered by Sheridan et al. (1997).
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Figure 3.36: Velocity vector field from Sheridan et al. (1997) (top), and the current numerical

prediction at the point of minimum lift (bottom). The result from Sheridan et al. (1997) is for a gap

ratio of 0.40, a Froude number of 0.22 and for a Reynolds number between 5990 and 9120, while

the numerical prediction is for a gap ratio of 0.40, a Froude number of 0.20 and a Reynolds number

of 180.
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Figure 3.37: Vorticity field from Sheridan et al. (1997) (top), and the current numerical prediction

at the point of minimum lift (bottom). The result from Sheridan et al. (1997) is for a gap ratio

of 0.40, a Froude number of 0.22 and for a Reynolds number between 5990 and 9120, while the

numerical prediction is for a gap ratio of 0.40, a Froude number of 0.20 and a Reynolds number of

180.
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Figure 3.38: Visualized flow field of Miyata et al. (1990) and the current numerical prediction at a

similar instant in time. The result from Miyata et al. (1990) (top) is for a gap ratio of 0.25 and for

a Froude number of 0.24, while the numerical prediction (bottom) is for a gap ratio of 0.25 and for

a Froude number of 0.20.
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Figure 3.39: Visualized flow field of Miyata et al. (1990) and the current numerical prediction at

another instant in time. The result from Miyata et al. (1990) (top) is for a gap ratio of 0.25, a

Froude number of 0.24 and a Reynolds number of 49600, while the numerical prediction (bottom)

is for a gap ratio of 0.25, a Froude number of 0.20 and a Reynolds number of 180.
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3.9 Suppression of Vortex Shedding

The gap ratio at which vortex shedding is first suppressed is of interest as it represents the

critical depth at which the global instability is extinguished, while also being a value which

can be compared with the results of others. Before comparing the critical gap ratios, it is first

necessary to highlight the different ways in which the critical gap has been measured. Most

authors such as Bearman & Zdravkovich (1978), Angrilli et al. (1982), Grass et al. (1984), and

Price et al. (2000) all consider the spectra of the fluctuating velocity as measured at a number

of positions in the wake (usually using hot wire probes). Others such as Miyata et al. (1990)

measure the spectra associated with the lift force, while Lei et al. (1999) suggests that the

RMS component of the lift is a more appropriate method. All approaches are expected to yield

similar results, although Lei et al. (1999) indicates that the hot-wire method is not likely to be

systematic. In the current investigation, three approaches have been adopted: the first involves

measuring the lift spectra, the second the RMS lift, and the third required a consideration of the

vorticity field (such that the presence of discrete vortices of both signs was deemed to constitute

shedding). The third method is more subjective, but it allows for a more physical insight into

the wake structures and it is the method used in the proceeding section.

For the current investigation, vortex shedding was observed down to a gap ratio of about 0.16

when using all of the methods just described. Although a significant drop in the spectra was

noted for gap ratios of 0.25 and below. This gap ratio is smaller than that observed by others,

such as Miyata et al. (1990) (free surface, ceases at gap 0.35), Bearman & Zdravkovich (1978)

(no slip, ceases at gaps between 0.20 and 0.30) and Grass et al. (1984) (no slip, ceases for gaps

below 0.25). One possible explanation for the difference is the altered boundary condition on

the adjacent surface. However, while this may explain the difference between the current results

and those for a no-slip boundary, it does not explain the difference between the current findings

and those of Miyata et al. (1990).

While differences in the Froude numbers may play a part, with the difference being roughly

20% (which is not insignificant), the step increase in Strouhal number reported by Miyata et al.

(1990) at a gap ratio of 0.35 cannot be reasonably explained. As mentioned earlier, it is believed

that the significant drop in the magnitude of the spectrum for the vertical lift force observed by

Miyata et al. (1990), indicates that shedding is close to or may have even ceased. This suggests

that their frequencies measured at the smaller gap ratios are not frequencies associated with the

weakened shedding, but rather those associated with the structural adjustment of the flow. The
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small amplitudes associated with their spectra support this, and it is at this point that one can

more fully appreciate the suggestion by Lei et al. (1999) that the RMS lift is a better measure

of the suppression of vortex shedding.

The displacement thickness (i.e. the distance by which the external flow is displaced by the

slower moving flow inside the boundary layer) is expected to have some influence on the depth

at which shedding is suppressed, as it gives an approximation for the range of influence of the

cylinders boundary layer. Thus it is expected that the depth at which shedding is suppressed

may be in part a function of Reynolds number. For the cases in which a no-slip wall boundary is

considered, the wall boundary layer and cylinder boundary layer will interact, hence suggesting

that a combination of the two may be more important.

To test the influence of the displacement thickness in the current study, simulations at two

different Reynolds numbers were performed for cases at shallow submergence depths (where

shedding was found to cease). The simulations indicate that shedding is suppressed at a gap

ratio of approximately 0.13 at a Reynolds number of 180, while at a Reynolds number of 500,

weak shedding (or a form of flapping) was observed to persist down to a gap ratio of 0.10 (ceasing

at 0.07). In order to get a crude estimate of the displacement thickness, it is assumed that the

boundary layer on the cylinder will behave roughly like a flat plate for short sections along the

cylinder. Hence the displacement thickness should be roughly δ∗ = s1.721

Re
1
2
s

.

For the cases examined here at a Reynolds number of 180, δ∗ ≈ 0.129 when one assumes that

the length s is distance from stagnation point to separation point (roughly 2.00 radians). At

a Reynolds number of 500 the displacement thickness is then roughly δ∗ ≈ 0.077. This result

(albeit being very crude) is in good agreement the numerical simulations (i.e. shedding should

experience some changes at a gap ratio of approximately 0.13 for a Reynolds number of 180,

and at 0.077 for a Reynolds number of 500). Hence it is expected that the gap ratio at which

shedding ceases, may show some Reynolds number dependence. However, it is anticipated that

the trends observed in Strouhal number, lift, drag and moment should be all be maintained,

although the gap ratios at which they occur may be shifted slightly.

3.10 Vorticity Distributions

For a fully submerged cylinder, the pressure gradient and hence the vorticity generating regions

on the cylinder are symmetric when averaged over one shedding cycle. However, this is not
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obviously the case for a cylinder close to a free surface, where the deformable free surface may

introduce asymmetries in the pressure field and hence in the regions of vorticity generation

upon the cylinder. To examine what effect such asymmetries are likely to have, it is necessary

to consider the net flux density of vorticity.

A derivation of the flux density of vorticity for a general cylinder is now presented, with the

intention that the result will yield information pertaining to the net generation of vorticity. This

approach largely follows that of Morton (1984), who considered the flux density of vorticity for

a flat plate.

The derivation begins by first considering the azimuthal component of the two dimensional

Navier-Stokes equations in cylindrical polar coordinates.
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Its application on a stationary cylinder of radius R0 is then considered, so that ur = 0 and

uθ = 0 at r = R0. Equation (3.1) then simplifies to yield the following
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From equation (3.2), it can be seen that
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which upon substitution into the flux density of vorticity equation (equation (3.4)) yields,
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If equation (3.6) is then integrated around the cylinder the result is

∫
ν
∂ω

∂r
dθ = 0, (3.7)

which indicates that the net flux density of vorticity is zero.

While this finding does not reveal which regions of the cylinder are responsible for most of the

vorticity generation, it does indicate that equal levels of oppositely signed vorticity are being

produced. As stated by Morton (1984), Lighthill (1963) identifies −ν ∂ω∂z as the diffusive flux

density (or flow per unit area per unit time) of positive vorticity from a plane flat boundary,

as the local boundary source of vorticity (with z being aligned normal to the plane boundary).

The extension to a cylinder implies that at any instant in time the flux density of vorticity on

the cylinder must be zero. This suggests that there must be a balance in the flux density of

vorticity throughout the vortex shedding cycle, such that the vorticity flux of both positive and

negatively signed vorticity is always in balance. This result is crucial as it indicates that the

presence of an excess or a deficit in one sign of vorticity in the general flow field, can not be

attributed to an uneven generation of a particular sign of vorticity on the body.

As indicated in Chapter one, the vorticity and hence the circulation within one fluid that is

bounded by a free surface need not be conserved (with the flux of vorticity across the interface

being governed by the local tangential acceleration of the free surface fluid (Rood (1994b))).

Hence one must be cautious when attempting to ascribe meaning to vorticity distributions.

The presence of the free slip boundaries at the top and bottom of the computational domain

ensure that global circulation is not conserved, however, it was measured anyway so as to get an

indication of the circulation associated within each fluid. For a gap ratio of 0.40 and a Froude

number of 0.20, figure (3.40) illustrates the variation of the circulation with time for the entire

domain, while figures (3.41) and (3.42) show the variation of the circulation with time for each

fluid. While it is possible to relate forces to vorticity distributions for a single fluid (for example

see Lin & Rockwell (1996) and Noca et al. (1997)), it is not obvious how such an approach could

be extended to cases in which more than one fluid is present. This makes quantitative estimates

of the forces from the vorticity distribution difficult.
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Figure 3.40: Variation of the total circulation with time for a gap ratio of 0.40, a Froude number of

0.20 and a Reynolds number of 180.
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Figure 3.41: Variation of the circulation in the denser fluid with time for a gap ratio of 0.40, a Froude

number of 0.20 and a Reynolds number of 180.

3.11 Vortex Paths

The path traced out by the vortices as they move downstream is also of interest as it should

illustrate the influence of the free surface upon their motion. Three cases are considered, namely
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Figure 3.42: Variation of the circulation in the lighter fluid with time for a gap ratio of 0.40, a Froude

number of 0.20 and a Reynolds number of 180.

the case of the fully submerged reference cylinder and the free surface cases at a gap ratios of

0.70 and 0.25 respectively. At a gap of 0.70, the path traced out by the vortices shows some

degree of rebound, with the negative vortex initially approaching the surface and the bouncing

or moving away. This bouncing phenomenon ties in well with what was observed by Ohring &

Lugt (1991), where they find vortex rebounding at low Reynolds numbers. However, as Ohring

& Lugt (1991) noted, the degree of rebounding is likely to vary somewhat with Reynolds number.

The convection speed of the vortices as the travel downstream also changes with submergence

depth and this is likely to be related to the confined conditions in the wake cavity. Estimates of

the convective speeds of the positive vortices are as follows: reference cylinder 0.8656, gap ratio

of 0.70 and Froude number of 0.20, 0.7534 and gap ratio of 0.25 and Froude number 0.20, 0.6352.

The observed slowdown in the convection speed with decreasing gap ratio appears to be related

to the ease via which fluid may enter the wake cavity. Figures (3.43), (3.44) and (3.45) show the

paths traced out by both the positive and negative vortices as they are convected downstream.
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Figure 3.43: Locus of the vortex cores over an number of periods for the fully submerged cylinder at

a Reynolds number of 180.

Figure 3.44: Locus of the vortex cores over an number of periods for the gap ratio 0.70, Froude

number 0.20 case. The Reynolds number is 180.

3.12 Mechanism for the Cessation of Vortex Shedding

All of the discussion so far has primarily focused on observations, but ideally one would like to

know why the observed changes in the wake behaviour occur. To get an idea as to why vortex

shedding is suppressed, it is perhaps desirable to know where the fluid making up a vortices
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Figure 3.45: Locus of the vortex cores over an number of periods for the gap ratio 0.25, Froude

number 0.20 case. The Reynolds number is 180.

comes from. To this end, inert tracer particles were injected into the numerical simulation

so that one could observe which regions of fluid make up the forming vortices. As a starting

point, this was done for the reference cylinder so as to enable a point of comparison to be

obtained. The particle transport videos for the reference cylinder are of considerable worth, as

they highlight the extent of the entrainment observed in the wake of the fully submerged cylinder.

In particular, it is interesting to note that particles from more than 1.5 cylinder diameters on

either side of the cylinder are drawn into the forming vortices. It is also interesting to note

that the fluid that vertically spans only 2 diameters at a position 8 diameters upstream of the

cylinder, expands such that it vertically spans roughly 6 diameters at locations approximately

12 diameters downstream. This behaviour shown is figure (3.46). By simply watching the video

for this case it is clearly visible that the presence of an adjacent surface (be it no slip, free slip

or free surface) will severely alter the entrainment process and hence the overall dynamics of the

wake.

The fact that similar behaviour is observed in the free slip, the low Froude number free surface,

and the no-slip boundary cases, suggests that the governing mechanism for the cessation of

vortex shedding with decreasing gap ratio must be common to all situations. Hence it appears

as if this problem is primarily governed by a geometrical constraint as opposed to one peculiar

to a given set of boundary conditions.
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Figure 3.46: Particle transport plots for flow past a fully submerged cylinder at a Reynolds number

of 180.

Figure (3.47) shows the particle tracer plot for a gap ratio of 0.40 and a Froude number of 0.20.

It is clear from figure (3.47) that the surface blocks the upward movement of fluid, and in doing

so forces the vortices into closer contact with one another. It is also apparent that fluid released

from below the cylinder is being drawn up toward the surface. The presence of a significant

number of the particles that originated above the cylinder within the vortex cores of vortices

formed from beneath the cylinder, highlight the entrainment of the fluid which previously made

up the negative vortices into the positive vortices.

The particle tracer plots for the smaller gap ratio cases (see figures (3.48), (3.49) and (3.50)

and the movies for each case) allude to what may be the underlying mechanism governing the

suppression of vortex shedding. In particular, figure 3.50 (for a gap ratio of 0.22 and a Froude
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Figure 3.47: Particle transport plot for a gap ratio of 0.40 and for a Froude number of 0.20. The

Reynolds number is 180.

number of 0.20), shows the vortex formed from beneath the cylinder almost touching the free

surface. The movement of this fluid towards the surface restricts the avenue for entrainment,

of both the vortex formed from beneath the cylinder and the vortex forming at the top of the

cylinder. It also has the effect of slowing the flow at locations close to the free surface, as the

positive vortex from beneath the cylinder will tend to establish a velocity gradient which assists

in the slowing/reversal of fluid close to the surface.

The close proximity of the surface also limits amount of fluid available to facilitate the formation

of vortices. It is believed that it is the time taken to acquire such fluid, that explains the

increasing period (of vortex shedding) observed as the gap ratio is reduced. Such a lengthening

in the period is akin to the process suggested by Green & Gerrard (1993), who indicate that

the period for a fully submerged cylinder depends upon the time taken for sufficient vorticity to

accumulate outside of the region of high shear stress (i.e. in a region from which it can be shed).

For many of the cases in which the gap ratio is small, the fluid required by the forming vortex

must be entrained upstream, from downstream. In these cases the fluid from further down-

stream is forced to flow upstream in order to satisfy the entrainment demands, and this process

tends to preferentially strip fluid from the previously shed negative vortices (as they tend to

constitute regions of higher pressure). The reader is recommended at this point to view the

particle transport videos for the smaller gap ratio cases, as such videos highlight the upstream

entrainment of fluid.

When the vortex from beneath the cylinder pinches off the supply of fluid from further down-

stream, the only fluid available to be entrained into each of the vortices making up the wake

cavity is the fluid making up the vortices themselves. This generally leads to a more significant
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portion of the fluid passing over the cylinder being pulled down and entrained into the posi-

tive vortex which formed beneath the cylinder and hence the flow becomes considerably more

skewed. As the gap ratio is decreased the entrainment of the fluid making up one vortex into

the other, becomes more severe, until eventually most of the downstream transport of the fluid

passing over the cylinder is via entrained into the vortex from beneath the cylinder. And it is at

this point that shedding ceases. The reader is recommended to consider the particle transport

video for the gap ratio of 0.13, Froude number 0.20, case (in which there is almost no transport

of fluid downstream near the free surface).

The notion that the fluid from downstream is drawn upstream to feed the forming vortex at

small gap ratios also explains to some extent the rapid decay of the negative vorticity with

downstream distance. Consideration of the vortex street images (figures (3.22) to (3.32) clearly

show the negative vortices from above the cylinder diminishing at successively shorter distances

as the gap is reduced. This may in part be due to the drawing of the fluid making up these

vortices upstream, so as to satisfy the entrainment demands of the later shed vortices. It is this

cannibalization or recycling of the fluid which made up the vortices shed earlier, that assists in

the premature demise of the negative vortices with downstream distance. This is highlighted

when one considers that the structures resembling discrete negative vortices have vanished after

progressively shorter distances with decreasing gap, leaving only larger scale positive vortices at

greater distances.

It may be advantageous at this point to look at this same phenomenon in terms of the local

pressure field, which makes up part of the actual solution and hence may perhaps provide

greater insight. Examination of the pressure field indicates that vortices constitute regions of

low pressure and hence will tend to draw fluid towards them (entrainment process), as fluid will

flow in the direction of decreasing pressure gradient. This applies equally to both the negative

vortex formed from above and the positive vortex formed from beneath the cylinder. As the

most recently formed vortices tend to have the highest concentrations of vorticity, they also tend

to have the lowest pressures associated with them. Hence, fluid will be drawn to these vortices.

For the case of a fully submerged cylinder there is a ready supply of fluid which can be attracted

to each vortex, however, for the case considered here in which the surface limits the amount of

fluid available, both vortices are forced to compete for fluid. The bias in available fluid created

by the adjacent surface then results in the establishment of a pressure gradient which facilitates

a reduction (and in some cases a reversal) in the convective velocity of the fluid close to the free

surface.
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The reduction or reversal of the flow in this region intromits fluid upstream from previously shed

vortices (and in particular previously shed negative vortices, due to their location closer to the

surface). The free-surface boundary condition clearly facilitates the upstream movement of fluid,

whereas the no-slip condition would tend to hinder the reverse flow and this may explain why

shedding was observed down to smaller gap ratios in the current study. One may observe that

the pressure just above the vortex from beneath the cylinder tends to increase as it is pushed

upward (against the surface which is fairly rigid at this Froude number), and that this assists

with the upstream movement of some of the fluid which made up the last shed negative vortex.

It is also apparent that the pressure associated with the vortex core is significantly lower in the

downstream region for the shed vortices from beneath the cylinder as opposed to those from

above. This seems to be in part due to the fact that the negative vortices are being ‘squashed’

against the almost rigid free surface. The pressure field for a gap ratio of 0.22 and a Froude

number of 0.20 is shown in figures (3.51) and (3.52).

Figure 3.48: Particle transport plot for a gap ratio of 0.16 and for a Froude number of 0.20. The

Reynolds number is 180.

The suggestion by Koch (1985) that an asymmetric wake can not support an absolute instability

implies that the cessation of shedding is likely to be due to an asymmetry in the velocity profile.

It is believed that it is the reduction in the velocity near the surface, which is largely brought

about by the close proximity of the positive vortices, that introduces this asymmetry. This notion

is supported at least in part, by the rapid reduction of the maximum time-averaged velocity in

the region just above the cylinder with gap ratio, as shown in figure (3.34). Thus it appears as
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Figure 3.49: Particle transport plot for a gap ratio of 0.19 and for a Froude number of 0.20. The

Reynolds number is 180.

Figure 3.50: Particle transport plot for a gap ratio of 0.22 and for a Froude number of 0.20. The

Reynolds number is 180.

if it is the close proximity of the positive vortices from beneath the cylinder, in conjunction with

the lack of available fluid for discrete vortex formation, that leads to the cessation of shedding.

To reiterate, the mechanism which results in the cessation of vortex shedding is believed to be

as follows. The roll-up of the positive vortex from beneath the cylinder pushes the fluid directly
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Figure 3.51: Plot showing the pressure field at the same instant as the particle transport plot in

figure (3.50) (gap 0.22, Froude number 0.20, Reynolds number 180).

Figure 3.52: Plot showing the pressure plot with vorticity overlayed at the same instant as the particle

transport plot in figure (3.50) (gap 0.22, Froude number 0.20, Reynolds number 180).

above it upwards and the rigid nature of the adjacent surface (in the case of a free surface,

the surface is only rigid at low Froude numbers) results in the surface remaining relatively flat.

Hence the pressure associated with the fluid located above the vortex from beneath the cylinder

increases. This pressure rise results in the establishment of a pressure gradient that helps to
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promote the movement of the fluid close to the surface upstream toward the region of lower

pressure. Now as the most recently formed vortices correspond to the regions of lowest local

pressure, the fluid located above the positive vortex will tend to accelerate towards the vortex

cores. The restricted flow conditions and in particular those at smaller gap ratios, ensure that

the previously shed vortices from the upper half of the cylinder always possess a greater pressure

than those from the lower half of the cylinder. This is the case, as all of the fluid closer to the

surface is to some extent being pushed upward. The sign of the vortices (i.e. their direction of

spin) will then determine the path taken by the fluid as it moves towards these regions of lower

pressure.

The establishment of these pressure gradients imply that the flow close to the surface should be

slowed and in some cases reversed at positions just above the positive vortices. The closer the

cylinder is to the surface the stronger the pressure gradient created and hence the greater the

impact of positive vortices from beneath the cylinder on the local flow. This phenomenon will

tend to draw in fluid from previously shed negative vortices (as they are being pushed against the

surface, thus increasing the local pressure in the regions above the positive vortices), which will

subsequently result in the premature decay of these negative vortices with downstream distance.

The intromission of fluid upstream from downstream into the forming vortex, is likely to occur

for free-slip, free-surface and no-slip boundary conditions. However, the ease via which this

intromission of fluid upstream from downstream occurs will depend on the boundary condition.

Indeed, for the free-slip and free-surface (at low Froude number in which the surface barely

deforms) cases, it is expected that this intromissive process will be assisted by the zero tangential

surface stress condition. For the no-slip case on the other hand, the nature of the local wall

boundary layer is likely to influence this behaviour.

As the gap ratio is reduced the avenue through which fluid from downstream may move upstream

is increasingly restricted. However, the fluid near the surface is still drawn upstream due to the

pressure gradient and at small gap ratios most of the fluid making up the negative vortex shed

in the last cycle, is intromitted upstream (with this process best observed via consideration of

the particle transport videos for the gap ratio 0.16, Froude number 0.20 case). The stripping of

fluid from previously shed negative vortices appears to take on the form of ‘vortex swallowing’,

in which much of the fluid from a previously shed vortex is ‘swallowed’ or intromitted upstream,

into the vortex of the same sign shed during the following cycle (with this process again best

illustrated in the video). This ‘swallowing’ coincides with formation of larger scale positive

vortical structures that arise from the coalescence of previously shed positive vortices.
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At a gap ratio of 0.19 and a Froude number 0.20, this is observed to occur at the second most

recently shed negative vortex (see the video). In this case the fluid making up the third most

recently shed vortex is ‘swallowed’ or intromitted into the second most recently shed vortex.

This is not entirely surprising, as the presence of the positive vortices from beneath the cylinder

will tend to force the fluid above them to move upstream while also becoming partly entrained

into the more dominant positive vortices.

The ‘vortex swallowing’ process tends to move further and further upstream with decreasing

gap ratio, until it eventually moves to the rear of the cylinder. The lack of negative vorticity

at locations downstream of the cylinder at the smaller gap ratios, results in a slowdown in the

convection of the positive vortices as there is little mutual induction or propulsion to assist their

downstream convection. Under these circumstances there is a tendency for the positive vortices

to move up into the lower energy part of the wake (i.e. the region behind the cylinder and closer

to the surface), thus leading to the formation of large scale positive vortical structures.

The larger scale positive vortical structures typically form when one positive vortex moves

upward slightly and in doing so it pushes the fluid above it both upstream and downstream.

The next shed positive vortex will then have more fluid above it and hence it will not move as

far upward. This creates a situation in which one positive vortex is closer to the surface than

the one shed after it. The slight height difference results in the positive vortex closer to the

free surface having a slower convective velocity. When the later shed positive vortex eventually

catches the one shed prior to it the two vortices are observed to coalesce.

This degeneration of the vortex street may be what Taneda (1965) referred to (for the case

of a cylinder close to a no-slip wall), when he mentioned that the wavelength of the vortices

increased with downstream distance and that the wake broke down after a few wavelengths. The

formation of these large structures is also consistent with the comments of Angrilli et al. (1982),

who indicate that the flow is slower on the wall side at locations downstream of the cylinder.

The coalescence of the positive vortices assists in the transport of fluid upstream, as the upper

slowly moving positive vortex revolves around the one shed later, in a process that is again best

illustrated in the videos (see videos for gap ratios of 0.16 and 0.19). At gap ratios approaching

the depth at which shedding ceases completely, for example gap 0.16 Froude number 0.20, much

of the fluid located above and behind the cylinder simply oscillates backwards and forwards,

with little actually being removed (i.e. much of the fluid is being recycled) with entrainment

into the positive vortices dominating its downstream transport. For these cases the residence
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time of the fluid located in this region is high, with figures (3.53) and (3.54) showing particles

colored by residence time, for the free surface case at gap ratios of 0.16 and 0.19 respectively.

Figure 3.53: Particles colored by residence time for a gap ratio of 0.19 and for a Froude number of

0.20. The Reynolds number is 180.

Figure 3.54: Particles colored by residence time for a gap ratio of 0.16 and for a Froude number of

0.20. The Reynolds number is 180.

When the gap ratio is reduced even further much of the fluid from above the cylinder will be

pushed against surface, resulting in an increase in the local pressure in this entire region. When
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this is coupled with an insufficient intromission of fluid into the forming negative vortex, the

two most recently formed/forming vortices are forced closer together with each attempting to

entrain fluid from the other. As the positive vortex from beneath the cylinder will tend to be

stronger having not had to interact with the free surface as well as not having its fluid supply

limited, it will constitute the region of lower pressure. Much of the fluid that would have been

entrained into the negative vortex is now drawn toward the positive vortex and at this point

shedding ceases. Aspects of this phenomenon are shown in figure 3.55, which shows the particle

transport plot for a gap ratio of 0.16, and a Froude number of 0.20. However the reader is

recommended to view the video for this case which more clearly illustrates the entire process.

Figure 3.55: Particle transport plot for a gap ratio of 0.16 and for a Froude number of 0.20. The

Reynolds number is 180.

The next question that arises is: what influence does a more readily deformable free surface

have on the events described above? This question will be considered in the next chapter which

looks at the flow at larger Froude numbers.

3.13 Summary

It is clear that the free-slip surface and the free surface at low Froude number, share similar

characteristics with flow past a cylinder close to a no-slip boundary. The agreement in the trend-

ing behaviour of most quantities, suggests that the problem is largely governed by geometrical

constraints. A mechanism which describes the cessation of vortex shedding is proposed, and it
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is envisaged that this mechanism should be applicable to the free-slip, free-surface, and no-slip

cases.
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Chapter 4

Froude Numbers 0.25, 0.30, 0.35 and

0.40

In this chapter the flow in the region of parameter space in which the wake begins to shift

away from being parallel is examined, such that the influence of skew is now more prevalent.

Although this discussion will be largely limited to the cases in which the fluid from above the

cylinder remains attached to the free surface, it will illustrate the impact that significant surface

curvature has on the wake. The first part of this chapter will examine the results with key points

being noted as they arise, while the latter part will again be dedicated to a discussion of the

mechanism which is believed to be responsible for the observed behaviour.

The study will primarily focus upon changes in Strouhal number as well as the mean and RMS

components of both the lift and drag. In addition, the mean moment acting upon the cylinder is

examined, as is the behaviour of the stagnation and separation points, the pressure distribution,

the mass flux over the cylinder, the formation length, the local Froude number (Froude number

based on the submergence depth) and the path and velocity of the vortices as they are convected

downstream.

To the author’s knowledge, little work on flow past a cylinder close to a free surface has been

conducted within this Froude number range, with the exceptions being Miyata et al. (1990) (at

a Froude number of 0.24), and one result from Sheridan et al. (1997) (at a Froude number of

0.35). Hence comparisons with the results of Miyata et al. (1990), the previous chapter, and

with those of Sheridan et al. (1995), Sheridan et al. (1997) and Hoyt & Sellin (2000), (with the

last three studies all looking at predominantly larger Froude numbers) have been made.
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The influence of the Froude number on the surface deformation is discussed by Yu & Tryggvason

(1990), Ohring & Lugt (1991), and Lugt & Ohring (1992). In each of these investigations, the

interaction of vortices with a free surface were considered, and it was noted that the level of

surface deformation was largely dependent upon the Froude number (with the length scale in

the Froude number used by Ohring & Lugt (1991) being the initial vortex separation). The

definition of the Froude number used in the current investigation follows this approach, with

the cylinder diameter being used as the length scale. Some free surface behaviour is described

in terms of a Froude whose length scale is the submergence depth (with hydraulic jumps being

one example). To allow for a discussion that includes both definitions, the latter one (i.e. the

one based on the submergence depth) has been deemed to be the local Froude number.

Ohring & Lugt (1991) indicate that at intermediate Froude numbers (approximately 0.40), some

degree of vortex bouncing (or rebounding) was observed, whereby the path of the primary vortex

center describes a loop. This bouncing occurs as a consequence of the presence of secondary

vorticity formed by the interaction of the primary vortex with the free surface. However, this

rebounding was found to be a function of Reynolds number (with its influence tending to be

stronger at lower Reynolds numbers), and hence this phenomenon may have some slight impact

in the current investigation.

Ohring & Lugt (1991) also note that although the level of surface deformation is greater at

larger Froude numbers, it is the sharpness of the scar (region in which surface curvature changes

sign) that determines the amount of surface vorticity present (which is largely as expected, as

the surface vorticity for a steady surface is 2κvθ, where κ is the surface curvature, and vθ is the

component of the velocity tangential to the free surface).

Before proceeding further, it is beneficial to consider what effect the increasing Froude number is

likely to have upon the flows behaviour so that key points can be sought out in advance. Firstly,

it is expected that the gap ratio at which shedding ceases is likely to grow with increasing Froude

number, as the greater levels of time varying surface curvature should increase the flux of negative

vorticity (vorticity from the upper side of the cylinder) across the interface. This assumption

follows directly from the statement by Rood (1994b) that the flux of vorticity through a free

surface depends on the viscous acceleration of the free surface fluid in the direction tangential

to the free surface. Hence, the acceleration associated with a free surface whose position is

constantly changing (largely in response to the underlying time dependent vorticity field) will

permit a flux of vorticity across the interface. The removal of this vorticity is then expected to

result in the wake being dominated by positive vortical structures, particularly at smaller gap

121



ratios, and it is thus anticipated that the wake will become skewed at progressively larger gap

ratios with increasing Froude number.

To observe the influence of the surface curvature upon the wake, a series of simulations at

Froude numbers of 0.25, 0.30, 0.35 and 0.40 were considered. The change in Froude number

was facilitated by the modification of the body force (g) present in the simulations. This was

achieved by using the solutions from the Froude number 0.20 case and slowly ramping the body

force until the desired Froude number was obtained. Such an approach was adopted to ensure

that the Froude number could be changed independently of both the Reynolds number and fluid

properties. The submergence depths considered here were the same as those examined in the

previous section, namely; 0.10, 0.13, 0.16, 0.19, 0.22, 0.25, 0.40, 0.55, 0.70, 0.85, 1.00, 1.50, 2.50

and 5.00. The behaviour of the flow over this range of parameters is now considered.

4.1 Flow Behaviour and Surface Deformation

For the most part the flow field at the lower Froude numbers (i.e. 0.25 and 0.30) largely resembled

that in the previous chapter, with the flow from above the cylinder following the free surface,

and only slight surface curvature being noted. At the larger Froude numbers (i.e. 0.35 and 0.40),

the surface curvature was more pronounced and a flux of positive vorticity into the flow was

observed, with some small scale wave breaking noted at gap ratios between 0.40 and 0.70. Much

of the flow behaviour is best illustrated in the videos, which are contained on the compact disk

accompanying this thesis. However, the vortex streets for a selection of the gap ratios spanning

the range of Froude numbers considered here are shown in figures (4.1) to (4.4).

An interesting point to note in figures (4.1) to (4.4) is the rapid decay of the negative vorticity

with distance downstream. This appears to be due to two major effects: the first is the flux of

vorticity across the free surface, while the second is the cannibalization of the fluid making up

these vortices by the more recently shed negative vortices. This cannibalization process is again

best illustrated via consideration of the videos on the attached compact disk.

To gain an understanding of what the surface looks like in the region close to the cylinder, the

position of the free surface was examined. The surface position was defined by locating the

point at which the volume fraction was equal to 0.5 (which yields the location of the interface

position within a grid cell, hence giving better accuracy near the cylinder where the grid is finer

and more inaccurate results at positions away from the cylinder, where the vertical grid spacing
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Figure 4.1: Vortex streets for a gap ratio of 0.55 and for Froude numbers of 0.25, 0.30, 0.35 and

0.40 (top to bottom). The Reynolds number for each case is 180.

is larger). For cases in which the shedding was close to ceasing, had ceased, or was modulated

(i.e. the lift trace showed some degree of modulation), changes in the behaviour of the wake had

the capacity to produce small alterations in the surface position which could travel upstream.

For most cases, these were transient, and they tended to die down with time. However, in some

instances in which the wake was continuously changing in a non purely periodic manner, these

changes congregated near the inlet in the form of a mild undulation. Such an undulation appears

to result from the changes in the wake (i.e. changes in the wake associated with the cessation
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Figure 4.2: Vortex streets for a gap ratio of 0.40 and for Froude numbers of 0.25, 0.30, 0.35 and

0.40 (top to bottom). The Reynolds number for each case is 180.

of shedding or by its weakening tended to result in the increase in the surface elevation near

the inlet). It should be noted that no trapped wave was observed (i.e. there was no evidence

to suggest that there was a wave that was being continuously reflected from the ends of the

domain). These height changes were in the order of the height of one grid cell near the inlet

which was 0.03, and in the worst cases the height of 2 grid cells (0.06).

The variation of the surface height near the inlet is shown in figures (4.5) and (4.6), which

illustrate one of the more extreme cases at the points of both maximum and minimum lift. As

124



Figure 4.3: Vortex streets for a gap ratio of 0.25 and for Froude numbers of 0.25, 0.30, 0.35 and

0.40 (top to bottom). The Reynolds number for each case is 180.

previously mentioned, these changes did vary slightly in conjunction with the wake behaviour,

but are believed to have little impact on the overall flow results. It should be stressed that

the surface position at distances further from the inlet varied little, with the variation in height

between the results at different Froude numbers at a distance of 5.9 diameters upstream (i.e.

the position at which the surface height was measured by Sheridan et al. (1997)) varying by at

most the height of one grid cell.

The plots of surface positions near the cylinder in figure (4.7) show the rise in the level of
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Figure 4.4: Vortex streets for a gap ratio of 0.16 and for Froude numbers of 0.25, 0.30, 0.35 and

0.40 (top to bottom). The Reynolds number for each case is 180.

surface deformation with increasing Froude number. The variation in the surface position with

time is also much greater at the larger Froude numbers, with the level of surface distortion

experienced during one shedding cycle becoming more significant. It is also important to note

where the surface has been distorted at each of the extremes in the shedding cycle. At lower

Froude numbers, the level of distortion was small and the surface was smooth with only gentle

undulations being noted (i.e. minimal surface distortion was observed at both of the extremes

in the shedding cycle). At larger Froude numbers the surface distortions became more marked,
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Figure 4.5: Plots showing the variation in the surface position near the inlet at the point of maximum

(left) and minimum (right) lift, for Froude numbers of 0.25, 0.30, 0.35 and 0.40 at a gap ratio of

0.40. The Reynolds number in each case is 180.
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Figure 4.6: Plot showing the variation in the surface position near the inlet at the point of minimum

lift but this time over a larger range to give perspective. The gap ratio is again 0.40 and the Froude

numbers considered are 0.25, 0.30, 0.35 and 0.40. The Reynolds number in each case is 180.

and there was a notable difference between the levels of deformation at the two extremes in

the lift cycle. Typically the surface deformation was more severe at the point of maximum

lift, and it tended to occur at positions closer to the cylinder. However, it should be noted

that the level surface deformation varied with both Froude number and gap ratio. The Froude
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Figure 4.7: Variation of the surface position with Froude number for gap ratios of 0.40 and 0.55 and

Froude numbers of 0.25 and 0.30. The Reynolds number in each case is 180.

number dependence of the distortion is best illustrated by considering the surface positions at

two different gap ratios for two different Froude numbers. Figure (4.8) illustrates the influence

of the Froude number on the surface distortion. It was interesting to note that the surface

scar was generally sharper at the point of minimum lift at a Froude number of 0.35, while at a

Froude number of 0.40 it tended to be sharper at the point of maximum lift. The variation of

the surface position with time was in general accord with the comments of Hoyt & Sellin (2000),

who note that the surface oscillates with the Kármán frequency.

The position at which the sharpened surface and small scale wave breaking occurred also varied

with gap ratio. At a gap of 0.25, it was observed at locations between 1 and 1.5 diameters

downstream of the rear of the cylinder. However, at gaps of 0.40 and 0.55, it tended to occur

at roughly half a cylinder diameter downstream. It is expected that this shift is related to the

change in the formation length which is considered later in section (4.6).

An examination of the vorticity fields in figures (4.1) to (4.4), and in particular those for the

smaller gap ratios, clearly indicates that there is a bias in the vorticity distribution. Such a bias

is consistent with the observations of Sheridan et al. (1997) and to some extent Warburton &

Karniadakis (1997), and it is believed that that this arises as a result of the viscous transport

of negative vorticity across the interface (free surface). Rood (1994b) states, that the flux of

vorticity through a free surface depends on the viscous acceleration of the free surface fluid in

the direction tangential to the free surface. Hence for the cases in which the free surface is close

to the cylinder, it is expected that the negative vorticity will be removed from the fluid via both

diffusion and cross-annihilation.

The bias in the vorticity distribution tends to result in the wake being dominated by positive
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Figure 4.8: Surface position at the two extremes in the lift cycle, for Froude numbers of 0.35 and

0.40 and for gap ratios of 0.40 and 0.55. (gap ratio 0.40, Froude number 0.35 (a), gap ratio 0.55,

Froude number 0.35 (b), gap ratio 0.40, Froude number 0.40 (c), gap ratio 0.55, Froude number

0.40 (d)). The Reynolds number in each case is 180.

vortical structures. Such structures arise as the absence of negative vorticity in the wake allows

the previously shed positive vortices to coalesce, with this process tending to slow the fluid

at locations close to the surface (as the positive vortices tend to rotate in a counter-clockwise

manner).

4.2 Strouhal Number

The behaviour of the Strouhal number is shown in table (4.1) and in figure (4.9). It reveals

a trend similar to that seen at lower Froude numbers (i.e. 0.00 and 0.20). However, there is

a slight shift in the depths at which shedding starts to attenuate and also in the depths at

which the peak in the Strouhal number was noted. All of the shifts in the Strouhal number

with increasing Froude number were comparatively small, except at the smaller gaps where the

critical depth at which shedding ceases progressively grows. For some of these cases, namely the

ones at smaller gaps and larger Froude numbers (such as gap 0.22 and Froude number 0.35), the
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level of surface deformation becomes quite significant and hence the height varies considerably

across the cylinder as shown in figure (4.10).

Gap ratio G/D Fr = 0.25 Fr = 0.30 Fr = 0.35 Fr = 0.40

REF 1.0000 1.0000 1.0000 1.0000

0.10 no shedding no shedding no shedding no shedding

0.13 no shedding no shedding no shedding no shedding

0.16 0.6445 no shedding no shedding no shedding

0.19 0.6947 0.6852 no shedding no shedding

0.22 0.7570 0.7327 no shedding no shedding

0.25 0.8209 0.7750 0.7638 0.7528, 0.3235

0.40 1.0322 1.0100 0.9725 0.9424

0.55 1.0856 1.0829 1,0708 1.0639

0.70 1.0961 1.0983 1.1025 1.0988

0.85 1.0940 1.0956 1.1046 1.1162

1.00 1.0887 1.0893 1.0961 1.1083

1.50 1.0666 1.0644 1.0676 1.0798

2.50 1.0348 1.0333 1.0333 1.0370

5.00 1.0106 1.0106 1.0106 1.0106

Table 4.1: Variation of the Strouhal number with gap ratio for Froude numbers of 0.25, 0.30, 0.35

and 0.40. The Reynolds number in each case is 180.

The no shedding labels in table (4.1) indicate that no clear periodic or semi periodic response

was observed with regard to the lift forces acting upon the cylinder. It should be noted that

some time dependent behaviour was still detected, however the fluctuations were generally weak

and were found to possess no clearly discernible frequency. It has been noted by Price et al.

(2000) that a number of distinct frequencies unrelated to those associated with Kármán vortex

shedding can be observed at small gap ratios for flow past a cylinder close to a no-slip surface.

Price et al. (2000) detect up to 4 frequencies for a gap ratio of 0.125. Of the frequencies they

observe, they attribute the smallest frequency to the separation of the wall boundary layer from

the adjacent surface (wall), with the next frequency (which is also the most dominant) associated

with vortex shedding. The remaining higher frequencies were then described as coming from

the addition of the two lower frequencies, and the second harmonic of the shedding frequency.

With regard to the free surface case, the observed separation from the adjacent wall is likely to
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Figure 4.9: Variation of Strouhal number (normalized with respect to Strouhal number of the ref-

erence cylinder (i.e. St
St0

)) with gap ratio for Froude numbers of 0.25, 0.30, 0.35, and 0.40. The

Reynolds number in each case is 180.
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Figure 4.10: Surface position at a random instant in time for a gap ratio of 0.22 and a Froude

number of 0.35. The Reynolds number is 180.

first manifest itself as increased surface curvature for low Froude numbers, and at higher Froude

numbers with small scale localized wave breaking. Strictly speaking, some form of shedding is

still observed at the smaller submergence depths (for example gap 0.25, Froude number 0.40),

however, the lift pattern was irregular and was found to display some degree of modulation,

making the determination of a shedding frequency difficult. For this case the two most dominant

frequencies (as determined by the Fourier transform of the lift signal) are given.

The gap 0.25, Froude number 0.40 case is somewhat special and is considered in greater detail

later in this chapter as it is believed to represent a precursor to some of the altered wake states

observed by Sheridan et al. (1995), Sheridan et al. (1997) and Hoyt & Sellin (2000).

Figures (4.11) to (4.13) show the variation in lift coefficient and the spectra for a few limiting

submergence depths as a function of Froude number. The strength of the signals is of particular

importance, as it is often the criterion used in many of the experimental investigations (such as

that of Bearman & Zdravkovich (1978)), to determine the gap ratio at which shedding ceases.

While the trend in the Strouhal number is interesting in itself, the goal is to know why the

observed changes occur. The assertion of Green & Gerrard (1993), which suggests that the

period of vortex shedding is largely determined by the time taken for a sufficient vorticity to
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Figure 4.11: Lift traces and spectra for a gap ratio of 0.19 for Froude numbers of 0.25 (a,e), 0.30

(b,f), 0.35 (c,g) and 0.40 (d,h). The Reynolds number for each case is 180.

accumulate outside a region of high shear stress, may provide some insight. Their model was

found to largely explain the attenuation of the shedding observed by Strykowski & Sreenivasan

(1990) for a small cylinder placed close to a larger one. For this problem, the supply of fluid into
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Figure 4.12: Lift traces and spectra for a gap ratio of 0.25 for Froude numbers 0.25 (a,e), 0.30 (b,f),

0.35 (c,g) and 0.40 (d,h). The Reynolds number for each case is 180.

the wake cavity is also an issue and as such both factors are likely to contribute to the variation

of the Strouhal number with gap ratio. Indeed, it is hypothesized that the increase in the period

of the vortex shedding observed as the cylinder gets close to the surface is in response to the

134



(a)

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

300 350 400 450 500

Cl

time
-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

600 650 700 750 800

Cl

time

(b)

(c)

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

1100 1150 1200 1250 1300

Cl

time
-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

1500 1550 1600 1650 1700

Cl

time

(d)

(e)

0

0.1

0.2

0.3

0.4

0.5

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

0 0.1 0.2 0.3 0.4 0.5

(f )

(g)

0

0.1

0.2

0.3

0.4

0.5

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

0 0.1 0.2 0.3 0.4 0.5

(h)

Figure 4.13: Lift traces and spectra for a gap ratio of 0.40 for Froude numbers of 0.25 (a,e), 0.30

(b,f), 0.35 (c,g) and 0.40 (d,h). The Reynolds number for each case is 180.

time taken for sufficient fluid and vorticity to enter the wake cavity, and hence to permit the

formation of discrete vortices. For the current problem, the time taken for sufficient vorticity to

accumulate will be largely determined by both the proximity and time-dependent nature of the
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free surface. Hence, as it is both the supply of fluid and vorticity that is likely to influence the

Strouhal number, the flux of fluid above the cylinder is of interest and it will now be examined.

4.3 Mass Flux

To gain some insight into what is happening with regard to the supply of fluid into the wake, the

flux of fluid per unit gap height (or spatially averaged velocity) in the region directly above the

cylinder was measured. This was undertaken for each Froude number and gap ratio at the two

extremes in the lift cycle. For the cases in which no periodic shedding was observed, the average

velocity was measured close to a point of maximum lift, while for those gaps below the critical

gap ratio (i.e. gap ratio at which shedding is still observed) the flow field at a random instant in

time was used. Such a selection of the velocity is unlikely to greatly influence the results as the

change in the magnitude of the lift with time at these depths tended to be small. The trend for

the average velocity in the gap region at the point of maximum lift for all Froude numbers and

at the point of minimum lift for some (0.25, 0.30, and 0.35), was found to correspond well with

the trend observed in the Strouhal number. This suggests that the period of the vortex shedding

is related to the average velocity in the region just above the cylinder, and hence to the time

required for both fluid and vorticity to accumulate. At a Froude number of 0.40, the trend in the

behaviour of the average velocity at the point of minimum lift begins to alter somewhat, with

the slight drop in the velocity occurring at the gap ratios at which small scale wave breaking was

observed. This change appears to be related to the increasing level of surface deformation, and

is possibly related to the local Froude number that controls the degree of feedback upstream.

The variation of the average velocity (flux divided by height), and the flux divided by the flux

through an equivalent height for the reference cylinder at the same point in the shedding cycle

is shown in figures (4.14), (4.15), (4.16) and (4.17). While these flux measurements take into

account the slight changes in the height of the fluid as it passes over the cylinder, they are all

measured in a vertical plane from the top of the cylinder to the free surface. Hence comparison

with the reference cylinder at small gap ratios may highlight the fact that the separation and

stagnation points have shifted (which would account for the slight jumps observed in the plots

which contain the comparison in fluxes, especially at small gap ratios).

The trends observed for both the mass flux and the Strouhal number are similar in that as

the gap ratio is reduced, the average velocity increases up to a point and then decreases rather

rapidly as it is reduced further. At the point of maximum lift, the depth at which the maximum
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velocity occurs increases with increasing Froude number, while at the point of minimum lift

the behaviour was slightly more erratic, with the flux ratio illustrating that the flow changes

rather significantly between a Froude number of 0.30 and 0.35. This variation reflects the more

pronounced surface curvature and the flux of positive vorticity into the flow that occurs during

parts of the shedding cycle.
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Figure 4.14: Plot showing the average velocity in the region directly above the cylinder as a function

of gap ratio at the point of maximum lift, for Froude numbers of 0.25, 0.30, 0.35 and 0.40. The

Reynolds number in each case is 180.
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Figure 4.15: Plot showing the flux in the region directly above the cylinder divided by the flux through

the same height for the reference cylinder as a function of gap ratio at the point of maximum lift,

for Froude numbers of 0.25, 0.30, 0.35 and 0.40. The Reynolds number in each case is 180.
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Figure 4.16: Plot showing the average velocity in the region directly above the cylinder as a function

of gap ratio at the point of minimum lift, for Froude numbers of 0.25, 0.30, 0.35 and 0.40. The

Reynolds number in each case is 180.
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Figure 4.17: Plot showing the flux in the region directly above the cylinder divided by the flux through

the same height for the reference cylinder as a function of gap ratio at the point of minimum lift,

for Froude numbers of 0.25, 0.30, 0.35 and 0.40. The Reynolds number for each case is 180.

4.4 Lift, Drag and Moment Coefficients

It is useful at this point to consider the forces acting upon the cylinder, as the lift, drag and

moment are all of considerable importance in industrial applications. Such quantities are also

useful in that they constitute a point of reference from which this study may be compared with

that of others. The behaviour of the lift, drag and moment coefficients are now considered.

4.4.1 Lift

Figure (4.18) shows the trends in the behaviour of the mean lift with both gap ratio and Froude

number. It is clear that for all but the largest Froude number (i.e. 0.25, 0.30 and 0.35, but not

0.40), the mean lift varies little from that observed in the previous chapter. However, as the

Froude number is increased to 0.40, a slight change in the trend is observed, with the magnitude

of the lift now increasing at larger submergence depths. Miyata et al. (1990), also investigate

this flow at a Froude number of 0.24, and note that the lift grows quite rapidly as the gap ratio

is reduced from a value of approximately 0.75. A similar trend was also observed in the current
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investigation, with the magnitude of the lift first exceeding 0.10 at a gap ratio of 1.00, and then

growing rapidly as the gap was reduced further.
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Figure 4.18: Variation of the mean lift coefficient with gap ratio for Froude numbers of 0.25, 0.30,

0.35 and 0.40. The Reynolds number for each case is 180.

4.4.2 RMS Lift

The trend in the behaviour of the RMS lift is similar to that observed in the previous chapter,

although there is a slight shift in the results to the right with increasing Froude number. This

shift indicates that as the Froude number is increased, the gap ratio at which the strength of the

vortex shedding both begins to weaken, and reaches its peak, grows. Such a change is reflected

in the gap ratio at which the peak value was observed, with a shift from 0.70 at a Froude number

of 0.25, to 1.00 at a Froude number of 0.40 being detected. Again, all of the values of the RMS

lift continue to drop with gap ratio in the region where shedding is suppressed, which largely

supports the suggestion by Lei et al. (1999) that the RMS lift is a better indicator than the

spectra for determining whether or not vortex shedding is observed.

Lei et al. (1999) indicate that shedding ceases for gaps between 0.20 and 0.30 for flow past a

cylinder close to a no-slip wall, with the RMS lift for their results falling to between 0.09 and

0.41 within this range. Similar behaviour was also observed here, and while one can confidently
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Figure 4.19: Variation of the normalized RMS lift coefficient with gap ratio for Froude numbers of

0.25, 0.30, 0.35 and 0.40. The Reynolds number for each case is 180.

say that no shedding is observed for RMS lift values below 0.09, some shedding was noted at

larger values, particularly at lower Froude numbers.

4.4.3 Drag

The variation of the drag (which is normalized with respect to the drag of the reference cylinder)

with both gap ratio and Froude number is shown in figure (4.20). Once more, the pattern is

similar to that seen at the lower Froude numbers, and for the case of a cylinder close to an

adjacent no-slip wall. Increasing the Froude number again has the effect of shifting the results

to the right, with little change in the peak magnitude being observed. This shift is largely

consistent with that observed for the lift, with only the results at a Froude number of 0.40

showing any real deviation.

4.4.4 RMS Drag

The normalized RMS drag is also examined, with its behaviour shown in figure (4.21). For

the Froude number 0.25, 0.30 and 0.35 cases, the trends are all similar, with each showing the
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Figure 4.20: Variation of the normalized drag coefficient with gap ratio for Froude numbers of 0.25,

0.30, 0.35 and 0.40. The Reynolds number for each case is 180.
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Figure 4.21: Variation of the normalized RMS drag coefficient with gap ratio for Froude numbers of

0.25, 0.30, 0.35 and 0.40. The Reynolds numbers for each case is 180.
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maximum variation in the behaviour of the RMS drag at a gap of 0.40. It should be noted that

the increase in the size of the normalized drag fluctuations were considerable, with the RMS

component at all Froude numbers being approximately an order of magnitude greater at gaps

between 0.25 and 0.85. As the Froude number is increased to 0.40, the trend in the behaviour

of the RMS drag coefficient alters dramatically, with the dominant peak now occurring at a gap

ratio of 0.85.

The shift in the trend at the Froude number of 0.40 is clearly related to the onset of wave

breaking (that was observed for gaps between 0.25 and 0.70 and which is discussed later in

section (4.9)), and it is suggested that it is redirection of the fluid passing over the cylinder

in conjunction the altered levels of reverse flow in the wake that account for the considerable

deviation in the behaviour.

4.4.5 Moment

While the moment is a function of the shear stress acting on the cylinder and hence upon the

Reynolds number, the general trends do give some indication as to tendency for the cylinder

to rotate. Figure (4.22) shows the behaviour of the mean moment coefficient acting upon the

cylinder. This result clearly indicates that there is a reduction in the mean moment with

increasing Froude number. Such a change is believed to be related to the shift in the position

of both the stagnation and separation points, whose behaviour will now be considered.
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Figure 4.22: Variation of the mean moment coefficient with gap ratio for Froude numbers of 0.25,

0.30, 0.35 and 0.40. The Reynolds number is again 180.

4.5 Pressure Distribution, and the Stagnation and Separation

Points

To get a better understanding as to why the forces and moments acting on the cylinder vary

in the manner that they do, it is necessary to examine the behaviour of both the pressure

distribution around the cylinder and the angular position of both the stagnation and separation

points. Figures (4.23) to (4.26) show the variation in the pressure distribution with Froude

number for four different gap ratios, while figures (4.27) to (4.32) show the behaviour of the

stagnation and separation points at the two extremes in the lift cycle.

It is clear from the pressure distribution plots that the increase in the magnitude of the lift

with decreasing gap ratio is due in part, to the clockwise rotation of the front stagnation point,

with this angular shift also partly explaining the corresponding drop in the drag. The pressure

distribution plots also illustrate the influence of the Froude number, with the results for the gap

ratio 0.25 case (figure (4.25)) highlighting the significant change. For this gap ratio the results

at a Froude number of 0.25 resemble those observed at the larger gaps ratios (i.e. cases in which

largely unhindered vortex shedding occurs), while the distribution at a Froude number of 0.40

144



(a) (b)

(c) (d)

Figure 4.23: Pressure distributions plots at the point of maximum lift for a gap ratio of 0.70 and for

Froude numbers of 0.25 (a), 0.30 (b), 0.35 (c) and 0.40 (d). The Reynolds number is again 180.

(a) (b)

(c) (d)

Figure 4.24: Pressure distributions plots at the point of maximum lift for a gap ratio of 0.40 and for

Froude numbers of 0.25 (a), 0.30 (b), 0.35 (c) and 0.40 (d). The Reynolds number is again 180.
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(a) (b)

(c) (d)

Figure 4.25: Pressure distributions plots at the point of maximum lift for a gap ratio of 0.25 and for

Froude numbers of 0.25 (a), 0.30 (b), 0.35 (c) and 0.40 (d). The Reynolds number is again 180.

(a) (b)

(c) (d)

Figure 4.26: Pressure distributions plots at a random point in the lift cycle for a gap ratio of 0.10

and for Froude numbers of 0.25 (a), 0.30 (b), 0.35 (c) and 0.40 (d). The Reynolds number is 180.
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Figure 4.27: Variation of the stagnation angle with gap ratio at the point of maximum lift for Froude

numbers of 0.25, 0.30, 0.35 and 0.40. The Reynolds number in each case is 180.
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Figure 4.28: Variation of the stagnation angle with gap ratio at the point of minimum lift for Froude

numbers of 0.25, 0.30, 0.35 and 0.40. The Reynolds number in each case is 180.
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Figure 4.29: Variation of the top separation angle with gap ratio at the point of maximum lift for

Froude numbers of 0.25, 0.30, 0.35 and 0.40. The Reynolds number in each case is 180.
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Figure 4.30: Variation of the top separation angle with gap ratio at the point of minimum lift for

Froude numbers of 0.25, 0.30, 0.35 and 0.40. The Reynolds number in each case is 180.
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Figure 4.31: Variation of the lower separation angle with gap ratio at the point of maximum lift for

Froude numbers of 0.25, 0.30, 0.35 and 0.40. The Reynolds number in each case is 180.
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Figure 4.32: Variation of the lower separation angle with gap ratio at the point of minimum lift for

Froude numbers of 0.25, 0.30, 0.35 and 0.40. The Reynolds number in each case is 180.
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resembles those for smaller gap ratios where shedding is no longer observed.

The trends in the position of the front stagnation point (as shown in figures (4.27) and (4.28))

do not indicate that there is any significant shift in their position with Froude number. However,

the position of the top separation point does vary, with the results at the two extremes in the

lift cycle indicating that the size of the wake changes with time. This time varying behaviour

must almost certainly be related to the time varying free-surface curvature, and it suggests that

the entire system will be to some extent governed by the level of feedback between the free

surface and the shedding of vortices from the cylinder. This is a point which will be considered

in greater detail in the discussion at the end of this chapter.

It is also interesting to note that the size of the wake appears to decrease with increasing Froude

number, with the delayed separation at the top of the cylinder having the greatest impact on

the wake size. It is possible that it is this angular delay at larger Froude numbers that is

responsible for the decrease in the mean moment coefficient acting upon the cylinder (as shown

in figure (4.22)).

It should be noted that for the gap ratios at which shedding was not observed, the stagnation

and separation points were calculated at random instants in time (as it was difficult to discern

the points of maximum and minimum lift in a signal that displayed no underlying periodicity).

This would to some extent explain the erratic behaviour observed in the position of separation

points points at small gap ratios.

The general behaviour of the stagnation and separation points suggests that they are for the

most part governed at these low and intermediate Froude numbers by the geometry. However,

when the Froude number is sufficiently large to permit significant surface distortion, and hence

induce a notable geometry change, these points react accordingly. Thus it comes as no surprise

that it is the top separation point that is closest to the time varying deforming surface, that

displays the greatest level of fluctuation with Froude number

4.6 Formation Length

Some of the changes observed in the wake behaviour may be in part related to the position at

which the vortices are forming in the region behind the cylinder. This location will have an

impact on the magnitude of the time-dependent forces and hence will influence the lift, drag

and moment acting upon the cylinder. While the definition of the formation length is somewhat
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arbitrary, with Griffin (1995) listing a number of ways in which it has been calculated, it is the

trend mapped out by its behaviour that is of concern here. As discussed in the previous chapter,

the formation length was determined via two different methods. The first involved measuring

the point at which the greatest standard deviation in the vertical component of velocity was

observed, while the second was obtained by locating the point at which there was the greatest

standard deviation in the vorticity at positions away from the cylinder. The location of these

points are shown in figure (4.33). From figure (4.33) it is clear that as the gap ratio is reduced,

the formation length diminishes up to a point, before increasing again as the gap ratio is reduced

further. This behaviour ties in well with the variation of the RMS component of the lift force

acting upon the cylinder, with the gap at which the peak in the RMS lift was observed (see

figure (4.19)), corresponding to the closest approach of the formation length. The trend in the

normalized distance of the formation length from the cylinder center also displays some distinct

similarities with the behaviour of the Strouhal number (although the trends are inverted about

the vertical line (which corresponds to either the Strouhal number or the formation length)

equals 1). These trends are shown in figure (4.34), and they suggest that the Strouhal number

also depends upon the formation distance, a result that may or may not be Reynolds number

dependent. While the formation length provides some information with regard to the position

at which the vortices form, it is the path and convective velocity associated with these vortices

that determine the wake behaviour. Such behaviour is now considered in the next section.

4.7 Vortex Paths and Convective Velocities

While the path traced out by the vortex cores of a Kármán vortex street for a fully submerged

cylinder is interesting in itself, it is of even more interest here, as the flow field exhibits consider-

able asymmetry due to the presence of the adjacent free surface. The influence of the deformable

free surface on the path traced out by the vortices is of particular relevance, as it is expected

that it is this interaction that largely determines the wake behaviour. Figure (4.35), shows the

region in which the paths of the vortices were recorded, and it was noted that, for some cases in

which the forces acting upon the cylinder were not purely periodic (for example at a gap ratio

0.40 and a Froude number 0.35, where the lift trace was slightly modulated), the path traced

out by the vortex cores as they were convected downstream varied with time. This variation

typically produced a small band of results on the vortex path plots.

Figure (4.36) shows the paths traced out by the vortex cores and the flux of vorticity into the

151



flow from the free surface (that typically occurs when small scale wake breaking is witnessed),

for both a gap ratio of 0.40 and 0.70 over the entire range of Froude numbers considered within

this section.

Measurements of the vortex convection speed were also made by simply recording the position

of the vortex core over an interval in time. The variation of the convective velocity with Froude

number is shown in figure (4.37). These results indicate that the convective velocity of the

positive vortices decreases slightly with increasing Froude number, while for the negative vortices

it behaves differently depending upon gap ratio. This is not all that surprising as the negative

vortex tends diffuse rapidly with distance at the smaller gap ratios.

An interesting feature to note for the gap ratios considered is the cross-over in the behaviour

of the convective velocities. At low Froude numbers the negative vortices tend to move faster

than the positive vortices, while the opposite is the case at larger Froude numbers. This tends

to follow directly from what would be expected from potential theory; as the presence of the

so called mirror cylinder on the other side of the interface acts to speed up the fluid close to

the free surface. However, as the Froude number is increased and the level of surface curvature

grows, the convective velocity of the negative vortices decreases and a cross over is observed. (i.e.

positive vortices move faster than the negative vortices). The surface deformation at the larger

Froude number then tends to invalidate the potential approximation, which is in agreement with

the statement of Rood (1994b) that ‘vortex interactions with a deformable free surface are not

generally represented by image vortex interactions’.

It should be noted that most of the vortex path results show the trace taken by the vortices

over a few periods in the shedding cycle. For those in which the path was found to shift, the

trail traced out over longer time samples are displayed. The presence of both the free surface

and the vorticity located very close to the surface are not shown.

4.8 Comparison with Experiments

At this point it is worthwhile to compare the results of the current investigation with the

experimental findings of Sheridan et al. (1997). Comparison was made difficult by the fact

that there are no quantities measured in much of the parameter space they examined. Thus

it was necessary to pictorially compare the flow states observed, which was in itself difficult,

as such a comparison will only have meaning if it occurs at exactly the same instant in time.
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To facilitate this, videos showing the evolution of the vorticity field, particle transport, and the

surface position were made (see attached compact disk), and were found to be invaluable tools

in helping to explain what was actually happening

To draw a meaningful conclusion from the results, it is necessary to compare the flow behaviour

at the same points in parameter space. With regards to the dimensionless submergence depth or

gap ratio, Sheridan et al. (1997) measure this quantity at a distance of 5.9 diameters upstream of

the cylinder center, while the gap ratios here are based on the depth at 10.0 diameters upstream.

To account for this, the gap ratio at both locations will be stated.

Careful investigation of figure (6) from Sheridan et al. (1997), and in particular the result at

a Froude number 0.35 and a gap ratio 0.40, indicates that the flow may display some three-

dimensional aspects. Their results indicate that the flow appears to be either going into, or

coming out of, the page at regions roughly one and a half diameters downstream. However,

their assertion that the predominant features are quasi-two-dimensional is largely supported by

current investigation (with the results, and in particular those at higher Froude numbers which

are considered in the next chapter), showing a remarkable level of agreement.

Figures (4.38) and (4.39) show the comparison between the current findings and those of Sheridan

et al. (1997). These results illustrate moderate agreement, with only parts of the flow field

displaying similar behaviour. A more favourable comparison was obtained with regard to the

shear layer from above the cylinder, which remains close to the free surface in both instances.

However, the presence of the positive vortex from beneath the cylinder, which is not observed in

the experimental findings, clearly illustrates a distinct difference between the two sets of results.

A possible explanation for the discrepancy is the difference in formation length, which for a fully

submerged cylinder varies with Reynolds number (see Norberg (1998)). The results here also

indicate that the formation length varies with gap ratio, and it is plausible to suggest that these

two factors combined may alter the flow state slightly.

It is postulated that one of the major effects of the Reynolds number, apart from its influence on

the scale of the vortical structures formed, is its impact on the formation length. It is expected

that a longer or shorter value will influence the ability of the wake to accumulate a sufficient

amount of both fluid and vorticity to enable the formation of discrete vortices.
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4.9 Wave Breaking

The alteration in the behaviour of the lift, drag and moment suggests that the level of feedback

between the deforming free surface and the flow both upstream and downstream of the cylinder

has been altered. Some of the observed changes may be attributed to the behaviour of the

local Froude number (i.e. a Froude number in which the length scale is based upon the local

depth). The local Froude number ( u√
gh

) gives a measure of the ratio of the local flow velocity

to the speed of small amplitude surface waves in shallow water (which is a result obtained from

linear theory). As such, it is a parameter that dictates the level of feedback between the surface

deformation and the local flow field, as small amplitude waves may only travel upstream at

Froude numbers less than 1 (this statement is only strictly true for linear solutions, however it

should give some insight into the non-linear problem being investigated here).

Acheson (1990) when considering a hydraulic jump, shows that such a jump represents a change

from a supercritical flow (flow field in which the local Froude number is greater than 1) to

a subcritical one (where the local Froude number is less than 1); with such a transformation

inducing a significant change in the surface height (i.e. a hydraulic jump). Hence an examination

of the local Froude number in the region directly above the cylinder is warranted, as it may

provide some insight into the local flow conditions and help explain the significant sharpening

and wave breaking observed at the larger Froude numbers.

The variation of the local Froude number, based on both the flux averaged velocity (mass flux

divided by surface height, which gives a spatially averaged velocity in the gap) and the maximum

velocity in the gap directly above the cylinder, at the point of maximum lift were used.

It should be noted that the peak velocity was usually observed slightly downstream from the

cylinder, as shown in figure (4.40) (which also illustrates the line from which the current results

are taken). As a consequence, the maximum local Froude number will generally occur down-

stream of the cylinder, with the maximum velocity typically being approximately 20% higher

than it is in the region above the cylinder. However, it is expected that the velocity within

this region should give some indication with regard to the trend in local Froude number. The

variation of the local Froude number with gap ratio is shown in figures (4.41) and (4.42).
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Figure 4.33: Figure showing the variation of the formation length with gap ratio and Froude number.

Figures (a) to (d) show the formation length calculated using the standard deviation in the vorticity,

while figures (e) to (h) show the formation length calculated using the standard deviation of the

vertical component of the velocity. ((a) and (e) are for a Froude number of 0.25, (b) and (f) are for

a Froude number of 0.30, (c) and (g) are for a Froude number of 0.35 and, (d) and (h) are for a

Froude number of 0.40). The Reynolds number in each case is 180.
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Figure 4.34: Variation of the normalized formation length (based on the standard deviation in the

vorticity) and the normalized Strouhal number with gap ratio for Froude numbers 0.25 (a), 0.30 (b),

0.35 (c), and 0.40 (d). The Reynolds number in each case is 180.

Figure 4.35: Plot showing the vorticity field for a gap ratio of 0.40 and a Froude number of 0.40. The

Reynolds number for case is 180. The two vertical lines denote the domain size used for calculating

the vortex convection speeds and tracking the vortex paths.
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Figure 4.36: Plots showing the vortex paths for a gap ratio of 0.40 (a, c, e and g) and 0.70 (b, d, f

and h ) for Froude numbers of 0.25 (a and b), 0.30 (c and d), 0.35 (e and f) and 0.40 (g and h).

The Reynolds number in each case is 180.
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Figure 4.37: Plots showing the variation in vortex convection speed with Froude number for both

the positive and negative vortices. ((a) gap ratio of 5.00, (b) gap ratio of 2.50, (c) gap ratio 1.00,

(d) gap ratio 0.70, (e) gap ratio of 0.55 and (f) gap ratio 0.40). The Reynolds number in each case

is 180.
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Figure 4.38: Comparison of the velocity fields between experimental findings of Sheridan et al. (1997)

(top) and the current numerical study (bottom), for a gap ratio of 0.40 and a Froude number of

0.35 (gap at 5.9 diameters upstream is 0.42). The results of Sheridan et al. (1997) (top) are for

a Reynolds number between 5990 and 9120, while in the numerical results the Reynolds number is

180.
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Figure 4.39: Comparison of the vorticity fields between experimental findings of Sheridan et al.

(1997) (top) and the current numerical study (bottom), for a gap ratio of 0.40 and a Froude number

of 0.35 (gap at 5.9 diameters upstream is 0.42). The results of Sheridan et al. (1997) (top) are for

a Reynolds number between 5990 and 9120, while in the numerical result s the Reynolds number is

180.
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Figure 4.40: Plot showing velocity vectors at the point of maximum lift. The line through which the

flux in calculated is also shown. The gap ratio for the case shown is 0.40 and the Froude number is

0.35. The Reynolds number is again 180.
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Figure 4.41: Variation of the local Froude number with gap ratio (the Froude number based on

flux averaged velocity in the region above the cylinder), at both the points of maximum (top) and

minimum (bottom) lift. The Reynolds number in each case is 180.
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Figure 4.42: Variation of the local Froude number with gap ratio (the Froude number based on

maximum velocity in the region directly above the cylinder), at both the points of maximum (top)

and minimum (bottom) lift. The Reynolds number in each case is 180.
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The closeness of the local Froude number to the value of unity for the gap ratio 0.25, Froude

number 0.35 and 0.40 cases, suggests that the local Froude number exceeds unity for some

interval of time during the course of a shedding cycle. The results of Acheson (1990) for a

hydraulic jump would then suggest that the transformation of the flow back to a state in which

it is subcritical (below 1), may then be accompanied by as small hydraulic jump or a significant

sharpening in the local surface curvature.

The change in the local Froude number (from supercritical to subcritical) would thus explain the

sharpened scar region which was observed during part of the shedding cycle at the larger Froude

numbers. This behaviour is most clearly demonstrated via consideration of the videos which

show the time dependent evolution of the vorticity field. Indeed, the movie for the gap 0.25

Froude number 0.35 case indicates that a sharp surface scars appears (with a scar being a region

in which the surface curvature rapidly changes sign), and that positive vorticity then diffuses out

from the scar (with this positive vorticity cross annihilating with the negative vorticity formed

on the upper half of the cylinder).

It is expected that it is this sharpening in the surface curvature, combined with the significant

local slowing/reversal of the flow velocity at positions close to the free surface, that will eventually

result in wave breaking.

4.10 Mechanism

As was discussed in the previous chapter (that dealt with the flow at lower Froude numbers),

the cessation of shedding was largely brought about by the reduction in the amount of fluid

available to form vortices and by the reduction in the velocity close to the free surface (with

such a reduction causing the wake velocity profile to become asymmetric, which according to

Koch (1985) is a condition which does not support an absolute instability).

The weakening and eventual cessation of shedding at the intermediate Froude numbers consid-

ered here is believed to be due to the same process. Although the more malleable free surface

alters the behaviour somewhat, with the interaction of the flow structures with the free surface

influencing the supply of fluid available to form vortices, and in doing so skewing the wake at

larger gap ratios. Hence it is expected that the wake behaviour will be governed by the time

dependent surface deformation, and its influence upon the degree of skew in the wake.

When described in this way, the system essentially represents a form of feedback loop. Such
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that the vortices shed from the cylinder influence the degree of surface deformation, which in

turn controls the level of skew in the wake, hence altering the formation of discrete vortices.

Such a feedback loop supports the modulation of shedding, which was observed at some gap

ratios (e.g. gap 0.25, Froude number 0.40); as vortex shedding is able to grow in strength until it

reaches a point at which the surface deformation associated with its growing strength, results in

a significant skew in the wake and hence leads to its weakening, and in some cases its suppression.

This weakening then removes the vortical structures that gave rise to the surface distortion in

the first place, and with this, the cycle is able repeat itself.

Thus as the surface becomes more malleable, it is the time-dependent nature of the flow that

governs the entire wake behaviour, as the near wake need only become skewed for a short period

of time for shedding to be weakened or even suppressed. It is hypothesized that it is this

mechanism which governs the metastable behaviour observed by Sheridan et al. (1995), and

which will be discussed in greater detail in the next chapter (which deals with the flow at higher

Froude numbers).

At the Froude numbers being investigated here, the surface deformation appears to be insufficient

to transiently suppress shedding, but it is large enough to considerably weaken its strength. The

modulated lift trace observed at a gap ratio of 0.25 and for Froude numbers of both 0.35 and

0.40 illustrates this point.

The small-scale wave breaking that was also noted appears to occur when the local Froude

number exceeds unity in isolated regions of the flow. When this occurs, information in the form

of surface waves cannot travel upstream and the interaction of this fast moving fluid with the

slow/reverse flow from above the positive vortices ensures that either surface sharpening or wave

breaking takes place (with Lin & Rockwell (1995) indicating that the shift from a surface scar

to breaking wave depends upon the Froude number).

When wave breaking is observed, it appears to share some similarities with the breaking of

Branch I instability waves (wave breaking associated with the first branch of the dispersion rela-

tion) as discussed by Dimas & Triantafyllou (1994). In this case there exists a sharp horizontal

velocity shear at the surface, with the wave height still remaining relatively small.

It is useful at this point to consider what is actually happening in the wake of the cylinder. An

examination of the pressure and velocity fields together for a gap ratio of 0.40 and a Froude

number of 0.35, reveal that the fluid from above the cylinder follows the surface before being

wrapped around the negative shear layer from the upper side of the cylinder, and then diverted
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downwards. At the same time, the fluid from downstream is also intromitted (or entrained)

upstream by the large positive vortex that was shed from beneath the cylinder. This positive

vortex tends to lift the surface at positions away from the cylinder, while drawing it downward

at positions closer. This behaviour is most clearly illustrated with reference to the pressure and

velocity fields at an instant as shown in figure (4.43).

(a) (b)

(c) (d)

Figure 4.43: Contours of x velocity (a), y velocity (b), total velocity (c) and pressure (d), for a gap

ratio of 0.40 and a Froude number of 0.35. The Reynolds number in each case is 180.

At the juncture point between the two oppositely signed vortices, fluid is drawn downward (hence

the negative y velocity), and this assists in the sharpening of the free surface in the region directly

above two vortices. The downward movement of the fluid from above the cylinder also tends

to result in the positive vortex from beneath the cylinder being lifted upward slightly, with this

process illustrated schematically in figure (4.44). The slight upward movement of the positive

vortex has a twofold effect. Firstly, it moves the region of slow/reverse flow (region just above

the positive vortex, which is rotating in a counter clockwise manner) closer to the free surface

and hence increases the likelihood of wave breaking. Secondly, it moves the last shed positive

vortex into a region in which its convective velocity diminishes.

The second point is important, as the reduction in the convective speed of the positive vortex

enables larger-scale positive vortical structures to form in the wake. Such structures depending
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Slow

Figure 4.44: Schematic showing the movement of the vortices.

upon their proximity to the cylinder, then help to further deflect the fluid from above the cylinder

downwards, and in doing so skew the wake. These larger-scale positive vortical structures

typically form when the convective speeds of the shed positive vortices differ, such that one

vortex catches the other, and the two are then observed to coalesce.

The extent of the upward movement of the last shed positive vortex depends upon both the

surface curvature (and hence upon the Froude number) and upon the vortical structures already

present in the wake. It is tentatively suggested here that the position at which this upward

movement of the last shed positive vortex occurs, is dependent upon the formation length.

As such a suggestion would explain the difference in the position at which wave breaking was

observed.

With regard to the first point, the downward movement of the negative shear layer and the

upward movement of the last shed positive vortex from beneath the cylinder result in either a

significant slowing (at lower Froude numbers), or even a flow reversal (at higher Froude numbers),

in the region close to the free surface. This behaviour then has a significant influence upon the

surface curvature, with slowing typically resulting in a sharpened scar, while reversal results in

wave breaking.

It is necessary to stress that this behaviour is all highly time-dependent, with the free surface

curvature and wake skew varying throughout the course of the shedding cycle. As a conse-

quence, the wake will tend to give rise to structures that differ significantly from those of a fully

submerged cylinder, with these structures subsequently influencing the wake development.

The basic flow mechanism describing the surface / wake interaction is postulated to be as follows:

• The upward movement of the positive vortex induces surface curvature, which due to

the nature of the positive vortex results in the surface rising at positions away from the
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cylinder and falling at positions closer.

• The roll-up of the negative shear layer from above the cylinder further exacerbates this by

drawing more fluid downward.

• The altered surface curvature then results in the fluid from above the cylinder being

directed downwards, and depending upon the gap ratio, the slow/reverse flow from above

the positive vortex and the flow from above the cylinder interact.

• This interaction causes some of the horizontal momentum associated with the flow above

the cylinder to be converted into vertical momentum.

• Now depending upon the angle at which the two two streams of fluid meet (which is largely

determined by the surface curvature and hence to some extent by the Froude number),

the interaction will result in either a local sharpening of the free surface for slight angles

or in wave breaking at larger angles.

Any downward deflection of the fluid from above the cylinder will obviously reduce the horizontal

momentum associated with this flow, and hence allow the positive vortex from beneath the

cylinder to exert a greater influence on the flow near the free surface (at least at small gap

ratios). As the fluid from above the cylinder is deflected downwards, satisfaction of continuity

(conservation of mass) will then require that fluid from further downstream must be drawn

upstream (otherwise the fluid height would drop dramatically). For the small gap ratio cases in

which the vortices from beneath the cylinder are already at close proximity to both the cylinder

and the free surface, it is these structures that are drawn upward and closer.

As mentioned earlier, the upward movement of the last shed positive vortex has a two fold effect,

as it tends to reverse flow at locations close to the free surface while also moving into a region

in which it has a diminished level of horizontal momentum (and hence a reduced convective

speed). Thus, it is the path taken by the last shed positive vortex that dominates the near wake

behaviour, with its influence on the both the surface curvature and the intromission of fluid

upstream from further downstream, controlling both the level of skew and the supply of fluid

into wake cavity (the region in between the two shear layers).

It should be emphasized that the upward movement of the last shed positive vortex is a gradual

process, with the upward movement being strongly influenced by the structures present in the

wake just downstream of the cylinder. Indeed, it is the positive vortical structures that form

downstream that are partially responsible for the establishment of the gradient in the convective
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velocity with height. And as such, they have a significant influence upon the vortices shed after

their formation.

It should also be stressed that it is the slowed/reverse flow that deflects the fluid from above the

cylinder away from the free surface. This deflection then skews the wake and hence alters the

wake state, with the interesting features arising as a consequence of the inherent time-dependence

of the entire process.

To emphasize the influence of the slow/reverse flow associated with the behaviour of the last

shed positive vortex, it is perhaps best to consider two specific examples. The first will focus

on the behaviour at a gap ratio of 0.25 and a Froude number of 0.30 (where the lift trace shows

only slight levels of modulation), while the second will look at the flow at the same gap ratio

but at a Froude number of 0.40 (where the lift trace is highly modulated). Before proceeding it

it highly recommended that the reader view the videos for these cases.

For the smaller Froude number case (i.e. gap 0.25, Froude number 0.30) at the point of maximum

lift, the faster moving flow from above the cylinder interacts with the slow moving fluid just

above the positive vortex. Such an interaction causes the pressure to rise, and a pressure

gradient is established which directs the flow from upstream in a diagonally downward direction

(see figure (4.45)). The pressure gradient is such that if the fluid from above the cylinder

were to continue moving forward, it would move into a region in which the pressure gradient

rises. Hence this fluid will tend to move downwards and in between the forming vortices. At

the minimum extreme in the lift cycle, the flow that issues from above the cylinder extends

over a greater horizontal range, with the strong positive vortex, which is at this point further

from the cylinder, directing the flow vertically downwards. Again, it is the positive vortex

which was formed beneath the cylinder, but shed during the last cycle, that dominates the flow

further downstream. Figure (4.45) shows the pressure fields at both the maximum and minimum

positions in the lift cycle respectively, and it is clearly visible that the vortices from beneath the

cylinder tend to represent the regions of lowest pressure, and hence have the greatest impact on

the near wake behaviour.

For the larger Froude number case (i.e. gap 0.25, Froude number 0.40), the increased surface

curvature ensures that more fluid is intromitted upstream (as the increased redirection of the

fluid from above the cylinder ensures that there is a diminished level of horizontal momentum

associated with the ‘jet’) and in doing so it deflects the fluid from above the cylinder further away

from the free surface. This results in small scale wave breaking and in the upward movement
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Figure 4.45: Plots showing the pressure field at the point of maximum (left) and minimum (right)

lift for gap ratio of 0.25 and a Froude number of 0.30. The Reynolds number in each case is 180.

of the last shed positive vortex (this typically only occurs when the positive vorticity from both

the free surface and from beneath the cylinder, envelope the negative shear layer from above

the cylinder). The reader is strongly recommended at this point to consult the videos which

illustrate this point, or at the very least consider figure (4.48) which will be discussed shortly.

The upward movement of the last shed positive vortex (which is also the most dominant, as

it has the lowest pressure associated with it) into a region in which its convective velocity is

reduced, results in a slowing of the flow near to the surface and in a stretching of the shear

layer from beneath the cylinder. This behaviour typically results in an elongated wake in which

vortex roll-up is delayed or stalled. Weak shedding then only re-establishing itself when the

larger-scale positive vortical structure that forms during this process, moves further downstream,

hence diminishing its influence on the near wake. This behaviour is best illustrated in both the

particle transport and vorticity videos. However, a few key frames together with their relevant

location on the lift trace are shown in figures (4.46) to (4.49). Figure (4.46) highlights the

variation in lift coefficient with time, while the close up view of the region in between the two

dashed vertical lines (where the lift undergoes a substantial reduction in magnitude), is shown

in figure (4.47). The labels in figure (4.47) correspond to the frames taken from the videos of the

evolution of the vorticity field and the particle transport plots, which are shown in figure (4.48)

and figure (4.49).

The particle tracer plots, which color the particles based on their release height, were obtained

by releasing inert particles from a series of vertical positions 8 diameters upstream of the cylinder

center. In many instances, particles were released at exactly the point where the undisturbed

surface would lie. Occasionally in these cases, slight variations in the surface position resulted
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in these particles being injected into lighter phase just above the free surface. Hence some of

the videos show a limited number of particles moving away from the surface, particularly for

the cases in which wave breaking was observed. For the images presented here, these particles

are not shown, but they are present in the videos.
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Figure 4.46: Variation of the lift coefficient with time for a gap ratio of 0.25 and a Froude number

of 0.40. The region in between the two dashed vertical lines is shown in figure (4.47). The Reynolds

number in each case is 180.

The movies showing both the particle transport and vorticity fields indicate that the movement of

one of the positive vortices towards the free surface (and hence into a region where its convective

velocity is slightly slower) tends to result in a loose pairing between the positive vortices shed

from beneath the cylinder. The distance from the cylinder at which the two positive vortices

coalesce is related to the difference in their convective velocities, which is in turn influenced by the

vortical structures already present in the wake. The videos suggest that it is the positive vortical

structures in the wake in combination with the level of surface deformation, that exert the

controlling influence on the wake behaviour. Hence it is postulated that it is surface deformation

that regulates the upward movement of the positive vortices, while the structures already in the

wake dictate the variation in the convective speed with distance from the free surface.

It is believed that it is the surface curvature in conjunction with the positive vortical structures
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Figure 4.47: Close up view of the variation of the lift coefficient with time for a gap ratio of 0.25

and a Froude number of 0.40. The markers denote the frames shown in figures (4.48) and (4.49).

The Reynolds number in each case is again 180.

in the wake, that are responsible for the modulated lift signal observed for a gap ratio of 0.25 and

a Froude number of 0.40. For this case, it is speculated that it is the mutated vortices that form

from the cylinder, that combine to skew the wake, and hence weaken the absolute instability. The

period of significant weakening then allows for the offending structures which have accumulated

in the wake and which are themselves a byproduct of the stronger vortex shedding, to be flushed

further downstream. This process then effectively regulates the shedding, such that it grows

and and diminishes in a modulated manner.

The reader is recommended at this point to examine the particle transport videos, as they

illustrate that it is the strength of the slowing/‘flow reversal’ that governs the wake behaviour

(with this flow being largely determined by the position of the last shed positive vortex or series

of vortices).

The two regions to the right of the first dashed line on the lift trace in figure (4.46), where the

magnitude of the lift diminishes markedly, both occur when there is a significant reduction (and

in some regions a reversal) in the convective speed of the fluid located close to the surface. The
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Figure 4.48: Vorticity fields at the corresponding instants shown figure (4.47) (gap ratio 0.25, Froude

number 0.40, Reynolds number 180).

first zone (where the magnitude of the lift diminishes) occurs when the upward movement of the

positive vortex is such that it comes into close contact with the free surface (see figures (4.48)

and (4.49)). For this case it is the flow associated with the last shed positive vortex which

induces the skew in the wake and hence stalls the shedding. The second zone occurs when the

last shed positive vortex moves up slightly, but not into close contact with the surface. In this

zone, it is the upstream flow associated with the dominant last shed positive vortex and the

positive vortices shed previously, which combine to significantly impair the flow close to the

surface. Figure (4.50) shows the vorticity field and particle tracer behaviour near the second

zone (it should be noted that the videos for this case show both zones).

The common element in both cases, is the asymmetry or skew introduced into the wake velocity
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Figure 4.49: Particle transport plots at the corresponding instants shown figure (4.47) (gap ratio

0.25, Froude number 0.40, Reynolds number 180).

profile by the slowing/reversal of flow near the free surface. Koch (1985) indicates that the wake

of a bluff body will tend to switch from being absolutely unstable to convectively unstable in

the presence of an asymmetric velocity profile. Hence it is speculated that the vortex stalling,

or the momentary delay in the vortex shedding observed here, is due to a shift in the nature of

the instability governing the wake. This is a point that will be discussed in greater detail in the

next chapter.

The particle tracer plots also illustrate that much of the downstream transport of the fluid that

passes over the cylinder is via entrainment into the larger positive vortices, with a large portion

of the fluid located close to the surface oscillating backwards and forwards with a small mean

velocity downstream. This point is reinforced by reference to figure (4.51) which shows the
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Figure 4.50: Vorticity and particle transport plots at four equispaced instants in the shedding cycle

for the region to the right of the second dashed vertical line in figure (4.47). The plots show the

flow behaviour in second zone in which the lift diminishes (left to right then top to bottom) (gap

ratio 0.25, Froude number 0.40, Reynolds number 180).

particles colored by their residence time in the flow. It is clear from this plot that the particles

closer to the surface tend to stay in the domain longer than those further from the free surface.

The residence time plot only helps to reinforce the notion that it is the behaviour of the positive

vortical structures, that directly influences the near wake behaviour.

4.11 Summary

Before moving on to the next chapter (that considers the results at higher Froude numbers), it

is worthwhile to reiterate some of the key findings for flow past a cylinder close to a free surface

at Froude numbers between 0.25 and 0.40.

The key point that differentiates the behaviour observed here from that observed at the lower

Froude numbers considered in the last chapter, is the level of surface deformation and its impact
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Figure 4.51: Particle tracer plot that shows the particles colored according to their residence time in

the flow domain. The gap ratio for this case is 0.25 and the Froude number is 0.40. The Reynolds

number is again 180.

upon the skew in the wake.

With regard to the surface deformation, it is clear that the increased Froude number has a

significant effect, with small scale wave breaking being observed at some of the gap ratios for

Froude numbers greater than or equal to 0.35. This wave breaking appears to be related to

the angle at which the flow from above the cylinder and that from above the last shed positive

vortex interact.

It is proposed that the general behaviour of the wake is governed by the level of feedback between

the surface curvature and the absolute instability. At the smaller Froude numbers the surface

is more rigid and skew is introduced by a reduction in the velocity of the fluid passing over the

cylinder. However, at larger Froude numbers this skew is partially brought about by the angular

redirection of the fluid passing over the cylinder. Hence while it is believed to be the skew that

alters the instability in both cases, it is the nature of the skew that differs. Indeed, it is the time

dependence of the skew at the larger Froude numbers that contributes to the more interesting

flow behaviour.

It is anticipated that at larger Froude numbers the more significant surface curvature will permit

the last shed positive vortex to move even further upward, and hence result in a significant

separation of the flow from the free surface. It is also expected that the greater levels of time

dependent curvature will give rise to wake states which vary significantly with time (such as
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the metastable wake states observed by Sheridan et al. (1995)). The behaviour at these larger

Froude numbers is now considered in the next chapter.
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Chapter 5

Froude Numbers 0.50, 0.60 and

above

As indicated in the discussion of the previous two chapters that dealt with the behaviour at

lower Froude numbers, the level of surface deformation and hence the level of skew in the wake

can have a large impact on its evolution. This chapter will now explore what happens when

the Froude number is further increased, such that larger scale surface deformation and in some

instances significant separation of the flow from the free surface is observed. In contrast to

the preceding two chapters there has been considerably more experimental work done in this

region of parameter space, with all of the results of Sheridan et al. (1995) and most of the

results of Sheridan et al. (1997), Sheridan et al. (1998) and Hoyt & Sellin (2000) lying within

the parameter range considered within this chapter.

All of the above mentioned authors observed significant changes in the wake behaviour for the

Froude numbers considered here. Sheridan et al. (1995) note that the system was capable of

supporting two differing wake states at a given point in parameter space. However, these two

wake states were found to have limiting stability, in the sense that transformations between the

two occurred in a pseudo periodic manner, and as such they were deemed by Sheridan et al.

(1995) to be metastable.

The broadest range in parameter space (i.e. gap ratio and Froude number) was considered by

Sheridan et al. (1997), who indicate that the flow can be loosely categorized into three basic

wake states, which are characterized by the position of the fluid passing over the top of the

cylinder (with this flow often being referred to by Sheridan et al. (1997) as a ‘jet’). The three
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basic wake states, which are shown schematically in figure (5.1), are:

1. The ‘jet’ follows and remains attached to the free surface.

2. The ‘jet’ separates from the free surface, and occupies a region of space somewhere in

between the cylinder and the surface.

3. The ‘jet’ stays attached to the rear of the cylinder, and only separates near the underside

of the cylinder.

Figure 5.1: Schematic diagram illustrating the three basic wake states observed by Sheridan et al.

(1997).

Each of these three states are observed to a limiting degree by Sheridan et al. (1997) at a Froude

number of 0.60. Hoyt & Sellin (2000) also observe similar behaviour at a Froude number of 0.53,

although they indicate that the flow often varies in a time-dependent manner, hence suggesting

that some of these states may only be seen at a particular instant. It is thus expected that these

three states should be observed in the current predictions.

It is perhaps best to begin this chapter with a description and a comparison of the flow fields

over a range of gap ratios, for Froude numbers of both 0.50 and 0.60. It should be noted that

significant changes in both the behaviour of the wake and the free surface are often observed as

the Froude number is increased between these two values. Again comparison with experiment is
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restricted to being purely pictorial, as to the author’s knowledge no experimental measurements

are available. However measurements of Strouhal number, lift, drag and moment will all be

presented here, along with a description of the mechanism and a comment on the nature of the

instabilities associated with each of the various flow states.

Before proceeding it is necessary to qualify some of the particle transport results (in particular

the videos), which are presented on the Compact Disk accompanying this thesis. In many of

these videos, a limited number of particles are observed on the other side of the free surface

(which is modelled here as a fluid / fluid interface). These particles are observed for two reasons:

1. Firstly in some instances, and in particular cases in which the submergence depth is an

integer multiple of 0.05, particles were released directly onto the free surface. Hence even

the slightest drop in the surface position at the point of release, will result in some of these

particles being injected just on the other side of the fluid-fluid interface. Such particles

will then have their path determined by the flow field associated with the lighter fluid, and

as such they are most notable in regions of high surface curvature (where the flow fields in

the two phases are no longer parallel). While these particles could have been removed (i.e.

never injected), they serve to highlight any drop in the fluid height near the inlet, while

also providing more information with regard to the movement of the fluid close to the free

surface.

2. Secondly, inaccuracies associated with the wave breaking process will permit neighboring

particles (from within the fluid) to be carried up with the rising bubbles of the lighter

phase which are entrained when wave breaking occurs. These particles should be ignored,

and while their presence does provide some details with regard to the flow behaviour of

the lighter phase (fluid), their appearance should not detract one’s attention from the

underlying flow behaviour.

It should be noted that these particles were removed from the particle transport (non-video)

plots shown within this chapter.

5.1 Flow Behaviour

A brief description of the flow behaviour at each of the gap ratios for both a Froude number of

0.50 and 0.60 will now be given. It is necessary to stress that almost all of the flow behaviour

was highly time dependent with the response of the system often being non-periodic. For these
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Figure 5.2: Vorticity fields at the point of maximum lift for a gap ratio of 1.50 and for Froude

numbers of 0.50 (top) and 0.60 (bottom). The Reynolds number in each case is 180.

cases the videos showing the evolution of the flow field were invaluable and it is recommended

that the reader view the videos on the attached compact disk while reading this chapter.

5.1.1 Large Gap Ratios, 5.00, 2.50, 1.50, 1.00 and 0.85

At the larger gap ratios (i.e. 5.00, 2.50), the flow about the cylinder is largely undisturbed by

the adjacent free surface. However, as the gap ratio is reduced to 1.50 non negligible surface

distortion is noted at both a Froude number of 0.50 and 0.60, with the surface curvature notably

sharper at the higher Froude number. This behaviour is highlighted in figure (5.2), which shows

the vorticity field for both Froude numbers at the point of maximum lift.

At the larger Froude number (i.e. 0.60), positive vorticity is clearly seen in the region close to

the curved surface. However, its presence is insufficient to alter the vortex street formed from

the cylinder. As the gap ratio is reduced to 1.00, small scale intermittent wave breaking is

observed at both Froude numbers, however, it is much more substantial at a Froude number

of 0.60. At the lower Froude number, the wave breaking and the associated surface vorticity

is insufficient to alter the vortex street in a dramatic way, with the negative vortices, while
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deformed, still maintaining an orientation similar to those for a fully submerged cylinder. At

the larger Froude number however, the flux of vorticity from the surface is now sufficient to

significantly alter the vortex street, such that the negative vortices are twisted as they interact

and cross annihilate with the amalgamated positive vorticity from both the free surface and the

cylinder. This behaviour is illustrated in figure (5.3), which shows the vorticity field for both

Froude numbers at the point of minimum lift.

Figure 5.3: Vorticity fields at the point of minimum lift for a gap ratio of 1.00 and for Froude number

of 0.50 (top) and 0.60 (bottom). The Reynolds number in each case is 180.

This process is further exacerbated when the gap ratio is reduced to 0.85, with the flow at

a Froude number of 0.50 also displaying intermittent wave breaking. The negative vortices

now become severely stretched, such that they are observed to have decayed after traveling

roughly 10 to 12 diameters downstream. This stretching and decay is shown in figure (5.4),

which illustrates the vorticity field at two instants. At a Froude number of 0.60, permanent

small scale wave breaking is noted, with the breaking/(separation of the ‘jet’ from the surface)

providing a source of positive vorticity which combines with that from beneath the cylinder,

to envelop the forming negative vortex. This envelopment process increases the level of cross

annihilation, which subsequently leads to the premature decay of the negative vorticity. The

entire procedure is best illustrated with reference to the videos, however two frames from both
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the particle transport and vorticity videos are shown in figure (5.5).

Figure 5.4: Vorticity field at two instants in time for a gap ratio of 0.85 and for a Froude number of

0.50. The Reynolds number in each case is 180.

Figure 5.5: Key frames from the video showing the vorticity field and the particle transport plots for

a gap ratio of 0.85 and for a Froude number of 0.60. The Reynolds number in each case is 180.

One can clearly see that the free surface becomes more malleable as the Froude number is

increased, with the significant time varying curvature facilitating a greater transfer of vorticity

into, and out of, the free surface. Rood (1994b) indicates that vorticity can appear spontaneously

on free surface boundaries, with its appearance related to both the surface parallel velocity of

the surface fluid, and the surface curvature. The time dependent variation of the surface will
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thus alter the transport of vorticity through it, with the flux of vorticity through a free surface

being dependent upon the viscous acceleration of the free surface fluid in the direction tangential

to the free surface. This suggests that as the gap ratio is reduced further, one would expect

a more significant transfer of vorticity across the free surface, with the time varying surface

curvature acting to further weaken the forming negative vortex, while also introducing more

positive vorticity.

5.1.2 Intermediate Gap Ratios 0.70, 0.55, 0.40, 0.25 and Metastable Wake

States

This section will now discuss the flow behaviour observed at intermediate gap ratios, namely

0.70, 0.55, 0.40 and 0.25. As much of the work of Sheridan et al. (1995), Sheridan et al. (1997)

and Hoyt & Sellin (2000) lies within this range of gap ratios, it should be possible to make a

number of predictions with regard to the wake behaviour.

Before entering into a discussion on the metastable wake states which were observed by Sheridan

et al. (1995) and Sheridan et al. (1997), it is perhaps profitable to draw attention to what types

of flow behaviour have been seen in the intermediate gap ratio range that will be considered

here. Sheridan et al. (1997) note that at a Froude number of 0.60 and for gap ratios between

0.75 and 0.24, that the flow passing over the cylinder, which in the foregoing will be referred

to as a ‘jet’, tended to progressively move from being attached to the free surface through to

being almost attached to the rear of the cylinder. These states were illustrated earlier in the

schematic in figure (5.1).

As the particle image velocimetry (PIV) approach adopted by Sheridan et al. (1995) and Sheri-

dan et al. (1997) yields instantaneous flow fields, they were not in a position to give much detail

with regard to the transient nature of the flow states. However, it is reasonable to assume that

the flow field is time dependent. Hoyt & Sellin (2000) also examine this flow but at a Froude

number of 0.53, with their dye tracer technique indicating that the flow field was indeed time

dependent, with Kármán vortex shedding clearly noted at a gap ratio of 0.75.

For a couple of key cases, both Sheridan et al. (1995) and Sheridan et al. (1997) found that more

than one wake state could be observed at a fixed gap ratio and Froude number. For these cases

the wake spontaneously underwent transformations between the two states in a pseudo periodic

manner. However, Sheridan et al. (1995) were unable to attribute a dimensionless frequency to

this behaviour, only indicating that the frequency was roughly two orders of magnitude lower

184



than that of Kármán vortex shedding for a fully submerged cylinder. Such behaviour was deemed

by Sheridan et al. (1995) to be metastable, as each wake state was only observed to exhibit a

slight margin of stability.

The metastable behaviour observed by Sheridan et al. (1995) at a gap ratio of 0.45 and a

Froude number of 0.60, involved the ‘jet’ transiently switching between a state of attachment

to the free surface, and a state of separation from it such that it occupied a region of space in

between the free surface and the cylinder (i.e. the flow switched between the first and second

states in figure (5.1)). For this case they note that the transition between the two states could be

artificially induced by transiently piercing the free surface at a position downstream (presumably

at distances greater than 4 diameters) to a depth of approximately 0.4 of a cylinder diameter.

They also mention that it was possible to induce hysteretic effects by altering the flow velocity,

with this variation typically resulting in a change of wake state.

Sheridan et al. (1997) also noted that metastable type behaviour occurred at a Froude number

of 0.60, and for gap ratios of both 0.31 and 0.59. Their observations at the smaller gap ratio

indicated that the ‘jet’ switched between a state of attachment to the rear of the cylinder, and

detachment from it such that it occupied a region of space in between the free surface and the

cylinder (the second and third states in figure (5.1)). For reasons which shall be given later

(in the discussion at the end of this chapter), this behaviour will not be referred to as being

metastable, but rather as being a time-dependent flow adjustment. At the larger gap ratio,

they note that the ‘jet’ flips between the latter state observed above (i.e. occupying a region in

between the free surface and the cylinder) and attachment to the free surface.

Hence one may assume that similar behaviour should be observed here for the numerical predic-

tions. It already has been shown in the previous chapter which dealt with the flow at intermedi-

ate Froude numbers, that vortex shedding could be suppressed and in some cases stalled. Such

behaviour is not that surprising when one considers that the depth at which shedding ceases

tends to grow with increasing Froude number. Hence it is expected that as one approaches the

limiting depth at which shedding is suppressed, that the wake will display increasingly altered

behaviour.

Lugt & Ohring (1992) have shown for the interaction of a vortex pair with a free surface, that the

larger the Froude number the greater the level of surface deformation. This increased curvature

combined with the inherently time-dependent shedding of vortices from the cylinder (at least at

some gap ratios), is thus likely to establish conditions or more appropriately introduce skew into
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the wake, such that the capacity of the flow around the cylinder to shed, or rather the nature

of the absolute instability, will be altered in a time dependent manner.

Of relevance are the findings of Koch (1985) and the spectulation by Huerre & Monkewitz

(1990), that only a limited degree of asymmetry is required before no time harmonic resonance

(or absolute instability) is possible. Thus suggesting that the changes in the wakes behaviour

may be linked to a change in the nature of the instability associated with the cylinder wake.

However a further discussion with regard to this suggestion is deferred to later in this chapter.

The momentary stalling of vortex shedding, which was observed for a gap ratio of 0.25 at a Froude

number of 0.40 in the previous chapter, highlights one possible path via which shedding may

cease. For that case the flux of vorticity through the free surface severely weakened the negative

shear layer. This weakening then resulted in the wake being dominated by positive vortical

structures, which by nature are recirculatory (i.e. they have a counter clockwise rotation which

results in the flow of fluid upstream at positions closer to the free surface). This recirculatory

flow then hinders the downstream movement of the fluid passing over the cylinder and in doing

so, it introduces an asymmetry (or skew) into the time-mean velocity profile. It is believed

that if this asymmetry is sufficient, then the absolute instability associated with the wake will

be significantly weakened to the point at which shedding is observed to stall. This stall was

only momentary as it was dependent upon the proximity of the positive vortical structures that

form at positions downstream of the cylinder. By removing or delaying the driving mechanism

responsible for the generation of these structures (i.e. the formation and shedding of discrete

vortices), it was thus possible to alter the wake such that the structures that stalled the shedding

in the first place, were no longer being formed.

For the cases in which the free surface is more malleable, which is generally true at larger Froude

numbers, the reverse (or slowing) of the fluid near to the surface at positions downstream of

the cylinder (just above the positive vortices), and its subsequent interaction with the flow

from above the cylinder, will generally, depending upon the gap ratio, result in the fluid from

above the cylinder being deflected downwards. This deflection results in a significant curving of

the free surface and in some cases small scale wave breaking, with the Froude number largely

determining what happens.

As the fluid from above the cylinder (i.e. the ‘jet’) is deflected downwards, satisfaction of con-

tinuity (conservation of mass) will then require that fluid from further downstream must now

move upstream (diagonally upwards). For a gap ratio of 0.25 and a Froude number of 0.40,
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this resulted in the last shed positive vortex moving closer to the free surface, with its presence

further restricting the downstream movement of fluid in the region close to the surface. This

effectively alters the path via which fluid from above the cylinder may exit from the wake cavity,

and it is believed that it is the increasing asymmetry in the wake which causes shedding to stall.

It should be noted that the form of the assymetry is different to that observed at small Froude

numbers, where the asymmetry was introduced by a reduction in the flow velocity in the region

above the cylinder. At these larger Froude numbers the asymmetry arises as a result of the

‘jet’ being deflected away from the horizontal. The observed stalling of the vortex shedding then

delays the formation of new vortices and it persists until the offending positive vortical structure

which is near to the surface, moves downstream, at which point shedding begins anew.

At the larger Froude numbers considered here, the increased surface curvature will naturally

deflect more of the fluid from above the cylinder downwards. This will in turn require more

of the fluid from further downstream to move upstream in order to satisfy continuity. The

removal of increasing amounts of negative vorticity through the free surface (with the rate of

removal (flux) being dependent upon the viscous acceleration), will tend to result in the fluid

at locations downstream possessing a stronger positive sense of vorticity, and hence being more

recirculatory. Thus the subsequent entrainment or intromission upstream of this fluid, will then

slow or even reverse the convective velocity of the fluid near to the interface, with such behaviour

then resulting in wave breaking. Hence one should entertain the possibility that similar stalling,

or even a complete cessation of vortex shedding will coincide with wave breaking at the free

surface.

The flow behaviour at each of the gap ratios within the intermediate range is now considered.

At a gap ratio of 0.70, the wave breaking is clearly synchronized with the shedding of vortices

from the cylinder, and the envelopment of the forming negative vortex is noted for both a

Froude number of 0.50 and 0.60. The negative vortices experience considerable stretching, and

are observed to persist for only a short distance downstream for both Froude numbers, with

this behaviour best illustrated via consideration of the vorticity videos. The particle transport

movies indicate that some of the fluid that passes over the cylinder is transported downstream

at locations near to the free surface; for all the investigations conducted here, this phenomenon

appears to be strongly related to the formation and shedding of discrete vortices. However, for

both Froude numbers most of the downstream transport of the fluid from above the cylinder

occurs via its pairing with the stronger positive vortex from beneath the cylinder. This pairing

then results in the formation of structures that resembles a skewed form of the mushroom-shaped
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pattern, that is observed for flow past a fully submerged cylinder.

One interesting point to note for this case is that the particle transport videos at the lower

Froude number (i.e. 0.50) reveal that cylinder-sized structures are noted near the surface, which

are linked via tendrils of ‘jet’ fluid to the fluid making up a pair of previously shed negative

vortices. These structures are shown in figure (5.6) and in the particle transport videos. At the

larger Froude number (i.e. 0.60), these structures appear to link the fluid from many previously

shed vortices (as opposed to two at a Froude number of 0.50), with this linking behaviour shown

in figure (5.7) and in the video. The difference between the results at the two Froude numbers

appears to be related to what is happening near the free surface, with more significant wave

breaking and flow reversal noted at the larger Froude number.

The flow at a gap ratio of 0.75 and a Froude number of 0.53 is considered by Hoyt & Sellin

(2000), with Sheridan et al. (1997) considering the same case but at a Froude number of 0.60.

Figures (5.8) and (5.9) show the favorable comparison between the results, with the numerical

prediction at a gap ratio of 0.70 and a Froude number of 0.50 showing the best match with the

results of Sheridan et al. (1997).

Figure 5.6: Key frames from the video showing the vorticity field and the particle transport plots for

a gap of 0.70 and for a Froude number of 0.50. In particular, the structure in the particle transport

plot which has tendrils connecting the fluid previously shed from above the cylinder should be noted.

The Reynolds number in each case is 180.

The time-dependent response of the free surface to the shedding of vortices from the cylinder,

results in a continuous alteration of the surface curvature. Hence as the gap ratio is reduced, the

increased time dependent surface curvature will result in more negative vorticity fluxing through

the interface and in a progressively weaker negative shear layer. Thus as the gap ratio is further

reduced, one would expect that the wake will become increasingly dominated by positive vortical

structures, which are largely recirculatory.

Hence, it is expected that the level of slowing/reverse flow will increase as the gap ratio is

reduced further, with such behaviour likely to result in more significant wave breaking, and in

the deflection of the ‘jet’ away from the free surface. The angle of the deflection will then be
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Figure 5.7: Three key frames from the video showing the vorticity field and the particle transport

plots for a gap ratio of 0.70 and for a Froude number of 0.60. The Reynolds number in each case is

180.

determined by the relative difference in the strength of the vortices from both the top and the

bottom of the cylinder.

Thus for a gap ratio of 0.55, it is anticipated that a more significant level of slowing/ reversal of

the flow will be observed close to the surface, with the ‘jet’ deflecting through a slightly larger

angle when it separates. It should be stressed that the change in the flow behaviour for a given

gap ratio with Froude number, is due almost entirely to the more malleable free surface; with

the time-dependent curvature altering both the path taken by the fluid as it passes over the

cylinder, and the asymmetry in the wake flow.

A significant change in the wake behaviour is observed at a gap ratio of 0.55, when the Froude

number is increased from 0.50 to 0.60. At the lower Froude number, the wake largely resembles

that at a gap ratio of 0.70, with small-scale wave breaking synchronized to the shedding of vor-

tices (with this behaviour clearly visible in the video). At the larger Froude number, metastable

type behaviour is noted, with the ‘jet’ spending the majority of its time separated from the

free surface, with only very short periods of attachment observed. For the period in which the

‘jet’ is attached, significant surface curvature is witnessed and is observed to grow until it is

sufficient to cause wave breaking, and with this, the ‘jet’ detaches from the free surface. A form

of weakened shedding is still noted throughout this process, however, the negative vorticity from

the top of the cylinder is almost always enveloped by the vorticity emanating from the breaking
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Figure 5.8: Pictorial comparison of the velocity fields. The result of Sheridan et al. (1997) (top)

is at a gap ratio of 0.75, a Froude number of 0.60 and for a Reynolds number inbetween 5990 and

9120, while the result from the current investigation (bottom) is at a gap ratio of 0.70, a Froude

number of 0.50 and a Reynolds number of 180.

wave and from beneath the cylinder. This transport of vorticity from the breaking wave largely

matches that observed by Lin & Rockwell (1995), who indicate that the level of vorticity trans-

port varies with Froude number. It is noted that the only time that wave breaking does not
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Figure 5.9: Pictorial comparison of the vorticity fields. The result of Sheridan et al. (1997) (top) is

for a gap ratio of 0.75, a Froude number of 0.60 and for a Reynolds number inbetween 5990 and

9120, while the result for the current investigation (bottom) is for a gap ratio of 0.70, a Froude

number of 0.50 and a Reynolds number of 180.

occur, is when the ‘jet’ is attached to the free surface. This time-dependent behaviour is best

illustrated via consideration of the videos, with the particle transport movie indicating that the

flow just downstream of the cylinder is largely recirculatory (i.e. the flow close to the surface
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has a low or negative convective velocity, while the flow further from the free surface possesses

a higher positive velocity). A few key frames from the video are shown in figure (5.10), which

highlights the metastable behaviour. This result agrees very favourably with those of Sheridan

et al. (1997), who also observe the ‘jet’ separating and then re-attaching to the free surface in

a metastable fashion at a gap ratio of 0.59 and a Froude number of 0.60. Figures (5.11) to

(5.14) show the pictorial comparison, which is remarkable when one considers the nearly 40 fold

difference in the Reynolds number between the two cases. This result strongly supports the

assertion by Sheridan et al. (1997) that the predominant features are quasi-two-dimensional.

Figure 5.10: Key frames from the particle transport and the vorticity videos for a gap ratio of 0.55

and for a Froude number of 0.60. The Reynolds number in each case is 180.

It should be noted at this point that the separation of the ‘jet’ from the free surface highlights one

of the potential limitations of the numerical model, with small amounts of the upper fluid (i.e.

the less dense fluid which is akin to air) being entrained with the ‘jet’ as it separates and moves

away from the free surface. In general, the amount of the lighter fluid entrained is small, with the

the slight quantities which are entrained tending to form small bubble-like structures which rise

towards the surface. These bubbles have only relatively small amounts of momentum associated

with them and hence are unlikely to influence the general flow dynamics. However they can, and

do, generate small scale vortical structures which stand out in the vorticity field plots. While
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Figure 5.11: Comparison of the velocity fields between the experimental results of Sheridan et al.

(1997) (top) for a gap ratio of 0.59, a Froude number of 0.60 and for a Reynolds number inbetween

5990 and 9120 at time t1, and the numerically predicted results (bottom) at a gap ratio of 0.55, a

Froude number of 0.60 and for a Reynolds number of 180.
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Figure 5.12: Comparison of the velocity fields between the experimental results of Sheridan et al.

(1997) (top) for a gap ratio of 0.59, a Froude number of 0.60 and for a Reynolds number inbetween

5990 and 9120 at time t2, and the numerically predicted results (bottom) at a gap ratio of 0.55, a

Froude number of 0.60 and for a Reynolds number of 180.
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Figure 5.13: Comparison of the vorticity fields between the experimental results of Sheridan et al.

(1997) (top) for a gap ratio of 0.59, a Froude number of 0.60 and for a Reynolds number inbetween

5990 and 9120 at time t1, and the numerically predicted results (bottom) at a gap ratio of 0.55, a

Froude number of 0.60 and for a Reynolds number of 180.
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Figure 5.14: Comparison of the vorticity fields between the experimental results of Sheridan et al.

(1997) (top) for a gap ratio of 0.59, a Froude number of 0.60 and for a Reynolds number inbetween

5990 and 9120 at time t2, and the numerically predicted results (bottom) at a gap ratio of 0.55, a

Froude number of 0.60 and for a Reynolds number of 180.
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this behaviour could be physically realistic, no mention of air entrainment is noted by Sheridan

et al. (1997), although it is noted by Valluri (1996) when experimentally investigating flow past

a flat circular disk near a free surface. Irrespective of whether this is a physical phenomenon,

the breaking wave and the entrainment of the lighter fluid make the prediction of the surface

location somewhat more uncertain, with the numerical model producing less accurate results in

regions where only one or two of the neighboring cells contain the denser fluid.

As the gap ratio is reduced further, the associated increase in the surface curvature is likely

to cause the ‘jet’ to separate at smaller Froude numbers. Hence it is expected that metastable

type behaviour may be seen at a gap ratio of 0.40 over at least part of the Froude number

range considered within this chapter (i.e. 0.50 to 0.60), with Sheridan et al. (1995) observing

metastable behaviour at a gap ratio of 0.45 and a Froude number of 0.60. To examine this in

greater detail an additional Froude number, namely 0.55, was also considered for the gap ratio

0.40 case.

The modulated lift trace observed at a Froude number of 0.50 indicates that some significant

changes are occurring in the wake, with the video for this case showing the ‘jet’ switching between

a state of attachment to, and later separation from, the free surface. The movies indicate that

the ‘jet’ spends most of its time separated from the free surface, with only a short period of

attachment noted. They also indicate that a form of shedding still persists, although the discrete

negative vortices decay very rapidly with distance, such that they are no longer observed after a

mere 5 diameters. Figure (5.15) shows both the particle transport plots and the vorticity fields

at a few key instants.

Sheridan et al. (1997) give an instantaneous snap shot of the both the velocity and vorticity

fields at a gap ratio of 0.40 and at a Froude number of 0.47; however they give no information

with regard to the evolutionary characteristics of the wake with time (although the presence

of the smaller-scale Kelvin-Helmholtz vortices which appear to dominate their vorticity plots

obviously indicate some time-dependent behaviour). Figure (5.16) and (5.17) show the favorable

comparison between the results of Sheridan et al. (1997) and those of the current investigation

at one particular instant in time. Both results indicate the presence of a significant crest at a

position just downstream of the cylinder, with positive vorticity noted at locations just upstream

and downstream of this crest in both investigations.

The particle transport videos highlight the recirculatory behaviour of the wake at positions

downstream of the cylinder, with an increasing proportion of the fluid passing over the cylinder
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Figure 5.15: Key frames from the particle transport and vorticity videos for a gap ratio of 0.40 and

for a Froude number of 0.50. The Reynolds number in each case is 180.

now being transported downstream via entrainment into the positive vortices. Indeed, the only

significant transport of ‘jet’ fluid close to the surface occurs when the ‘jet’ is attached to the

free surface. This recirculatory behaviour results in a significant slowing and at some points a

reversal of the flow close to the free surface at positions downstream of the cylinder. The fluid

within this zone has a particularly long residence time, with its dominant mode of removal being

via entrainment into the larger scale vortical structures, which tend to form at locations further

downstream.

Increasing the Froude number to 0.55 has little effect on the flow, with the video indicating that

metastable behaviour is again observed, although it should be noted that the lift trace is more

strongly modulated for this case (see figure (5.46) which is shown later in the section dealing

with Strouhal number and Lift). The Fourier transform that is also shown later in figure (5.46)

indicates that the modulation frequency is approximately 0.0163.
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Figure 5.16: Comparison of the velociy fields between the experimental results of Sheridan et al.

(1997) (top) for a gap ratio of 0.40, a Froude number of 0.47 and for a Reynolds number inbetween

5990 and 9120, and the numerically predicted results (bottom) at a gap ratio of 0.40, a Froude

number of 0.50 and for a Reynolds number of 180.

An additional increase in the Froude number to 0.60 again yields metastable behaviour, although

the oscillatory nature of the wake is reduced up until the point at which it is observed to stop

momentarily. This behaviour suggests that the asymmetry introduced by the separated ‘jet’ is
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Figure 5.17: Comparison of the vorticity fields between the experimental results of Sheridan et al.

(1997) (top) for a gap ratio of 0.40, a Froude number of 0.47 and for a Reynolds number inbetween

5990 and 9120, and the numerically predicted results (bottom) at a gap ratio of 0.40, a Froude

number of 0.50 and for a Reynolds number of 180.

sufficient to suppress the absolute instability associated with the cylinder wake. The cessation

of shedding appears to be in response to the flow structures generated just downstream of the

cylinder, with such structures producing the sufficient skew required to cease shedding. However,
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these structures are a by product of the mutated vortex shedding, and as such their influence

is only temporary. The downstream convection of the larger positive vortical structures then

removes the recirculatory flow conditions that lead to the cessation of vortex shedding in the

first place.

Hence it would appear that the metastable wake states represent a form of feedback loop, in

which the shedding of discrete vortices and their interaction with the free surface induce signif-

icant surface curvature, which in turn skews the wake. Such changes then alter the conditions

which give rise to shedding in the first place, and the absolute instability is weakened or in some

cases extinguished. With no discrete vortices the surface curvature diminishes, which in turn

reduces the degree of asymmetry, and the absolute instability is again able to assert itself.

This appears to be what is happening at a gap ratio of 0.40 and a Froude number of 0.60,

with the momentary cessation of vortex shedding, or more appropriately the weakening of the

absolute instability, removing the driving oscillatory behaviour from the wake. Under such

conditions, the ‘jet’ is able to re-attach to the free surface and long drawn-out shear layers that

extend over a significant distance (roughly 8 diameters) are observed. Such behaviour heralds

the re-establishment of conditions conducive to vortex shedding (reappearance of the absolute

instability), as the wake under these conditions is largely parallel. However, for this case the

formation of a staggered array of vortices quickly leads to significant surface deformation and

eventual wave breaking which dramatically weakens of the shear layer above the cylinder. This

in turn skews the wake and thus weakens the absolute instability, and hence completes the

loop. Thus it is the structures that form as a result of vortex shedding that lead to its demise,

and it is this demise that eventually leads to its re-establishment. Again, this process is best

illustrated via consideration of the videos (see attached compact disk), however a number of key

frames are shown here in figure (5.18). It should be noted that the ‘jet’ again spends most of its

time separated from the free surface, with only a short period of attachment witnessed. When

separated, it occupies a state similar to that observed by Sheridan et al. (1997) for a gap ratio

of 0.43 and a Froude number of 0.60, with the favorable agreement between both the numerical

prediction and the experimental findings shown in figures (5.19) and (5.20).
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Figure 5.18: Key frames from the vorticity video for a gap ratio of 0.40 and a Froude number of

0.60. The Reynolds number in each case is 180.
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Figure 5.19: Comparison of the velocity fields between the experimental results of Sheridan et al.

(1997) (top) for a gap ratio of 0.43, a Froude number 0.60 and for a Reynolds number inbetween

5990 and 9120, and the numerically predicted results (bottom) at a gap ratio of 0.40 (gap 5.9

diameters upstream is 0.45), a Froude number of 0.60 and for a Reynolds number of 180.
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Figure 5.20: Comparison between the experimental vorticity field of Sheridan et al. (1997) (top) for

a gap ratio of 0.43, a Froude number 0.60 and for a Reynolds number inbetween 5990 and 9120, and

the numerically predicted vorticity field (bottom) at a gap ratio of 0.40 (gap 5.9 diameters upstream

is 0.45), a Froude number of 0.60 and for a Reynolds number of 180.

The feedback loop idea suggests that some of the metastable wake states may represent a time-

dependent switching between an absolute instability and a convective instability, with the level

of skew in the wake determining which one governs at any particular instant. The metastable
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behaviour at a gap ratio of 0.40 and at Froude numbers of 0.50 and 0.55 show signs that the wake

is still absolutely unstable, with a clear time harmonic response observed. The behaviour at a

Froude number of 0.60 suggests that the wake is switching between shedding and no shedding,

or between an absolute and a convective instability.

Now as it is the structures that form downstream that influence the degree of skew, it is not

surprising that Sheridan et al. (1995) found that external disturbances in the region downstream

caused a switching between states. Indeed, their comment that the transformation between

the two states could be artificially induced by transiently piercing the free surface at a region

downstream (presumably at distances greater than approximately 4 diameters), strongly ties in

with what was observed here. This piercing is likely to induce the roll-up of the negative shear

layer and hence discrete vortex formation which eventually leads to separation, for the case in

which the ‘jet’ is attached to the surface. Or on the other hand, when the ‘jet’ is in the separated

state, the transient piecing is likely to restrict the reverse flow in the region behind the cylinder,

thus allowing the ‘jet’ to re-attach to the surface. The hysteretic effect also noted by Sheridan

et al. (1995) is similarly expected, as velocity changes will influence the Froude number and as

such it will alter the curvature and the vorticity dynamics of the wake.

One would also expect similar metastable behaviour at smaller gap ratios, although it is likely

that the more significant skew caused by the wake, even in the absence of vortex shedding, may

be sufficient to ensure that the absolute instability never gets a chance to establish itself.

At a gap ratio of 0.25 and a Froude number of 0.50, the lift trace is again highly modulated

which is consistent with metastable behaviour. The videos for this case show the cyclical nature

of the metastable state, with the ‘jet’ again switching between a state of attachment to, and

separation from, the free surface. It appears as if the formation of an extended pair of shear

layers that precedes the shedding of discrete vortices, results in wave breaking first being noted

at positions further downstream. For this case the wave breaking is first witnessed to occur

at the second trough and it then migrates upstream until it moves to the first trough. This

behaviour is again best illustrated in the video showing the evolution of the vorticity field. With

reference to both the particle transport and vorticity movies (see attached compact disk), one

observes that it is the evolutionary characteristics of the vortices as they travel downstream,

that help determine the wake state. The videos indicate that it is the vortex shedding itself

that gives rise to the structures that are responsible for its own demise. In this case, it is the

upward movement of a discrete positive vortex and its subsequent coalescence with the next

shed discrete positive vortex (to form a larger vortical structure), that reverses the flow near the
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interface and hence deflects the ‘jet’ away from the free surface. This separation then skews the

wake to such an extent that shedding is no longer sustainable. A number of key frames from

the videos that highlight this behaviour are shown in figures (5.21), (5.22) and (5.23).

Figure 5.21: First set of frames from the particle transport and vorticity videos for a gap ratio of

0.25 and for a Froude number of 0.50. The Reynolds number in each case is 180.

The metastable wake behaviour observed here is essentially cyclical and should have a period

associated with it. However, this period is expected to vary for each gap ratio and Froude

number, as the complicated path giving rise to this behaviour will depend upon both the surface

curvature and the proximity of the cylinder to the surface. The events making up the metastable

cycle can be roughly described as follows;

1. The roll up of the negative shear layer at positions close to the free surface induces surface

curvature and results in a slight redirection of the ‘jet’.

2. This roll-up and the time-dependent variation of the surface curvature in response to the

shedding of discrete vortices, assists in the weakening of the negative shear layer as the
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Figure 5.22: Second set of frames from the particle transport and vorticity videos for a gap ratio of

0.25 and for a Froude number of 0.50. The Reynolds number in each case is 180.

negative vorticity is able to flux across the interface.

3. The removal of this vorticity then establishes a bias in the vorticity distribution, such that

the wake is now dominated by positive vortical structures.

4. These vortical structures, which typically form from the coalescence of two or more previ-

ously shed positive vortices, tend to be recirculatory, in that they slow and in some cases

reverse the flow at positions close to the free surface.

5. This slower moving or reverse flow then interacts with the ‘jet’ from above the cylinder.

The slight angle of the ‘jet’ as it passes over the cylinder ensures that it is diverted beneath

the slower moving/reverse flow and small scale wave breaking is observed.

6. Such wave breaking then introduces more positive vorticity into the fluid, which further

weakens the negative shear layer.
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Figure 5.23: Third set of frames from the particle transport and vorticity videos for a gap ratio of

0.25 and for a Froude number of 0.50. The Reynolds number in each case is 180.

7. This growing bias in the wake vorticity distribution then increases the level of the reverse

flow, which in turn deflects the ‘jet’ even further away from the surface.

8. This deflection of the ‘jet’ away from the free surface skews the wake and introduces an

asymmetry into the velocity profile.

9. If the level of asymmetry or skew is sufficient, then the absolute instability is lost and the

oscillatory nature of the wake ceases (i.e. cessation of vortex shedding).

10. If the level is insufficient, then the cylinder continues shedding mutated vortices.

11. The vortical structures which helped bring about these changes in the first place are not

self sustaining and with time they are convected downstream.

12. The removal of the recirculatory structures allow the negative shear layer to re-attach to

the free surface. And with this the entire process repeats itself.
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It should be noted that the positive recirculatory vortical structures typically form when the

path traced out by two consecutively shed positive vortices differs, such that each vortex has a

different convective velocity. This difference then allows one vortex to catch up with the other,

with the result being their coalescence.

It is anticipated that the nature of the wave breaking and its inadequate capture in the nu-

merical simulation, along with minor disturbances introduced when the larger scale structures

leave the computational domain, should alter the periodicity somewhat. The presence of small

scale turbulent structures, an uneven surfactant distribution or even a biased or restrictive out-

flow condition may also make the periodic behaviour of these structures difficult to measure in

experiment. Put simply, it is expected that these larger scale structures will develop as they

convect downstream, with their strength and proximity at any instant influencing the near wake

state, and hence defining the metastable wake behaviour. It is for this reason that one would

not expect the period for each of the metastable states to be similar.

When the Froude number is increased to 0.60 for the same gap ratio (i.e. 0.25), the wake

permanently switches to the state in which the ‘jet’ occupies a region of space in between the

cylinder and the free surface, with no metastable type behaviour any longer observed. Some

flapping of the ‘jet’ is noted, however, it is insufficient to induce either attachment to the free

surface or the rear of the cylinder. When in this state the wake looks remarkably like that

observed by Sheridan et al. (1997) at a gap ratio of 0.31 and a Froude number of 0.60, and by

Hoyt & Sellin (2000) for a gap ratio of 0.31 and a Froude number of 0.53. This comparison

is shown in figures (5.24) and (5.25). It should be noted that the surface height at positions

upstream fluctuated slightly for this case, with the gap ratio at 5.9 diameters upstream of the

cylinder center (the point used by Sheridan et al. (1997) to determine the gap ratio) fluctuating

between 0.28 and 0.35. The flows general behaviour is again best illustrated via consideration

of the videos.

The slight fluctuations in the surface height with time were also observed when the distance

from the inlet to the cylinder was increased and while such behaviour may be a transient feature

(i.e. it may diminish with further evolution) it was observed to persist even after significant

evolutionary time.

With regard to the fluid transport (with the reader recommended to consult the videos at this

point), one can clearly see that the fluid from above the cylinder is drawn downwards and

beneath the larger scale vortical structure that forms downstream of the cylinder.
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Figure 5.24: Comparison between the experimental results of Sheridan et al. (1997) (top) for a

gap of 0.31, a Froude number 0.60 and a Reynolds number between 5990 and 9120, the current

numerically predicted results (middle) at a gap ratio of 0.25 (gap 5.9 diameters upstream is 0.26),

a Froude number 0.60 and a Reynolds number of 180, and experimental results of Hoyt and Sellin

(2000) (bottom) at a gap ratio of 0.31, a Froude number of 0.53 and a Reynolds number of 27000.
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Figure 5.25: Comparison between the experimental vorticity field of Sheridan et al. (1997) (top)

for a gap ratio of 0.31, a Froude number 0.60 and a Reynolds number between 5990 and 9120 and

current numerically predicted results (bottom) at a gap ratio of 0.25, a Froude number of 0.60 and

a Reynolds number of 180.

The particle tracer videos highlight the fluctuation in the surface height at locations upstream,

with the variation in the horizontal momentum associated with the changing angle of the ‘jet’

and the breaking wave having some influence on this behaviour. The particles tracer movies
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also illustrate one of the major aspects of this entire problem (i.e. flow past a cylinder close to

a free surface), in that they highlight the importance of fluid transport. That is, they indicate

the pathway via which the fluid can both enter and leave the wake cavity.

For this case in which no vortex shedding is noted the wake appears to be predominantly

recirculatory and although it is clearly unsteady it does share some similarity with the wakes

observed by Fornberg (1985) for symmetric flow past a cylinder (flow past a half cylinder with

a symmetry condition imposed along the centerline).

From what has been observed so far it is anticipated that similar behaviour to that noted at a

gap ratio of 0.25 should be seen as the gap ratio is further reduced, with the strength of time

fluctuating behaviour diminishing.

5.1.3 Small Gap Ratios 0.22, 0.19, 0.16, 0.13 and 0.10

At the smaller gap ratios, the wake shows significant variation as the Froude number is increased,

with the ‘jet’ in all cases moving from a state of attachment to the free surface at a Froude number

of 0.50, to a state of separation at a Froude number of 0.60. At the lower Froude number (i.e.

0.50) the flow is unsteady, although only marginally so at the smaller gap ratios (i.e. 0.10, 0.13

and 0.16), with small scale wave breaking noted in the region just downstream of the cylinder.

Unsurprisingly, the largest time dependent fluctuations are noted at the greater depths, namely

0.19 and 0.22, with a flux of positive vorticity into the fluid observed at two different positions

downstream. Such behaviour is consistent with that found at a gap ratio of 0.25, with the two

locations indicating that the shear layer from above the cylinder is rolling up (i.e. wave breaking

is observed at the second trough). This behaviour indicates that the conditions at these gap

ratios and at this Froude number, are at least marginally conducive to the establishment of a

vortex shedding.

What is interesting about these results is that no metastable type behaviour is observed, which

suggests that the strength of the negatively signed shear layer from above the cylinder plays

an important part in the metastable wake development. Indeed, the results indicate that if the

mutated negative vortices which form are of insufficient strength to induce significant surface

curvature (which in turn results in a significant flux of vorticity into the fluid from the free

surface), then the ‘jet’ will remain attached to the surface and no metastable type behaviour

will be observed. Thus it appears to be a requirement that the vorticity from both the free

surface and the cylinder join, for metastable type behaviour to be observed. Thus metastable
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behaviour is only likely to occur when there is significant surface curvature or significant wave

breaking at the free surface.

For the cases at a gap ratio of 0.22 and 0.19, the flow reversal at locations downstream of the

cylinder now only acts to slow the fluid passing over the cylinder, as opposed to deflecting it

away from the surface. Aspects of this behaviour are again best illustrated via consideration of

the videos, however the flow fields at a couple of instants in time are shown in figures (5.26) and

(5.27).

Figure 5.26: Velocity and vorticity fields for a gap ratio of 0.22, a Froude number of 0.50 and a

Reynolds number of 180.

At the smaller gap ratios (i.e. 0.16, 0.13 and 0.10), the flow field is largely steady for a Froude

number of 0.50, with two extended shear layers defining the wake, as shown in figure (5.28).

While some small scale wave breaking is found in the region just behind the cylinder, it appears

to have little effect on the wake, and it is noted that the length of the positive shear layer (the
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Figure 5.27: Two frames from the particle transport and vorticity videos for a gap of 0.19 and a

Froude number of 0.50. The Reynolds number in each case is 180.

Figure 5.28: Vorticity fields at a Froude number of 0.50 for gap ratios of 0.16, 0.13 and 0.10 (top

to bottom). The Reynolds number in each case is 180.

one from beneath the cylinder) grows with the reduction of the gap ratio, while the negative

shear layer (the one from above the cylinder) contracts.
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Increasing the Froude number causes the ‘jet’ to separate from the free surface for all of the gap

ratios considered within this section (i.e. 0.22, 0.19, 0.16, 0.13 and 0.10), with this behaviour

consistent with that observed by Sheridan et al. (1997). When the ‘jet’ separates from the free

surface the flow becomes largely recirculatory, with a large circulating flow structure noted at

positions downstream. This structure has low levels of vorticity associated with it (i.e. roughly

4 to 5 percent of the maximum vorticity), and strongly resembles the structures observed by

Fornberg (1985) for symmetric flow past a cylinder. The videos for these cases highlight the

extent of the recirculatory zone, while also indicating that the width of the recirculatory structure

increases with decreasing gap ratio. Figure (5.29) shows a number of key frames from the video

which illustrate this behaviour.

Figure 5.29: Particle transport and vorticity plots which highlight the extent of the recirculation

bubble for gap ratios (from top to bottom) of 0.19, 0.16, and 0.13. The Froude number in each

instance is 0.60 and the Reynolds number is 180.

It should be noted that the height at the inlet was found to vary significantly with time for

the gap ratio 0.19, Froude number 0.60 case, with the influence of such height changes clearly

discernible in the particle transport video. These fluctuations arise as the larger scale recircula-

tory structures that form downstream of the cylinder become more mobile, with their formation

and downstream convection inducing significant surface curvature. This behaviour generates a

surface depression, or more appropriately a wave, which appears to be reflected and to some

extent amplified within the domain, with this amplification process reflected in the lift trace

that is shown in the next section. This behaviour was found to persist even when the distance

of the cylinder to the inlet and to the outlet was increased.
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It is suggested here that at this larger Froude number (i.e. 0.60), the surface curvature introduces

a greater level of skew to the wake that ensures that the weak shedding that was observed at the

larger gaps within this range can no longer be sustained. It will be argued, with the reasoning

being given later in this chapter, that this skew causes the wake to become convectively unstable,

with the large recirculation zone simply representing a manifestation of this type of instability.

Before proceeding to consider the Strouhal number and the forces acting upon the cylinder, it is

perhaps best to compare in greater detail the current results with those of Sheridan et al. (1997)

for the flows at small gap ratios. The first thing that needs to be pointed out is that the state

in which the ‘jet’ is attached to the rear of the cylinder was not obtained, although behaviour

very close to this was noted at the smaller gap ratios, with such behaviour, particularly at a gap

ratio of 0.13, shown previously in figure (5.29).

The results at a gap ratio of 0.10 and for a Froude number of 0.60 and 0.70, indicate that the ‘jet’

will tend to move towards the cylinder as the Froude number is increased, with the increased

surface curvature limiting the amount of fluid passing over the cylinder (via the rotation of the

front stagnation point), and hence increasing the amount passing under the cylinder and thus

increasing such flows entrainment demands. It is also noted, although only briefly, that two

recirculation bubbles are observed at a Froude number of 0.70 while only one is noted at 0.60,

for a gap ratio of 0.10, with this change illustrated in figure (5.30).

At a gap ratio of 0.10 and a Froude number of 0.60, the current result strongly resembles

those of Sheridan et al. (1997) for a gap ratio of 0.16 and a Froude number of 0.60, with both

investigations showing the ‘jet’ separating from the free surface. In addition the angle between

the shear layer from beneath the cylinder and the horizontal is roughly 20 degrees in the current

investigation, which is close to that of Sheridan et al. (1997), with a measurement from their

pictures yielding a result of approximately 22 degrees (see figure (5.31) for a comparison). The

current results also confirm the presence of a small recirculating zone just next to the ‘jet’ which

while mentioned by Sheridan et al. (1997), is difficult to determine from their velocity plot. This

behaviour is clarified, with this recirculation zone for a gap ratio of 0.13 and a Froude number

of 0.60 shown in figure (5.32).
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Figure 5.30: Stream function plots highlighting the size of the recirculation bubble for a gap ratio of

0.10 and a Froude number of 0.60 (top) and 0.70 (bottom). The Reynolds number in each case is

180.

5.2 Strouhal Number and Lift

The changes in the behaviour of the wake in response to the altered Froude number should

make themselves apparent in the non-dimensionalized shedding frequency or Strouhal number.

The Strouhal number should essentially detail the time-dependent manner in which the above

mentioned changes in the wake occur. As the previous two chapters that dealt with the flow at

lower Froude numbers have highlighted there is a tendency for shedding to cease at increasingly

larger gap ratios as the Froude number is increased. Hence one would expect that shedding may

cease, or at the very least vary more significantly, at greater and greater depths for larger and

larger Froude numbers. Indeed, the metastable states observed here, by Sheridan et al. (1995)

and by Sheridan et al. (1997), appear to represent a form of loose boundary in parameter space

both in terms of the Froude number and the gap ratio, at which shedding is observed. Deviations

away from these points then tend to result in either a complete cessation of shedding, or in the

re-establishment of a mutated form of shedding.

While the nature of the changes observed in the wakes development alter with Froude number,

the cessation of vortex shedding itself is not restricted to the problem being considered here.

Bearman & Zdravkovich (1978), Angrilli et al. (1982), Grass et al. (1984), Lei et al. (1999) and

Price et al. (2000) have all shown that shedding ceases for a cylinder placed adjacent to a no-slip
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Figure 5.31: Comparison between the experimental velocity field of Sheridan et al. (1997) (top) at

a gap ratio of 0.16, a Froude number of 0.60 and a Reynolds number between 5990 and 9120, and

the numerically predicted velocity field (bottom) at a gap ratio of 0.10, a Froude number 0.60 and

a Reynolds number of 180.

wall. Hence one must ask, what changes are induced by increasing the Froude number that

result in such a dramatic change in the wake behaviour? The answer appears to be the level of

skew in the wake orientation, which is determined by the free-surface boundary condition. This

condition dictates both the local normal pressure gradient, and local tangential velocity gradient.

Hence by increasing the Froude number, one allows for a greater level of surface curvature that
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Figure 5.32: Numerically predicted recirculation zone next to the ‘jet’. The result shown is for a gap

ratio of 0.13 and for a Froude number of 0.60. The Reynolds number for this case is 180.

in turn alters the angle at which the ‘jet’ leaves the cylinder. This skew then alters the nature

of the instability associated with the cylinder wake, with the findings of Koch (1985) and the

speculation of Huerre & Monkewitz (1990), suggesting that the presence of an an asymmetric

base flow may lead to significant changes in the local stability properties.

The influence of the free surface boundary condition can not be under stated, with it governing

the flow just beneath the surface, while also determining the surfaces shape. It also allows for

the preferential removal of negative vorticity from the fluid, while also governing the ease via

which fluid from downstream may be intromitted upstream.

Hence, it is expected that the changes in the behaviour of the Strouhal number are likely to

reflect, at least in part, the influence of the free surface boundary condition on the nature of the

instability associated with the cylinder wake.

The behaviour of the Strouhal number as measured by the variation of the lift coefficient will now

be considered. For many of the larger gap ratio cases (i.e. 5.00 to 1.50), almost regular vortex

shedding was observed for Froude numbers of both 0.50 and 0.60, with the lift trace producing
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one clearly discernible shedding frequency. However at intermediate gap ratios, metastable type

behaviour was noted in which more than one frequency was often present, while at smaller gap

ratios no shedding was detected at all, with the lift trace in these instances producing small

erratic time-dependent fluctuations. The variation of the Strouhal number with gap ratio is

shown in table (5.1), and in figure (5.33), with the lift trace and the associated spectra for gap

ratios less than 1.50 shown in figures (5.34) to (5.44).
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Gap ratio G/D Normalized Strouhal Normalized Strouhal Normalized Strouhal

number/s Fr = 0.50 number/s Fr = 0.55 number/s Fr = 0.60

0.10 NS NA NS 0.201268

0.13 NS 0.207549 NA NS 0.211331

0.16 NS 0.121907, 0.081273 NA NS 0.205462

0.19 NS 0.220951, 0.749308 NA NS 0.208104, 0.192097,

NA 0.016006

0.22 NS 0.763117, 0.215240 NA NS 0.211331

0.25 MS 0.813502, 0.232430 NA NS 0.196561, 0.184279

0.40 SFP 1.215055, MS 1.131933, MS 1.119805,

1.135811, 0.086244, 1.077549,

1.118199 0.862425 0.126772

0.55 1.096075 NA MS 1.216112, 0.169456

0.70 1.120180 NA 1.198553

0.85 1.120861 NA 1.177750

1.00 1.115890 NA 1.156693

1.50 1.074802 NA 1.093576

2.50 1.036154 NA 1.037184

5.00 1.011057 NA 1.010264

Table 5.1: Variation of the Strouhal number with gap ratio for Froude numbers of 0.50, 0.55, and

0.60. NS = no shedding (frequencies), MS = metastable (frequencies), NA = no measurement, SFP

= shedding but with a fluctuating period (frequencies).

The behaviour of the mean and RMS lift is shown in figure (5.45).

While the wake state often changes considerably as the Froude number is increased from 0.50 to

0.60, the mean lift on the other hand varies very little. The RMS lift however, does vary signif-

icantly and it is again a better indicator of the changes occurring in the wake. As figure (5.45)

indicates, there is a hastened decrease in the RMS lift as the gap ratio is reduced at the larger

Froude number, with this change illustrating the fact that the ‘jet’ has separated from the free

surface.

Figure (5.46), shows the modulated lift trace and its spectra for a gap of 0.40 and a Froude

number of 0.55. This modulation appears to be symptomatic of metastable type behaviour,
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Figure 5.33: Variation of the normalized Strouhal number with gap ratio for Froude numbers of 0.50

and 0.60. The Reynolds number for all cases is 180.
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Figure 5.34: Plot showing the lift coefficient and its spectra for a gap ratio of 1.00 and for Froude

numbers of 0.50 (top) and 0.60 (bottom). The Reynolds number for each case is 180.
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Figure 5.35: Plot showing the lift coefficient and its spectra for a gap ratio of 0.85 and for Froude

numbers of 0.50 (top) and 0.60 (bottom). The Reynolds number for each case is 180.

with the video for this case clearly revealing the pseudo cyclical manner in which the ‘jet’

separates from the surface, only to re-attach again later. The closer inspection of the lift trace

in figure (5.47) and the movie for this case show the evolution of the flow, for the interval to

the right of the dashed vertical line. A few key frames from this video and their corresponding

position on the lift trace are shown in figures (5.48), (5.49), (5.50) and (5.51).
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Figure 5.36: Plot showing the lift coefficient and its spectra for a gap ratio of 0.70 and for Froude

numbers of 0.50 (top) and 0.60 (bottom). The Reynolds number for each case is 180.
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Figure 5.37: Plot showing the lift coefficient and its spectra for a gap ratio of 0.55 and for Froude

numbers of 0.50 (top) and 0.60 (bottom). The Reynolds number for each case is 180.

224



-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

2000 2050 2100 2150 2200 2250 2300 2350 2400 2450

Cl

time
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0 0.1 0.2 0.3 0.4 0.5

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

2550 2600 2650 2700 2750 2800

Cl

time
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0 0.1 0.2 0.3 0.4 0.5

Figure 5.38: Plot showing the lift coefficient and its spectra for a gap ratio of 0.40 and for Froude

numbers of 0.50 (top) and 0.60 (bottom). The Reynolds number for each case is 180.
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Figure 5.39: Plot showing the lift coefficient and its spectra for a gap ratio of 0.25 and for Froude

numbers of 0.50 (top) and 0.60 (bottom). The Reynolds number for each case is 180.
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Figure 5.40: Plot showing the lift coefficient and its spectra for a gap ratio of 0.22 and for Froude

numbers of 0.50 (top) and 0.60 (bottom). The Reynolds number for each case is 180.
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Figure 5.41: Plot showing the lift coefficient and its spectra for a gap ratio of 0.19 and for Froude

numbers of 0.50 (top) and 0.60 (bottom). The Reynolds number for each case is 180.
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Figure 5.42: Plot showing the lift coefficient and its spectra for a gap ratio of 0.16 and for Froude

numbers of 0.50 (top) and 0.60 (bottom). The Reynolds number for each case is 180.
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Figure 5.43: Plot showing the lift coefficient and its spectra for a gap ratio of 0.13 and for Froude

numbers of 0.50 (top) and 0.60 (bottom). The Reynolds number for each case is 180.
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Figure 5.44: Plot showing the lift coefficient and its spectra for a gap ratio of 0.10 and for Froude

numbers of 0.50 (top) and 0.60 (bottom). The Reynolds number for each case is 180.
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Figure 5.45: Variation of the mean lift and normalized RMS lift with gap ratio for Froude numbers

of 0.50 and 0.60. The Reynolds number for each case is 180.
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Figure 5.46: Plot showing the lift trace and its spectra for a gap ratio of 0.40 and a Froude number

of 0.55. The Reynolds number for each of the cases shown is again 180. The region to the right of

the dashed verical line is shown in figure (5.47).
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Figure 5.47: Close up view of the lift trace for a gap ratio of 0.40 and a Froude number of 0.55. The

Reynolds number for each of the cases shown is again 180. The letters (A to P) denote the frames

shown in figures (5.48) to (5.51).
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Figure 5.48: Particle transport and vorticity plots showing the first four points A to D denoted in

figure (5.47) (gap ratio 0.40, Froude number 0.55). The Reynolds number is again 180.
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Figure 5.49: Particle transport and vorticity plots showing the four points E to H denoted in fig-

ure (5.47) (gap ratio 0.40, Froude number 0.55). The Reynolds number for each of the cases shown

is again 180.

What is clear from these plots is that when the ‘jet’ is attached to the surface, the lift starts

to increase (with the maximum not occurring while the ‘jet’ is attached, but shortly after it

has separated), and that this attachment dramatically alters the surface curvature, with the

sharpening surface eventually breaking. Soon afterwards the downward deflection of the ‘jet’

is observed. The attachment of the ‘jet’ to the surface also alters the way in which fluid from

above the cylinder is convected downstream, with attachment coinciding with transport close to

the surface, while separation (i.e. the ‘jet’ detached from the surface) results in the fluid making

up the ‘jet’ being fed into the larger scale vortical structures from beneath.

This modulation is seen for all of the cases in which metastable type behaviour is observed,

although the characteristics such as the magnitude, and the modulation frequency, appear to

differ for each case. Similar behaviour is also observed at a gap ratio of 0.25 and a Froude

number of 0.50, and at a gap ratio of 0.55 for a Froude number of 0.60.
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Figure 5.50: Particle transport and vorticity plots showing the four points I to L denoted in fig-

ure (5.47) (gap ratio 0.40, Froude number 0.55). The Reynolds number for each of the cases shown

is again 180.

5.3 Drag

The behaviour of the drag is of interest as the formation of large-scale vortical structures in

the wake, particularly at the smaller gap ratios, should alter the horizontal force acting upon

the cylinder. The metastable behaviour is also likely to be highlighted in the time dependent

variation of the drag, with the growth and attenuation of vortex shedding influencing the pressure

distribution behind the cylinder. Figure (5.52) shows the behaviour of the mean and RMS drag.

The trend in the mean drag indicates that the formation of the larger scale vortical structures

and the separation of the ‘jet’ from the free surface, act to reduce the drag. These structures

typically form at significantly large distances from the cylinder (i.e. 5 or more diameters), with

their presence also suppressing vortex shedding. The noteable drop in the RMS drag is thus

not surprising as the larger scale structures prevent the formation of low pressure vortex cores

in the near wake (hence the notable drop in RMS drag at the larger Froude number). Such

structures also slow the fluid in the wake cavity and hence increase the dynamic pressure in this

region. The reorientation of the wake explains the general drop off in the drag (and the increase

in the magnitude of the lift) observed for both cases as the gap ratio is reduced. However, the
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Figure 5.51: Particle transport and vorticity plots showing the last four points M to P denoted in

figure (5.47) (gap ratio 0.40, Froude number 0.55). The Reynolds number for each of the cases

shown is again 180.

separation of the ‘jet’ from the free surface reorients the wake even further, hence the more rapid

decline in drag with gap ratio at the larger Froude number.

5.4 Moment

While the moment acting on the cylinder will be solely due to viscous effects, and hence de-

pendent upon the Reynolds number, it is the trends that are of interest here. The behaviour of

the moment with gap ratio, for both Froude numbers, is shown in figure (5.53). The interesting

point to note is that the moment changes sign for some of the smaller gap ratio cases as the

Froude number is increased (which appears to reflect the slowing or the reversal of flow in some

regions of the wake).
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Figure 5.52: Variation of the normalized mean drag and normalized RMS drag with gap ratio for

Froude numbers of 0.50 and 0.60. The Reynolds number for each of the cases shown is again 180.

5.5 Mechanism and the Stability of the Wake States

It is perhaps useful at this point to compare the current behaviour with that observed by Sumner

et al. (1999) for flow past two side-by-side cylinders in cross-flow. In their investigation they

note that at some gap ratios the flow in between the cylinders tends to be biased, in that it
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Figure 5.53: Variation of the mean moment with gap ratio for Froude numbers of 0.50 and 0.60.

The Reynolds number for each of the cases shown is again 180.

preferentially favours one cylinder. At smaller gap ratios (i.e. 0.20 or below), the two cylinders

behave in a fashion similar to that of a single bluff body. As the free-slip boundary is often

assumed to be a symmetry plane in potential theory, one may roughly consider the problem here

to be analogous to half of the problem considered by Sumner et al. (1999) (although it should

be stressed that this is only a rough approximation as vortex interactions with a deformable free

surface are not generally well represented by image vortex interactions (Rood (1994b)). Hence

at the smaller gap ratios in which Sumner et al. (1999) observe the flow to be similar to that

of a single bluff body, one would expect the flow here to represent flow past half a body (which

is itself similar to symmetric flow past an obstacle). According to Gerrard (1966) and Green

& Gerrard (1993), vortex shedding occurs when the shear layer from one side of the body is

drawn across the centerline, such that it cuts off the upstream supply of vorticity to the growing

vortex, and a discrete vortex is formed. For this half body analogy, the flow from beneath the

cylinder can never cross the centerline, and hence this system can never produce single bluff

body shedding.

If the flow is thus forced to be symmetric, then similar behaviour to that found by Fornberg

(1985) is expected. For the case of symmetric flow past a cylinder, Fornberg (1985) observes
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a large recirculation zone that spans significant distances both vertically and horizontally; and

indeed, structures of similar extent are noted here. This observation applies equally at small

gap ratios for all of the Froude numbers in the current investigation (i.e. Froude numbers from

0.00 to 0.60), although the value of the Froude number does appear to influence the gap ratio

at which this recirculation zone is first observed.

It is speculated here, and it is necessary to stress the word speculated, that the flow is convec-

tively unstable when in this state. This idea is asserted, as perturbations do not cause the system

to exhibit a time harmonic response and hence the system does not appear to be governed by an

absolute instability. It is well known that the wake of a fully submerged cylinder is absolutely

unstable to pulse disturbances for Reynolds numbers exceeding roughly 40. It has also been

shown by Triantafyllou & Dimas (1989) (with experimental confirmation by Lin et al. (1996))

that a half submerged cylinder is convectively unstable for Froude numbers below 1.77, which

is always the case here. Hence it would seem plausible that as the cylinder is moved towards

the surface, the instability should transform from being absolutely unstable (at large gaps) to

being convectively unstable (at smaller gaps).

As convective instabilities are influenced by the nature of the disturbance, with some form of

feedback such as forcing or reflections from boundaries, required for the disturbances to grow. It

is thus expected that the flow at these smaller gap ratios may be more responsive to any reflected

waves within the computational domain. This may in part explain the observed fluctuations in

the surface height at the inlet at a gap ratio of 0.19 and a Froude number of 0.60, although the

inadequate capture of the wave breaking could just as likely be responsible for this behaviour.

If one follows the assertion that the wake does indeed move from being absolutely unstable at

larger depths to being convectively unstable at smaller ones (with the degree of skew and hence

the Froude number determining the gap at which such changes occur), then the metastable wake

states follow on as a natural extension, as they represent the loose border in parameter space

between the two types of instability.

Hence the metastable wake states will be largely governed by the level of surface deformation,

which is itself determined by the Froude number. Thus as the Froude number is increased the

level of surface curvature should also increase and the range of gap ratios over which metastable

behaviour is observed should grow. However, it is anticipated that only a finite range of gap

ratios will support metastable behaviour, as the direct interaction of the vorticity from both the

free surface and the cylinder appears to be required for the switching between the instabilities
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to occur.

The current results demonstrate that significant changes in the wake behaviour are observed

when the Froude number is increased, with these findings largely in agreement with those of

Sheridan et al. (1995), Sheridan et al. (1997) and Hoyt & Sellin (2000). Indeed, the close com-

parison between the current numerical results and those obtained experimentally is remarkable

when one considers the range of Reynolds numbers covered. Such agreement suggests that the

problem is insensitive to Reynolds number, and is largely dominated the geometrical constraints.

The agreement between the current results at low Froude number and those for a no-slip wall

lend support to this argument.

It was spectulated from the outset that this problem was governed by two primary mechanisms:

the first being the supply of fluid to the near wake, and the second involving the degree by which

the wake is skewed from being parallel. With regard to the first point, one needs only examine

the particle transport video for a fully submerged cylinder to realize that the problem of flow

past a cylinder close to a free surface will be strongly influenced by the entrainment demands

of the cylinder wake. The supply of fluid is largely determined by the gap ratio.

The degree of skew on the other hand, is predominantly governed by the Froude number which

represents the ratio between the inertial and gravitational forces. Its influence on the wake is

simply via its determination of the surface curvature, with Ohring & Lugt (1991), and Lugt &

Ohring (1992) having shown that vortices generally induce greater surface distortion at larger

Froude numbers. It is both of these factors in combination that then determine the nature of

the wake flow. The results in the chapter dealing with the flow at low Froude numbers highlight

the influence of fluid supply, while the results in the current chapter emphasize the importance

of skew. It is the influence of the skew in the wake that perhaps produces the most dramatic

changes in the behaviour, as such changes are invariably time-dependent. The metastable wakes

states are a clear example, with the time-dependent skew in response to the vortex structures

formed on the cylinder resulting in an arresting change in the wake behaviour.

It is perhaps best at this point to clarify what was referred to earlier as being a flow adjustment.

With regard to the movement of the ‘jet’ from a position closer to the rear of the cylinder to a

point somewhere in between the cylinder and the surface. Such behaviour is not deemed to be

metastable here, as it does not constitute a change in the nature of the instability of the wake,

whereas the ‘attachment’/‘significant detachment’ of the ‘jet’ from the surface may be justifiably

called a metastable state. While this classification is purely based on a definition, it is suggested
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here that there are only two basic wake states: attachment or near attachment of the ‘jet’ to

the free surface, and significant separation of the ‘jet’ from the free surface. Attachment or

near attachment of the ‘jet’ to the surface then corresponds to an absolute instability, while the

significant separation corresponds to a convective instability (as no time harmonic response is

noted).

It is postulated that the time-dependent flow adjustment observed by Sheridan et al. (1997)

is related to the temporal evolution of the large recirculation bubble, with the influence of the

Reynolds number on the stability of these large structures being largely unknown (with Fornberg

(1985) only having considered symmetric flow past a cylinder up to Reynolds numbers of 600).

However, the favorable comparison between the current results and those of Sheridan et al. (1997)

indicate that such structures are also likely to be observed at much higher Reynolds numbers. It

is possible that these recirculation zones are less stable at larger Reynolds numbers, and hence

may produce some time dependent behaviour, which would explain the flow adjustment observed

by Sheridan et al. (1997). While the flow adjustment in which the ‘jet’ attaches and then detaches

from the rear of the cylinder is not observed here, it should be noted that some flapping of the

separated ‘jet’ was observed. One can not rule out that these larger recirculatory structures

become three-dimensional, with the three-dimensional evolution then being responsible for the

flow adjustment.

The evidence at present for the current investigation will only permit one to suggest that cer-

tain behaviour is characteristic of a convective or an absolute instability, without being able

to directly classify such behaviour. However, it is strongly speculated here that recirculatory

behaviour is synonymous with a convective instability, while near wake vortex shedding is syn-

onymous with an absolute instability.

5.6 Summary

The results of this chapter demonstrate the influence that skew has on the wake, with the gap

ratio at which shedding ceases growing with Froude number. The flow mechanics are discussed

and it is speculated that the level of skew determines that nature of the instability associated

with the cylinder wake (i.e. absolute or convective instability). Furthermore, it is speculated

that the metastable wake states, which are covered in this chapter, represent a loose border in

parameter space between the two types of instability.
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Chapter 6

Conclusion

From the outset the major goal of the current study was to provide a mechanism that explains

the observed changes in the wake behaviour for flow past a cylinder close to a free surface. It

was envisaged that such a mechanism may then provide some information with regard to the

nature of the instabilities associated with the wake over a range in parameter space.

The initial suggestion that this problem was largely governed by two primary mechanisms, with

the first being the supply of fluid into the near wake, and the second being the degree by which

the wake is skewed from being parallel, appears to have largely been vindicated.

With regard to the first point, one needs only examine the particle transport video for a fully

submerged cylinder, to realize that the problem of flow past a cylinder close to a free surface will

be strongly influenced by the entrainment demands of the forming vortices behind the cylinder.

Such videos highlight the fact that considerable amounts of the fluid that would have gone into

forming a fully submerged vortex street, are clearly unavailable for the case of the cylinder close

to an adjacent surface.

The resultant wake behaviour for the cylinder close to a free surface reflects these changes, with

the influence of the supply of fluid into the wake cavity being demonstrated by the significant

changes in the response of the system observed at small gap ratios. It is believed that it is this

supply which largely governs the behaviour of the wake at small Froude numbers where the flow

is largely parallel, and it is suggested that it is this behaviour that also dominates the flow for

the case of a cylinder close to a no-slip surface.

The suggestion by Koch (1985) and the speculation of Huerre & Monkewitz (1990) that only a

limited range of asymmetry is required before an absolute instability can no longer be sustained,
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intimates that the cessation of shedding (or the extinguishment of the absolute instability) at

the small gap ratios is likely to involve the skewing of the wake velocity profile.

The low Froude number results for variation of the maximum time averaged velocity in the

region directly above the uppermost part of the cylinder with gap ratio, that shows a significant

reduction in the average flow velocity with decreasing gap, suggest that the wake does indeed

become skewed, even for cases in which the flow is still largely parallel.

Indeed it appears to be skew in the velocity profile that leads to the cessation of shedding for

all of the Froude numbers considered, although having said that, the nature of the skew appears

to be different for each Froude number. At low Froude numbers the wake is largely parallel and

the skew introduced is due to a reduction in the horizontal velocity near the top of the cylinder.

At the intermediate and larger Froude numbers the skew arises as there is an increasing vertical

and decreasing horizontal component of the flow passing over the cylinder. Such skew is then

introduced by the increased level of surface curvature which alters the horizontal component of

the flow passing over the cylinder.

It is the level of skew, or perhaps more appropriately the reduction in the horizontal component of

the flow passing over the cylinder, that is the common thread linking all of the results concerning

the cessation of shedding for the entire Froude number range considered. At the larger Froude

numbers the surface curvature and hence the level of skew varies with time, and it is this time

dependence that gives rise to the more interesting wake states.

Indeed, it is tentatively proposed here that the metastable wake states represent a time depen-

dent switching between an absolute and a convective instability. For the metastable cases, it is

believed that the absolute instability gives rise to structures which lead to its own demise, and

as such the system when in this state represents a feedback loop.

The argument that the the flow becomes convectively unstable at small gap ratios is supported

by the findings of Triantafyllou & Dimas (1989), who indicate that the wake of a half submerged

cylinder (at an infinite Reynolds number) is convectively unstable for Froude numbers below

approximately 1.77 (which is always the case here). As the wake of a fully submerged cylinder

is absolutely unstable for Reynolds numbers above roughly 40 (Triantafyllou & Dimas (1989)),

it would seem plausible that the nature of the instability must change as the cylinder is moved

closer and closer towards the surface.

The altered levels of skew with increasing Froude number reflect the response of the free surface

to the vorticity field generated by the cylinder. At the lower Froude numbers where the surface
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is relatively flat, the upward movement of the positive vortex from beneath the cylinder (at

small gap ratios) induces little or no surface deformation and the slowed/reverse flow above the

positive vortex interacts with the flow passing over the cylinder in a direct manner (i.e. the

collision is ‘head-on’). At the larger Froude numbers, the upward movement of the last shed

positive vortex from beneath the cylinder results in more significant surface deformation, and

hence alters the angle at which the slow/reverse flow from above the positive vortex and that

from above the cylinder interact. Finally when the Froude number is sufficiently large, the angle

between the two counter flowing streams increases to the point at which the flow from above the

cylinder is deflected away from the surface. This simplified procedure is shown schematically in

figure (6.1).

Low Froude numbers

Flows interact head−on

Intermediate Froude numbers

Flows interact at a slight angle

Large Froude numbers

Flows interact at a larger angle

Figure 6.1: Schematic illustrating the influence of the Froude number on the wakes behaviour.

It should be noted that the slow/reverse flow near the free surface is due to all of the positive

vortical structures in the wake, and not just the last shed positive vortex, although it is the

closest structures that have the most influence.

In the introduction at the start of this document, a number of other aims/goals were set, and it

is perhaps useful at this point to consider how well they have been satisfied. The first goal was

to confirm that the flow field is largely two dimensional, as suggested by Sheridan et al. (1997).
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The comparison between the current results and those of Miyata et al. (1990), Sheridan et al.

(1995), Sheridan et al. (1997) and Hoyt & Sellin (2000), suggest that the two-dimensionality of

the results is somewhat dependent upon both Froude number and gap ratio.

At the smaller Froude numbers the pictorial comparison is not particularly good with the results

of Sheridan et al. (1997), although it is favourable with those of Miyata et al. (1990). The major

difference is the lack of anything resembling discrete vortices in the wake for the results of

Sheridan et al. (1997) at low Froude numbers. Both the current results and those of Miyata

et al. (1990) indicate that shedding takes place for a range of gap ratios at low Froude numbers,

and it is possible, although unlikely, that the contouring chosen by Sheridan et al. (1997) hides

such vortices.

At the intermediate and larger Froude numbers the comparison between the results of the current

two dimensional study and that of Sheridan et al. (1997) improves. Remarkable agreement is

observed at the larger Froude numbers, both in terms of the point in parameter space at which

the metastable effects occur, and with respect to the flow behaviour at these points in parameter

space.

The flow also appears to become more two dimensional at smaller gap ratios, and it suggests

that the closer one comes to the wake being convectively unstable, the more two dimensional

the flow field becomes.

The second goal was to map out a larger region of the parameter space, which to the author’s

knowledge was largely uncharted. It is believed that the current results go some way in satisfying

this goal, with the behaviour of the Strouhal number, the mean and RMS components of the lift

and drag, the mean moment, the position of the stagnation and separation points, the variation of

the formation length, the paths and convective velocities of the vortices, the time averaged flow,

the behaviour of the local Froude number and both the vorticity fields and particles transport

plots all having been considered.

6.1 Future Work

It is hoped that the current investigation has shed some light on the problem of flow past a

cylinder close to a free surface. However, it has also raised a number of issues that warrant

further investigation. Some of these include:

• Confirmation of the variation of the formation length with gap ratio, and the effect of the
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Reynolds number on both the formation length and the Strouhal number.

• A more substantial investigation of the three dimensionality of the flow.

• The influence of a body with fixed separation points (i.e. a square or a rectangular plate).

• A stability analysis of the wake profiles for the cases close to the point at which shedding

ceases.
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