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Abstract

A computational study investigating the flow past bluff bodies in the low Reynolds
numbers range (Re < 750) is presented. Two- and three-dimensional investigations are
performed to investigate various flow transitions that occur when canonical bluff bodies
such as circular cylinders and spheres are placed near a planar boundary, rotated or a
combination of the two effects.

Control parameters such as «, the non-dimensionalised rotation rate, defined as the
ratio of the tangential velocity on the body surface to the oncoming fluid velocity, and
gap height G/ D, the distance between the body and the wall (G)) non-dimensionalised
by the diameter D, are extensively used together with the Reynolds number. For these
investigations, « is varied between 43, where positive values correspond to prograde
rotation and negative values correspond to retrograde rotation. The gap height is varied
from G/D = oo for bodies in freestream to G/D ~ 0 for bodies near a wall.

A spectral element based solver is used to solve the Navier-Stokes equations in two-
and three-dimensions. Computational domains are constructed so that the evaluated
flow parameters, such as the force coefficients and the shedding frequency, are accurate
to an error of less than 1%. Spatial resolution studies are performed to obtain a trade-
off between accuracy and computational time. For all investigations, the results vary
by less than 0.5% with respect to the domain with the highest resolution.

The first of these studies investigates the onset of various three-dimensional modes in
the wake of a rotating cylinder in freestream as the rotation rate is varied for o < 2.5 and
Re < 400. Two transitions are considered in this study; the first being the transition
to periodic flow where vortex shedding occurs. As the rotation rate was increased,
the onset of periodic flow was delayed and altogether suppressed for o > 2.1. The
second transition considered is the transition to three-dimensionality using a technique
known as linear stability analysis. For rotation rates a < 1, the onset of the three-
dimensional modes occurs in the unsteady regime, and is identical to that observed
for a non-rotating cylinder, although the rotation rate delays the onset of transition
to higher Reynolds numbers. For higher rotation rates, the three-dimensional scenario
becomes increasingly complex, where three new modes bifurcate from the unsteady
base flow and two new modes bifurcate from the steady base flow. The spatio-temporal
characteristics and the physical mechanism leading to the instability of these modes are

discussed.
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A second study investigates the flow dynamics for a circular cylinder translating
along a wall at different gap heights. From the two-dimensional computations, the force
coefficients and the shedding frequencies were quantified. At large spacings, G/D 2
0.28, the transition to three-dimensionality was observed on the unsteady base flow,
while below this gap height, the three-dimensional transition occurred in the steady
regime at Reynolds numbers lower than the transition to periodic flow. Simulations
were further carried out to determine the variation of the transitional Reynolds numbers
for cylinders rolling along a wall. For forward rolling cases, the transition to unsteady
flow occurred at increasingly low Reynolds numbers, while reverse rolling delayed the
onset of periodic flow to higher Reynolds numbers and periodic flow was suppressed for
a < —1.5. Linear stability analysis indicated that the onset of three-dimensional flow
was lowered as the rotation rate was increased to higher positive values of a;, while three-
dimensionality was suppressed for negative rotation rates of @ < —2. For the cylinder
sliding along a wall (a = 0), stability analysis at higher Reynolds numbers in the
unsteady state shows multiple modes unstable to spanwise perturbations. The three-
dimensional simulations indicate that the flow eventually becomes chaotic, possibly due
to the interaction between the various modes.

The second study was further extended to investigate the flow past multiple bodies
near a wall. The additional control parameter for this study was the separation distance
S/D, where S is the distance between the cylinders and Reynolds number, while the
rotation rate was fixed at o = 0. For cylinders at very small and very large separations,
the flow features were identical to that of the singular cylinder. As Reynolds number
was increased, unsteady flow was detected at close spacings, which led to an increase
in the drag coefficient on the downstream cylinder. Stability analysis showed similar
trends for the limiting cases, while for intermediate spacings, the flow first became
unstable, and then restabilised at slightly higher Reynolds number. This flow further
became unstable at higher Reynolds number. Three-dimensional simulations over a
range of separations show the flow transitioning to a chaotic state akin to the singular
cylinder.

The final study investigated the wake of a forward rolling sphere for Re < 500.
At Re ~ 140, vortex shedding occurred by the formation of hairpin vortices which
moved away from the wall and convected downstream. A secondary transition involving
the loss of planar symmetry occurred at Re ~ 192, where the hairpin vortices were
displaced laterally along the wake centreline, giving a sinuous structure to the wake
when viewed from above. Beyond this transition, the lateral oscillations exhibited a
7 : 3 resonance with the hairpin vortex shedding. As Reynolds number was increased,
the flow progressively became more disorganised and chaotic. At the highest tested
Reynolds number of 500, the wake was spatio-temporally chaotic, while retaining its

sinuous structure.
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Nomenclature

A list of nomenclature used throughout the thesis is included here.

Symbol Description

A Projected frontal area, amplitude

Cp Coefficient of drag, Fip/(0.5pU%A)
CpD Coefficient of drag on the downstream cylinder
CpU Coefficient of drag on the upstream cylinder

Cp Mean drag coefficient

Cr Coefficient of drag, 2Fy,/(0.5pU?A)

Cr, Mean lift coefficient
Cry,z Coefficient of force in x, ¥, z

D Diameter

f frequency of shedding

Fp Drag force

Fr, Lift force

G Distance between the cylinder and the wall
n Index
N Number of internal node points per macroelement
Ny Number of Fourier planes in the azimuthal direction
r Radial cylindrical polar coordinate
rms Root Mean Square

Re Reynolds number
Re, Critical Reynolds number for transition

S Separation distance between the cylinders
St Strouhal number

Continued on the next page.
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Continued from previous page.

Symbol Description
Stsp Strouhal number in the spanwise direction
Stey,» Strouhal number in z,y, z
t Time (dimensional)
T Period of oscillation,

Period of sampling
Half the period of the global instability mode
At Timestep
U Velocity of the freestream
U Cartesian streamwise velocity
v Cartesian transverse velocity
w Cartesian spanwise velocity
x Cartesian streamwise coordinate
Y Cartesian transverse coordinate
z Cartesian spanwise coordinate, Axial cylindrical polar coordinate
Symbol (Greek)

e Non-dimensionalised rotation rate, Dw/(2U)
B,k Non-dimensional spanwise wave number

T Circulation

w Angular velocity

0 Azimuthal cylindrical polar coordinate

A Wavelength

Ac Critical wavelength at the onset of the instability
Apref Wavelength with the maximum growth rate

7 Fluid viscosity,

Floquet multiplier

v Kinematic viscosity, u/p

p Fluid density

o Growth rate of the instability or the Floquet exponent
0o Inviscid growth rate

Cinviscid Growth growth from the inviscid theory of Bayly (1988)

Continued on the next page.
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Continued from previous page.

Symbol Description
T Non-dimensionalised time, tU/D
v Streamfunction
U rer Measure of the streamfunction with an orbital period, T .,

Symbol (Miscellaneous)

§ Thesis section
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Chapter 1

Introduction

The flow past two different bluff bodies at various distances from a plane wall is in-
vestigated by two- and three-dimensional numerical simulations. In this chapter, we
briefly review relevant previous studies and then describe the key aims of this body of
work. In section 1.1.1, the classical studies on the wake dynamics of a circular cylinder
in freestream are discussed, and this is extended to multiple cylinders in tandem in sec-
tion 1.1.2. Previous studies on the wake dynamics of a rotating cylinder are discussed
in section 1.1.3. The next section deals with the flow dynamics of cylinders in close
proximity to a wall. A brief review on the wake dynamics of a sphere moving near a
wall is presented in section 1.1.4.3. Following this, the aims of this study are defined in
section 1.2, and the flow problems investigated here are described in section 1.3. The

structure of this thesis is presented in 1.4.

1.1 Review of literature

In this section, we review some of the key studies conducted on bluff body flows in
freestream and near a wall. However, since detailed specific literature reviews have been
presented in the journal articles forming subsequent chapters; only a brief overview of

relevant studies is presented here.

1.1.1 The flow past bluff bodies in freestream

Flows past bodies in freestream have been a subject of investigation for over a century,
where the wake of a circular cylinder was first investigated by Bénard (1908) and von
Karman (1911). The variable parameter in this case is the velocity of the oncoming
flow or its non-dimensional counterpart, the Reynolds number (Re), given by the ra-

tio of the inertial to the viscous forces on the body. The flow transitions that occur



in the low Reynolds number regime have been extensively investigated both experi-
mentally (Williamson 1988a,b, 1996a), and numerically (Karniadakis & Triantafyllou
1992; Thompson et al. 1996; Barkley & Henderson 1996). The flow remains steady
for Re < 46, and on increasing the Reynolds number, the transitions to periodic flow
occurs via a Hopf bifurcation (Norberg 2003), where vortices are alternately shed pe-
riodically from either side of the cylinder. At a Reynolds number of Re ~ 190, span-
wise waviness develops in the wake, leading to three-dimensional flow. At onset, the
spanwise wavelength was found to be approximately 4D, and was termed the mode A
instability (Williamson 1988b). At slightly higher Reynolds numbers, Re ~ 230, the
three-dimensional wake becomes unstable to a second instability, having a characteristic
wavelength of ~ 1D, and this is termed mode B. These transitions were confirmed by
the numerical analysis of Barkley & Henderson (1996), who employed linear stability
analysis to obtain the critical Reynolds numbers for the onset of these three-dimensional
modes. The critical Reynolds number for the onset of Mode A instability was deter-
mined to be ~ 188.5 for a spanwise wavelength of 3.96D, while mode B became unstable
at Re ~ 260 for a spanwise wavelength of 0.8D. In reality, of course, mode B devel-
ops on the saturated three-dimensional wake state of mode A. These three-dimensional
modes were visualised by the Direct Numerical Simulations (DNS) of Thompson et al.
(1996) amongst others. According to stability analysis, Mode A was found to still be
the dominant mode at Re = 280 (Barkley & Henderson 1996), while mode B becomes
the fastest growing mode for Re > 300 (Blackburn et al. 2005). However, in practice,
mode B becomes dominant at lower Reynolds numbers (Re 2 230). At higher Reynolds
numbers (Re ~ 400), the flow quickly becomes chaotic (Henderson 1997).

The three-dimensional modes described above have analogues in the wakes of other
geometries. Modes A and B are known to develop in the wakes of square cylinders
(Robichaux et al. 1999) and rings Sheard et al. (2003), and are commensurate with the
periodicity of the base flows. Modes which are non-synchronous with the base flow are
also known to exist in bluff body wakes, and these modes are quasi-periodic. A mode
with this characteristic for a circular cylinder was termed mode QP (Blackburn & Lopez
2003). When the symmetry of the Karman street is broken for a less symmetric body, a
different three-dimensional mode develops. Subharmonic modes are periodic over twice
the period of the base flow. Modes of such nature are observed when a control wire is

placed in the wake of a circular cylinder (Zhang et al. 1995), or in the case of flow over



rings (Sheard et al. 2003, 2005a,b) and inclined square cylinders (Sheard et al. 2009;
Sheard 2011).

The studies described here detail the important transitions that occur in the low
Reynolds number range for a flow past a circular cylinder. These studies will form the
basis for further studies described here. Although the circular cylinder is the simplest
configuration investigated, the flow dynamics can be significantly altered by placing
an identical body in its vicinity, by induced rotation, or by bringing it near a plane
boundary. The effect of these changes on the flow dynamics is described in the following

sections.

1.1.2 The flow past multiple circular cylinders in freestream

The studies on multiple bodies were investigated in light of flow stabilisation that occurs
by placing an identical cylinder downstream of the original cylinder at various longitu-
dinal spacings. At very close and very large spacings, the associated flow dynamics are
effectively identical to a single body in freestream. Based on the separation distance,
S/ D, various researchers (Igarashi 1981; Zdravkovich 1987; Didier 2007) have identified

different regimes of flow. The broad classifications based on this parameter are:

e 0.1 < S/D < 0.2 - 0.8, a region of close spacing, where the shear layers shed
from the upstream cylinder do not reattach on the downstream cylinder. The
two cylinders behave as a single extended body and vortices formed are from the

detached shear layers of the downstream cylinder.

e 0.2—-0.8<S5/D < 24— 2.8, an intermediate regime where the shear layers shed
from the upstream cylinder reattach onto the downstream cylinder, and shedding
takes place behind the downstream cylinder. Also observed in this regime was the
intermittent vortex formation behind the upstream cylinder and reattachment of

the shear layers.
e S/D > 2.8, vortices are shed from both cylinders.

Another important observation was that the drag force coefficient on the down-
stream cylinder was negative until the critical spacing of S/D ~ 2.5, and this distance
was labelled the “drag inversion distance”. Mizushimaa & Suehiro (2005) reported the

delay in transition to periodic flow to higher Reynolds numbers at close spacings. For



S/D = 1 and 3, the critical values for the transition were Re = 68 and 78.5, respec-
tively, which are much higher than that observed for an isolated cylinder. Furthermore,
by placing a downstream cylinder in this critical region, the onset of three-dimensional
flow can be controlled. The three-dimensional investigations by Deng et al. (2006) show
that the flow remains two-dimensional largely due to the limiting space for the shed
vortices to roll up when the separation distances are small. They further observed
that the flow became increasingly three-dimensional as the critical spacing distance is
reached.

Recent numerical investigations of the flow around isolated tandem cylinders by
Carmo et al. (2010) on the onset of three-dimensionality showed the growth of three
new modes at various separation distances for Re > 200. For low separation distances,
the onset of three-dimensionality occurs via mode T1, whose spatio-temporal symmetry
resembles that of the mode B instability observed in the wake of an isolated circular
cylinder at higher Reynolds numbers. This mode had a spanwise wavelength of ~
2D. Two other modes were observed when the cylinders were spaced between 0.8
< S/D < 1.5. The physical mechanism of the mode T2 instability was believed to
be centrifugal, while mode T8 had similar characteristics to mode A. Mode T2 had a
spanwise wavelength of ~ 3D, while mode T3 had a spanwise wavelength of ~ 4.6D
at onset. At large separations, the mode A instability was followed by the mode B

instability, akin to that observed for an isolated cylinder in freestream.

1.1.3 The flow past a spinning circular cylinder in freestream

The rotation of a circular cylinder has previously been used to control the flow dynamics
and achieve flow stabilisation. Due to the imposed rotation, the flow on one side of the
cylinder remains attached while on the other side, flow separation occurs, leading to a
net lift force in the direction away from the side where the flow is attached. This is
known as the “Magnus effect” and one of its earliest applications was in the propulsion
of ships (Prandtl 1925).

Several researchers have investigated the flow at different rotation rates both exper-
imentally and numerically. Although early numerical work was carried out at very low
Reynolds numbers Re < 40 (Ingham 1983; Badr et al. 1989, 1990), recent studies (Chen
et al. 1993; Chew et al. 1995; Kang et al. 1999; Stojkovi¢ et al. 2002; Pralits et al. 2010)

have extended the Reynolds number range to higher values. Vortex shedding occurred
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for a < 1.9, beyond which vortex shedding was suppressed. The rotation rate at which

vortex shedding ceased was found to vary with Reynolds number.

Mittal & Kumar (2003) performed numerical experiments at Re = 200 for o < 5.
At this Reynolds number, vortex suppression was observed around a = 2, and the
flow remained steady until higher rotation rates, where vortex shedding reappeared
over a small range of rotation rates (4.34 < a < 4.75). The vortex shedding in this
regime was single-sided and the shedding frequency was much lower compared to that at
lower rotation rates. A similar study performed by Stojkovi¢ et al. (2003) showed that
the range of o at which the two shedding regimes (two- and one-sided) existed varied
with Reynolds number. The upper limit at which primary shedding ceased, increased
monotonically with Reynolds number. The range at which secondary shedding was
observed shifted to lower rotation rates at high Reynolds numbers. Also, the range was
narrower at lower Reynolds numbers. The Strouhal number was found to be dependent

more on the rotation rate than the Reynolds number.

Recent experimental investigations were performed by Kumar et al. (2011) @ < 5
using the hydrogen bubble technique to obtain flow field visualisations for Re < 400. At
Re = 200, they report that the vortex street behind the body was deflected for o < 1.9,
beyond which the vortex shedding becomes less pronounced and being suppressed for
« ~ 2. At higher rotation rates, the single-sided vortex shedding observed numerically
by Mittal & Kumar (2003) and others was confirmed by the use of Particle Image
Velocimetry (PIV). In addition, they visualised the flow for Re = 300 and 400 and
computed the variation of Strouhal number at different rotation rates. In the primary
shedding mode, the shedding frequency was independent of the rotation rate, while
in the secondary shedding regime, the shedding frequency decreased on increasing the
rotation rate. The experimentally obtained values of Strouhal number in the secondary
shedding regime were consistent with the numerical studies of Akoury et al. (2008) and
Mittal & Kumar (2003). At higher Reynolds numbers, the wake was reported to be

highly three-dimensional.

The onset of three-dimensionality for rotation rates of @ > 0 had not been inves-
tigated until recently, although it has been generally stated that the flow is three-
dimensional beyond Re = 200. Akoury et al. (2008) performed direct numerical
simulations in two and three dimensions for a rotating cylinder. From their two-

dimensional studies, they mapped the variation of St at increasing rotation rates at



different Reynolds numbers for o < 6. The secondary shedding regime, where a single-
sided vortex is shed from the cylinder, broadened at higher Reynolds number, with
the regime shifting towards lower rotation rates. This was attributed to the decreasing
influence of the viscous component at higher Reynolds numbers (Stojkovié et al. 2003).
This secondary shedding regime occurred between a = 4.75 and o = 5.25 at Re = 100,
while at Re = 500, secondary shedding occurred in the range 3.6 < a < 5. The Strouhal
number was ~ 0.05, much lower than that observed for the spinning cylinder at low
rotation rates, consistent with the findings of Mittal & Kumar (2003). The Strouhal
number decreased as rotation rate was increased in this regime. Three-dimensional
simulations were performed for the cylinder rotating at a < 1.5. At Re = 300, the
growth of the spanwise component of velocity grew steadily, indicating the onset of
three-dimensional flow. This transition was found to occur through a supercritical bi-
furcation. Using Landau modelling, they determined the critical Reynolds number for
the transition to three-dimensional flow for o« = 0.5 to occur at Re. = 219.8. Further
investigations at @ = 1.5 and Re = 200 showed damping of the spanwise component
of flow, indicating two-dimensional flow. Using proper orthogonal decomposition, they
reconstructed the three-dimensional modes for a = 0.5. The reconstructed mode was
found to have a similar spanwise wavelength to the mode A instability (~ 4D) observed
for a non-rotating cylinder at the onset of three-dimensionality (Williamson (1988b),
Thompson et al. (1996)). Furthermore, at Re = 300, the wake retained its mode A
structure, possibly due to enhanced stability of the vortex pairs attributed to the vor-
ticity induced by cylinder rotation in the spanwise direction. The critical values of
transition to three-dimensional flow for rotation rates other than o = 0.5 were not

reported.

The effect of three-dimensional instabilities at higher rotation rates has been in-
vestigated by Mittal (2004) for « = 5 at Re = 200. The two-dimensional flow field
is steady while the three-dimensional simulations show the growth of centrifugal in-
stabilities. They also tested the effect of various boundary conditions for cylinders of
different aspect ratios (the ratio of the cylinder diameter to its length). For aspect
ratios of 5, 10 and 15 with slip walls, the time-history of the drag coefficient showed
oscillatory behaviour. The cylinder with lower aspect ratio and slip walls resembled
two-dimensional flow (which was steady). However, longer aspect ratio cylinders with

no-slip walls showed fluctuations, primarily because of the interaction of the boundary



layer of the wall and the rotating cylinder. The three-dimensional flow was associated
with centrifugal instabilities of around 1D spanwise wavelength. This instability was
predicted to cause a reduction in lift and an increase in drag.

Recent linear stability investigations by Meena et al. (2011), at Re = 200 for 3 <
a < 5, indicate the presence of modes with purely real growth rates (indicating they
are synchronised with the two-dimensional flow) for ov < 4.3. Their three-dimensional
investigations show what appear to be centrifugal instabilities near the cylinder and
the time histories of the force coefficients indicate the onset of aperiodic flow.

Although modes A and B are known to occur for a non-rotating cylinder, the critical
values at the onset of these modes for higher rotation rates is not known. Furthermore,
at higher rotation rates of a 2 3, centrifugal instability is said to dominate in the near
wake. Nonetheless, the parameter map of Re — o remains to be explored for the onset

of three-dimensional flow.

1.1.4 The flow past bluff bodies near a wall

1.1.4.1 The flow past a cylinder near a wall

Several studies (Bearman & Zdravkovich (1978); Price et al. (2002); Lei et al. (2000)
and others) have considered the changes in flow features brought about by placing a
bluff body near a planar surface, where the lower wall remains stationary, leading to
the formation of a boundary layer upstream of the cylinder. Compared to a cylinder in
freestream, several changes, including that of flow structures, are evident. For a circular
cylinder near a wall, vortex shedding occurs by the pairing of the shear layer rolled up
behind the cylinder and the oppositely signed boundary layer on the wall, where the
induced vorticity lifts away from the wall to form a compact vortical structure which
convects downstream. The changes in the shedding frequency and the force coefficients
have been documented. Very few studies (Huang & Sung 2007; Yoon et al. 2010)
have considered a circular cylinder translating near a stationary a wall, where a wall
boundary layer does is absent.

Huang & Sung (2007) performed two-dimensional simulations for a circular cylinder
moving near a wall for 0.1 < G/D < oo and Re < 600. The gap height, G, at which
alternate vortex shedding disappeared decreased from 0.28D to 0.25D as the Reynolds
number was increased from 300 to 600. The non-dimensionalised shedding frequency

(St) at different Reynolds numbers increased as the cylinder was brought closer to the
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wall (~ 0.5D), followed by a rapid decrease as the gap height was decreased. They
further quantified the lift and drag coeflicients, with the lift coefficient showing a linear
increase as the cylinder was brought closer to the wall. They however, did not rule out

the possibility that three-dimensional effects would be important for such flows.

Using an immersed boundary technique, Yoon et al. (2010) performed numerical
investigations at various gap heights for a circular cylinder moving parallel to a wall at
Re < 200. The time-averaged lift and drag coefficients decreased exponentially as the
gap height was increased. They observed steady flow at higher Reynolds numbers as
the gap height was decreased. Vortex shedding persisted at Re = 120 for the cylinder
with G/D = 0.1.

Mahir (2009) investigated the onset of three-dimensional flow for a square cylinder
near a fixed wall for Re < 250 as the gap height was increased from 0.1 to 4. At
Re = 185, mode A type vortex structures of spanwise wavelength 3D were observed
for gap heights greater than G/D = 1.2, whilst at G/D = 0.8, mode B type vortex
structures with 1D spanwise wavelength were observed. Below G/D = 0.5, neither
mode A nor B type vortex structures were observed. At Re = 250, mode B type vortex
structures were observed at larger gap heights, whilst at lower gap heights the vortex
structure was strongly distorted in the vicinity of the cylinder. In the frequency spectra
of the streamwise and spanwise velocities for G/D = 0.8 and Re = 185, period-doubling

was observed.

Stewart et al. (2006, 2010b) performed numerical and experimental investigations
for a circular cylinder rolling along a wall at a very small gap height (G/D = 0.005) and
Re < 500 for 1 < a < —1. For the non-rotating cylinder, they reported that the flow
was steady up to Re ~ 160, beyond which periodic flow was observed, where oppositely
signed vortex structures combined and self-propelled away from the wall. This value
is much higher than that observed for an identical cylinder in freestream. The effect
of rotation on the flow dynamics and force coefficients was reported. Forward rolling
lowered the transitional Reynolds number to periodic flow, while reverse rolling delayed
the onset of periodic flow to higher Reynolds numbers. From their linear stability
analysis, the transition to three-dimensional flow occurred in the steady regime for
all rotation rates, which is in contrast to that observed for a cylinder in isolation. A
decrease in the spanwise wavelength of the three-dimensional instability was observed as

the rotation rate was decreased to lower values. Furthermore, their experimental wake



visualisations for the cylinder near a wall in a water tunnel were in good agreement
with the numerical simulations.

The two-dimensional studies have detailed the two-dimensional structures for bodies
in freestream and near a wall; very little is known about the onset of three-dimensional
flow for intermediate gap heights. To reiterate, for cylinders in freestream, the flow first
transitions to a periodic state prior to becoming three-dimensional, while for bodies near
a wall, the flow becomes three-dimensional in the steady regime prior to the onset of
periodic flow. Furthermore, for bodies near a wall, the effect on the flow structures on
increasing the rotation rate to higher values is unknown. The influence of the spanwise

flow on the two-dimensional structures is yet to be determined.

1.1.4.2 The flow past multiple cylinders near a wall

Numerous studies have been conducted investigating the flow dynamics of multiple
cylinders in freestream and for bodies near a wall; very few studies have considered
the two effects in tandem. Bhattacharyya & Dhinakaran (2008) conducted numerical
simulations for a pair of tandem square cylinders in a linear shear flow at G/D = 0.5
for Re < 200. Below Re = 125, the shear layers, which separate from the two sides,
are unable to interact and cause vortex shedding. At a spacing of S/D < 2, the
two cylinders effectively behave as one body at Re < 200. However, for a spacing
of S/D = 2 — 3, vortices were shed from the downstream cylinder only. Beyond this
range, vortices were shed from both cylinders; at even larger separation distances, the
St recorded on the cylinders matched that of a single cylinder under a similar flow
condition. The height above the wall and the spacing distance were critical for the
shear layers to interact leading to the formation of vortices.

Harichandan & Roy (2012) performed numerical investigations for circular cylinders
in tandem when close to a wall at Reynolds numbers Re = 100 and 200 for separation
distances of S/D = 1 and 4. The bodies were placed at 0.5D and 1D above the
stationary wall. They observed that the dependence on the separation distance is
greater for the flow stability compared to the gap to the wall. Vortex shedding occurred
when the gap heights and the separation distance were both large.

For multiple bodies near a wall, the stabilising effect of the flow structures is un-
known. Furthermore, the transition to three-dimensionality for cylinders at various

spacings near a wall is yet to be determined.



1.1.4.3 The flow past a sphere near a wall

We here extend the studies examined to consider flows past spheres near a wall. For a
sphere in freestream, the flow transitions from a steady axisymmetric state to a steady
asymmetric state at Re = 212 (Johnson & Patel 1999) with the formation of a “double
threaded wake” with a planar symmetry. A second transition occurs at Re = 272,
where this double threaded kinks to form hairpin vortices. The two transitions were
found to be supercritical in nature (Ghidersa & Dusek 2000; Thompson et al. 2001).
Numerical simulations indicate that the planar symmetry is broken at Re ~ 345 (Mittal
1999), which is in line with experimental investigations of Sakamoto & Haniu (1990)
who suggested that a transitional regime exists for 420 < Re < 480, wherein the hairpin
vortices are intermittently displaced to either side of the wake centreline. At higher
Reynolds numbers (Re 2 650), chaotic flow was observed (Mittal & Najjar 1993).

Direct numerical simulations were performed by Zeng et al. (2005) for a sphere
moving parallel to a wall. Their study showed that as the sphere was moved closer to
the wall, the transition to the unsteady state occurred at Reynolds numbers lower than
for the freestream case (Re < 272), with a sudden increase observed for the closest tested
distance of 0.25D. The effect of free rotation was also studied. In their investigations,
a symmetry plane was used, curtailing the development of a lateral wake. Zeng et al.
(2009) also performed direct numerical simulations for a stationary spherical particle
close to a plane wall in a linear shear flow. They present results for gap ratios between
0.005 < G/D < 3.5, using a symmetry plane. The double-threaded wake is observed
at Re = 200 for larger gap ratios, while a toroidal structure engulfing the particle
is observed for lower Reynolds numbers. These findings are similar to the results of
Stewart et al. (2010a), where the transition to an unsteady state for the non-rotating
sphere was in excess of Re = 300. Furthermore, they propose empirical relationships
for the lift and drag coefficient variation with distance from the wall.

Stewart et al. (2010a) also performed experimental and numerical simulations for a
rolling sphere at other rotation rates. For a forward rolling sphere at o = +1, unsteady
flow was first observed at Re = 150, where vortex shedding occurred by the formation
of hairpin vortices, which convected away from the wall and diffusing in the far wake.
The same was observed in their experimental and numerical visualisations at Re = 200.
For a reverse rolling sphere at &« = —1 and Re = 300, the unsteady wake developed

lateral oscillations on addition of white noise in their numerical simulations. Recent
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experimental findings of Bolnot et al. (2011) showed the development of a sinuous mode
in the wake of a forward rolling sphere. Their dye visualisations at Re = 190 showed
that the wake maintained planar symmetry, while at Re = 230, the hairpin vortices
were displaced across the wake centreline.

From the above studies, the non-planar symmetric wake modes in the wake of
a rolling sphere have not been observed numerically, possibly due to the prohibitive
computational expense for such studies. Furthermore, the instabilities grow from small
amplitudes (O(107°)) before attaining a saturated state, requiring time integration over
several hundred time units, unless external noise is added to achieve a speed up effect.

Furthermore, the nature of these transitions has not been investigated.

1.2 Aims of this study

This study aims to compute the flow past bluff bodies, such as circular cylinders and
spheres, to determine the flow structures by varying the spatial location of the body with
respect to a fixed boundary and/or by imposing a rotation. The study also extends
to the investigation of flow past multiple bluff bodies and the resulting influence on
the flow state. A two-dimensional spectral element numerical solver is employed to
obtain the base flow solutions, following which the stability of these flows to three-
dimensional perturbations is investigated for the above scenarios. The transitional
values of Reynolds number are ascertained in each case, mapping regions of stability.

For the spinning cylinder in freestream, the major focus is to determine regions of
stability (or instability) on the a— Re plane, apart from determining the spatio-temporal
symmetries of unstable modes. The stability is investigated not only with respect to the
periodicity of the base flow, but also with respect to the three-dimensionality of the base
flow. The following study on the translating cylinders at varied gap heights bridges the
existing knowledge gap between the bodies in isolation and those near a wall. In this
case, the two parameters varied are the gap height and the Reynolds number, while
the rotation rate is fixed at zero. The other studies extend the parameter space by
investigating the flow features at a wide range of rotation rate and by introducing an
identical body at close distances to the original. The final study investigates the route
to chaotic flow for a sphere rolling along a wall at a fixed rotation rate as the Reynolds
number is varied.

The overall study aims to explore and extend the parameter ranges with respect
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to bluff bodies over a multi-dimensional parameter space. The study further aims
to investigate the new three-dimensional modes which are observed in the wake of a
spinning cylinder.

These studies are generally motivated by a desire to extend and improve our un-
derstanding of fluid-particle and fluid-structure systems, between the limits of creeping
flow and high Reynolds number turbulent regimes. It is clear that the wake instability
modes persist, albeit in a less distinct state, for wakes after the flow has become fully
turbulent, and contribute to the persistent larger scale structures in the flow. These
larger scale structures have a strong part to play in cross stream energy and momentum
transport. In addition, the mean and time-dependent forces on particles and structures

are also imminently tied to the wake flow characteristics.

1.3 Problem overview

The effect on the flow dynamics of a bluff body is investigated by a numerical study
involving a set of control parameters, which are selectively varied. A schematic diagram
of the studies undertaken is shown in figure 1.1. The governing parameters which are
used to describe the problem are the non-dimensionalised rotation rate, «, defined by
the ratio of the angular velocity of the body to the freestream velocity, U. It is math-
ematically given by o = wD/2U. Here, w is the rotation rate of a circular cylinder of
diameter D. For the circular cylinder rotating forward, where the cylinder rotation at
the top is in the opposite direction of the oncoming flow is assigned positive values of
a, while for reverse rotation, a takes negative values. In order to represent bodies in
freestream, we define a second parameter, G/D, known as the gap height. This param-
eter represents the distance of a body away from a plane wall. For cylinders at large
distances to a wall, G/D = oo, while for bodies in close proximity to the wall, G/D ~
0. The third parameter widely used in this study is the Reynolds number, defined as
the ratio of the inertial forces to the viscous forces and is given by, Re = pU D/, where
p and p are the density and viscosity of the fluid. For ease of computation, the frame
of reference is attached to the centre of the bluff body under investigation, and in this
frame the velocity of the lower wall is set to that of the oncoming flow velocity.

The first study involves the investigation of a circular cylinder in freestream, where
the gap height is maintained constant at G/D = oo, while o and Re are varied. This

is shown in the top left of the image. The second study involves the variation of gap
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FIGURE 1.1: Schematic showing the relationship between the problems investigated. The
open circles represent cylinders, while the filled circle represents a sphere. The frame of
reference is attached to the centre of the bluff body and the lower wall translates with a
velocity equal to the oncoming fluid velocity.

height for bodies away from the wall to that on the wall. In this case, the rotation
rate is fixed at zero, while the Reynolds number and gap height are varied. For bod-
ies on the wall, the flow features are investigated by varying the rotation rate. The
study is further extended to multiple bodies, where a second cylinder, having the same
diameter is placed downstream. The separation distance between the two cylinders is
non-dimensionalised by the cylinder diameter and is represented by S/D, where S is
the distance between the two cylinders. The final study involves the simplest three-
dimensional bluff body, a sphere of diameter D, shown by the fully filled circle. In this
case, the rotation rate and gap height are held constant, while the Reynolds number is
varied. The limits of the parameter space are mentioned in each study.

Several constraints are imposed in this study. The fluid around the bluff body is
assumed to be homogeneous, incompressible, and invariant to thermal effects. The
oncoming flow is assumed to laminar, uniform and having zero turbulence intensity
upstream of the body. The fluid is further assumed to be Newtonian, where the shear
stress of the fluid varies directly with the rate of strain. The simulations are performed
using an unsteady solver generally starting from a quiescent initial state, and the fluid
flow equations are marched forward in time, for several hundred time units. The non-

dimensional time is represented by 7, where 7 = tU/D, with ¢ being the time. The forces
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on the bluff bodies are monitored after the initial transience has died out and the flow is
steady or periodic. The body forces are computed by the summation of the pressure and
viscous forces acting on the body in a particular direction. The body force components
are non-dimensionalised by the upstream dynamic pressure and frontal area of the body,
to obtain the force coefficients. For the circular cylinder, the force coefficients (per unit
width) take the form C,, = F,,/(0.5pU?D), while for the spherical bluff body, the
force coefficients take the form, Cy . = 8Fw,y7z/(0.5pU27rD2). For cases where the flow
is periodic, the shedding frequency is measured by the Strouhal number, St, and is

given by St = fD/U, where f is the frequency of shedding.
1.4 Structure of the thesis

The remainder of this thesis is organised as follows. The following chapters contain
results from the studies of bluff bodies. Each chapter consists of a brief overview fol-
lowed by the submitted /accepted/published journal article. Chapter 2 details the wake
of a rotating circular cylinder in freestream, where a number of new three-dimensional
modes are observed. The following chapter, chapter 3, deals with the onset of three-
dimensional flow as the circular cylinder is brought closer to a plane wall. Chapter 4
deals with bodies rolling along a wall at different rotation rates, while chapter 5 in-
vestigates the flow features for multiple bodies near a wall. The final chapter, chapter
6, deals with the new wake mode observed behind a rolling sphere at higher Reynolds
numbers and rapid transition to chaotic flow as the Reynolds number is increased.

Finally, broad conclusions and future directions are presented.
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Chapter 2

Flow past a spinning cylinder in
freestream: Three-dimensional
effects

2.1 Overview

This chapter presents the findings of the linear stability analysis in the wake of a
spinning cylinder in the low Reynolds number range. For a non-rotating cylinder
(v = 0), the linear stability analysis of Barkley & Henderson (1996) showed that the
two-dimensional wake becomes unstable to a long wavelength instability (~ 4D) around
Re = 190, followed by a short wavelength instability (~ 4D) at higher Reynolds num-
bers. The analysis confirmed the previous experimental investigations by (Williamson
1988b, 1996b) and was further supported by the DNS of Thompson et al. (1996). The
numerical studies for a spinning cylinder have mainly focussed on the flow features from
a two-dimensional perspective, while generalising that a three-dimensional flow state
exists for Re 2 200. Nonetheless, the spinning cylinder studies have gained interest
from a flow stability perspective, due to the cessation of the vortex street for rotation
rates 2 1.9 (Mittal & Kumar 2003; Akoury et al. 2008; Kang et al. 1999; Stojkovié
et al. 2003). Vortex shedding was found to resume at higher rotation rates, with a
single-sided vortex being shed with a low shedding frequency. This regime occurred
over a small range of Reynolds numbers and rotation rate.

The recent DNS of Akoury et al. (2008) for a spinning cylinder for a < 1.5, showed
that the critical Reynolds number for the onset of three-dimensional flow was delayed
to Re = 220 for o = 0.5, with mode A type instability at the onset, which persisted in
the wake even at Re = 300. They further report that the flow was two-dimensional at

a = 1.5, Re = 200. The occurrence of three-dimensionality for other rotation rates is
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yet to be determined. Further questions arise regarding the three-dimensional nature
of the wake. How does the onset of three-dimensional flow vary on increasing rotation
rate and Reynolds number? Does the breaking of the flow symmetry by induced body
rotation give rise to other three-dimensional modes? What three-dimensional modes
occur in the steady regime of flow when vortex shedding ceases?

To answer these questions, two-dimensional numerical simulations are performed for
a < 2.5 and Re < 400, followed by linear stability analysis. Curves of marginal stability
of the three-dimensional modes are presented on the «, Re plane. The characteristics
of each of the three-dimensional modes is described and the physical mechanisms of
instability for the modes are proposed. Furthermore, the regions of steady-unsteady

flow are also obtained using a steady solver.

2.2 Three-dimensional flow features of a spinning cylinder
in freestream

The following article was submitted in 2012 to Journal of Fluid Mechanics. This work
was co-authored by J. S. Leontini, M. C. Thompson and K. Hourigan, and is entitled,
“On the three-dimensionality of a spinning cylinder in freestream”. The paper is re-

produced in this thesis directly from the version submitted to the editor for review.
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The wake of a rotating circular cylinder in a freestream igestigated for Reynolds numbers
Re < 400 and non-dimensional rotation ratesof 2.5. Two aspects are considered. The firstis
the transition from a steady flow to unsteady flow charaaéris/ periodic vortex shedding. The
two-dimensional computations show the onset of unsteady ifiadelayed to higher Reynolds
numbers as the rotation rate is increased, and vortex shgdslisuppressed far > 2.1 for

all Reynolds numbers in the parameter space investigatezis&cond aspect investigated is the
transition from two-dimensional to three-dimensional flosing linear stability analysis. It is
shown that at low rotation rates of < 1, the three-dimensional transition scenario is similar to
that of the non-rotating cylinder. However, at higher riotatates, the three-dimensional scenario
becomes increasingly complex, with three new modes idedtifiat bifurcate from the unsteady
flow, and two modes that bifurcate from the steady flow. Cunfawarginal stability for all of
the modes are presented in a parameter space map, the defiairagteristics for each mode
presented, and physical mechanisms of instability digzliss

Key Words: Wakes, vortex shedding, vortex streets, parametric iflgyab

1. Introduction

The flow past a rotating cylinder is a function of two non-dimsi®nal parameters. These
are the Reynolds numbeRe = UD /v, whereU is the freestream velocity) is the cylinder
diameter, and is the kinematic viscosity, and = wD/2U, wherew is the rotational speed of
the cylinder. This latter parameter is therefore the ratithe surface velocity of the cylinder to
the freestream velocity.

Flow past a non-rotating circular cylinder in the low Reya®humber range and the bifurca-
tions from one state to another have been extensively studiel several regimes of flow have
been identified. Experimental work on the transition betwte steady and unsteady regime
have been discussed by Williamson (1Bpénd others. Numerical investigations have also con-
tributed to the understanding of the flow. Several researohps, e.g., Barkley & Henderson
(1996), Karniadakis & Triantafyllou (1992), Thompsenal. (1996) have investigated the tran-
sition from two-dimensional vortex shedding to three-dnsienal flow atRe ~ 190, where
the wake vortices develop a waviness in the spanwise direeti a wavelength of arountD,
where D is the diameter of the cylinder. This wake flow is known as madéwilliamson
1988), and has also been shown to be the saturated form afa Imode growing on the two-
dimensional base flow (Barkley & Henderson 1996). FurtherdasingRe sees a second type
of three-dimensional flow develop, with fine-scale (a wangth of around).8 D in the spanwise
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direction) streamwise vortices developing in the braicbsligyers between wake vortices. This
flow is known as mode B (Williamson 1988). Even though in ttgdhis flow develops from the
already three-dimensional mode A wake, it is also well dbscrby a linear mode growing on
the two-dimensional base flow (Barkley & Henderson 1996).

Both of the linear modes corresponding to mode A and B are cemsorate with the base
flow, introducing no new frequencies. However, a mode whsdhéommensurate has also been
observed in the wakes of cylinders. Due to the introductioa second frequency, this mode is
expected to be quasi-periodic, and so is designated mod8l@ékburn & Lopez 2003).

When the spatio-temporal symmetry of the vortex streeta&édm (as occurs when the cylinder
is rotating), further modes become possible. In particsianharmonic modes which repeat over
two cycles of the two-dimensional base flow can occur. Suclodenwas detected by Zhang
et al. (1995) in the wake of a circular cylinder with a control wit®; Sheard (2011); Sheard
et al. (2009) in the wake of an inclined square cylinder, by Ledrginal. (2007) in oscillating
cylinder wakes, and in a series of papers (Sheaal. 2003, 2005,b), a subharmonic mode has
been described in the wakes of rings. It is expected thataimiodes should occur for rotating
cylinders.

The effect of rotation is to cause opposing viscous effentgither side of the cylinder cen-
treline. Depending on the rotation rate, the flow may remttached on one side of the cylinder
while separating off the other, causing a net lift force clieel away from the side where the flow
remains attached. This is known as the Magnus effect (Fra8a5).

One of the earliest numerical studies was performed by Img{i083), where steady state
solutions were obtained faRe < 40 and for rotation rates of < 0.5. At Re = 5, the drag
force increases with rotation rate while at a slightly higReynolds number ofze = 20, the
drag force increases after a slight decrease. Furthertigaésns by Badret al. (1989) were
performed in the steady and unsteady regimes of flow. Therrfgas of their work dealt with
the flow behaviour of an impulsively started rotating andhstating cylinder. They observed
periodic flow at Reynolds numbers greater than 60fef o < 1. Badret al. (1990) expanded
the parameter range by performing two-dimensional simaratand experiments for Reynolds
numbers betweetn? and10? for rotation rates 06.5 < o < 3. The flow patterns obtained from
the numerical simulations d&e = 1000 compared well with those from their experiments. They
further showed that vortex shedding is suppressed for2. The numerical simulations of Chen
et al.(1993) showed a single vortex being shedvat 3.25 at Re = 200.

Chewet al. (1995) investigated the flow dynamics of cylinder rotatiana = 1000 for
a < 6 numerically by using a hybrid vortex method. Vortex sheddifithe Karman type ceased
for @ > 2, where a closed streamline formed around the cylinder. Titleoas suggested that
three-dimensional instabilities may occur in real flowshis regime. They further quantified the
lift and drag coefficients. The shedding frequency was rteloio increase as the rotation rate
increased.

Two-dimensional numerical simulations were performedifer< 160 anda < 2.5 by Kang
etal.(1999), following which the lift and drag coefficients weneegtified. The critical Reynolds
number for the transition to periodic flow increased as rotatate was increased, with the
dependence being logarithmic. They further reported ti@Strouhal number was independent
of the rotation rate, while being strongly dependent on tbgrields number. The mean lift force
was found to increase and the mean drag force decreasedrasatien rate was increased. The
pressure force on the rotating cylinder contributed to @@86 of the lift force at low Reynolds
numbers. Further, the amplitude of the lift coefficient rémed constant with rotation rate, while
the amplitude of the drag coefficient increased linearlywittation rate.

Stojkovic et al. (2002) performed two-dimensional finite-volume numerisiahulations for
Re < 100, and rotation rates af < 12. For Re = 100, vortex shedding was suppressedat
1.8 and reappeared for a narrow rangeld¥ < a < 5.15. They performed three-dimensional
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simulations with periodic boundary conditions to confirmattthe shedding occurs irrespective
of the flow having a spanwise component. Various relatiowéen the force coefficients with
rotation rates were obtained at low Reynolds numbers. Irbaesjuent investigation, Stojkovic
et al. (2003) obtained the stability diagrams fBe < 200. The shedding frequency was found
to be much lower than that in the initial shedding regimett@nmore, they quantified the drag
force coefficient at various rotation rates. On increadiegotation rate, the averaged drag force
was initially found to decrease until the onset of the seaoypgdhedding, where the drag force
coefficient increased marginally before becoming negatividthen increased for rotation rates
past the secondary instability.

Numerical simulations have been performed by Mittal & Kur(@2003) atRe = 200 for a
wide range of rotation rate® (< o < 5). Two shedding regimes were reported. Bog « <
1.91, double sided vortex shedding was observed. In this firsidihg regime, the reduction
in the lateral width of the wake and the decrease in the shgddequency was reported. The
wake was displaced away from the centreline as the rotatitnwas increased. For > 2,
the disappearance of vortex shedding was reported untilehigalues ofw. Vortex shedding
reappeared between35 < o < 4.76, where one sided shedding occurred. The frequency of
shedding in second regime was found to be quite low.

A similar study performed by Stojkoviét al. (2003) showed that the range @fat which the
two shedding regimes (two- and one-sided) existed variguReynolds number. The upper limit
at which primary shedding ceased increased monotonicélyReynolds number. The range at
which secondary shedding was observed shifted to the lowtation rates at high Reynolds
numbers. Also, the range was narrower at lower Reynolds emnibhe Strouhal number in the
secondary vortex shedding regime was found to be much Idwaerthat in the primary shedding
regime. The Strouhal number was found to be dependent motheorotation rate than the
Reynolds number.

The effect of three-dimensional instabilities at highemation rates has been investigated by
Mittal (2004) fora = 5 at Re = 200. The two-dimensional flow field is steady while the three-
dimensional simulations show the growth of centrifugatabdlities. They also tested the effect
of various boundary conditions for cylinders of differespact ratios (the ratio of the cylinder
diameter to its length). For aspect ratios of 5, 10 and 15 slifhwalls, the time-history of the
drag coefficient showed oscillatory behaviour. The cylingigh lower aspect ratio and slip walls
resembled two-dimensional flow (which was steady). Howdwager aspect ratio cylinders with
no-slip walls showed fluctuations, primarily because ofitlieraction of the boundary layer of
the wall and the rotating cylinder. The three-dimensiomalfivas associated with centrifugal in-
stabilities of around D spanwise wavelength. This instability was predicted tcseaureduction
in lift and increase in drag.

The onset of three-dimensionality for rotation ratea.of 0 had not been investigated until re-
cently, although it has been generally stated that the flalarée-dimensional beyon@e = 200.
Akoury et al. (2008) performed direct numerical simulations in two- ahee-dimensions for
a rotating cylinder. From their two-dimensional studiéyt mapped the variation ¢ft at in-
creasing rotation rates at different Reynolds numbera far6. The secondary shedding regime,
where a single-sided vortex is shed from the cylinder, beoad at higher Reynolds number, with
the regime shifting towards lower rotation rates. This wiéisbaited to the decreasing influence
of the viscous component at higher Reynolds numbers (Stigjlet al. 2003). This secondary
regime occurred between= 4.75 anda = 5.25 at Re = 100, while at Re = 500, secondary
shedding occurred in the ranges < o < 5. The Strouhal number was 0.05, much lower
than that observed for the spinning cylinder at low rotatiaes, consistent with the findings of
Mittal & Kumar (2003). The Strouhal number decreased adtimtaate was increased in this
regime. Three-dimensional simulations were performedtercylinder rotating ate < 1.5. At
Re = 300, the growth of the spanwise component of velocity grew shgaddicating the onset
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of three-dimensional flow. This transition was found to adtwough a supercritical bifurcation.
Using Landau modelling, they determined the critical floveegp for the transition to three-
dimensional flow fore = 0.5 to occur atRe, = 219.8. Further investigations at = 1.5 and
Re = 200 showed the damping of the spanwise component of flow, indig#tvo-dimensional
flow. Using proper orthogonal decomposition, they recarcséd the three-dimensional modes
for a = 0.5, which have the spanwise wavelength of the mode A instgl{itit 4 D), similar to
that of a non-rotating cylinder at the onset of three-din@mality (Williamson (1988), Thomp-
sonet al. (1996)). Furthermore, ae = 300, the wake retained its mode A structure, possibly
due to enhanced stability of the vortex pairs attributedheoviorticity induced by cylinder rota-
tion in the spanwise direction. The critical values at theaimf three-dimensional flow at higher
rotation rates was not stated.

Recent experimental investigations were performed by Kwhal. (2011) forRe < 400 and
a < 5 using the hydrogen bubble technique to obtain flow field Visatons to replicate the
secondary shedding regime. Re = 200, they report that the vortex street behind the body is
deflected fory < 1.9, beyond which the vortex shedding became less pronouncbdtvei wake
forming a sinuous pattern until ~ 2, where steady flow is observed. Furthermore, the single-
sided vortex shedding found numerically by Mittal & Kumad(@) was confirmed by the use of
Particle Image Velocimetry (P1V). In addition, they visised the flow field forRe = 300 and
400 and computed the Strouhal number. In the primary sheddindentbe shedding frequency
was found to be independent of the rotation rate. The expertafly obtained Strouhal numbers
in the secondary regime were consistent with those obtdigetle numerical investigations of
Akoury et al. (2008) and Mittal & Kumar (2003). The development of the spiae structures in
the wake has not been discussed.

Recent linear stability investigations by Meestal. (2011), atRe = 200 for 3 < o < 5, indi-
cate the presence of modes with purely real growth rategcétidg they are synchronised with
the two-dimensional flow) forr < 4.3. Their three-dimensional investigations show what ap-
pear to be centrifugal instabilities near the cylinder dredtime histories of the force coefficients
indicate the onset of aperiodic flow.

All of these previous studies indicate that the flow is a fiorcof both Re and a, with a
wide variety of vortex shedding regimes and three-dimeradionodes occurring. This paper
is therefore a systematic study of the wakes of rotatinghdgis as a function of both these
variables. The remainder of this article is organised devic. The numerical method employed
in our investigations is detailed 8B, supplemented by validation studies. This is followed by
the presentation of results. In that section, first the tivoethsional flow structures observed as a
function of Re anda are described ifi4. Particular attention is paid to the transition from stead
to unsteady flow. This is followed by the results of lineabdity analysis in§5, investigating
the transition to three-dimensional flow from the estalgléskwo-dimensional flows. Curves of
marginal stability of each of these three-dimensional nsade presented in thee,« plane, and
the characteristics of each of these modes are describgsicRBhmechanisms of instability are
proposed for a number of these modes. This is followed by smmneluding remarks.

2. Problem definition

A schematic diagram of the problem under considerationdsvshin figure 1. The cylinder
of diameterD spins in an anticlockwise sense at a constant angular #glaciThe oncoming
uniform flow velocity is represented Hy. Results for) < Re < 400 and0 < a < 2.5 are
presented.
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Figure 1: Schematic representation of the spinning cylimléeestream.

3. Numerical formulation
3.1. Fluid flow equations

For the base flow, the incompressible Navier-Stokes equstiwe solved in two dimensions
using a spectral-element approach. The computationalithroasists of quadrilateral elements
which are concentrated in the regions of high velocity ggatli to accurately capture the flow
dynamics. The boundaries of these quadrilateral elemeatsteaight except in the vicinity of
the cylinder, where curved edges are used to accuratelggept the circular cylinder. These
elements are further subdivided with internal node poimgiduted according to the Gauss-
Legendre-Lobatto quadrature points, with the velocity pressure fields represented by tensor
products of Lagrangian polynomial interpolants. Despiéng only formally Cy continuous
across element boundaries, these methods are known tadprepectral convergence as the
polynomial order is increased (Karniadakis & Sherwin 200%)e number of node pointé\{ x

N) can be specified at runtime with the interpolant polynoroialer in each direction being
N — 1. A second-order fractional time-stepping technique igddusesequentially integrate the
advection, pressure and diffusion terms of the Navier-&tadguations forward in time. The
unsteady solver is used to investigate the parameter ravgeiog both the steady and unsteady
regimes of flow.

More details of the solver can be found in Thompsoml. (2006); and the solver has been
previously used in the studies of bluff body flows (Thompsoal. 1996; Leontiniet al. 2007;
Thompsoret al. 2006b) and in the studies of flows over rolling cylinders near a Watewart
et al.2006, 2010; Raet al.2011).

It may be recalled that the critical parameters for traositare sensitive to the placement
of boundaries and the resolution of the wake. In order to cediockage effects to acceptable
levels, the boundaries of the domain have been placed d@ 1@® the cylinder in all directions.

3.2. Linear stability analysis

The focus of this investigation is to determine the threeaisional stability of the two-dimensional
base flows to perturbations with an imposed spanwise wagtieBquations for the evolution of
perturbations are formed by first decomposing the velocity@ressure fields into base and per-
turbation components. This decomposition is then sulbetitinto the governing Navier-Stokes
equations, and the terms for the base flow subtracted outréBudting equations are then lin-
earised by removing the quadratic perturbation term. Beedle coefficients do not depend on
z, the perturbation fields can be decomposed into a set of &omades in the spanwise direc-
tion, and the perturbation equations then reduce to a setafupled equations describing the
different spanwise modes. The process of forming thesetieqsas well described in Barkley
& Henderson (1996). The result is that perturbation fieldsafoimposed spanwise wavelength
can be solved for.

The eventual perturbation equations can be viewed as a lopsaator that takes the pertur-
bation solution from one time to another. If the base flow isquéc, this results in an operator
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Figure 2: Verification of the spectral-element code and tmaain used. Comparisons with previous results
of the vortex shedding frequency for a fixed cylinder in twmensional flow. The solid line is the three-
term fit for St — Re variation belowRe < 1000 from Williamson & Brown (1998).

that takes the perturbation from one period to the next. ®pexator is never explicitly formed;
application of the operator is obtained by simply integrgtihe perturbation equations forward

in time. Eigenvalueg of this operator indicate whether the base flow is steady twgeations

of a prescribed wavelengtfy,| < 1 indicates that the flow is stable as perturbations decrease
in size from one period to the nexf;| > 1 indicates that the base flow is unstable as pertur-
bations grow from one period to the next. For periodic protsig. is referred to as the Floquet
multiplier. Marginal stability occurs wheju| = 1.

Of interest are the eigenmodes (Floquet modes or lineaabilsy modes) with the largest
eigenvalues, as these are the modes which grow the fastedqay the slowest). As the linear
operator is never explicitly formed, these leading eigedesand eigenvalues are found through
indirect iterative methods. Here, an Arnoldi method is esyptl (e.g., Mamun & Tuckerman
1995) that can resolve the leading eigenmodes and the crropteponent of the eigenval-
ues of. Wheny is purely real and positive, the periodicity of the threexdnsional mode is
synchronous with the base flow; e.g., modes A and B, which laserwed in the wake of a non-
rotating cylinder, are purely real modes (Barkley & Hender§996). Whernu is complex, the
eigenmode introduces a new frequency. If the base flow islgteis predicts that the three-
dimensional flow will be periodic; if the base flow is periodibe introduction of this second
frequency predicts that the three-dimensional flow will besj-periodic. Finally, if the Floquet
multiplier is purely real but negative, subharmonic modesmedicted. Further details of this
method and its implementation can be found in Stewgat. (2010).

3.3. Comparisons with previous studies

Shown in figure 2 is a comparison of ti§¢ with Re for the non-rotating cylinder in freestream,
with the values of Strouhal numbe$z, from the current study and those from Williamson
(19961). Here,St = fD/U, wheref is the frequency of vortex shedding. The comparison is
excellent. The solid line in the figure is from the three-tditby Williamson & Brown (1998),
where theSt is given by

1.1129 ~ 0.4821

Vie T Re
Spatial resolutions studies were carried out for the nogatiylinder atv = 2 and Re = 400

to investigated the accuracy of the predictions. This study performed at the highest rotation

rate for which the unsteady flow was observed. The solutionsxa N = 49 converge to within

St = (0.2731 — (3.1)
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Figure 3: Comparison of the time-averaged force coeffisiarith the results from Mittal & Kumar (2003).
Variation of the (a), time-averaged lift coefficiext;, (b) and drag coefficient's. The vertical error bars
represent one standard deviation of the instantaneous éoefficients.
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Figure 4: Spatial resolution study at = 2 and Re = 400. Variation of the shedding frequency with
increasing internal node points is shown.

0.2% of the maximum tested resolutionfdtx N = 81. Furthermore, the values of the time-
averaged force coefficients for a resolutiomdfx N = 36 are well within 1% of the maximum
tested values. A resolution &f x N = 49 was therefore determined to be sufficient to capture
the forces accurately up to < 2.5, however a resolution dV x N = 64 was used to accurately
capture the forces for all rotation rates beyeng 2. Shown in figure 3 is the comparison of the
time-averaged lift and drag coefficients with rotation r&haown in figure 4 is the variation of
St on increasing internal node points. The figures show thaséfected resolution is adequate
to resolve the flow accurately.

A linear stability analysis validation study was also pemied for the non-rotating cylinder at
Re = 280, and the growth rates obtained were compared with the sssfiltarkley & Henderson
(1996). The growth rates of the two primary modes (modes ABjricom Barkley & Henderson
(1996) match closely with the results of the present studhe Very slight differences can be
attributed to difference between the domain sizes in thepegational domains used.

4. Flow structures

Over the range of the parameters tested, three two-dimeaidlow regimes have been iden-
tified. Instantaneous snapshots of vorticity providingregées of each of these regimes are pre-
sented in figure 6, all at = 1.9. The regimes shown are the steady regime (figure 6(a), 6(b),
and 6(d)), the low frequency regime (figure 6(c), 6(g), artg))6énd the high frequency regime
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Figure 5: Validation of the stability analysis at higher Relds numbers for a non-rotating cylinder: com-
parison of the growth rate at different spanwise wavelengttRe = 280. Open circles ) represent the
values of Barkley & Henderson (1996), while closed circlgsépresent the values from the present study.
The neutral stability line at = 0 is marked by a solid line).

(figure 6(e) and 6(f)). As for the limiting case of a stationeylinder, at low Reynolds numbers
the flow is steady. Forv < 1.95, periodic vortex shedding is found to occur above a critical
Reynolds number, which is a function ef Fora > 1.95, the two-dimensional flow was found
to remain steady up to at leaBt = 400.

However, as the sequence of images of figure 6 show, incréades restabilise the two-
dimensional flow, for a narrow band efcentred around: = 1.9. This indicates that the value
of Re at the steady-unsteady transition is not a monotonic fanaif .. This finding is further
expanded upon if§ 5.

The periodic vortex shedding can be further divided into tegimes, based upon the fre-
quency of the oscillation. The variation of the sheddingyérency as a function oRe, for
1.8 < a < 2.0, is shown in figure 7. Clearly discernible is the developnudritvo “branches”,
with a “high” frequency and “low” frequency branch appearior Re > 260. At o = 1.8, the
St—Re curve is continuous. Far > 1.9, the behaviour is much more complex. Taking= 1.9
as an example, faRe < 190, the frequency of oscillation remains on the low frequen@nioh.
For 190 < Re < 260, the flow is stabilised, and no vortex shedding occurs (fi§i{d@). Then
for 260 < Re < 340, the vortex shedding moves to the high frequency branchréiée)),
before dropping back again to the low frequency branctier- 340 (figure 6(h)).

Shown in figure 8 are force coefficient phase diagramsifer 1.9 at the specified Reynolds
numbers. The variation of the drag coefficient with lift da@ént is shown over one complete
period of shedding. The flow states in the steady regimesegmesented by singular points,
while those in the periodic states are characterised bydlosbits. These phase diagrams also
provide an indication of the amplitude of shedding. The amgé of force (and wake) oscil-
lations is small at low Reynolds numbers, and remains so eritigh” frequency branch. In
comparison, larger amplitudes observed at high Reynoldteus, when the flow returns to the
“low” frequency branch.

5. Stability analysis

The results presented in4 show that, over the parameter space investigated, alleafith-
dimensional flows are either steady or periodic. This melaaisall are amenable to either linear
stability analysis (for the steady flows) or Floquet stapitinalysis (for the periodic flows). In
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Figure 6: Flow structures at = 1.9 at the specified Reynolds numbers. Contour levels betwe®i /U.
The flow is from left to right.
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Figure 7: Variation of the shedding frequency with Reynaidsbers for the specified rotation rates. For
«a > 1.9, two branches or regimes of shedding occur.

fact, the two techniques are effectively identical in piagtif the steady flow is treated as a flow
with arbitrary period. Stability analysis was performedtbe flows over the parameter space
(Re < 350,0 < a < 2.5) to determine the critical transitional values for the drefea number
of three-dimensional modes, that govern the transitiohitee-dimensional flow.
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Figure 8: Phase diagrams of the force coefficients at thefggmeReynolds numbers far = 1.9.

For the limiting case of a non-rotating cylinder & 0), the transition to three-dimensionality
has been well documented by various numerical studies [BagkHenderson 1996; Thompson
et al. 1996) and is found to occur d&e = 188.5 & 1 for a spanwise wavelength of/ D =
3.96. For a cylinder rotating atv = 0.5, a recent study by Akourgt al. (2008) found the
critical value of transition to three-dimensionality tococ at Re = 220. They report that the
wake structure was similar to the mode A structure obtaimedHe flow past a non-rotating
cylinder, and it remained unchangedat = 300. At much higher rotation rates of = 5, Re =
200, the primary cause of three-dimensionality has been atgito centrifugal instabilities
(Mittal 2004). The variation of the critical Reynolds numla¢ other rotation rates has not been
investigated. Therefore, a systematic study of the thieesasional modes present in thed,«)
plane is presented i5.1.

5.1. Transition diagram

Figure 9(a) shows curves of marginal stability for severasae three-dimensional modes grow-
ing on the two-dimensional base flows outlined . Also shown is the boundary for the steady-
unsteady transition. The results compare well with the ipteohs of Pralitset al. (2010) for

«a < 2. The points on each of the curves denotes a point at which rginal stability of the
mode in question has been established; the curves have ¢leerfitted to these points. As the
majority of the modes’ marginal stability curves occur ie tiop-right corner of the figure, this
region is presented “zoomed in” in figure 9(b). These cunagtbeen found by first resolving
the two-dimensional flows over a grid of points in thée(«) plane, then performing the stability
analysis over a spectrum of wavelengths at each of theséspaitd then refining this grid in the
region of marginal stability for each mode. This process veag computationally intensive; the
data for the current study consumed the orderfCPU hours.

There are a number of features of figure 9 that are examineshire sletail in the following
sections. First, the variation of the steady-unsteadysitian is described. Following this, de-
scriptions of each of the three-dimensional modes are predeincluding the mode structure,
critical wavelengths, spatio-temporal symmetries, andeséurther analysis and interpretation
of the physical mechanisms of instability.

5.2. The steady-unsteady transition

For lower rotation ratesa( < 1), the transition to the unsteady regime occurs at a valuReof
close to that of the non-rotating cylinder. However, fo> 1.3, small changes in the rotation
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Figure 9: (a) Diagram showing the lines of marginal stapititthe parameter space investigated. Modes are
typically unstable to the right of each line. (b) Enlargeewiof (a) betweer.25 < a < 2.5, 175 < Re <

350. For both images, the steady-unsteady transition is meskedcontinuous line, while the boundaries
of the stability of the three-dimensional modes are showthbybroken lines.
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rate rapidly shift the transition to higher Reynolds nunsb&ora > 2.1, the two-dimensional
base flow is seen to remain steady up to at I&ast 400.

As shown in figure 6, for a small band ofcentred around: = 1.9, further increases iie
can restabilise the flow. This is shown particularly cleanfigure 9(b), where the solid line
marking this transition is shown to descend over the ragge< Re < 220, and then ascend for
Re 2 220. The cause of this complicated behaviour is not clear. Tisetwf the high-frequency
regime shown in figure 7 roughly coincides with the point aialiithe curve again begins to
ascend; it is therefore possible that this high-frequeregyme is due to an instability of the
stabilised flow, however further work is required to fullyderstand this phenomenon.

5.3. Properties of the three-dimensional modes
5.3.1. The mode A instability

For a non-rotating cylinder in freestream, the onset ofdfdinensional flow is observed
aroundRe = 180 in experiments, with a spanwise wavelength of approxingait®l (Williamson
199@). This same mode has been observed numerically by the tiimgEnsional simulations of
Thompsoret al. (1996), and the linear stability analysis (Barkley & Herster 1996) explained
the basis of the transition. This mode is referred to as mo@ad\for a non-rotating cylinder
has been shown to be the fastest-growing linear mode ufzte- 280 (also see figure 5). The
physical mechanism of this mode has been associated withigticenstability of the forming
vortex cores (Thompsaet al. 2001; Leweke & Williamson 1998).

From the stability analysis of this paper, mode A is found ¢éosfst fora < 1.9, over the
entire range where the two-dimensional base flow is unsteegghown in figure 9, the critical
Reynolds number with respect to the marginal stability oflmé is a strong function of.. For
«a < 1.25, the critical Reynolds number increases on increasingafation rate. Over this range,
mode A is also the first mode that occurs with increaditag and so will lead the transition to
three-dimensionality. The Floquet multiplier obtainegdsitive and real.

Previous studies using fully three-dimensional DNS (Akcefral. 2008) have found that, for
a = 0.5, the critical Reynolds number for the transition to thré@ehsional flow occurred at
Re ~ 220. This result matches well with the curve of marginal st@pifor mode A in figure
9(a).

The critical wavelength at the onset of this instability veggproximately4D. At a higher
rotation rate ofa. = 1.5, the transition occurs ake. ~ 288, and occurs at higher Reynolds
numbers as the rotation rate is increased (figure 9).

Shown in figure 10 are the perturbation vorticity contour®eynolds numbers just beyond
the critical Re, for a series of increasing. The images are all shown at a similar phase in the
vortex shedding process of the base flow. The images showhthapatial structure of this mode
is essentially retained at higher rotation rates, regasdt# the fact that the vortex shedding
becomes increasingly asymmetric about the centrelineindtteasingy.

5.3.2. The mode B instability

For a non-rotating cylinder, mode B is observed to becoméabtes at Reynolds numbers
higher than that observed for mode A. In the experimentailalisations of Williamson (1988),
this mode was observed intermittently alongside mode ARfer~ 230 with a spanwise wave-
length of approximatelyt D. The numerical simulations of Barkley & Henderson (1996)-pr
dicted the onset of this linear mode from the two-dimenditage flow atkRe = 259 with a
spanwise wavelength of ~ 0.8D. The contrast to the experimental findings is due to the fact,
in experiments, the flow is already three-dimensional duihéopresence of mode A. Barkley
et al. (2000) showed the presence of mode A is destabilising on theerB instability, leading
to mode B occurring at lower Reynolds numbers in experimdifits linear mode associated with
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(€) a = 1.9, Re = 350, \/D = 4

Figure 10: Spanwise perturbation vorticity contours in Wake of the rotating cylinder between levels
+0.1 at the specified rotation rates and Reynolds number at atragbtime in the shedding cycle. Base
flow vorticity contours at levelst1 U/D are overlaid as dashed lines. A centreline line is drawn én th
streamwise direction behind the cylinder.

mode B is the fastest growing mode f8e > 300 (Blackburnet al. 2005; Barkley & Henderson
1996) for the non-rotating cylinder.

The simulations of this paper recover mode B, and show thatntinues to exist up to at
leastar = 1. Similar to the non-rotating cylinder, the Floquet muligplfor this mode remains
purely real and positive. As shown on figure 9(a), the valuB©at marginal stability is a strong
function of «, increasing as: is increased. However, the characteristic wavelengthiagively
unaffected by, remaining close to. = 0.8D. Over the range of the parameter space tested,
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Figure 11: Spanwise perturbation vorticity contours stmgythe mode B type structures observed at higher
Reynolds numbers for the specified rotation rates. The costeading is as per figure 10.

mode B is always found to become unstablg?athigher than that at which mode A becomes
unstable.

Figure 11 shows the perturbation vorticity contours of m&dat rotation rates ofv = 0,
0.5 and 1. Note that for the casecat= 0.5 (figure 11(b)), the base flow is approximately half a
period out of phase with respect to the other images, howkeesimilarity in the structure of the
mode is evident. For all, the perturbations grow strongly in the braid regions betwthe shed
vortices, similar to that observed for a non-rotating ayén(shown as = 0 in figure 11(a)).

5.3.3. The mode C instability

The previous modes described, A and B, are basically extessif the modes found in the
wake of a non-rotating cylinder. However, there are a nurnberodes presented on figure 9 that
occur only for the rotating cylinder. The first of these is radzl

The mode C instability occurs in an apparently closed regibthe (Re,«) plane, centred
aroundRe = 260, o = 1.7. The Floquet multiplier for mode C is purely real but negativ
indicating that this mode is subharmonic, repeating overdycles of the base flow. The critical
spanwise wavelength for this mode is marginally higher tmae B, but lower than mode A,
and encompasses the rarigeé < \./D < 1.2 (Shearcet al. 2005).

The group theory analysis of the symmetries of bluff body eg&f Blackburret al. (2005)
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Figure 12: Variation of the spanwise wavelength of the modfesBability at marginal stability as a function
of rotation rate.

shows that for flows with the spatio-temporal symmetry ofwake of a non-rotating cylinder
(reflection about the wake centreline plus evolution in thbalf a period), subharmonic insta-
bilities are not generic, and are therefore not likely to fseavered. However, once this spatio-
temporal symmetry is broken, subharmonic modes becomébpmsidere, the spatio-temporal
symmetry is broken by the rotation of the cylinder, hencepifesence of the subharmonic mode
C. In structure, mode C appears very similar to the subhaicmonde C found in the wakes
behind rings (Shearet al. 2003, 200%,b). In both of these flows, the symmetry is broken by a
local acceleration of the flow on one side of the body; heretueleration is due to the rotation
of the cylinder, in ring wakes it is caused by the acceleratibthe flow through the constriction
of the centre of the ring. Similar subharmonic modes havebed in other wake flows, such as
cylinders with trip wires (Zhanet al. 1995), and in the wakes of transversely oscillating cylin-
ders after undergoing spontaneous transition o & S base state (Leontirgt al. 2007), and
more recently in the wakes of inclined square cylinders §&h&011; Shearet al. 2009).

Shown in figure 13 are the instantaneous perturbation vigriontours of mode C at half-
period intervals atv = 1.5, Re = 250. Clearly, the perturbation field reverses in sign every pe-
riod, indicating that this mode is periodic ov&F, whereT is the period of the two-dimensional
periodic base flow.

The growth rates of mode C are highest in the centre of thememyrer which it is unstable.
Unlike mode A or mode B, the magnitude of the Floquet mukiptioes not show a monotonic
increase with rotation rate. Shown in figure 14 are the vianaif growth rate at constant rotation
rate (figure 14(a)), and at a constant Reynolds number (fiidi(e)). These values have been
chosen to traverse the region where mode C is unstable. Turegighow conclusively the closed
boundary region of the mode C instability, and the variatibthe growth rater with both Re
anda.

5.3.4. The mode D instability

The mode D instability develops on the unsteady base flowgrbewy unstable in a narrow
region of the parameter space, for values @ifst below those at which the base flow is stabilised,
as shown on figure 9. The Floquet multiplier for this mode & ead positive. The mode grows
with a characteristic spanwise wavelength of approxiryatél.

Of particular interest is the region of occurrence of thitaility; it occurs in essentially the
same region of the parameter space as the high frequencgisbedgime (figure 7 and figure
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Figure 13: Spanwise perturbation vorticity contours of m@data = 1.5, Re = 250, A\/D = 1.2, shown
over a period of 2.5. Contour shading is as per figure 10. The perturbation \igroontours are identical
after two periods of the base flow.
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Figure 14: Variation of the maximum growth rate,(...) with respect to wavelength\( D), for the mode
Cinstability: (a) at constant rotation rate®@f= 1.65; and (b) constant Reynolds numbe = 260. These
indicate the closed region of instability for mode C.

9). This high frequency shedding regime consists of two lgiglrained vortices trailing the
cylinder, and small vortices are emitted from the end oféH{sse, for example, figure 6).

This instability grows in the region between these two stéivortices. Shown in figure 15
are the spanwise and streamwise perturbation vorticityozoa ata = 1.9 and Re = 300.
This structure is very similar to mode E, described next,clvlgrows on the steady base flow.
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@ (b)

Figure 15: Perturbation vorticity contours in the wake o tiotating cylinder atv = 1.9, Re = 300,
/D = 1.9, highlighting the perturbation field structure for Mode B) Gpanwise vorticity. (b) Streamwise
vorticity. Contour shading is as per figure 10.

() (b)

Figure 16: Perturbation vorticity contours in the wake o tlotating cylinder for mode E at = 2,
Re = 220, A\/D = 2.0. (a) Spanwise vorticity. (b) Streamwise vorticity. Contshading is as per figure
10.

In particular, disregarding the steady or unsteady natfiteeobase flow, the perturbation field
structures appear similar. It is therefore hypothesisatitfodes D and E occur due to the same
physical instability mechanism.

5.3.5. The mode E instability

The first three-dimensional mode to become unstable &sincreased on the steady base
flow is mode E. The multipliers, or growth rates, for this madte purely real, indicating that
when this mode becomes unstable, it triggers a transitmn & two-dimensional steady state to
a three-dimensional steady state. The characteristiclemyth for this mode is approximately
2D, again consistent with mode D. The spanwise wavelength etwthe maximum growth rate
occurs decreases as the Reynolds number is increased.

Shown in figure 16 are the perturbation vorticity contourscfo= 2 and Re = 220, showing
an example of mode E. As already discussed above, this maisifmélar characteristics to
those of the mode D instability. The regions of high perttidsaamplitude are similar to those
of mode D in the near wake, while the instability extends im flattened wake far downstream
of the cylinder.

5.3.6. Physical nature of the mode D and E instability

Figure 17 shows the spanwise and streamwise perturbatitinitsoas colour contours, over-
laid with the streamlines of the base flow, for= 2, Re = 220. The base flow vorticity contours
of figure 16 for the same case show regions of positive andtivegenrticity in the wake. How-
ever, the streamlines of figure 17 show that only a singlecakition region exists.

Figure 17 shows that the perturbation vorticity is mostlguissed in a thin region emanating
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Figure 17: Perturbation vorticity contours, overlaid witneamlines, in the wake of the rotating cylinder
for mode E atv = 2, Re = 220, A\/D = 2.0. (a) Spanwise vorticity. (b) Streamwise vorticity. Contsu
range betweer-0.6 for spanwise vorticity;+0.4 for streamwise vorticity. The figure shows that the mode
is focussed in the extensional regions emanating from tperplic point at the rear of the recirculation
region.

both upstream and downstream of the hyperbolic stagnatiom gt the rear of this recirculation
region. This region of the base flow is characterised by acétirey in the flow direction (along
the streamlines); fluid particles increase in speed as gwielthe hyperbolic point in this direc-
tion. Lagnadcet al. (1983) showed, in an inviscid setting, that simple extemsifiows lead to an
amplification of perturbation vorticity. Leblanc & Godete{1999) showed that in Taylor-Green
cells (a square geometry containing four rotating cellswélflcreating a hyperbolic point at the
centre), the perturbation vorticity was most amplified gldine streamlines leaving the hyper-
bolic point, forming rib vortices in between the rotatindiseA similar amplification mechanism
has been proposed by Leweke & Williamson (1998) as the cdithe enode B instability.

Due to the clear amplification of perturbation vorticity adpthe streamlines leaving the hy-
perbolic point in figure 17, it is therefore proposed thas fkithe amplification mechanism that
leads to mode E becoming unstable. The similarity in stmectd the perturbation vorticity for
modes D and E (albeit that mode D is periodic, with vortex sliregi occurring downstream of
the recirculation region as shown in figure 15) suggeststisathis same stretching mechanism
that leads to the instability of mode D.

5.3.7. The mode F instability

A second three-dimensional mode is found to grow on the gtbade flow, designated as
mode F. This mode typically occurs at higher rotation rates(2.25) than mode E. The char-
acteristic wavelength of this mode is approximat@s D, much shorter than mode E which
grows in region between the highly strained standing vestia the wake.

Shown in figure 18 are the vorticity contoursaat= 2.5, Re = 280. The figure shows that
mode F grows primarily in the boundary layer of the spinniglincler, and in the near wake.

The Floquet multipliers for this mode occur in complex caygte pairs. This indicates that
while the two-dimensional base flow is steady, transitiotht® mode marks a transition to three-
dimensional flow and the onset of time dependence.

The frequency of this time dependence can be ascertainedfi®@complex component of the
Flogquet multiplier. This was done for valuesd£5 < o < 2.5. The frequencies calculated from
these multipliers are presented in figure 19. The three-aineal shedding frequency at the
onset of the instability is computed as follow##; p = tan='(Im(p)/Re(1t)) /27T, whereSts p
is the three-dimensional shedding frequency @hi$ the period of sampling. This frequency
was also determined independently by directly measuriegérturbation field period to ensure
that the choice of”" had not caused aliasing to a different frequency. For alitrot rates at
which this mode is unstable, the three-dimensional fregiesrare low, considerably lower than

35




On the three-dimensionality of a spinning cylinder in fiteesm 19

Figure 18: Perturbation vorticity contours in the wake of tiotating cylinder for mode F at = 2.5,
Re = 280, A\/D = 0.45. (a) Spanwise vorticity. (b) Streamwise vorticity. Contshading is as per figure
10.
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Figure 19: Variation ofStsp for the three rotation ratesy(= 2.25 (o), 2.4 () and 2.5@)) at Reynolds
number just beyond the onset of instability for mode F.

those of the unsteady two-dimensional base flows at lowelegabfa. Fully three-dimensional
DNS, or experiments, are required to see if this predictegifency corresponds to that found in
the fully saturated three-dimensional flow, and what satarapatial wake structure this three-
dimensional flow will take.

5.3.8. Physical nature of the mode F instability

As discussed in the introduction, it has already been spemlithat the higher rotation rate
flows are subject to a centrifugal instability (e.g., Mit21104; Meeneet al. 2011). The gener-
alised centrifugal theory of Bayly (1988) has thereforerbapplied to investigate the nature
of this instability mode. That work extends the classicallgsis of Rayleigh (1917) to non-
axisymmetric inviscid flows with closed streamlines. Moeeently it has been applied to anal-
yse the recirculating flow downstream of a bump (Gall@ital. 2007) and a semicircular hill
(Griffith et al.2007). In addition, there have been extensions of the thearther cases such as
to nonzero azimuthal wavenumbers (Billant & Gallaire 20@6)d to rotating systems (Sipp &
Jacquin 2000).
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Figure 20: Physical evidence of centrifugal instabilitpdéng to mode F aRRe = 280, a = 2.4, for a
wavelength\ /D = 0.45. (a) Streamlines of the base flow in the neighbourhood of yfiader showing
that the streamlines are closed in the vicinity of the cydingb) Evolution of the perturbation streamwise
vorticity field over half a period: (iy = 07°/10; (ii) T'/10; (iii) 27°/10; (iv) 3T'/10; (v) 4T'/10; (vi) 57'/10;
whereT is the period of the global instability. This progressiomwh that the period of the instability
corresponds to the time taken for the perturbation to ohlsitdylinder twice. (c) Instantaneous growth rate
of the instability as a function of time. The times/growthecorresponding to the set of images in (b) are
marked.

Physical evidence of centrifugal instability

Figure 20a displays streamlines for the mode F base flowRfor= 280 anda = 2.4. The
closed streamlines in the neighbourhood of the surfaceeafythinder are clearly apparent. Figure
20b also shows the evolution of the perturbation streamwaistcity field over one half of a
period (the period being/ St defined in figure 19). After a half period the perturbationdiel
is identical but of opposite sign. The period therefore esponds to the time it takes for a fluid
element at the mean radial position of the instability teetawice around the cylinder, hence in
some sense the instability can be considered a subharmonic.

The development and evolution of the instability involves tdevelopment of streamwise per-
turbation vorticity at the north-west position on the cylar, approximately at the point where the
incoming fluid separates to move either over the top or theboof the cylinder. This is shown
in figure 20b(i) at = 07'/10. Subsequently, the instability grows as it is advectedtotkwise,
following close to the cylinder surface, as shown in the rextimages. Figure 20b(iv) shows
some vorticity moves into the wake but some continues albegstirface towards the dividing

37




On the three-dimensionality of a spinning cylinder in fiteesm 21

10

sitive local Negative local
loquet multiplier] ~ Floquet multiplier

70.‘24
7
(@) (b)

! L L

2 .

-0.28 -0.20 -0.16 -0.28 -0.24 -0.20 -0.16
v

Figure 21: (a) CirculationI{(¥)) as a function of streamfunctiohl’) moving from the cylinder surface
(dashed line atr ~ —0.29) to the last closed streamline (dotted line). This cleargves the circulation
decreasing outwards as required for centrifugal instgb{lb) Magnitude of the growth rate as a function
of the streamfunction. The local Floquet multiplier is fivel close to the cylinder, but becomes negative
further away.

streamline, as shown in figures 20b(v) and 20b(vi). Thisifaage shows the process starts again,
but this time the development begins from vorticity of oppsign. This image sequence con-
firms that the perturbation field remains strong predomiyargar the cylinder surface, where
the streamlines are closed, as would be expected for afteyatrinstability.

Figure 20c shows the instantaneous temporal growth rateeamstability evolves. This is
obtained directly from integrating the perturbation fieletpa period and determining the ampli-
tude of the instability field as a function of time. For figu&gb(i-iii), growth is positive as the
instability advects anticlockwise around the cylinder figures 20b(iv) and 20b(v), growth is
negative as it traverses across the wake region, beforerieg@ositive again for figure 20b(vi).
The Floquet multiplier for a single orbital period f= 4.513 is 1.240, hence the growth rate is
o =log(1.240)/4.513 = 0.021.

Application of inviscid centrifugal instability theory

The analysis of Bayly (1988) requires the existence of cl@seeamlines and the circulation to
decrease outwards. Figure 20a shows the condition of ckiseainlines is satisfied. Figure 21(a)
shows the circulation{(¥)) as a function of the streamfunctiof’), moving outwards from the
cylinder surface. Clearly, the variation with increasitiggamfunction, which also corresponds
to increasing radius, is monotonically decreasing. Thesait analysis of Bayly (1988) is used
to determine the eigenvalues of leeal Floquet matrixon integrating around an entire orbit for
each closed streamline. The eigenvalues correspond tbRtaxguet multipliers, which can be
reduced to Floquet exponents, i.e., growth rates, by tatkiegratural logarithm of the modulus
and dividing by the orbital period. Thus the inviscid grow#ite ¢..) can be determined as a
function of streamfunction. Figure 21(b) shows this vamiat The local Floquet multiplier is
real and positive close to the cylinder, before it becomabkard negative out to the last closed
streamline.

Bayly (1988) assumes that the actual instability mode idgredrabout the quadratic maxi-
mum of the growth rate curve, and uses an asymptotic expamnsidetermine an expression
for the growth rate as a function of the wavenumber. In terfrth@® findings here, there is no
quadratic maximum where the Floquet multiplier is positieal, although there is one in the
streamfunction range where it is negative real. A negata Floquet multiplier corresponds
to the instability changing sign after each orbit, which fig20b shows is the case here. The
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Figure 22: Computed growth rate curves as a function of vesmgth from global stability analysis. The
viscosity (Reynolds number) was varied only for the stgbdinalysis of the base flow &te = 280.

actual instability shown in the images of figure 20 is not oesheat the streamline position of the
streamfunction maximum of figure 21(b), but rather it appéarbe centred near the streamline
which has an orbital period equal to the measured periodeadlibbal instability mode, as would
be expected for a centrifugal instability. The value of tleamfunction on this streamline is
¥ ~ —0.173, i.e., close to the outer edge on the recirculation regier (gure 21(b)). The in-
viscid growth rate is close to., ~ 3.5 for that trajectory, which represents substantial positiv
growth.

Expanding about the quadratic maximum indicates that tbetiyrate should fall off linearly
with wavelength &) (or inversely with wavenumbek}) from the inviscid prediction correspond-
ing to thek — oo case. Also assuming that the effect of viscosity is mainjamp the instability
rather than change its character, the viscous correctitretgrowth rate should be proportional
to the reciprocal of the square of the wavelength. That is,

_ 47°B
Re (\/D)?’

with B a constant of order one. As indicated above, it appearsiibanstability is not centred
about either the absolute maximum or the local quadratidmmam of the inviscid growth curve,
but rather about the streamline with the orbital period étuéhe global mode period. This is
perhaps not surprising given the strong forcing on the fluganfthe rapidly spinning cylinder
and subsequently stronger viscous effects towards thacgurf

To investigate further, the variation of the global modevgiorate with wavelength is plot-
ted in figure 22. The different curves correspond to diffeReynolds numbers. The Reynolds
number for the steady flow was fixed at 280; it was only variedHe linear stability equations,
using the same steady frozen base flow. A similar proceduseised by Gallairet al. (2007) to
explore the centrifugal nature of the instability for flowema bump. According to the proposed
variation given by equation 5.1, the curves should falldesan envelope curve, with the curves
for increasing Reynolds number peaking at progressivellemwavelengths. The intercept
of the envelope curve should correspond to the predictesiitvgrowth rater. . In practice the
situation is a littte more complex. Increasing the Reynaidmber causes the global instability
mode to be centred closer to the cylinder and the period tacedrable 1 shows this behaviour.
Here, A,y is the wavelength with the maximum growth rate in figure 22, . is half the
measured global instability mode period from the globalysis (recall the mode repeats every

o(\ Re) ~ 00o — A(N/D) (5.1)
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Re Apres Trpey YUnpes Oinviscid

280 044 44 -0172 35
560 0.30 3.0 -0.188 5.1
1120 0.22 25 -0.201 6.2

Table 1: Parameters for global stability analysis basedasgivg the Reynolds number for the stability
equations only.

two orbits), ¥ . . is the value of the streamfunction with this orbital periodia;,,,scia is the
predicted growth rate from the inviscid theory of Bayly (B)8hown in figure 21(b). In partic-
ular, this shows that as the effect of viscosity is reducke,instability mode moves inwards,
centred on streamlines that have smaller orbital periodshégher growth rates, as shown in
figure 21(b). Thus, it is consistent that the computed groath curves shown in figure 22 move
upwards, rather than asymptoting to an envelope curve.

Summary of the success of the inviscid theory

In summary, the mode F instability appears to be associatibdaxcentrifugal instability, in
terms of primary localisation to the region with both closétamlines and circulation decreas-
ing outwards. The preferred wavelength of the instabiliép@appears to be related to, i.e., a small
multiple of, the radial extent of the region with closed atrgines. In addition, the evolution of
the periodic instability mode as it advects around the cjdinis consistent with the formation
and growth of streamwise rollers, transferring faster mgyluid to larger radii and vice versa,
as expected for a centrifugal instability. This growth heppas the perturbation moves from the
dividing streamline at the north-west position of the cgitin until it reaches the wake region at
the north-east position on the cylinder, perhaps reminisoé Gortler vortices (Gortler 1955)
for flow on curved streamlines. Analysis using the inviscistability theory of Bayly (1988) to
find the eigenvalues of tHecal Floquet matrixassociated with an orbital period on a streamline
predicts substantial amplification during the orbit. Thisran inner region where the eigenvalues
are positive, and an outer region where they are negativgatVe eigenvalues indicate that the
instability changes sign each orbital period. This is gelyiwhat happens with the global mode,
i.e., it repeats every two orbits. However, the global madedit centred close to the streamline
at which there is a local maximum of the inviscid growth rdet, rather close to the streamline
with the same orbital period. For that streamline, the idigrowth rate is still strongly posi-
tive. Decreasing viscosity for the global mode calculatioly, leads to a reduction in the global
mode period, corresponding to the instability being cehtleser to the cylinder surface, where
the inviscid growth rate is higher. Thus, it does not seerhttiegeneralised inviscid instability
theory, even adjusted for the first-order effects of visgpsan supply quantitative estimates of
the growth rate or the preferred wavelength, although iladely is qualitatively consistent with
many features of the inviscid predictions.
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Mode /D Nature ofp Base flow Symmetry

A ~4 Realand positive Unsteadyu(z,y,z,t) = u(z,y,z + nA\,t + 1)

B ~ 0.8 Realand positive Unsteadyu(z,y,z,t) = u(z,y,z +n\t+17T)

C ~1 Realand negative Unsteadyu(z,y,z,t) = u(z,y,z +n\,t +2T)
D ~1.9 Realand positive Unsteadyu(z,y,z,t) = y,z+n\t+1T)

E ~ 1.8 Realand positive Steady u(z,y, z,t) = u(z,y, z + n\)

F ~04 Complex Steady u(z,y,z,t) =u(z,y,z+nAt+Tsp)
G ~ 18 Realand positive Unsteadyu(z,y, z,t) = u(z,y,z +n\,t+T)

Table 2: Summary of the modes showing the characteristieleagth, nature of the Floquet multipligr)(
the periodicity of the two-dimensional base flow and theispaymmetries of these modes with respect to
the streamwise velocity;.

5.3.9. The mode G instability

The last three-dimensional mode discovered for this patenspace is mode G. This mode
grows on the unsteady base flow, fonear the upper limit for the existence of the unsteady flow,
and for Re > 280. This is a long wavelength mode, with a characteristic wavgth around
/D ~ 18. This mode has a purely real Floquet multiplier.

Shown in figure 23 are the perturbation vorticity contourghig long wavelength mode. The
spatial structure of this instability is similar to that betmode A instability, except for a small
apparent phase shift of the perturbation relative to the Haw in the downstream vortices.

6. Discussion of the modes spanning the parameter space

A summary of the modes is shown in table 2. For the cylindemrspg at low rotation rates,
the onset of the three-dimensional modes is similar to the¢oved for the non-rotating cylinder;
that is, mode A occurs first with increasidty, prior to the onset of mode B instability. This is
essentially due to the similarities in base flow; the strreetaf the Bernard von Karman vortex
street is only changed slightly by the body rotation at thedees ofa. However, forae > 1.3,
the wake structure becomes strongly asymmetric. Consisténprevious studies where the loss
of wake symmetry leads to a different three-dimensional enoeing observed, a subharmonic
mode (mode C) is the first three-dimensional mode to becorsimhle to spanwise perturbations
at these higheti. A mode with these symmetries and characteristics has Hesaneed in earlier
studies on flow past rings (Sheagtlal. 2005). At « = 1.5, this mode is unstable for a small
range of Reynolds numbers before decaying at higher Regmalthbers, following which the
onset of mode A instability is observed. Howeverqat- 1.75, mode C is found to persist over
a larger range of Reynolds numbers; for certain valueB«imultiple three-dimensional modes
are predicted to be unstable. An instance of this is showrgirdi 24, where modes C, A and
G are observed at = 1.85, Re = 330. The mode C instability is the fastest growing mode
followed by mode G and mode A.

The mode D instability occurs in the high frequency sheddaggon at rotation rates in excess
of 1.9. Figure 9 shows that mode D exists in a region of therpatar space very close to the
steady - unsteady transition of the two-dimensional base flo some senses, mode D can be
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Figure 23: Perturbation vorticity contours for mode Grat 1.85, Re = 330, A\/D = 20. (a) Spanwise
vorticity. (b) Streamwise vorticity. (c) The streamwiserticity contours forA\/D = 3.75 (mode A) are
plotted for comparison. Contour shading is as per figure 10.

viewed as the “periodic” state of mode E. Figures 15 and 18rlylshow the similarities in the
structure of these two modes.

For a given rotation rate, the spanwise wavelength at wiiemtaximum growth rate of the
mode D and E instabilities occur, decreases as Reynoldsenisimcreased. For instance, the
mode E instability atv = 2, Re = 220 (a case just past the onset of three-dimensionality) has a
peak wavelength of.96 D, while at Re = 340 the peak wavelength decreases ®D. Further,
as rotation rate is increased fram= 2 to a = 2.25, the peak wavelength &e = 300 decreases
from1.9D to 1.65D.
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Figure 24: Growth rate curves showing the three modes whieliastable to perturbations at= 1.85,
Re = 330.
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Figure 25: Growth rate curves showing the mode E and modet&hifises ate = 2.25, Re = 320.

At o = 2.25, the mode E instability exists alongside the mode F instalfdee figure 25). The
short wavelength instability of mode F has a complex Floguetiplier, indicating it is periodic
as it occurs in the steady regime of flow. The spanwise wagéteis much smaller than that
predicted by the DNS of Meer&t al.(2011) at slightly higher rotation rates. Further analgdis
the nature of the instability using the inviscid instalyiiteory of Bayly (1988) is consistent with
it being primarily centrifugal in nature, although the irghce of viscosity appears too strong for
the theory to provide realistic estimates for wavelengthgrowth rates.

7. Conclusions

The results of the linear stability analysis for a spinniggincler in a freestream have been
presented. These results build upon the existing knowletltiee three-dimensional wake modes
that were first observed in the wake of a non-rotating cylirmeWilliamson (1988). The non-
dimensionalised rotation rate, and Reynolds numbeRe, were varied over a wide parameter
space to first obtain the base flow over which stability anslyss performed to determine
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the growth (or decay) of perturbations. Furthermore, Staldinalysis was used to predict the
characteristic wavelength of each instability, and theisgamporal symmetries.

At low rotation rates, the change in the structure of theria@m shedding is minimal, and
the onset of the three-dimensional modes resembles thaeafdn-rotating cylinder, although
the critical values for the onset of the mode A and mode B bilities are delayed to higher
Reynolds numbers. At higher rotation rates, a subharmooidenmode C, is unstable to the
perturbations and is unstable in a closed region of the petemspace. This mode is the first
three-dimensional mode which becomes unstable with is@rgdze, followed by the onset of
the mode A type instability. At higher rotation ratescof= 1.85, a long wavelength instability
is observed alongside mode C and mode A instabilities.

For high rotation ratesy > 2), the rotation stabilises the vortex shedding, resulting steady
two-dimensional base flow. This class of steady base flowdéas shown to be unstable to at
least two modes: mode E, which appears to be due to amplificafiperturbations in the high-
strain regions of the near wake; and mode F, which is a cegatfinstability of the closed region
of flow near the cylinder surface for high rotation rates.

The authors acknowledge computing-time support from tfu¢oviian Life Sciences Compu-
tation Initiative (VLSCI), the National Computational hastructure (NCI) and Monash Sungrid,
Clayton. The authors acknowledge financial support fromtralian Research Council grants
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Chapter 3

Flow past a circular cylinder
translating at different gap
heights to a wall

3.1 Overview

The previous chapter explored the effects of rotation for a body in freestream, where
new three-dimensional modes were observed as the rotation rate was increased. Here,
we explore the flow characteristics as the cylinder is brought closer to a plane wall from
large gap heights. For this case, the rotation rate is set to zero, while the gap height
is varied. Recent two-dimensional simulations (Yoon et al. 2010, 2007; Huang & Sung
2007) show that the alternate vortex shedding ceases for G/D < 0.25 over a range of
Reynolds numbers. For a circular cylinder in freestream, previous studies (Williamson
1988b, 1996a; Thompson et al. 1996) have shown the onset of three-dimensional flow
to occur in the unsteady regime of flow at Re ~ 190, while for cylinders sliding along a
wall, Stewart et al. (2006, 2010b) showed the three-dimensional transition occurred in
the steady regime of flow at Re ~ 71 prior to the onset of unsteady flow at Re ~ 160.
However, the onset of three-dimensional flow between the two extremities of gap height
has received very little attention. Mahir (2009) observed mode A type structures at
gap heights G/D 2 1.2 and mode B type structures at G/D = 0.8 in the wake of a
square cylinder near a fixed wall. At very low gap heights, neither mode A nor mode
B type structures were observed.

We here investigate the variation of the onset of three-dimensionality for a circular
cylinder as the gap height is varied from G/D = oo to G/D ~ 0 by linear stability
analysis. For the circular cylinder near a wall, the dominant three-dimensional modes

at Re = 200 are investigated followed by three-dimensional simulations to visualise the
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flow structures.

3.2 Flow dynamics of a cylinder translating parallel to a
wall

The following article was submitted in 2012 to Journal of Fluids and Structures. This
work was co-authored by M. C. Thompson, T. Leweke and K. Hourigan, and is entitled,
“The flow past a circular cylinder translating at different heights above a wall”. The
paper is reproduced in this thesis directly from the version submitted to the editor for

review.
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Abstract

The flow past a circular cylinder moving through a fluid dtetient heights above a plane no-slip boundary is investi-
gated numerically for Reynolds numbet200. The gap height is varied from large valugeetively corresponding

to the freestream cas&(D = ), down to a small value where the cylinder is just above thié (@&/D = 0.005).
The initial transition from steady two-dimensional flow aaecur through either a Hopf bifurcation to unsteady flow
or through a regular bifurcation to steady three-dimeraiflow. The critical Reynolds numbers for each case are
determined as a function of gap height. It is found that stem- to three-dimensional transition occurs first at
gap ratiosG/D < 0.25, beyond which the initial transition is to unsteady flomt @YD = 0.3, a sharp increase in
the critical Reynolds number is observed at which threeedisionality occurs. On increasing gap height, the criti-
cal Reynolds number initially decreases before again asing towards the value observed for an isolated cylinder.
The force cofficients and Strouhal numbers are quantified. Finally, tiligeensional simulations are performed at
Re = 200 for the smallest gap ratioffectively corresponding to a cylinder sliding along a wallgkamine how the
wake evolves as it saturates.

Keywords: Wakes, Stability analysis, Body forces, Flow transition

1. Introduction

The flow past a circular cylinder has represented a generitffaw problem for more than a century, and the ex-
perimental and mathematical details of the transitiontegkdimensional flow have been revealed over the last twenty
five years. The flow undergoes an initial transition from timensional periodic flow to three-dimensional flow via
a sub-critical transition @&e=~ 190 (Barkley and Henderson, 1996; Williamson, 1996a,bgnelthe Reynolds num-
ber Re is based on the free-stream velocity)(and the cylinder diameteD)). The spanwise modulation of this
three-dimensional flow at onset was found to be approximébelr cylinder diameters and the corresponding wake
instability is commonly known as thdode Ainstability. Another three-dimensional instability modéode B be-
comes unstable at a higher Reynolds number and the remrfah# mode seem to persist to much higher Reynolds
numbers as the wake undergoes a transition to a chaoti¢ldtelerson, 1997; Williamson, 1996a,b). The equivalent
modes have also been recognised in the wakes of other twendional cylindrical bodies, such as square cylinders
(Robichaux et al., 1999) and elongated cylinders (Ryan €2@05). Until recently, very few studies have investigate
the related problem of flow past a circular cylinder movinggfial to a wall and the associated wake transitions.

Bearman and Zdravkovich (1978) performed experimentastigations for a cylinder near a fixed wallRé¢ =
45x 10* for 0 < G/D < 3.5. The cylinder was located B6from the start of a turbulent boundary layer which
developed along the wall. They observed the suppressiayofar vortex shedding f@/D < 0.3, with the Strouhal
number remaining almost constant until this gap height egsaached.

Price et al. (2002) visualised the flow for a circular cylindedifferent gap heights from a fixed wall for Reynolds
number in the range 120Q Re < 4960 and identified four élierent regimes of flow. For the case where the cylinder
was close to the wall/D < 0.125), vortex shedding was suppressed and the wall bouralgy$eparation occurred
both upstream and downstream of the cylinder. F8bG< G/D < 0.375, the flow was qualitatively similar to that
for the small gap ratios, while pairing occurred betweeritiner shear layer from the cylinder and the wall boundary
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layer. Vortex shedding was detected @D > 0.5, and at higher gap heights, the flow resembled that of aatisb!
cylinder.

Experimental investigations undertaken by Bailey et ab0@) for a square cylinder near a stationary wall at
Re= 1.89x 10* showed the presence of dislocations (which are commongcagsd with mode A type instability)
for gap heights greater th&yD = 0.7. For053 < G/D < 0.7, the spanwise perturbations were suppressed as a result
of higher flow velocities in the gap region, thereby leadimghte flow being mainly two-dimensional and a reduction
in the occurrence of dislocations. Beld®/D < 0.53, intermittent vortex shedding was observed. Experiaient
investigations at a slightly higher Reynolds number of @D by Bosch et al. (1996) showed that the vortex shedding
was completely suppressed@tD = 0.25, while low intensity intermittent shedding occurred @itter gap ratios.

Using a finite-diference method, Lei et al. (2000) performed numerical sitiawa for a circular cylinder foG/D
between 0L and 3 and for Reynolds numbers 80Re < 1000. In their simulations, the lower wall and the cylinder
were fixed and a boundary layer startedl@pstream of the cylinder. They observed that the gap heigivhich
vortex shedding was suppressed decreased as the Reynoitisinuas increased up Re= 600. Beyond this value,
the critical gap height remained constant. A similar studgwerformed by Harichandan and Roy (2012) for a flow
starting 1@ upstream of the cylinder &e= 100 and 200. Single sided vortex shedding was observes/for= 0.2
andRe= 200, and as the gap height was increased, Karman typeisigedds observed.

One of the earliest visualisations of the wake of a circuldinder moving parallel to a wall was by Taneda
(1965), who visualised the vortex streets for the cylinderimg at gap heights d&/D = 0.6 and 0.1 aRe= 170.
For G/D = 0.1, a single row of vortices formed and these were unstabledessipated quickly. Furthermore, the
wavelength of vortex street increased as the gap ratio wasased.

Nishino et al. (2007) performed experimental investigaditor a circular cylinder near a moving wall for higher
Reynolds numbers (O(%)). For a cylinder with endplates, they reported that the fessentially remained two-
dimensional, with Karman type vortices being shed for lgejghtsG/D > 0.5, and an intermediate shedding regime
being observed for.85 < G/D < 0.5, followed by complete cessation of shedding be@®iD < 0.35. They further
reported that the drag cfieient was nearly constant when the body was be&B\® < 0.35. However, for a cylinder
without endplates, they reported that the Karman typé&aes were not being generated and the dragfment was
nearly constant in this regime.

Zerihan and Zhang (2000) investigated the variation ofaliftl drag forces on a single element wing (of chord
¢) with a moving ground in a wind tunnel at high Reynolds nurst{€(1¢)). For the airfoil tested, the (negative)
lift coefficient increased from its value at low gap heights to a maxinalume at heighh = 0.08c, beyond which a
decrease in the lift cdgcient was observed. The drag @éeient decreased on increasing gap height. They further
varied the incidence angle of the airfoil and observed thatgap height at which the maximum (negative) lift was
generated varied marginally.

Zhang et al. (2005) investigated the grourfteet of a half-cylinder using a moving ground in a wind tunnel
facility for Reynolds numbers in the range86< 10* < Re < 1.7 x 10°. The critical gap height range over which
vortex shedding was suppressed was found t0.62%0< G/D < 0.55. The drag force was nearly constant below
this height but a sharp increase to twice the value was obdearound the critical gap height. The lift ¢heient
decreased as the gap height was increased. Furthermo®itrstiuaal number was found to be insensitive to the gap
height.

Bhattacharyya and Maiti (2005) investigated the flow for assg cylinder near a moving wall for a wide range
of Reynolds numbers (below 1400) forl0O< G/D < 0.5. They observed that the mean lift ¢beient decreased
gradually as Reynolds number was increased, while the dreffjaient increased with Reynolds number. The lift and
drag codficients were higher for lower gap heights. They further olesgthat the Strouhal number decreased as the
gap height was decreased. They obtained the velocity psafilthe gap between the cylinder and the wall.

Huang and Sung (2007) performed two-dimensional simulatfor a circular cylinder moving near a wall for
0.1 < G/D < oo for Re< 600. The gap height at which alternate vortex shedding gisared decreased fron28D
to 0.25D as the Reynolds number was increased from 300 to 600. Thelinmensionalised shedding frequen&/y
at different Reynolds numbers increased as the cylinder was brolagier to the wall £ 0.5D) followed by a rapid
decrease as the gap height was decreased. They furtheifigdethe lift and drag co@icients, with the lift cofficient
showing a linear increase as the cylinder was brought ctogée wall. They however did not rule out the possibility
that three-dimensionafiects would be important for such flows.

Using an immersed boundary technique, Yoon et al. (201Gppeed numerical investigations at various gap
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heights for a circular cylinder moving parallel to a wallRe¢ < 200. The time-averaged lift and drag €oeents
decreased exponentially as the gap height was increaseg.obiserved steady flow at higher Reynolds numbers as
the gap height was decreased. Vortex shedding persisielafl 20 for the cylinder wittG/D = 0.1.

For a body moving along a wall, Arnal et al. (1991) observexd the presence of a wall had a stabilisirfiiget on
the flow dynamics, delaying the transition to unsteady flowiglher Reynolds numbers. For a square cylinder sliding
along a wall, they observed that the onset of unsteady flowroed aroundRe = 100, where the vortex pair moved
away from the wall. Instabilities of this nature occurredentvortex cores convected at slower velocities than the
mean flow, as shown by the experimental investigations of ¢fiil. (2004) for a flat plate boundary layer. Dipankar
and Sengupta (2005) further showed that the instabilityecinn the convecting vortex core shed from the freestream
side of the cylinder.

Mabhir (2009) investigated the onset of three-dimensiooal for a square cylinder near a fixed wall fRe < 250
as the gap height was increased from 0.1 to 4Ré&¢& 185, mode A type vortex structures of spanwise wavelenBth 3
were observed for gap heights greater i = 1.2, whilst atG/D = 0.8, mode B type vortex structures witfD1
spanwise wavelength were observed. Be@®yD = 0.5, neither mode A nor B type vortex structures were obskrve
At Re = 250, mode B type vortex structures were observed at largethgahts, whilst at lower gap heights the
vortex structure was strongly distorted in the vicinity bétcylinder. In the frequency spectra of the streamwise and
spanwise velocities fdB/D = 0.8 andRe= 185, period-doubling was observed.

Stewart et al. (2006, 2010b) performed numerical and experial investigations for a circular cylinder moving
near a plane wall at a very small gap heigBfD = 0.005) forRe < 200. They reported that the flow was steady
up to Re = 165, beyond which periodic flow was observed, where oppgssigned vortex structures combined
and self-propelled away from the wall. They further perfedtinear stability analysis and determined the onset
of three-dimensional flow. The flow became three-dimengidinectly from steady flow aRe. = 70.5, unlike the
case for an isolated cylinder, for which the transition tdheeé-dimensional state occurs from the unsteady flow.
Experimental wake visualisations for the cylinder near 4 wmaa water tunnel were in good agreement with the
numerical simulations.

In this study, we perform two-dimensional simulations fairgular cylinder moving parallel to a wall atftérent
gap heights using a spectral-element method. This is cduwpilia linear stability analysis to investigate the wake
transitions and wake behaviour affdrent gap heights. The dependence of the forcéfictnts and the shedding
frequency on Reynolds number and gap height is quantified.

2. Problem definition and methodology

The schematic representation of the cylinder moving pelrédl the wall is shown in figure 1. A cylinder of
diameterD is moving at a gap height @ from the wall. In the numerical setup, it is convenient to aseniformly
translating frame of reference centred on the cylinder.afR@ to this non-accelerating frame, the fluid and the
lower wall move at a uniform speed and the cylinder remaiascstary. There are two controlling non-dimensional
parameters: the Reynolds numkRe= UD/v, wherey is the kinematic viscosity of the fluid, and the gap raBgp.

For this study, the Reynolds number lies in the rangec2Be < 200. Computational domains were constructed for
different gap heights from freestrea®/Q = oo, i.e., no wall) to a minimal gap3/D = 0.005). The small gap was
maintained to prevent a singular mesh element between ttenbof the cylinder and the lower wall. Previous studies
(Rao et al., 2011; Stewart et al., 2010b, 2006) have showd ggoeement between the flow structures visualised in
the experiments and those observed numerically, even ttibegorce cofficients are sensitive to gap height for small
gaps. As is usual, the lift forcd=() and drag forceRy) are normalised by the dynamic pressure and area(¥5)

to obtain the lift C.) and drag Cp) cosficients, respectively. In the unsteady regime of flow, vosteadding occurs
and the force cd#cients vary periodically, so time-averaged quantitieseperted. The simulations were performed
for > 400, where timet, is non-dimensionalised By/D (= = tU/D). The frequency of shedding, is normalised

by the cylinder diameter and flow speed to obtain the non-dgie@al Strouhal numbegt= fD/U.

2.1. Numerical formulation

The incompressible Navier-Stokes equations are solvedjasspectral-element method. The computational do-
main is constructed from quadrilateral elements, maindyenegular, while some have curved boundaries to accurately
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Figure 1: Schematic representation of the circular cylirafeliameterD at a distanc& from the wall.

treat the curved surface of the cylinder. These elementsigtheer subdivided into internal node points which are dis-
tributed according to the Gauss-Legendre-Lobatto quadFgints, with the velocity and pressure fields represente
by tensor products of Lagrangian polynomial interpolanithiw the elements. Such methods are known to provide
spectral convergence as the polynomial order of the intenp®is increased (Karniadakis and Sherwin, 2005). The
number of node pointd\x N) is specified at runtime, with the interpolant polynomia@rbeingN — 1. A fractional
time-stepping technique is used to integrate the advegtiessure and fiusion terms of the Navier-Stokes equation
forward in time. The unsteady solver is used to investigaearameter range covering both the steady and unsteady
regimes of flow. More details on this method can be found inripson et al. (2006a) and has previously been used
in studies of blff bodies in freestream (Thompson et al., 1996; Leontini e2807; Thompson et al., 2006b) and for
bodies near a wall (Stewart et al., 2006, 2010a,b; Rao €Gil1; Thompson et al., 2007).

2.2. Linear stability analysis

For an isolated cylinder, three-dimensional flow occurser> 190 (Barkley and Henderson, 1996; Williamson,
1996a,b) in the unsteady regime, while for bodies close talative flow becomes three-dimensional directly from
a steady base flow (Stewart et al., 2010b; Rao et al., 2011) haie investigate the variation between these two
extremes mapping the transition forfférent gap heights. The bifurcation to three-dimensional fiodetermined
using linear stability analysis. Numerically, the Navi&&iokes equations are linearised and the spanwise peitbat
are constructed as a set of Fourier modes. The resultingiegsare marched forward in time, and after several
periods, the fastest growing or slowest decaying modes mmithe system. For unsteady (periodic) flows, the
analysis is based on the growth over a base flow pefipdiid is known as Floquet analysis. In that case, the ratio of
the amplitudes of the perturbation field for consecutivéquisris denoted by = €T, whereu is the Floquet multiplier
or the amplification factor andt is the growth rate. For exponentially growing modes, thejb&t multiplier returns a
value of|u| > 1, or a positive growth rate (ReJ > 0). For a circular cylinder, the fastest growing modes abiiget of
three-dimensionality have a purely real Floquet multiplie., the periodicity of the three-dimensional pertuityas
is the same as the base flow period. However, other unstalidesnohich are incommensurate with the base flow
also occur, e.g., for a circular cylinder (Blackburn and &pp2003), square cylinder (Robichaux et al., 1999) or flat
plate (Thompson et al., 2006b). In addition, is it also passior the perturbation modes to have twice the period of
the base flow such as for the wake behind rings Sheard et 83(2004). These are termed sub-harmonic modes.

Details of the approach can be found in, e.g., Ryan et al.5p80d Leontini et al. (2007).

2.3. Resolution studies

The domain used for the two-dimensional flow computatiords h@undaries positioned at large distances from
the cylinder-wall system to minimise blockage. The inled antlet boundaries were placed ID@om the cylinder,
while the transverse boundary was locatedD5®m the lower wall. Studies conducted by Rao et al. (201 by
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negligible changes to the force dheients and Strouhal number if larger domains were used h&urtore, spatial
resolution studies were conducted @fD = 0.01 atRe= 200 by varying the number on internal nodes within each
element N x N), betweenN? = 42 to 1(%. For N? = 72, maximum variation in the force cfiicients and Strouhal
number from the most highly resolved case was less than Hb¥ever, because the macro-element mesh resolution
is considerably lower away from the solid surfaces, to emadequate resolution of the flow structures in the far wake
the internal resolution was set I? = 92, Further, to ensure stability of the solver at these re&mnist which is
governed by a Courant condition for the explicit non-linsa-step, the time-step used was 0.001.

3. Results

3.1. Flow structures

The parameter investigation was carried out betw@&¢b = 0.005 andG/D — oo for Reynolds numbers 25
< Re < 200. The flow for all cases investigated is steady at low Rimoumbers and is characterised by the
formation of recirculation zones behind the cylinder. Fmiadl gap heights, a single recirculation zone forms in the
wake away from the wall, and as the gap height is increasedothation of a secondary recirculation can be observed
as the wake becomes more symmetrical. In line with the iedleylinder case, the length of these recirculation zones
increases as the Reynolds number is increased. At stilehiBeynolds numbers, the flow undergoes transition to
an unsteady state, with the wake state is characterisedelyyettiodic shedding of vortices. For bodies close to the
wall (G/D < 0.1), the critical Reynolds number for transition to an undjestate was higher thaRe = 165, and
as the gap height was increased, the unsteady transitiemredcat lower Reynolds numbers. Recall that for bodies
near a wall, three-dimensional flow occurs in the steadymegif flow (Stewart et al., 2010b). For bodies close to a
wall, vortex shedding occurs when the negatively signedisgmg shear layer from the top of the cylinder combines
with oppositely signed vorticity from the boundary layertla¢ wall to form vortex pairs, which self-propel away
from the wall. However, for the cylinder moving at larger gagights, the unsteady wake is characterised by the
formation of the classical von Karman vortex street. Shawfigure 2 are the coloured vorticity contour plots for the
cylinder moving at dierent gap heights above the wallRe = 200. The images shown are at instant of maximum
lift coefficient in the shedding cycle.

The variation of the time-averaged drag and lift §iméents are shown in figure 3 in the steady regime of flow.
Studies by Stewart et al. (2010b) show that the dragfimient obeys a power law relationship with Reynolds number.
Shown here on a log-log plot, the drag f@ogent varies approximately linearly in the steady regiméerE is a
difference in the drag céiicient of approximately 2 between the smallest and largestagases. The mean lift
codficient varies substantially more since the mean lift appgteazero a&/D — co.

The variation of the time-averaged drag and lift §méents together with the standard deviations are shown in
figure 4 for the unsteady regime of flow. Over this Reynolds bemmange the mean drag ¢beient changes only by
approximately 10% or less as the gap ratio or Reynolds nuisharied.

Phase diagrams for various gap heights are provided in flgat®e= 200. C, is plotted agains€y at each gap
height. The curves show the phase relationship betweemthe €odicients and the variation of the amplitude over
one period of the lift cofficient. ForG/D = oo, the phase relationship is symmetric between two halvesetycle,
and an apparent loss in symmetry is observedtd < 1. For very small gaps3/D < 0.1), the shedding becomes
substantially one-sided, as shown in figure 2, where thatift drag signals are out of phase by approximately.180

The variation of the shedding frequency (St) with gap hefghtvarious Reynolds numbers is shown in figure
6. The Strouhal number drops substantially as the cylinsigrositioned closer to the wall, approaching a value
of approximately 0.1 as the gap approaches zero. As the gghths increased, the Strouhal number increases
almost linearly initially before reaching a maximum fob0< G/D < 0.75, above which it decreases slightly as
it asymptotes to the value for an isolated cylinder in fresh. Predictions from Huang and Sung (2007) and an
independent immersed boundary code (J.S. Leontini, grisatnmunication) are in good agreement with the current
Strouhal number predictions. It is also interesting thatralar decrease in Strouhal number is found when a cylinder
approaches a free surface (Reichl et al., 2005).
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Figure 2: Flow structures &e = 200 for the circular cylinder moving from right to left at tispecified gap heights. Vorticity contours levels are
betweent5D/U. The wake is visualised for a streamwise distance in exdeasdownstream of the cylinder.
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Figure 3: Variation of the drag (a) and lift (b) déieients with Reynolds numbers for the gap heights shown. Bheifl steady for these parameters.
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Figure 4: Variation of the force cdiécients with Reynolds numbers in the unsteady regime for épehgights shown. The error bars represent one

standard deviation from the mean values.
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Figure 5: Force cd@cient phase trajectories atfidirent gap heights for periodic flow Be= 200.
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Figure 6: Variation of Strouhal number with gap height fdfelient Reynolds numbers.
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Figure 7: Variation of critical values for the onset of thidimensional flow with gap height. Left: Variation of the taral Reynolds number
with G/D. The boundary of the transition between the steady and athstegimes obtained using a two-dimensional base flow iwshy the
dotted line. Right: Variation of the critical spanwise wierggth withG/D. The three-dimensional modes which grow on the steady baseafle
marked by open circles) and those on the unsteady base flow by filled circislf each diagram, the gap height at which the flow is stable to
three-dimensional perturbations fee< 200 is shown by the vertical grey line.

3.2. Stability Analysis

The stability of the flow to spanwise perturbations is inigeged for cylinders moving at fierent gap heights
above the wall. Two-dimensional steady or unsteady flowtgmis are used to provide base flows to investigate the
stability to three-dimensional perturbations.

ForG/D = o, Barkley and Henderson (1996) showed that the flow becarearlijnunstable to three-dimensional
perturbations aRe, = 1885 for 1./D = 3.96. Our stability analysis performed on the unsteady basedtwwed
that for this case the flow becomes unstablRat= 190.5 for the same spanwise wavelength. The marginal i@riat
in the critical Reynolds number between these two predisti®(1%)) can be attributed to the considerably larger
domain size used here, which also leads to a slighffeint Strouhal number to that found by Barkley and Henderson
(1996). Stability analysis performed on the steady basedd®/D = 0.005 (Rao et al., 2011) is in agreement with
the previous studies of Stewart et al. (2010b). The curremgstigation was carried out to quantify the variation with
gap height, mapping the boundary between the two- and tfireensional regimes.

The variation of the critical spanwise wavelength andecaitReynolds number with gap height are shown in figure
7 for gap height&/D < 1.2. In figure 7(a), the approximate demarcation between #egtand unsteady regimes
is shown by the dotted line.

For G/D < 0.22, stability analysis was performed on a steady base flowrevthe power method was used
to resolve the dominant growing mode. However, for gap hsigheater thais/D = 0.22, stability analysis was
performed on an unsteady base flow using the Arnoldi methaggolve the dominant Floquet modes based on
Krylov subspace iterates. This method can resolve bothethleand imaginary components of the Floquet multiplier
of the first few most-dominant modes. Domains used for thepedations of the steady base flow were used for
the stability analysis for the steady regime, while the cotafional domain had to be resized for the analysis in the
unsteady regime. In that case, the perturbation fields waradequately resolved in the far wakeD > 30), where
the macro-elements are large. Since the modes are globa&sfaith the same growth rate everywhere), inadequate
resolution, such as in the far wake, can lead to spuriousthroate predictions if unphysical large mode amplitudes
occur there. To combat this problem, new computational diesnaere constructed with boundaries closer to the
cylinder. The Strouhal numbers for the smaller domains weneputed. The variation in the Strouhal number values
between the larger and smaller sized domains wet8%. Although this will éfect the accuracy of critical Reynolds
numbers and growth rates by a similar percentage, it is elylilo afect the underlying physics.

Figure 8 shows the computed spanwise perturbation vortihtours for the most unstable wavelengths near
the critical Reynolds numbers for onset of the instabilBpanwise vorticity contours of the base flow are overlaid
to highlight the relative position of high mode amplitud&is instability contours resemble those for a backward-
facing step (Blackburn et al., 2008), flow downstream of a&kége or sudden expansion (fth et al., 2007, 2008;
Marquet et al., 2008) or even the instability in the flow ovdomvard-facing blunt plate (Thompson, 2012). Those
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() G/D = 0.05,Re= 80, 1/D = 6, |u| = 1.027

(b) G/D = 0.1, Re= 100,4/D = 7, |u| = 1.072

(c) G/D = 0.2,Re=135,1/D = 6, |u| = 1.037

Figure 8: Spanwise perturbation vorticity colour contdilmstween levels-0.1D/U) for the cylinder moving at dierent gap heights at the specified
Reynolds number and spanwise wavelength. Base flow vgrtioittours between levelslD/U are overlaid. The cylinder is moving from right
to left in each image.

58




Table 1: Variation ofic/D andRe. with G/D. The values above the horizontal line are obtained fromaxdgtease flow and those below from a
periodic base flow.

G/D Ac/D Re
0.005 5.48 70.91
0.05 5.86 78.07

0.1 6.77 92.85
0.15 7.27 109.55
0.2 6.34 127.20
0.22 5.81 128.23
0.25 5.24 128.11
0.3 4.17 185.90

0.32 4.04 172.30
0.35 3.96 152.45

0.4 3.85 136.68
0.5 3.65 144.39
0.6 3.65 153.45
0.75 3.66 162.16
1 3.73 168.75
2 3.98 177.48
4 4.03 181.22
o0 3.96 190.5

cases have in common an attached downstream recirculation and lead to a large spanwise-wavelength steady
three-dimensional instability, which generates recating flows in the horizontab¢y) plane.

At G/D = 0.28, the flow remained two-dimensional fRe < 200. For larger gap ratios3(D > 0.3), the
three-dimensional instability first manifests after thenfloas already become unsteady. This case is analogous to
Mode A for an isolated circular cylinder, with the criticaéfolds number and wavelength curves shown in figure 7
indicating a continuous transition towards the correspam¥ode A values. The mode structures foftelient gap
heights are shown in figure 9, highlighting the broad sintikss in the perturbation fields. In particular, the near eak
shows high perturbation amplitude in the forming vortexesoas well as in the sheared region between the cores,
and further downstream the perturbation is high in the woctges and drops to zero at the edge, reminiscent of the
perturbation field structure for an elliptic instability fmind for mode A, e.g., Thompson et al. (2001) and Leweke
and Williamson (1998). Although for small gap heights thisrgome interaction with the no-slip wall contributing to
the mode structure, this does not dominate the evolvingigzation field.

Table 1 provides the critical values of Reynolds number grasheise wavelength for the three-dimensional tran-
sition as a function of the gap height.

3.3. Stability analysis at higher Reynolds numbers for sdiear a wall

Previous studies by Rao et al. (2011) and Stewart et al. (20Eported three-dimensional flow in the steady
regime at low Reynolds numbers prior to the onset of unstéladyfor a circular cylinder near a wall. Barkley and
Henderson (1996) performed stability analysifat= 280 for an isolated cylinder and observed a short wavelength
instability, commonly known as mode B. Here, we perform ailsimanalysis to predict all the amplified growing
modes at a higher Reynolds numbers well past the transitilieyand then we use three-dimensional direct numerical
simulations to further investigate the nature of the sataravake state.

For a cylinder (€ectively) sliding along a wall&/D = 0.005), the two-dimensional flow undergoes transition to
an unsteady wake stateRé¢~ 160. Stability analysis was performed on the unsteady basesiRe= 200 to obtain
the fastest growing modes. The growth rates curves are shofigure 10. Four distinct modes are observed for
/D < 25, with the shortest wavelength modedb = 2.4 (termed Mode I) being the fastest growing. Three other
modes whose maximum growth rate peaks arg Bt= 4.55,5.35 and 11 and are termed mode Il, mode Il and mode
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Figure 9: Spanwise perturbation vorticity contours at fhectfied gap heights. The contour shading is as per figure 8.
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4.5

Figure 10: Growth of the linear wake modes for the circuldinder sliding along a wall aRe = 200. The inset shows the two modes between
4< /D <6.

1V, respectively. The corresponding spanwise perturbatarticity fields at these preferred spanwise wavelengths a
shown in figure 11.

To further investigate the nature of these modes, the rehlimaginary components of the resulting Floquet
multipliers are resolved. These are plotted in the compliameofor each of the four modes in figure 12. The horizontal
and the vertical axis corresponds to the real and imaginamyponents of the Floquet multipliers, respectively. The
unit circle (u| = 1) is shown by the solid line. This separates the region wpereirbations decay (inside the circle)
from where perturbations grow (outside the circle). Modellland IV were found to be quasi-periodic, i.e., the
period of the mode is not commensurate with that of the base filode II, on the other hand, as a purely real and
negative Floquet multiplier, which indicates that it is babmonic.

To validate the results of the stability analysis and to gtigrte the evolution towards a saturated wake state, we
performed a three-dimensional direct numerical simufatihis was initialised from the two-dimensional periodic
flow for Re= 200, using a three-dimensional version of the computatiwode employing a Fourier expansion in the
spanwise direction (Thompson et al., 1996; Karniadakis Emahtafyllou, 1992; Ryan et al., 2005; Leontini et al.,
2007). Low intensity white noise (O(1f)) was added to trigger the development of three-dimensitma The
selection of the spanwise domain size restricts the numbeaeelengths of each of the modes that can fit into the
domain to discrete values. Here, this length was chosen s difficient to contain 5, 3, 2 and 1 mode I, 11, 1lI
and IV wavelengths, respectively. In addition, 64 Fourianps were used for this simulation. Whilst this is clearly
a compromise, it is diicient to verify the initial linear evolution of the fastestogving perturbation mode, and it
likely to give an idea of the complex evolution towards thgmagtotic wake state as thefférent modes grow towards
saturation and interact non-linearly.

Figures 13(a) and 13(b) show time traces ofulaadw velocity components at a point in the wake as the perturbed
two-dimensional flow evolves towards a three-dimensioteés These plots show that the two-dimensional state is
maintained for more than 100 non-dimensional time unitsyoBe approximately 160 time units, the periodicity in
the u trace dfectively disappears as strong spanwise flow develops. &ig8fc) is a depiction of mode | from the
linear stability analysis using isosurfaces of positive argative streamwise vorticity to indicate the wake strreet
This should be compared with the DNS isosurfaces shown imefigj8(d), which correspond to= 95, while Mode |
is still undergoing exponential amplification. This relattime is shown by the first filled circles in figures 13(a) and
(b). Figure 13(e) shows the complex nature of the wake atea fahe ¢ = 240) after the wake has become highly
non-linear. As indicated above, in this state even the remnsnaf periodicity in theu velocity component are lost.
Also, there does not appear to be a clearly dominant sparwéselength. In any case, the two-dimensional base
flow is clearly no longer an adequate model of the real flow is tbgime.
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() mode 14/D = 2.4,|u| = 2174

(b) mode 11,4/D = 4.55,|u| = 1.836

(c) mode I1I,4/D = 5.35,|u| = 1.8476

f,

e

(d) mode IV,4/D = 11, |u| = 1.638

Figure 11: Spanwise perturbation vorticity contours fa tylinder sliding along a wall@/D = 0.005) atRe = 200. The cylinder is travelling
from right to left in each image. The contour shading is asfigere 8.
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Figure 12: The Floquet multipliers for each of the four ubftanodes aRe= 200. The modes and their conjugate pairs (if they exist) laoeva
along with the unit circle|(| = 1). Mode I is shown by open circled /(D = 2.4), mode Il is shown by quarter filled circles/© = 4.55), mode IIl
is shown by half filled circlesA/D = 5.35) and mode IV is shown by fully filled circles(D = 11).
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Figure 13: Direct numerical simulation (DNS) results forigcalar cylinder sliding along a wall @e = 200. Left: The time histories of the
streamwise and spanwise velocity components for a locatidghe wake downstream of the cylinder. Right: Visualisasiaising streamwise
vorticity isosurfaces viewed from above. Here (c) showsistaces forl/D = 2.4 from linear stability analysis, which can be compared it
perturbation field obtained from DNS at= 95 in image (d). The final image (e) shows perturbation idases atr = 240 after the wake has
become chaotic.
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4. Conclusions

We have investigated the flow past a circular cylinder trativel) parallel to a no-slip wall at fierent gap heights.
Two-dimensional simulations show the onset of unsteady ioselayed to much higher Reynolds numbers relative
to the isolated cylinder as the gap height is decreased. Bivea gap height, the Strouhal number increased with
Reynolds number. The force dieients at various gap heights have been computed. TheatiR&ynolds numbers
and spanwise wavelengths for the onset of three-dimeridiiomaare established as the gap height is varied. For
G/D < 0.22, the onset of three-dimensional flow occurs in the steamly ftgime. Beyond this, three-dimensional
flow develops from unsteady two-dimensional flow at consitigr higher Reynolds numbers (e.&e = 185 at
G/D = 0.3; Re. ~ 137 atG/D = 0.4), before moving towards values approaching those obddorean isolated
cylinder Re. = 1905 andA/D = 3.96). The wake development for a Reynolds number well in exoéshe initial
critical value was also investigated for the lowest gap hieigse G/D = 0.005, dfectively a cylinder sliding along
a wall. AtRe = 200, Floguet analysis shows that the two-dimensional pgérivake is unstable to four fierent
instability modes. The evolution of the wake was followethgsDNS for this case as the initially two-dimensional
weakly perturbed flow evolves towards its asymptotic statiis simulation shows that initial development of the
fastest growing mode, in agreement with the stability asialyand subsequent rapid transition to a chaotic wake state
for which even quasi-periodic shedding of two-dimensian#érs into the wake seems to be suppressed.
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Chapter 4

Flow past a cylinder rolling along
a wall

4.1 Overview

The previous chapters have investigated the effect of rotation on circular cylinders in
freestream and the variation in flow structures observed when close to a plane wall.
The combination of the two is investigated here. Flows past bluff bodies rolling near
a wall are investigated here, extending the studies of Stewart et al. (2006, 2010b) to
higher rotation rates. Of primary interest is the exploration of the flow structures as the
rotation rate is extended for —3 < o < 3. As the rotation rate is increased from o = 0,
the vortex pairs which are formed become larger in size, and a decrease in the critical
Reynolds number for the onset of periodic flow is observed, while on decreasing the
rotation rate to negative values (a < 0), the onset of vortex shedding occurs at higher
Reynolds numbers and for @ < —1.5, vortex shedding is suppressed. On increasing the
rotation rate, three-dimensionality occurs at increasingly low Reynolds numbers, while
on decreasing the rotation rate to negative values, the onset of three-dimensionality is

delayed to higher Reynolds numbers and altogether suppressed for a < —2.

The following section contains the journal article describing the above stated flow
features, with a significant focus on the variation of the drag coefficient with rotation
rate. Also, briefly introduced here is the topic of flow past multiple bodies near a wall,
and the drag reduction on the trailing body as the separation distance and Reynolds

numbers are varied.
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4.2 Flow dynamics of a rolling cylinder near a wall

The following article was published in 2011 in Journal of Fluids and Structures. This
work was co-authored by B.E. Stewart, M. C. Thompson, T. Leweke and K. Hourigan,
and is entitled, “Flows past rotating cylinders next to a wall”. The paper is reproduced

in this thesis directly from the version published online.
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1. Introduction

The separated flow over a circular cylinder is one of the classical fluid dynamics problems, studied in detail for over a
century since the pioneering investigations of Bénard (1908) and von Karmén (1911). Since then, there have been many
comprehensive review articles, including Williamson (1996a,b), Norberg (2003), and reviews of wake transition for other
cylindrical or axisymmetric bluff bodies (e.g., Thompson et al., 2006b). The flow dynamics are dramatically altered when
such bodies are placed close to a plane wall. A significant change in shedding frequency and forces experienced by these
bodies is observed, compared with similar bodies in an unbounded flow. An added parameter to such investigations is the
effect of body rotation. By use of a numerical solver, we examine the flow structures and wake dynamics, and compute the
forces on a circular cylinder as a function of rotation rate and Reynolds number, and then extend this study to examine two
sliding cylinders.

One motivation for this study is to improve our understanding of the flow dynamics of, and forces on, cells near blood
vessel walls of which the current problem is a simplified two-dimensional analogue. Certain cell types such as platelets
and leukocytes depend on rolling and sliding along a vessel wall as part of the activation process to initiate the clotting or

* Corresponding author at: Fluids Laboratory for Aeronautical and Industrial Research (FLAIR), Department of Mechanical and Aerospace Engineering,
Monash University, Clayton 3800, Australia.
E-mail address: Kerry.Hourigan@monash.edu (K. Hourigan).
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immune response (Lawrence and Springer, 1991; Wagner and Frenette, 2008). This study is a prelude to studies
investigating flow behaviour at much lower Reynolds numbers, which may be directly applicable to the above mentioned
examples. The current study is also applicable to many particle-particle and particle-wall interactions, (e.g., particles in a
sedimentation tank), as it considers a wider parameter range.

2. Flows around a single cylinder close to a plane wall

The effect of placing a body in close proximity to a wall brings about a substantial change to the wake flow structure
and consequently the forces experienced by the body, compared with an unbounded flow. Investigations in a wind tunnel
by Bearman and Zdravkovich (1978) showed a strong suppression of vortex shedding for a gap to diameter ratio G/D=0.3,
for a cylinder adjacent to a stationary wall. The lift force experienced by the cylinder was directed away from the wall for
the cases investigated but the Strouhal number (St) remained approximately constant as the cylinder moved closer
towards G/D=0.3.

A single row of vortices was observed by Taneda (1965) for a cylinder moving close to a wall at Re=170. The
experiments were conducted using condensed milk and aluminium dust to visualise the vortex structures. It was noted
that the time period for the vortex formation was longer than that in free stream.

Lei et al. (2000) investigated the effect of gap ratio (G/D) between 0.1 and 3 for a Reynolds number range of 80-1000.
Using a finite-difference method, they describe the flow structure formation behind the cylinder for G/D < 3. The lower
wall is stationary, leading to the formation of a boundary layer, which interacts with the shear layer shed from the lower
side of the cylinder. At different gap ratios and Reynolds numbers, the opposite signed vorticity in the wall shear layer and
the shear layer shed from the cylinder cancel each other out, leading to the suppression of vortex shedding. It was also
found that the critical gap ratio at which the shedding ceases decreases with an increase in Reynolds number, asymptoting
to 0.2 at higher values.

Nishino et al. (2007) conducted experiments in a wind tunnel for intermediate Reynolds numbers O(10°) with a moving
wall to prevent the development of a boundary layer. Three regions of vortex shedding based on the gap height were
identified. For G/D > 0.5, regular vortex shedding was observed; and as the cylinder was moved closer to the wall, the
shedding became intermittent and ceased to exist for gap ratios <0.35. The experiments showed a decrease in drag
coefficient as the cylinder was moved progressively closer to a wall, becoming constant for G/D < 0.35.

Numerical simulations for a stationary cylinder close to a moving wall have been performed by Huang and Sung (2007).
They obtained a critical vortex suppression value of G/D=0.28, which is close to that observed for simulations conducted
with a stationary wall. Furthermore, they attributed the formation of the vortex from the lower side of the cylinder to the
higher flow rate between the cylinder and the moving wall. For a constant gap ratio, the lift and drag values increased as
the Reynolds number was increased from 200 to 500. Numerical simulations have also been carried out for rotating bodies
close to a stationary wall. Using the lattice Boltzmann method, Cheng and Luo (2007) obtained flow structures and
quantified the forces on a rotating cylinder near a stationary wall. The magnitude and sense of rotation affect the critical
height at which vortex shedding is suppressed. For a given gap ratio, the lift coefficient increased as the rotation rate was
changed from retrograde to prograde, while the drag coefficient showed the reverse trend.

Two- and three-dimensional studies for a square cylinder near a stationary wall have been conducted by Mahir (2009).
The mean drag force decreased as the cylinder was brought close to a wall. It was also noted that the two-dimensional
simulations overpredicted the mean lift and drag values. Their simulations considered a body adjacent to a stationary wall,
while the present work focuses on a body in motion along a plane surface.

Stewart et al. (2010) conducted two- and three-dimensional numerical simulations for a single cylinder rolling along a
wall. The gap ratio was maintained at 0.005 to prevent the grid singularity that occurs if the cylinder is touching the wall.
Forward rolling of the cylinder destabilised the flow, reducing the Reynolds number at which shedding first occurred,
while reverse rolling stabilised it. The lift and drag values were found to be highly dependent on the rotation rates. The
steady and unsteady regimes of the flow for different rotation rates were mapped. In the unsteady regime, the shear layer
shed from the top of the cylinder combined with the wall shear layer downstream, forming a vortex pair with a net
rotation. Their stability analysis reported that the wake undergoes a transition to three-dimensionality and then becomes
unsteady, as the Reynolds number is increased. The transition mechanism to three-dimensionality was not clearly
understood. Experimental work carried out in a water channel confirmed the flow features visualised in the numerical
simulations. The current work is an extension of that study: first to higher forward and reverse rotation rates and then to
multiple circular cylinders.

3. Problem definition and methodology

This study is an extension to the generic flow problem of a single cylinder rolling, without slipping, along a wall in a
quiescent fluid. That problem is governed by a single parameter, the Reynolds number Re = UD/v, where D is the cylinder
diameter, U the velocity of its centre, and v the kinematic viscosity of the fluid. In the general case, in which slip between
the cylinder and the wall is allowed, another parameter is needed to fully describe the flow. A convenient choice is the
rotation speed at the cylinder surface relative to the linear speed at its centre «=(wD/2)/U, where o is the angular
velocity. Forward rolling (i.e., rotation against the flow at the top of the cylinder—anti-clockwise in this case) corresponds
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Fig. 1. Schematic representation of the cylinder.

to positive o values, and reverse rolling (i.e., aiding the flow or clockwise) corresponds to negative o values. The range of
Reynolds numbers considered in this study is between 20 and 200 for & > 0 and between 20 and 750 for o <O0. In the
current study, « is varied between —2 and +2. A schematic representation of the rolling cylinder is shown in Fig. 1. The
cylinders are placed at a very small distance above the wall to prevent the formation of singular elements directly beneath
the cylinders. The gap height normalised by the cylinder diameter, G/D, is set to 0.005. Previous studies (Stewart et al.,
2006, 2010) have shown that the simulated flow structures match the experimentally observed ones when the cylinder is
actually in contact with the wall, although it is true that the lift and drag forces are sensitive to the gap ratio. At low
Reynolds numbers, the drag force was more sensitive to the gap ratio than at higher flow speeds. The frequency of
shedding of the wake, f, is quantified through the non-dimensional Strouhal number, St=fD/U. The drag coefficient (per
unit width) reported here is given by C4 = Fy/(} pU?D), where Fy is the time-averaged force experienced by the cylinder.
Visualisations for all cases presented here are with flow from left to right in the frame of reference of the cylinder. Vortical
structures have been visualised using a red/blue colour scheme, where red indicates negative, and blue positive vorticity,
respectively. The contour levels for all figures shown are between + 5U/D.

3.1. Numerical formulation

In order to compute the flow numerically, the incompressible Navier-Stokes equations are solved in the frame of
reference of the cylinder. In this inertial reference frame, the fluid moves from left to right at constant speed U. A detailed
description of the numerical method and implementation is given in Thompson et al. (2006a); it has previously been
employed to investigate bluff body flow dynamics for many related problems, e.g., Stewart et al. (2010), Thompson et al.
(1996), Thompson et al. (2001), Leontini et al. (2007), Tan et al. (2005), Le Gal et al. (2001). The numerical method uses the
spectral-element approach with the computational domain constructed from a set of quadrilateral elements with curved
sides as necessary to accurately model the cylinder surface. Each element is further sub-divided by a set of internal nodes
distributed according to the Gauss-Legendre-Lobatto quadrature points, with the velocity and pressure fields represented
by a tensor product of Lagrangian polynomial interpolants within the elements. While the method is only continuous in
the function, and not in the derivatives, across element boundaries, it has been shown to provide spectral or exponential
convergence as the interpolant order is increased (Karniadakis and Sherwin, 2005). A key advantage with the method is
the ability to specify the number of nodes per element N x N at runtime. The interpolant polynomial order is then given by
N—1. The fractional step technique is used for the time integration (Chorin, 1968; Karniadakis et al., 1991) for computing
both the steady and unsteady wakes.

At the solid boundaries and the inflow and top domain boundaries, the velocity was set to the relevant known values to
provide the boundary conditions there. At the outflow boundary, the pressure was set to zero together with the normal
velocity gradient. The domain boundaries were placed at sufficiently large distances from the cylinder to reduce blockage
to about 1%.

3.2. Linear stability analysis

The transition to three-dimensionality in the wake forms an important aspect of understanding flows over bluff bodies,
not least because it precedes the transition to fully turbulent flow, and the remnants of these three-dimensional modes
tend to persist into the fully turbulent regime (Williamson, 1996b; Wu et al., 1996). Flows over bodies moving close to the
ground have been found to undergo transition to three-dimensionality before becoming unsteady, as shown by Stewart
et al. (2010), which is noted to be similar to the three-dimensional transition for flow over a backward-facing step (Barkley
et al., 2002). In order to determine the transitional values, we perform linear stability analysis by splitting the velocity and
pressure fields into two-dimensional components describing the stable or unstable base flow plus three-dimensional
perturbations. Mathematically, the linearised Navier-Stokes equations for the perturbation fields admit solutions based on
exponential growth or decay in time, together with sinusoidal variation in the spanwise direction. In general, the full
solution can be constructed as a Fourier sum of spanwise modes, each growing or decaying exponentially in time.
In practice, for each Reynolds number and each spanwise wavelength (1), the linearised equations can be integrated in time
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Table 1
Variation of the time-averaged drag coefficient for o = +2.

N Re=20 Re=200
Cs Variation (%) G, Variation (%)
4 10.295424 —9.063091 3.920135 —2.507025
5 11.210904 —0.976885 4.027608 0.165807
6 11.281302 —0.355077 4.022211 0.031585
7 11.273864 —0.420775 4.015624 —0.132233
8 11.311096 —0.091914 4.024288 0.083239
9 11.321852 0.003091 4.021998 0.026287
10 11.321418 —0.000742 4.018557 —0.059290
11 11.321502 0 4.020941 0
Table 2

Variation of the time-averaged drag coefficient for o= —2.

N Re=20 Re=750
Cs Variation (%) G, Variation (%)

4 9.375690 3.380668 0.228723 —4.688425
5 9.134668 0.723049 0.241246 0.530057
6 9.087320 0.200968 0.240163 0.078759
7 9.084586 0.170822 0.240082 0.045005
8 9.072538 0.037975 0.239991 0.007084
9 9.069034 —0.000662 0.239969 —0.002084
10 9.069136 0.000463 0.239973 —0.000417
11 9.069094 0 0.239974 0

starting from a base flow perturbed with white noise. After some time, for each spanwise wavelength, only the dominant
instability mode remains, since it is the one that grows fastest or decays most slowly. In fact, it is possible to extract the first
few most important modes for each spanwise wavelength by using an Arnoldi decomposition of the snapshots of the evolving
fields at fixed time intervals (T), typically the base flow period if the base flow is periodic (see, e.g., Barkley and Henderson,
1996; Ryan et al., 2005). In that case, the instability analysis is called Floquet analysis. The growth rate (o) of each mode can be
related to the amplification factor () over time T by p = e°T. The critical Reynolds number (Re.), corresponding to a maximum
growth rate of ¢ = 0 or amplification factor u = 1, over all wavelengths, marks the transition to three-dimensional flow. For the
case of rolling cylinders near a wall, the flow is steady before the onset of three-dimensionality, unlike the case of a cylinder in
an unbounded flow, where three-dimensionality develops on an already unsteady periodic base flow (Thompson et al., 1996;
Barkley and Henderson, 1996). More details of the theory and numerical approach can be found, e.g., in Griffith et al. (2007),
Leontini et al. (2007) and Ryan et al. (2005).

3.3. Domain size and mesh resolution studies

The computational domain chosen was of similar dimensions to that used for previous work, with the inlet and outlet
at 100D upstream and downstream of the cylinder, and the top boundary placed 150D from the wall. The spatial resolution
is controlled by varying the number of interpolation points in each direction, N. These points are used as a basis for
constructing the Lagrange interpolating polynomials over which integration is carried out, as described above. The number
of points over each (two-dimensional) element was varied between N>=16 and 121. This check was carried out for the two
extreme cases of the Reynolds number at the maximum rotation rates of o= + 2. Tables 1 and 2 tabulate the drag
coefficient as the spatial resolution is increased. For N=8, the values are within 0.1% of the maximum tested resolution.
Furthermore, at N=8, the Strouhal number at Re=200 and o = +2 was well within 0.2% of that at the maximum tested
resolution.

4. Results
4.1. Flow structures

Initially, we focus on the wake flow structures for different rotation rates. For moderate Reynolds numbers and for
positive o, the shear layer rolls up behind the cylinder forming a strong clockwise vortex, which grows in strength prior to

eventually detaching from the separating shear layer. This vortex induces the generation of vorticity of opposite sign
beneath it in order to satisfy the no-slip boundary condition there. For the Reynolds number shown (Re=180), diffusion is
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low enough to allow the secondary vorticity to be pulled away from the wall to form a vortex pair, which subsequently
self-propels away from the wall through self-induction. This same scenario is observed for all positive rotation rates
examined, as shown in Fig. 2. Although the parameter space was generally restricted to « = + 2, some visualisations were
carried out at a higher rotation rate of o = +3. The vortex formed at the top of the cylinder rolls up in a more circular shape
at higher rotation rates as compared to o = 1, where a more oblate vortex pair is formed. Also, the increased rotation rate
moves the separation point of the separating shear layer further forward. The transition from steady state to unsteady flow
was found to occur at lower Reynolds numbers when increasing the rotation speed. Vortex shedding was observed at
Re=65 at o = +2, in contrast to unsteady flow being first observed at Re > 90 and 160 for o = +1 and 0, respectively. The
flow at these Reynolds numbers is three-dimensional and unsteady; the flow structures have two-dimensional projections
resembling the computed two-dimensional wakes shown here, but with an additional spanwise waviness (see Stewart
et al., 2010).

Vortex shedding was found to occur only at higher Reynolds numbers (Re > 425) for a cylinder in clockwise rotation or
reverse rolling (o = —1) (Stewart et al., 2010). In Fig. 3, wakes are shown for Re=750. The vortex pairs formed in this case
drifted farther away from the wall at this flow speed, compared with those at Re=450. On increasing the rotation speed in
the clockwise direction to oo = —1.25, vortex shedding was detected only for Re > 700. The structure of the shear layers
formed behind the cylinder resembled that at o = —1. The frequency of shedding was far higher and the vortex structures
formed were much smaller compared to those at « = —1, and they remained closer to the wall. On further increasing the
magnitude of (negative) rotation speed, the flow structure changed dramatically and vortex shedding ceased to occur for
Re <750 and o = —2. A stand-alone run for o« = —3 showed that vortex shedding continued to be suppressed at higher
negative rotation rates. For these very high reverse rotation rates, the cylinder boundary layer wraps all the way around
the cylinder, almost preventing separation entirely. Note that for a rotating cylinder in a free stream, vortex shedding is
briefly suppressed between rotation rates of 1.91 <« <4.34 and beyond « > 4.8 (Mittal and Kumar, 2003).

Stages of vortex shedding for o« = +2 at Re=200 are shown in Fig. 4 for one time period, along with the corresponding
instances on the force history diagram. Points (a) and (e) both correspond to image (a). At T = 165, the vortex pair behind
the rolling cylinder is about to drift away from the cylinder wall system. At a slightly later time of =170 [image (b)],

e T . -

(c) a=+2 (d) e=+3

Fig. 2. Evolution of the wake for the anti-clockwise rotation of a single cylinder at Re=180 for the rotation rates shown. Vorticity contours and colours
are the same in all images. The vortex pair for o = +3 is the strongest. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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Fig. 3. Evolution of the wake for the clockwise rotation of a single cylinder at Re=750 for the rotation rates shown.
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Fig. 4. (a-d) Vorticity snapshots for the single cylinder rolling at « = +2 and Re=200. (e) Instantaneous drag coefficient (Cy).

Fig. 5. Variation of the drag coefficient for different rotation rates in the steady state regime.

673

we observe that the drag has almost doubled, due to the low pressure caused by the rolling up of the shear layer above the
cylinder. The vortex grows larger and moves away from the cylinder, leading to the recovery of pressure, thereby causing a
drop in the drag force until T = 182 [image (c)]. As explained previously, the wall shear layer is also being drawn up by the
much larger vortex from the top of the cylinder and leads to a slight increase in drag force [image (d)]. At a slightly later
stage, the shear layer on the top of the cylinder has rolled up and has drifted further away, and a decrease in drag is

observed.

4.2. Drag and Strouhal number trends

Drag coefficients for the steady and unsteady cases are shown in Figs. 5 and 6, respectively. For the steady cases, we
observe that the trends vary linearly on a log-log plot. These trends are similar to those previously observed by Stewart

et al. (2010) for cylinders at lower rotation rates.
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Fig. 6. Variation of the time-averaged drag coefficient with Reynolds number in the unsteady regime.
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Fig. 7. Strouhal-Reynolds number relationships.

The Strouhal number variation for the higher rotation rate cases investigated is shown in Fig. 7. Strouhal numbers for
the negative rotation rates are much higher compared with the positive rotation cases.

4.3. Three-dimensional transition

Stability analysis was conducted to determine the critical Reynolds number at which the flow undergoes transition to
three-dimensional flow. As described above, linear stability analysis is performed based on two-dimensional steady or
unsteady base flows. In practice, this amounts to determining the growth rates of the dominant modes corresponding to a
range of spanwise wavelengths, for a set of Reynolds numbers. The aim is to determine the critical Reynolds number at
which the growth rate first becomes zero, and the corresponding wavelength.

For the simulations conducted here, three-dimensionality is initially triggered on the steady base flow at Reynolds
numbers less than the values at which unsteady flow occurs, in agreement with the findings of Stewart et al. (2010). Fig. 8
presents plots of growth rate as function of axial wavelength for different rotation rates. Fig. 9 summarises the results from
the analysis of these curves: the variation of the critical Reynolds number and wavelength with rotation rate. As the
rotation is increased from o= —1.5 to +2, the transition Reynolds number monotonically decreases, while the critical
spanwise wavelength monotonically increases.

4.4. Comparison with experimental results

Experiments were performed in a water tunnel using a cylinder driven by a stepper motor placed adjacent to
a purpose-built moving floor, as described in Stewart et al. (2006, 2010). Some dye visualisations showing the two-
dimensional structure of the wake for different rotation rates are shown in Figs. 10-12. Note that these images are taken
just after startup, before the wake has become too three-dimensional, both from end-effects given the short aspect ratio
(13:1), and the growth of the intrinsic three-dimensional instability as discussed above. The corresponding numerical
simulations were conducted at slightly higher Reynolds numbers than for the experiments. This is because unsteady
transition is triggered at subcritical Reynolds numbers with the current experimental setup.
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675

77




676 A. Rao et al. / Journal of Fluids and Structures 27 (2011) 668-679

(a) @=+LRe=% (b) @=+1.Re=110

Fig. 10. Dye visualisations from the water channel (left) and vorticity contours from the numerical simulations (right).

(a) a=0.Re=150 (b)a=0,Re =165

Fig. 11. Dye visualisations from the water channel (left) and vorticity contours from the numerical simulations (right).

(@) e=-1,Re=351 (b)a=-1,Re =400

Fig. 12. Dye visualisations from the water channel (left) and vorticity contours from the numerical simulations (right).
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Fig. 13. Schematic representation of the tandem cylinder.

5. Tandem cylinders

The flow characteristics of a bluff body are altered when a body of similar dimension is placed in its vicinity (see, e.g.,
Sumner, 2010 for a recent review). Here, we consider the case of two-dimensional flow around two cylinders sliding along
a plane wall without rotation (= 0). The trailing body is placed downstream of the first body at different normalised
separation distances (5/D), measured as the dimensionless distance between the cylinders (see Fig. 13). As for the case of a
single cylinder, a gap of size G/D=0.005 is maintained between the cylinders and the wall. The range of Reynolds numbers
for this investigation is 20-200 and the separation distance is varied between 0.1 < S/D < 10. One motivation for this study
comes from the drag reduction of the trailing or the downstream body when placed at close separation distances. At very
large spacings, the cylinders effectively behave as individual entities and the flow characteristics of both should resemble
those of a single cylinder.

The numerical formulation and the problem setup are very similar to that for a single cylinder. However, there is an
increase in the number of macro-elements required in order to resolve the boundary layers of each cylinder and the larger
region with high velocity gradients, which leads to the increase in computational effort. Mesh resolution studies were also
carried out for the case of S/D=10. A domain size of 50D (inlet) x 50D (top surface) x 100D (outlet) was used for the
simulations, with the outlet boundary being placed 100D from the downstream cylinder, and a polynomial order N=7.
This was sufficient to capture the drag force accurately.

It may be recalled that the critical value for transition to unsteady state for a single cylinder sliding along a wall is
Re=160 (Stewart et al., 2010). In general for the tandem cylinder case, the flow was found to become more stable as (a) the
Reynolds number decreased and (b) as the separation distance between the two cylinders decreased. For example, at
Re=200, the maximum Reynolds number tested, the flow was steady only for spacings S/D < 4.5. However, decreasing
Re to 180, the flow remained steady out to spacings S/D = 6 (Fig. 14). Further decreasing the Reynolds number to Re=150,
unsteady flow was still detected but only for spacings greater than S/D=8. Compared with the single cylinder sliding case,
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Fig. 14. Instantaneous flow structures at Re=180, as the spacing ratio S/D is increased. Vortex shedding is seen for S/D=9.
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Fig. 15. Variation of the time-averaged drag coefficient with separation distance at the specified Reynolds numbers.

the presence of a downstream cylinder thus provides a stabilising effect (i.e., increases the transitional Reynolds number)
on the wake for closer separation distances but destabilises the flow for greater separation distances.

The variation of the upstream and downstream cylinder drag coefficients with respect to separation distance is shown
for Reynolds numbers 20 and 180 in Fig. 15. The drag on the downstream cylinder increases as the spacing between the
cylinders is increased. A more rapid rise is observed for cases where the transition to unsteady state occurs. At the higher
Reynolds number, the drag on the downstream cylinder for small separations is low, but remains positive. This is in
contrast to the free-stream case, where the downstream cylinder experiences negative drag force at very close spacings.
Fig. 16 shows the pressure distribution for the tandem cylinders at the closest spacing of S/D=0.1 at Re=200. The higher
pressure near the wall on the upstream face of the downstream cylinder, together with the lower pressure on the
downstream face, leads to a positive drag force.

The drag variation of the two cylinders with Reynolds number is shown in Fig. 17 for three separation distances. Only at
very large spacings, the drag on the downstream cylinder approaches that of the upstream cylinder.

On increasing the separation distance, multiple circulation regions were formed in the space between the sliding
cylinders, as shown for a particular case in Fig. 18.
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Fig. 16. Pressure distribution for cylinders separated by S/D=0.1 at Re=200. The darker shades indicate a higher pressure region, while the lighter
shades indicate regions of lower pressure.
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Fig. 17. Variation of the time-averaged drag coefficient with Reynolds number for the separation distances shown.

Fig. 18. Streamlines for S/D=5 at Re=180. Formation of multiple recirculation zones in the space between the two cylinders.
6. Conclusions

This paper extends the results for a single rotating cylinder close to contact with a plane wall to higher rotation rates
than previously considered. For the forward rolling case, wake flow structures at rotation rates up to « = 3 were found to
be similar to those for lower rotation rates, except for the strength of the vortex pairs which self-propel away from the
wall. This can be understood in terms of the velocity difference across the wake, which results in a higher flux of vorticity
into the separating shear layer and subsequently stronger shed vortices. For the reverse-rotating case, the fluid boundary
layer effectively remains attached as it passes over the surface of the cylinder. For o < —1.25, vortex shedding is
suppressed up to at least Re=700. In addition, high reverse rotation also stabilises the flow against three-dimensional
instability. For both forward and reverse rotation, the drag experienced by the cylinder has been quantified. This paper also
presents results for a pair of cylinders sliding along a plane wall, as a function of separation distance. Overall, the presence
of the second cylinder results in the delay of transition to unsteady flow to higher Reynolds numbers. The drag on the
downstream cylinder increases after the onset of unsteady flow.
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Chapter 5

Flow past tandem cylinders
sliding along a wall

5.1 Overview

This chapter is an extension of the previous study, where an identical body is placed
downstream of the original body in the near wake region. While the case of tandem
cylinders was investigated with respect to flow stabilisation and drag reduction in chap-
ter 4, a detailed study is presented here. Flows past tandem cylinders in freestream
have been investigated by several researchers (Biermann & Herrnstein 1933; Igarashi
1981; Mizushimaa & Suehiro 2005; Meneghini et al. 2001); where different regimes of
flow were identified based on the longitudinal separation distance (S/D). The three-
dimensional stability over a range of spacings was investigated by Papaioannou et al.
(2005) and Carmo et al. (2010), where modes with similar spatio-temporal symmetries
as those of mode A and B were observed at different spacings. Very few studies have
investigated the flow dynamics for multiple cylinders near a wall. Bhattacharyya &
Dhinakaran (2008) performed numerical simulations for square cylinders in a linear
shear flow at Re = 200 at G/D = 0.5, where vortex shedding was observed at large
cylinder spacings. Recent numerical simulations by Harichandan & Roy (2012) for cir-
cular cylinders show the onset of vortex shedding at high Reynolds numbers and large
cylinder spacings and higher gap heights.

Here, two-dimensional simulations are performed for circular cylinders translating
along a wall for 0.1 < S/D < 10 and Re < 200 to investigate the flow structures and
to quantify the forces. Linear stability analysis is then performed for these cases to
investigate the onset of three-dimensionality. As the separation distance is increased

from small spacings, the critical Reynolds number increases until S/D ~ 4.5. For 4.5 <
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S/D < 6, flow first transitions to three-dimensionality at a lower Reynolds number
and on increasing Reynolds number, the flow stabilises prior to becoming unstable for
a second time at much higher Reynolds numbers. For S/D > 6, the critical Reynolds
numbers for the onset of three-dimensionality is similar to an isolated cylinder sliding
along a wall. Three-dimensional simulations carried out at Re = 200 indicate the rapid

transition to chaotic flow for a wide range of cylinder spacings.

5.2 Flow dynamics of tandem cylinders sliding along a
wall

The following article was submitted in 2012 to Journal of Fluid Mechanics. This work
was co-authored by M. C. Thompson, T. Leweke and K. Hourigan, and is entitled,
“Dynamics and stability of the wake behind tandem cylinders sliding along a wall”.
The paper is reproduced in this thesis directly from the version submitted to the editor

for review.
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The dynamics and stability of the flow past two cylindersislidalong a wall in a tandem con-
figuration is studied numerically at low to intermediate Relgls numbersRe). For cylinders

at close separations, the onset of unsteady two-dimeridlonais delayed to higheRRe com-
pared to the case of a single sliding cylinder, while at lasgparations, this transition occurs
earlier. For Reynolds numbers above the threshold, shgdidim both cylinders is periodic and
locked. At intermediate separation distances, the walquéracy shifts to the subharmonic of
the leading-cylinder shedding frequency, which appealzetdue to a feedback cycle whereby
shed leading-cylinder vortices interact strongly with tmvnstream cylinder to influence sub-
sequent leading-cylinder shedding two cycles later. Intaxdto the shedding frequency, the
drag coefficients for the two cylinders are quantified for $keady and unsteady regimes. The
three-dimensional stability of the flow is also investighti is found that, when increasing the
Reynolds number at intermediate separations, an initiaetidimensional instability develops,
which disappears at highéte. The new two-dimensional steady flow again becomes unstable
but with a different three-dimensional instability mode. Very close spacings, when the two
cylinders are effectively seen by the flow as a single bodg, @nvery large spacings, when
the cylinders form independent wakes, the flow charactesisire similar to those of a single
cylinder sliding along a wall.

Key words: wakes, vortex shedding, vortex streets

1. Introduction

The wakes behind generic bluff bodies such as cylinders pherss placed in a free stream
have been widely investigated. Williamson (1996) sumneartee behaviour of the flow around
a circular cylinder in the laminar and transition regimest Reynolds numbersie, based on
the cylinder diameteD and free-stream velocity) below 47, the wake is steady. Above this
value, and up tdze ~ 180, laminar vortex shedding is observed, which, in the absehead
effects, is periodic and two-dimensional. The three-disi@mal transition regime, found in the
rangel80 < Re < 300, was first described in detail by Williamson (1988). Theialithree-
dimensional shedding mod®¢de A involves a spanwise waviness of the shed vortices, with
a wavelength of approximately four cylinder diameters, ardiscontinuity in the evolution of
the shedding frequency. It can be related to an elliptiainifity of the vortex cores (Thompson
et al.2001). A second modeMode B appears at higher Reynolds numbeRg (> 230), with

+ Email address for correspondence: Thomas.Leweke @inplvenus. fr
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a smaller spanwise wavelength of approximately one diami¢t@volves the amplification of
secondary streamwise vortices in the strain-dominateid begions between the shed vortices.
Initially, the two modes co-exist, with a subsequent gradhit to a pureMode B accompanied
by a second discontinuity in the frequency relation. Therati@ristics of the two instability
modes, including the associated vortex structures, werardented numerically by a number of
authors (Barkley & Henderson 1996; Zhaestral. 1995; Mittal & Balachandar 1995; Thompson
et al.1996; Henderson 1997).

The presence of a second bluff body of similar dimensionddsecproximity influences the
wakes behind each body, and also the forces experiencecchyoéthem. Critical parameters
for categorising the flow regimes for a particular Reynoldmber are based on the separation
distance and the magnitudes of lift and drag forces expeeitiby the cylinders. Biermann &
Herrnstein (1933), in their investigation of streamlinédits and cylinders, found that the drag
on the upstream cylinder is not greatly influenced by thegmes of the downstream cylinder,
however the drag on the rear cylinder was greatly reducethéyipstream cylinder. They also
found that the wake from the upstream cylinder was not fudlyedoped in the presence of another
body at close separation distances. Igarashi (1981) datiean experimental study for cylinders
in a tandem configuration d@e ~ 10* and classified the flow based on the separation distance.
A similar study was conducted by Zdravkovich (1987), whooreed the force variations for
cylindrical arrays of tubes in various configurations susfinaline, side by side, and staggered.
The broad classification based on the longitudinal separaiistances is as follows:

e 0.1 < S/D < 0.2 - 0.8, aregime of close spacing, where the shear layers shed frem t
upstream cylinder do not reattach to the downstream cylintlee two cylinders behave as a
single extended body and vortices are formed from the dethshear layers of the downstream
cylinder.

e 0.2-0.8 < S/D < 2.4 — 2.8, an intermediate regime, where the shear layers shed from
the upstream cylinder reattach onto the downstream cyliad@ shedding takes place behind the
downstream cylinder. Also observed in this regime is thermittent vortex formation behind
the upstream cylinder.

e S/D > 2.8, aregime of large spacing, where vortices are shed fromdyditders.

The critical separation distanc2.§ — 3 cylinder diameters) for the onset of vortex shedding
from both cylinders has been identified by many researchéasd et al. 2008; Didier 2007;
Mussaet al.2009; Zhou & Yiu 2005), both numerically and experimentdily a wide range of
Reynolds numbers. The two-dimensional numerical simutatby Lianget al. (2008) showed a
sharp increase of the drag coefficient and Strouhal nunthier=(f D /U, wheref is the vortex
shedding frequency), once this critical spacing was exeded

Mizushimaa & Suehiro (2005) concluded that the flow behirelupstream body is greatly
stabilised by the presence of the downstream body and theiticn to unsteady flow for spac-
ings of S/D = 1 andS/D = 3 occurred atRe = 68 and Re = 78.5, respectively. This is
much higher than the critical value observed for an isolatadle cylinder Re = 47). It was
also shown that for a spacing 6§D = 1, the transition was supercritical, and subcritical at
S/D = 3. For large spacing ratiosS{D > 3), the downstream cylinder experienced large
lift and drag forces. The amplitude of the lift on the dowasim cylinder was observed to be
approximately four times that of the upstream cylinder.

Meneghiniet al. (2001) performed numerical simulations for cylinders imdam and side-by-
side arrangement in a free stream for < 200. They quantified the forces on the two cylinders
and the shedding frequency. For close spacings, the Sirauh@er was 65% lower than for
a single cylinder in a free stream. Also, the drag on the dowam cylinder was negative for
spacingsS/D < 2.

Two- and three-dimensional numerical simulations werégoered by Denget al. (2006) for
Re > 220 and different separation distances. In their two-dimemaisimulations af?e = 220
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for S/D < 2.5, vortex shedding does not take place between the two cybnaehile for
S/D > 3, each cylinder produces a vortex wake. However, in theekdimensional simu-
lations, three-dimensionality was observed$gD > 2.5, but not for smaller spacings. For the
critical spacing of5/ D = 2.5, the transition to three-dimensionality occurgiat= 250. Similar
computations have been performed by Papaioaehali(2005) for tandem cylinder cases. Their
simulations show an increase in three-dimensionality efitake as the critical spacing distance
was approached. At close spacings, the primary vortices weable to roll up and form strong
vortex cores, which reduces the sensitivity to three-disiaral effects and thereby stabilises the
flow.

Stability analysis for a tightly packed cylinder array wasfprmed by Kevlahan (2007) for
cylinders spaced bg/D = 1.5, and for the array being in line with, or at an anglei6f to,
the flow. For the inline cylinders, periodic flow was was dezddeyondRe = 119 and three-
dimensional flow set in ake ~ 132, with the formation oMode Atype structures of spanwise
wavelengtt8D. He further reports that thdode Btype structures are absent in cylinder arrays,
since the braid structures are suppressed by the tightqmpokt Re = 200, the growth rates of
the three-dimensional modes were higher for the angleg #rem for the inline array.

Recent numerical investigations by Carmipal. (2010) of the flow around isolated tandem
cylinders, showed the existence of three new modes at \ss&paration distances fBe > 200.

For small separations, the onset of three-dimensionatityis via aMode T1 whose spatio-
temporal symmetry resembles that of tMede Binstability of an isolated cylinder at higher
Reynolds numbers. This mode has a spanwise wavelengt2 bf Two other modes were ob-
served when the cylinders were spaced in the rénge S/D < 1.5. The physical mechanism
of theMode T2instability is believed to be centrifugal, whiMode T3has similar characteristics
to Mode Aof the single-cylinder wakéMode T2has a spanwise wavelength-e8D, while Mode
T3 has a wavelength ef4.6D at onset. At large separations, th@de Ainstability is followed
by theMode Binstability, akin to the case of an isolated cylinder in afstream.

Flow features behind a single cylinder near a wall have bésusgsed by several researchers
(Mahir 2009; Stewaret al. 2006, 2010; Raoet al. 2011; Huang & Sung 2007). The case of
cylinders sliding along a wall with rotation effects wasestigated numerically by Stewaatal.
(2006, 2010) for Re < 500. The transition to unsteady flow was delayed to higher Raigol
numbers Re ~ 160) relative to isolated cylinders, and three-dimensionat fleas detected at
much lower Reynolds numberB¢ > 71). Experiments performed in a closed-loop water tunnel
were consistent with the flow structures observed numdyical

Very few studies have considered the flow features of meltiidies moving along a wall.
Bhattacharyya & Dhinakaran (2008) conducted numericalikitions for a pair of tandem square
cylinders in a linear shear flow &/D = 0.5, whereG is the distance between the cylinder and
the wall. BelowRe = 125, the shear layers separating from the two sides, are unabieeract
and cause vortex shedding. At a spacinggdD < 2, the two cylinders effectively behave as
one body atRe < 200. For2 < S/D < 3, vortices are shed from the downstream cylinder
only. Above this range, vortices are shed from both cylisdand at even larger separation dis-
tances, the shedding frequency recorded for both cylindetsh that of a single cylinder under
similar flow conditions. The height above the wall and theasafion distance both influence
the shear layer interaction responsible for the formatiorodtices. Harichandan & Roy (2012)
performed numerical investigations for circular cylinslér tandem close to a wall at Reynolds
numbersRke = 100 and 200 for separation distances%fD = 1 and4. The bodies were placed
at0.5D and1D above the stationary wall. They observed that the variatiothe separation
distance has a stronger influence on the flow stability thamgés in the gap to the wall. Vortex
shedding occurred when the gap heights and the separasimmdé were both large.

The present numerical work focuses on the wake and dragathasdics of two circular cylin-
ders sliding along a wall, as function of the separatioragise and the Reynolds number. The
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Figure 1: Schematic representation of the tandem cylind#slem showing key parameters.

transitions to unsteady and three-dimensional flow are sethby stability analyses, and we at-
tempt to characterise these different transition regimésrims of the flow physics as the control
parameters are varied. We first describe the numerical dethd stability analysis techniques,
and provide domain size and resolution studies. We thereptéke observations and analysis
of the transition behaviour in two chapters, one dealindiwiite transition to unsteady two-

dimensional flow, hand one with the transition to three-disienal (steady or unsteady) flow.

Finally, we use Direct Numerical Simulations (DNS) to intigate some fully developed three-

dimensional wakes, for Reynolds numbers such that muliipéee-dimensional linear modes are
known to be unstable.

2. Numerical methods
2.1. Problem definition

Figure 1 shows a schematic of the flow problem under condidaeraVe investigate the flow
over two identical tandem cylinders of diamefer separated by a distanég sliding to the left
along a wall at constant speéd A small gap of siz&~ is maintained between the cylinders and
the wall to prevent the high-order mesh elements from becguiégenerate directly underneath.
The gap ratioG/D is held fixed at 0.005 for both cylinders, after verifying titlae effect on
the downstream flow is negligible, in line with previous saesdfor single cylinders and spheres
(Zenget al.2005; Stewaret al.2006, 201@,b; Raoet al.2011). The fluid is assumed to be New-
tonian and incompressible. For computational conveniaemeeemploy a uniformly translating
frame of reference attached to the cylinders, with the origithe centre of the first cylinder. In
this frame, the cylinders appear stationary, with both éndléiid and the wall moving to the right
at uniform speed’. In the following, all quantities are non-dimensionalizeith the cylinder
diameterD and the free stream velocity.

2.2. Numerical scheme

The numerical approach is based on a spectral-element fatipruto discretise the unsteady
incompressible Navier-Stokes equations in two dimensidhe domain consists of a collection
of quadrilateral elements with a higher element densitggians of high velocity gradients near
the cylinders and in the wake regions. These quadrilaterah@cro-) elements are further sub-
divided internally intoV x N nodes. The nodes correspond to Gauss-Legendre-Lobaticequa
ture points, and the velocity and pressure fields are repteg®y tensor products of Lagrangian
polynomial interpolants of orde¥-1 within elements. The resolution can be set at runtime by
selecting the number of internal node points. The methoibéglexponential convergence A5
is increased (Karniadakis & Sherwin 2005), consistent witibal spectral methods.

The unsteady discretised Navier-Stokes equations aresthlead using a time-splitting ap-
proach, originally developed by Chorin (1968), where thesation, pressure and diffusion terms
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are solved using different time-stepping schemes to erstatslity of the solver. A more de-
tailed explanation of the numerical procedure can be foangiious articles (Ryaet al.2005;
Thompsoret al. 2006; Leontini et al. 2007). It has been previously used to investigate related
problems such as flows past cylinders in a free stream (Thomgtsal. 2001, 1996; Leontini
etal.2007; Thompsoet al.2006b) or around bodies near a wall (Stewattl. 2006; Thompson

et al.2007; Stewaret al.201(; Raoet al.2011).

2.3. Linear stability analysis

Linear stability analysis is used here to determine theilgtabf the flow with respect to span-
wise perturbations. The numerical approach is similar & ¢mployed by Barkley & Henderson
(1996), Blackburn & Lopez (2003), Sheaed al. (2003), Leontiniet al. (2007), Griffithet al.
(2009), and others. The Navier-Stokes equations are useerie linearised equations for the
velocity and pressure perturbation fields about a two-dsiweral base flow, which are explicitly
dependent on the spanwise coordinate. Because of theitinaad lack of spanwise dependence
of the base flow, the spanwise dependence of the perturbfi¢ids can be represented as a
combination of Fourier modes, each of which can grow or desg@pnentially in time. In prac-
tice, to determine stability, the linearised Navier-Swkeuations for the perturbation fields are
marched forward in time until the fastest-growing or slotadscaying Fourier mode dominates
the solution. Alternatively a Krylov subspace method cande with Arnoldi decomposition to
extract more of the most dominant modes (see, e.g., Mamunc&efman 1995). The evolution
(growth or decay) of a given perturbation mode depends ospissiwise wavelength and the
Reynolds number. The growth ratecan be evaluated from the amplitude ratio at two instants
in time, separated by a time interval |A(t = to + T)|/|A(t = to)| = exp(eT) = p. For

o > 0 (or |u| > 1), the perturbations grow and three-dimensionality dgy&lavhile foro < 0
(or |u| < 1), the perturbations die out. Neutral stability occursdo 0 or || = 1. For periodic
base flows, the time period for monitoring the growth is seth®base flow period, a process
known as Floguet analysis, wifh being the Floquet multiplier. For flow past a single cylinder
near a wall, three-dimensional flow usually occurs in thadyelow regime, prior to the onset of
periodic flow (Stewaret al. 201(; Raoet al. 2011). For periodic flows, the three-dimensional
modes may also have a periodicity different to the oscifatmse flow, in which case the Flo-
quet multipliers are complex. Such methods have been usstibpsly to resolve subharmonic
modes in the wake behind rings (Sheatal. 2005, 2003) and other bluff bodies (Blackburn &
Lopez 2003).

2.4. Effect of domain size

The domain is defined in terms of the location of the inlet, ampl outlet boundaries relative
to the cylinders. Several meshes were constructed with bioeindaries placed at different dis-
tances from the cylinders. For these investigations, thelsitions were run ake = 200 with a
polynomial order ofN' = 7 for the cylinders separated by the maximum distance coresidef
S/D = 10. The inlet and the lateral/top boundaries were placed bEt@&D and100D from
the leading cylinder, and the outlet boundary betws®h and200D downstream of the trailing
cylinder. The simulations were run for the same time inteaval the forces on the cylinders
were monitored. The time-averaged drag coefficient of thendtream cylinder was computed
from the force histories. Periodic flow was observed for daise and the Strouhal number was
also computed. Based on the results, the valiods, 100D and50D were chosen for the inlet
and outlet distances and the domain height, respectiveti. s choice, the mean drag coeffi-
cient and the Strouhal number differed by less than 0.5% &% respectively, from the values
obtained with the largest domain.
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Table 1: Variation of the time-averaged drag coefficierig and shedding frequencys) for S/D = 10
at the specified Reynolds numberge).

Re=20 Re = 200 Re = 200
N? Ty % variation Ty % variation St % variation
52 10.097389 0.1398206 1.732380 -2.035431 0.090208 -0.80847
62 10.102081 0.0934181 1.708033 -0.601417 0.089602 -0.32067
72 10.110580 0.0093655 1.704390 -0.386848 0.089509 -0.71665
82 10.111458 0.0006824 1.700441 -0.154256 0.089451 -0.86178
92 10.111456 0.0007021 1.699990 -0.127693 0.089447 -0.04731
10? 10.111518 0.0000890 1.698354 -0.031334 0.089417 -0.01375
112 10.111527 0 1.697822 0 0.089407 0

2.5. Effect of mesh resolution

The number of macroelements varies with the separatioardistand is significantly higher than
that required for previous single cylinder studies. Oneaatige of the spectral-element method
is the ability to specify the numbeY of internal node points on each edge, and therefore the
resolution, at run time. Once a reasonable macroelemeribdison is established, the resolution
can then be further controlled by varying The maximum separation distanc® O = 10) was
chosen in order to test the value of required to resolve the flow correctly. The number of
node points in each macroelement was varied betwéer= 52 and N? = 112, and tests were
performed at two Reynolds numbers2of and200. The resolution ofV? = 42 was insufficient

to capture the flow characteristics, whid? = 122 proved to be computationally expensive
with a strong (Courant) restriction on the time-step. Tihewdations for the grid resolution study
used a fixed non-dimensional time-step&f = 0.001. Table 1 shows the variation of the
time-averaged drag coefficie@t; of the downstream cylinder and the Strouhal number, as the
resolution is varied. FoN2 = 72, the variation inC; and St is less than 0.5% and 0.15%,
respectively, relative to the most resolved case. ComipusiatRe = 20 showed a variation of
less than 0.1% a2 = 72 compared with the highest resolution tested. Thus an &leenent
resolution of N2 = 72 was chosen for all computations, since it provided an aetégaccuracy

for a reasonable computational effort.

3. Two-dimensional flow
3.1. Flow structures

The flow past a single cylinder sliding along a wall was inigeged by Stewaret al. (2006,
201M). Two recirculation zones form in the near wake of the cyinavhose lengths vary lin-
early with Reynolds number. The recirculation zones exteredmaximum of approximateRD
downstream of the cylinder d&e = 150, above which unsteady periodic flow occurs. The shear
layer moving over the cylinder and the induced wall boundayer form vortex pairs, which
drift downstream of the cylinder. The flow features assediatith two tandem cylinderslling
along a wall were previously investigated by Retoal. (2011). At large separation distances,
unsteady flow was encountered at high Reynolds numbersg wtehdy flow was found at low
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Figure 2: Transition diagram showing the onset of unsteaale svith Reynolds numbere) for 0 <
D/S < 0.25. The steady flow regime is marked by open symbo)sand the unsteady flow regime is
marked by closed symbole); Steady flow was observed for all spacingsiat = 135. The dashed line
shows the approximate demarcation between the steady atehdy flow regimes.

Figure 3: Streamlines of the flow past tandem cylindersSfab = 6 at Re = 180. Multiple recirculation
zones are observed in the space between the cylinders. Tihgerg are translating from right to left.

Reynolds numbers. In a similar way, we here investigate tiseof periodic flow fosliding
tandem cylinders, in the range of spacidgs S/D < 10 for Re < 200.

Figure 2 presents the transition map, showing the onset steady flow as the Reynolds
number and cylinder spacing are varied. In this plot, theiise of the separation distané#/.5,
is used, in order to include the isolated cylinder cas¢.{ = 0). Unsteady flow is observed at
Re = 150 for cylinders withS/D = 9 and 10. This is marginally below the critical Reynolds
number for the transition to the unsteady regime for an tedlaylinder sliding along a wall
(Re. ~ 160, Stewartt al. 201(). At higher Reynolds numbers, unsteady flow occurs at smalle
spacings, as predicted by Reial.(2011). At the maximum Reynolds number testBd,= 200,
unsteady flow was observed at a separation distance as ISj\fas- 4.5.

As mentioned above, the steady wake of a single cylinderaneall comprises two recircula-
tion zones. For two cylinders at very close spacings, a aimibke structure is found behind the
downstream cylinder. As the spacing is increased, multipdarculation zones are observed in
the gap between the cylinders (figure 3), which remain steadw at higher Reynolds numbers.
These zones are similar to what Igarashi (1981) describeplasi-stationary vortices, which
occur in the rangé < S/D < 2.5 for cylinders in a free stream, prior to the onset of unsteady
flow.

The process of vortex shedding, found in the unsteady periedime, is illustrated in fig-
ure 4, showing a sequence of vorticity distributions in teamwake during one shedding cycle
for S/D = 9 and Re = 200. In the first snapshot, the separating shear layer from theto
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Figure 4: Instantaneous vorticity fields B = 200, for S/D = 9. Time ¢ is expressed in terms of the
shedding period’. The cylinders are translating from right to left, and veitti contours cover the range
+5U/D.

the upstream cylinder is beginning to roll up. The preserfcthis primary vorticity induces
secondary vorticity at the wall underneath it. This secopdarticity is pulled away from the
wall between two successive primary vortex structuresaterlimages, the previously shed pri-
mary vortex and the rolled-up secondary vorticity combimte ia non-symmetrical vortex pair,
which impinges on the downstream cylinder and subsequertdles away from that cylinder at
an oblique angle due to self-induction. Since the primanyieity is stronger, and because it is
also supplemented by more vorticity separating from thesecylinder, the combined struc-
ture moves closer to the wall as it travels downstream. Auab@D downstream of the second
cylinder, the remaining clockwise vorticity again indusesondary vorticity at the wall, which
is pulled away from the wall to combine with the primary voity to form a new vortex pair.
This reformed pair then moves away from the wall throughselfiction as the structure advects
further downstream (not shown).

3.2. Strouhal numbers

The drag coefficient was monitored for several hundred uoftsnon-dimensional time
7 (= tU/D), in order to compute the shedding frequency. Table 2 shbewvariation of the
Strouhal number with separation distance for the parammatege studied, along with the re-
sults of Stewaret al. (201), where an isolated cylinder near a wall was investigatesihailar
Reynolds numbers. Their case is denotedSBy) = oo, implying that the trailing cylinder is
at a very large distance. The transition diagram (figure Bjshthat forS/D ~ 10 the flow
becomes unsteady at Reynolds numbers lower than the limanfesolated cylinder near a wall.
Presumably this can be attributed to the complex flow upstrefithe second cylinder due to
the presence of the first cylinder (figure 3). Shedding is Byomwous from both cylinders, and a
single frequency is detected from the Fourier spectra ofithg histories. ARRe = 150 and165,
a slight decrease ifit is observed as the spacing is increased.

The time histories of the drag coefficient for the downstregimder atRe = 200, for the
separation distances in the rangec6S/D < 9 are shown in figure 5, and the corresponding
frequency spectra in figure 6. At/D = 7 and 8, the waveform of the drag history clearly
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Table 2: Variation ofSt with S/ D at the specifiedke. The data forS/D = ~c is taken from Stewartt al.
(201()

Re =150 Re =165 Re = 180 Re = 200
S/D Sty Sty Stq Sto Sty Sto
4.5 - - - - 0.0887 -
5 - - - 0.0871 —
5.5 — — — 0.0880 —
6 - - - - 0.0884 -
7 - — 0.0895 0.0447 0.0461 0.0922
8 — 0.0889 0.0879 — 0.0875 0.0437
9 0.0892 0.0877 0.0878 — 0.0878 —
10 0.0877 0.0872 0.0888 - 0.0893 —
e — 0.1004 0.0982 — 0.0983 —
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Figure 5: Time histories of the drag coefficient for the dotemm cylinder af?e = 200 for the specified
separation distances.

indicates the presence of two dominant frequencies, whieteiound to be integer multiples
of each other. Fo5/D = 7, the dominant Strouhal numbgétt; (in terms of power spectral
density) is one half of the second strongest frequeficy while at a slightly larger spacing of
S/D = 8, the value of the dominant Strouhal number is twite. At Re = 180, the drag
history forS/D = 7 also contains two frequencies, while for spacings belowbowa this value
only a single strong frequency component is observed.

The reason for the commensuration of frequencies can belseeisualising the wake for
different separation distances using vorticity conto8tsown in figure 7 is the sequence of im-
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Figure 6: Fourier spectra for different spacingdiat= 200. Multiple peaks are found fa§/D = 7 and
S/D = 8.
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Figure 7: (a)-(f) Instantaneous vorticity contoursiat = 200 for S/D = 6. (g) Drag histories for the
upstream (solid line) and downstream (dashed line) cyisdghowing the times corresponding to (a)-(f).
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Figure 8: Same as figure 7 f6f/ D = 7. The periodl” of the flow oscillations is now twice the shedding
period of the leading cylinder.

ages over one cycle of shedding (D = 6, where a single peak is observed in the frequency
spectrum. We observe that the shear layer (blue) sepafadimgthe upstream cylinder rolls up
into a vortex which generates and lifts up a wall boundargigyed) before striking the down-
stream cylinder. The rolled-up shear layer convects furttosvnstream, where it draws more
opposite-signed boundary layer vorticity from the walldorfi a vortex pair, which then advects
away from the wall through self-induction. At a slightly ¢gar separation distance §f D = 7,
stronger and weaker vortex structures are formed altdyrfaden the shear layer separating from
the first cylinder. This behaviour is clearly evident in theggence of images in figure 8. Com-
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Figure 9: Drag trends at the specified Reynolds numbers. Tikd ircles @) and the open circles)
indicate the time-averaged drag coefficient on the upstraadndownstream cylinders, respectively. The
vertical error bars represent one standard deviation dfigtantaneous force coefficients.

paring figures 8(c) and 8(h), the structure of the separdtedrdayer between the cylinders is
distinctly different. In the first case, the second rollgulelockwise vortex structure of the shear
layer is considerably stronger. The vortex draws the sesgnebrticity from the boundary to
form a vortex pair, which collides with the second cylindefdre moving obliquely away from
it. In the second case, the clockwise vorticity is weaker@mes not draw boundary layer vortic-
ity into the main flow. The clockwise vorticity merges smdgtith the shear layer separating
from the second cylinder. The result is a very different lvéha between the two halves of the
cycle. The period of shedding is approximately twice thasesleed forS/D = 6. This phe-
nomenon is similar to the lock-in phenomenon observed imtilees of elongated bluff bodies,
where the timing of leading-edge vortices passing theitigriédge (equivalent to the second
cylinder in the present configuration) controls the rollar shedding of further leading-edge
vortices (Hourigaret al. 2001). ForS/D = 8, the behaviour is similar to that f&#/D = 7,
while for S/ D = 9 (see figure 4), the system period corresponds again to @shgtding cycle
of the leading cylinder (rather than two leading-cylindeedding cycles as fo$/D = 7 or 8).
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Figure 10: Phase plots showing the variation of the dradficiesit of the upstream({;,1) and downstream
(Ca,2) cylinders at the specified Reynolds numbers.

3.3. Drag trends

The forces experienced by the cylinders were quantified @ylitect summation of the pressure
and viscous forces on the cylinders. The variation of the defficient for the upstream and
downstream cylinders is shown in figure 9 at different Regtiamlumbers. The drag on the down-
stream cylinder was found to be much lower than that on thecegos cylinder for close spacings,
as the upstream cylinder experiences a considerably lprgesure force than the downstream
cylinder. However, at all spacings investigated here, tlag @n both cylinders is positive. This
can be attributed to the cylinders being close to the waleneta higher pressure force acts on
the upstream face of each cylinder. As expected, the dréfjaert on the downstream cylinder
increases, as the spacing between the cylinders grows. Wkerylinders are placed further
apart, they behave increasingly as individual bodies. #hér Reynolds numbers, the flow is
unsteady, and higher mean drag is experienced by the d@ansiylinder. AtRe = 200, the
drag coefficient on the downstream cylinder approachestt@rienced by the upstream cylin-
der. The vertical error-bars indicate one standard deridtom the mean value for the unsteady
flow cases.

Shown in figure 10 are phase plots for the drag coefficiente®tipstream and downstream
cylinders in the unsteady regime for the specified separaligtances. They show the complex
phase relationships between the forces acting on the twodeyk, in particular for the cases
discussed above, where two dominant frequencies are pieste drag histories.

4. Three-dimensional stability

In this section, we investigate the stability of the two-dimsional base flow obtained in the
previous section with respect to three-dimensional peations. Linear stability analysis is ini-
tially performed for the steady-state regime to detect tial three-dimensional modes that
grow at low Reynolds number. We employ the Arnoldi methodebasn a Krylov subspace to
obtain the growth rate of the first few dominant modes, whih loe either real or complex. For
a single cylinder sliding along a wall, the flow undergoesamsition to three-dimensionality,
with a spanwise wavelengty D = 5.5, at Re = 71 (Stewartet al. 201(), which is below the
threshold for the transition to unsteadiness of the twoedtisional flow atRe = 160.
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Figure 11: Growth rate curves for (a) small and (b) large sp@bout the critical Reynolds numbers for
three-dimensional transition.

(@) /D =0.1, Re = 100, \/D = 5 (b) S/D = 0.25, Re = 100, \/D = 5
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Figure 12: Spanwise perturbation vorticity contours fdffedent separation distances at the specified
Reynolds numbers and wavelengths. Vorticity contours cthesranget0.1D/U, and base flow vorticity
contour levelst1D/U are overlaid.

4.1. Steady base flow

Simulations were performed in the steady flow regime for titg@range of separation distances
investigated previously. Examples of growth rate curvesgaven in figure 11 for a small and
a large spacing between cylinders. Growth ratgsafe shown as function of the perturbation
wavelength for different Reynolds numbers, illustratimythe corresponding modes shift from
stable ¢ < 0) to unstableq > 0) asRe is increased.

Figure 12 shows perturbation vorticity contours for diffiet separation distances. For small
S/D, large amplitudes occur downstream of the trailing cylmdehile in the gap region the
amplitude is small. When the separation distance betweetwtb cylinders is large, the maxi-
mum mode amplitudes occur inside the gap. The perturbag@hrésembles that of an isolated
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Figure 13: Variation with5/ D of (a) the critical Reynolds number(s) and (b) the criticallength(s) for
three-dimensional transition. Data concerning the saaresition are represented by identical symbols.

sliding cylinder near a wall (Stewaet al. 201M). The Floquet multiplier for the cases shown is
real and positive.

Figure 13 shows the variation with separation distance efctiitical Reynolds numbers for
the three-dimensional transition and the correspondistghility wavelength. The critical values
were obtained by polynomial interpolation from the growdlter curves at Reynolds numbers
above and below the critical values. For large spacisggX > 7), these values are quite close
to those observed for a single sliding cylinder.

The transition to three-dimensionality for intermediapaangs occurs in a more complex
way. For4.5 < S/D < 6.5, an initial transition to three-dimensionality occurs@wIReynolds
number, followed by a re-stabilisation of the flow to a tworensional state as the Reynolds
number is increased. Increasing the Reynolds number futtthe flow once again undergoes
a transition to a new three-dimensional state, involvirthezi a steady or an unsteady mode
(see below). This surprising sequence of stable two-dineakand unstable three-dimensional
regimes is further illustrated in figure 14, where growtlerairves for the case witfy D = 5 are
shown. In figure 14(a), the growth rates ¢ < 100 illustrate the first three-dimensional transi-
tion at Re = 69.5. Increasing the Reynolds number to 110, the maximum gromi#srdecrease,
and atRe = 120 the flow is found to be stable (i.e., two-dimensional) agégufe 14b). Further
increasingRe, a second transition to three-dimensional flow is foun&at~ 157 for a signifi-
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Figure 14: Growth rate curves f&f/D = 5.

(@) Re =75,A/D =55 (b) Re = 165, \/D = 3.5

Figure 15: Spanwise perturbation vorticity for (a) the fiestd (b) the second transition to three-
dimensionality forS/D = 5. Contour shading as in figure 12.

(@) Re =80, \/D =6 (b) Re = 165, \/D =5

Figure 16: Spanwise perturbation vorticity for (a) the fiestd (b) the second transition to three-
dimensionality forS/D = 6. Contour shading as in figure 12.

cantly smaller wavelength of/ D = 3.4 (figure 14c), i.e., involving a different instability mode.
Spanwise perturbation vorticity is plotted f8f D = 5 in figure 15 for both three-dimensional
transitions. For the first transition, three-dimensiayalievelops in the space between the two
cylinders, while for the second one, the growth of pertudretoccurs downstream of the trailing
cylinder.
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Figure 17: Growth rate curves at higher Reynolds number®ieer S/D.
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Figure 18: Spanwise perturbation vorticity contours favéoS/D. Contour shading as in figure 12.

For comparison, the case wily D = 6, which also exhibits two successive 3D transitions,
is illustrated in figure 16. In this case, both modes have higiplitudes within the gap region
between the cylinders, although the perturbation voytipétterns are quite distinct. However,
the growth rate for the second transition has a non-zeroimaagpart, indicating that the flow
is periodic, while for the first transition the growth ratepisrely real.

As mentioned above, the two-stage instability scenariaifor spacings in the rangeb <
S/D < 6.5. A further investigation was undertaken by carrying oub#ity analysis at higher
Reynolds numbers for separation distances on either sitiésainge. Shown in figure 17 are the
growth rate curves at two smaller separation distancéy 6f = 0.25 and3. At higher Reynolds
numbers, the growth rate curves shift to higher values am@lolv is more unstable to perturba-
tions with longer spanwise wavelengths. The growth rateecatearly broadens as the Reynolds
number is increased frofle = 150 to 180 forS/D = 3 (figure 17b). The corresponding pertur-
bation vorticity contours are shown in figure 18. Compariggffes 17(a) and 12(b), we observe
that the three-dimensional modes possess identical steyalthough afze = 150 the length
of the recirculation zone is longer thanat = 100. The perturbation fields are broadly similar
to the single cylinder case, so that the two cylinders arecéffely acting as a single extended
body.

In figure 19, streamwise perturbation vorticity contours sinown for almost touching cylin-
ders §/D = 0.1) at Re = 150. The structure of the perturbation contours bears a clcsre
blance to that of figure 22(b) in Stewattal. (201(), although the Reynolds number in this case
is much higher, indicating that the three-dimensional nsadeolved are effectively identical.

Figure 20(a,b) shows the growth rate curves for larger seijoas,5/D = 7 ands. We observe
that the growth rate decreases at higher Reynolds numbansvier, positive growth is still
maintained prior to the unsteady two-dimensional tramsitiThe maximum growth shifts to
slightly longer wavelengths. This is similar to the trendtfee rangel.5 < S/D < 6.5, although
the mode does not restabilise. AfD = 9 and 10, the growth rates increase with increasing
Reynolds numbers (figure 20c,d).

The perturbation modes for high8y D are depicted in figure 21. Their shape is clearly dif-
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Figure 19: Streamwise perturbation vorticity contours $9tD = 0.1 at Re = 150, with A\/D = 8.
Contour shading as in figure 12.
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Figure 20: Growth rate curves at higher Reynolds numberkifgrer.S/D.

ferent from the mode structure for smaller separations. stteng flow within the gap and the
significant streamline curvature, with strong localisednailations towards the second cylin-
der, modifies the unstable three-dimensional mode shajeeffact is less pronounced at larger
separations, where once again the perturbation field temdsdls the one for a single cylinder.

For the case withh/D = 7, Re = 165 represents the highest Reynolds number at which
the two-dimensional flow remains steady. For this paranuetetbination, the flow was found to
be unstable to two different three-dimensional modes. Thei rate of the longer-wavelength
mode, as a function of Reynolds number, was given in figur@)2®igure 22 shows that this
mode still remains unstable &e¢ = 165; however, a shorter-wavelength mode is now even
more unstable. The maximum growth rates of these two modesr@t\/D ~ 4.5 and12,
respectively (figure 22). The short-wavelength mode isquicj with a complex growth rate,
while the long-wavelength mode is stationary (purely reahgh rate). The perturbation vorticity
contours of these two modes can be seen in figure 23.

4.2. Periodic base flow

In the preceding section, the three-dimensional stahdlitalysis was performed in the regime
where the two-dimensional base flow is steady. To furthetoegphe three-dimensional flow
behaviour in the unsteady state, a Floquet stability arslyas performed ake = 200 for
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Figure 21: Spanwise perturbation vorticity contours fatter.S/D. Contour shading as in figure 12.
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Figure 22: Growth rate curves félf/ D = 7 at Re = 165. Two modes are present at this Reynolds number,
including the one decaying d# increases shown in figure 20(a).

o
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Figure 23: Spanwise perturbation vorticity contours §tD = 7 at Re = 165 for the two instability
modes at the specified wavelengths. Contour shading as e figu

the cylinders at the maximum separation distanc&/aD = 10. Figure 24 shows the growth
rate curves obtained by perturbing the two-dimensiona fflas at different wavelengths. Four
distinct modes (labelled | to 1V) can be discerned, with tipgiaks at\/D = 2.6,5.5,6.0 and
12, the fastest growing mode having the shortest wavelendpbws in figure 25 are the span-
wise perturbation contours for these modes. Inspectiohetbrresponding Floquet multipliers
shows that Modes |, Ill and 1V are oscillating at frequendife®mmensurate with the one of the
base flow, leading to a quasi-periodic total flow, whereas &ibavas found to be subharmonic
(negative real Floquet multiplier), oscillating with a jmet twice that of the base flow.
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Figure 24: Growth rate curves for the cylinders separate§ hy = 10, Re = 200. Four distinct modes

are visible, Mode Il being partially masked by Mode II. Tlesfest growing mode has a maximum growth
rate at\/D = 2.6.

(d) Mode IV, \/D = 12

Figure 25: Spanwise perturbation vorticity contours $gD = 10 at Re = 200 for the specified wave-
lengths. Contour shading as in figure 12.

105




The wake of tandem cylinders sliding along a wall 21

o (

B (

&

>4

 (

@ (

- (

2|

®
1.25
1
0.75
u 0.5
0.25
0
-0.25

0 100 200 300 400
T
(@

0.5
0.25
w 0
-0.25
-05

100 200 300 400
T
(b)

(e) T =296

Figure 26: DNS results for the tandem cylinders sliding glarwall with S/D = 10 at Re = 200. Left:
The time histories of the streamwise)(and spanwiseu() velocity components for a location midway
between the cylinders. Right: Visualisations using stne@m® vorticity isosurfaces viewed from above. (c)
Mode Il with A/ D = 2.4 from linear stability analysis; (d) perturbation field oioied from DNS at- = 46;
(e) the same field at = 296.

5. Direct Numerical Simulation

At Reynolds numbers not too far above the threshold for taigeensional transition, it ap-
pears that a number of linear modes become unstable, as ghgwin figure 24. To investigate
the nonlinear interaction between these modes, a threergiional Direct Numerical Simula-
tion (DNS) was performed. A three-dimensional version eftbmputational code employing a
Fourier expansion in the spanwise direction (Thompstal. 1996; Karniadakis & Triantafyllou
1992; Ryaret al. 2005; Leontiniet al. 2007) was used, with the two-dimensional solution for
S/D = 10 andRe = 200 as initial condition. A spanwise domain length of 16 cylindeame-
ters with 96 Fourier planes was chosen to capture the wakandigs. Low-intensity white noise
was added to trigger three-dimensional flow. The spanwigenéwf the domain could contain
respectively six and three wavelengths of the two fastesiviglg modes shown in figure 24.
Figures 26(a) and 26(b) give time traces of the streamwidespanwise velocity components at
a point midway between the cylinders. Figure 26(c) reprissitye most unstable mode from lin-
ear stability analysis, using isosurfaces of positive agghtive streamwise vorticity to indicate
the wake structure. This should be compared with the DNSui$ases shown in figure 26(d),
corresponding ta- = 46, while the mode is still undergoing exponential amplifioati Fig-
ure 26(e) shows the complex nature of the wake at a later ime @96), after the wake has
become highly non-linear. As indicated above, in this séaten the remnants of periodicity in
thewu velocity component are lost. Also, there does not appeag todlearly dominant spanwise
wavelength. Hence the flow shows signs of a rapid transita@ndhaotic state.
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Figure 27: The final wake states Bt = 200 for the cylinders sliding along a wall at various spacings.
These images can be compared to figure 26(e), where the flowuelly becomes chaotic.

Figure 27 shows similar visualisations of the wake for tandglinders withS/D = 2,5 and
7 at Re = 200. Starting from the respective two-dimensional solutighg, simulations were
run for approximately 300 time units. For this set of simiolas, the spanwise distance was set
to eight cylinder diameters. F&t/D = 2, the flow is three-dimensional and unsteady, and the
long-wavelength instability is the dominant three-dinienal mode, while forS/D = 5 and
7, the final wake state is chaotic, similar to that observedguaré 26(e). In any case, the two-
dimensional base flow is clearly no longer an adequate mddéleoreal flow in this regime.

6. Conclusions

The flow past two tandem cylinders sliding along a wall hasnhieeestigated via stability
analyses and Direct Numerical Simulations. Two-dimeraiealculations were used to inves-
tigate the transition from two-dimensional steady to tvimehsional unsteady flow, when the
Reynolds number is increased, as function of the cylindacisig. Steady flow involves multiple
recirculation zones, with complicated streamline pagerising in the gap between the cylin-
ders for intermediate spacings. For very small and veryelagacings, both steady and unsteady
wakes resemble those of a single sliding body. Whereas aRleynolds numbers in the un-
steady regime, the wakes behind both cylinders oscillaeeasame frequency, for larg&e an
intermediate spacing range exists, where a period douldingserved. This can be explained
by a feedback mechanism, where the vortex shed from the filisder impacting on the sec-
ond one triggers shedding of a new vortex from the first cyimat slightly different conditions.
The same phenomenon is known to occur in flow around elondptéicbodies, where vortices
are shed from both the leading and trailing edges. The dnagg$ocacting on both cylinders in
two-dimensional flow were determined for the steady andopésiregimes up tdze = 200 and
separations up to 10 cylinder diameters.

Three-dimensional stability analysis of the two-dimensioflows showed that, for all pa-
rameter combinations, the flow becomes unstable at Reynali®er well below the threshold
for unsteadiness in two dimensions. Again, for vanishind aery large cylinder separations,
the unstable modes are similar to those found previouslyafsingle sliding cylinder. In an
intermediate spacing range around 5-6 cylinder diamegesequence of alternating regimes of
three-dimensional instability and stability is observediicreasing Reynolds numbers. Whereas
outside this interval the unstable three-dimensional reade steady, the second transition within
part of this range occurs through the amplification of an esdy three-dimensional mode.
Three-dimensional instability persists at higher Reyaaidmbers, where the two-dimensional
base flow is periodic. A Floquet stability analysisfat = 200 for a large cylinder separation
revealed the existence of at least four unstable modes iaugawavelengths and frequencies.
Direct Numerical Simulation of this flow with a spanwise domsize allowing for the growth
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of several of these modes showed their non-linear intenacteading rapidly to a disordered
chaotic state.

The fact that the first transition of flow around tandem cydirgsliding along a wall involves
three-dimensional steady modes, makes the results froemtilgsis of the transition from steady
to unsteady two-dimensional flow appear less relevant todéscription of realistic flows in this
configuration. A similar situation was previously encouatkin the study of the transitions of the
wake of an isolated circular cylinder. The characteristicthe three-dimensionode Bwere
determined through a Floquet stability analysis of the dirmensional periodic flow (Barkley
& Henderson 1996), even though in reality the wake is alrdadily three-dimensional when
Mode Bis first observed. In that case, although the critical Reymolmber is overpredicted, the
predicted wavelength and spatio-temporal symmetifiofie Bcarry across to the real flow. For
the sliding tandem cylinders examined here, the onset eétdimensional flow is likely to alter
the critical Reynolds numbers for the unsteady transit@ther observed characteristics, such as
Strouhal numbers and average two-dimensional flow strestunay nevertheless remain at least
roughly similar to the prediction obtained from a two-dirs&mal base flow. The full analysis of
the unsteady transition for three-dimensional wakes isatantial computational problem, and
will form the basis of a future study.

The support from Australian Research Council Discoveryn&®P0877327 and DP0877517
and computing time from the National Computational Infrasture (NCI), Victorian Life Sci-
ences Computation Initiative (VLSCI) and Monash Sungriel gratefully acknowledged. A. R.
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Chapter 6

The sinuous mode in the wake of
a rolling sphere

6.1 Overview

The preceding chapters have discussed the effects of rotation for a circular cylinder
near a wall. This chapter deals with the flow dynamics of a spherical body, which is
given a fixed rotation rate as it translates along a wall. The flow dynamics for a sphere
rolling along a wall have been previously investigated by Stewart et al. (2010a) for
—1 < a < +1, both experimentally and numerically. For the forward rolling sphere, the
Reynolds number for the onset of periodic flow occurred at lower values as the rotation
rate was increased. The shedding was characterised by the formation of hairpin vortices
which moved away from the wall and convected downstream. This was observed at the
highest tested Reynolds number of 200 for & = +1. Recent experimental findings of
Bolnot et al. (2011) showed the lateral displacement of these hairpin vortices on either

side of the wake centreline at Re = 230.

To examine the sinuous structure of the wake numerically, simulations are under-
taken using a two-dimensional computational domain rotated azimuthally to obtain a
cylindrical volume with the sphere at the centre. The journal article presented in this
chapter elucidates the numerical findings for the wake of a rolling sphere for a = +1
and Re < 500. As Reynolds number is increased from low values, the flow transitions to
the periodic state at Re ~ 140, and at a higher Reynolds number of Re ~ 192, the wake
no longer retains its planar symmetry. The nature of these transitions is investigated
by the Stuart-Landau model. Following the second transition, the flow then locks onto
a 7 : 3 resonance, prior to the onset of chaotic flow at higher Reynolds number, while

retaining the sinuous structure. Using frequency spectra, phase plots and Poincaré
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maps, the chaotic nature of this flow is established. Furthermore, the tracer particle
visualisations from the numerical simulations are in excellent agreement with the dye

visualisations from the experiments.

6.2 Transition to chaotic flow in the wake of a rolling
sphere

The following article was published in 2012 in Journal of Fluids Mechanics. This work
was co-authored by P.-Y. Passaggia, H. Bolnot, M. C. Thompson, T. Leweke and K.
Hourigan, and is entitled, “Transition to chaos in the wake of a rolling sphere”. The

paper is reproduced in this thesis directly from the version published online.
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The wake of a sphere rolling along a wall at low Reynolds number is investigated
numerically and experimentally. Two successive transitions are identified in this flow,
as the Reynolds number is increased. The first leads to the periodic shedding of
planar symmetric hairpin vortices. The second and previously unknown transition
involves a loss of planar symmetry and a low-frequency lateral oscillation of the
wake, exhibiting a surprising 7:3 resonance with the hairpin vortex shedding. The
two transitions are characterized by dye visualizations and quantitative information
obtained from numerical simulations, such as force coefficients and wake frequencies
(Strouhal numbers). Both transitions are found to be supercritical. Further increasing
the Reynolds number, the flow becomes progressively more disorganized and chaotic.
Overall, the transition sequence for the rolling sphere is closer to the one for a
non-rotating sphere in a free stream than to that of a non-rotating sphere close to a
wall.

Key words: chaos, vortex shedding, wakes

1. Introduction

We here investigate the first transitions in the flow generated by a forward rolling
sphere on a solid surface, as the Reynolds number is increased from the initially
steady regime. Motivation for this study comes, for example, from the modelling of
wall effects in fluid—particle systems, or from biological applications such as cells
moving and rolling along blood vessel walls, even though the Reynolds numbers in
the latter class are often much lower. Indeed, with rolling near-spherical bodies being
ubiquitous in nature (e.g. sand or dust in wind, rocks in avalanches) and in sports
(e.g. football, bowls, billiards, pétanque), it seems surprising that the dynamics and
transitions of their wakes have been largely unexplored until only recently (Stewart
et al. 2010a).

The case of a non-rotating sphere in a uniform free stream has been studied
extensively. This flow undergoes a transition at Re ~ 212 (Johnson & Patel 1999)

+ Email address for correspondence: anirudh.rao@monash.edu

114




136 A. Rao and others

from a steady axisymmetric state to a steady non-axisymmetric flow with planar
symmetry: the ‘double-threaded wake’ (Magarvey & Bishop 1961a,b), consisting of
two trailing counter-rotating vortices. Beyond Re = 272, these threads interact during
formation, leading to the shedding of vortex loops (or ‘hairpins’). From analysis of
direct simulations, both transitions have been shown to be supercritical (Ghidersa &
Dusek 2000; Thompson, Leweke & Provansal 2001a), obeying the Landau model
as the flow saturates. Numerical simulations indicate that the planar symmetry is
broken at Re >~ 345 (Mittal 1999), which is in line with experimental investigations
of Sakamoto & Haniu (1990). They suggested that a transitional regime exists for
420 < Re < 480, wherein the hairpin vortices are intermittently displaced to either side
of the wake centreline.

Direct numerical simulations were performed by Zeng, Balachander & Fisher (2005)
for a sphere moving parallel to a wall. Their study showed that as the sphere was
moved closer to the wall, the transition to the unsteady state occurred at Reynolds
numbers lower than for the free stream case (Re < 272), with a sudden increase
observed for the closest tested distance of 0.25D. The effect of free rotation was also
studied. This group (Zeng et al. 2009) also performed direct numerical simulations
for a stationary spherical particle close to a plane wall in a linear shear flow. They
present results for gap ratios between 0.005 < G/D < 3.5, using a symmetry plane.
The double-threaded wake is observed at Re =200 for larger gap ratios, while a
toroidal structure engulfing the particle is observed for lower Reynolds numbers. These
findings are similar to the results of Stewart et al. (2010a), where the transition to
an unsteady state for the non-rotating sphere was in excess of Re = 300. Furthermore,
they propose empirical relationships for the lift and drag coefficient variation with
distance from the wall.

Previous studies by Stewart et al. (2010a) investigated the wake dynamics of a
sphere moving next to a wall, under conditions of forward rolling, sliding or reverse
rotation. For the forward-rolling case, which is of interest here, the wake is attached
and steady for Re < 125. The wake structure shows some similarities to the two-
tailed wake of a non-rotating isolated sphere, except that the trailing counter-rotating
vortex pair loses strength more quickly with downstream distance due to the damping
effect of the wall. Between 125 < Re < 150, the wake becomes unsteady, periodically
shedding vortex loops. The structure is initially symmetric with respect to the vertical
plane passing through the sphere and wake. Note that the rotation and the presence
of the wall reduces the critical Reynolds number of unsteady flow transition from
Re. ~ 212 (Johnson & Patel 1999; Ghidersa & Dusek 2000; Thompson et al. 2001a)
for the isolated sphere wake. Initial experiments and direct simulations indicated that
the wake mirror symmetry is maintained until approximately Re = 200, which was the
highest Reynolds number reported. Stewart ef al. (2010a) also examined the reverse-
rolling case. They observed the development of a transverse sinusoidal oscillation
of the wake at Re = 200, and recorded a transverse force as the unsteady wake
advected downstream. In their simulations at Re = 300, initialized from a zero velocity
state, it was found that the wake retained mirror symmetry with respect to the wake
centreline for a long time. The addition of noise was required to initiate the transition
to the asymmetric mode, although this is presumably due to the low growth rate of
the instability. The steady double-threaded wake formed downstream of the sphere
developed a sinusoidal oscillation, which advected with the flow. Similar sinuous
oscillations of the otherwise steady flow were also observed for a translating (sliding)
sphere at Re > 300 in the experiments.
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FIGURE 1. Schematic of the configuration. For a forward-rolling sphere,  =2U/D.

A first experimental visualization of the transition to an asymmetric rolling sphere
wake Re, ~ 200 was shown in Bolnot er al. (2011). The present paper quantifies
the transition sequence in this flow determining the critical Reynolds numbers and
sub/super-criticality, investigates and characterizes the intriguing high-order resonance
between the modes, and quantifies the rapid progression to fully chaotic flow.

2. Problem definition and methodology

A schematic of the rolling sphere setup is shown in figure 1. A dimensionless
rotation rate of the sphere, «, can be defined by

Dw
o=—":
2U

Here, the sphere diameter is D, the velocity of the sphere centroid is U and w is
the angular velocity. For the situation examined in this paper, o is set to +1. This
corresponds to prograde non-slip rolling.

For computational efficiency, the reference frame is attached to the centre of the
sphere. Relative to this moving frame of reference, the fluid and the lower wall move
with the same speed U, directed to the right. The other key governing parameter is
the Reynolds number Re = UD/v, where v is the kinematic viscosity of the fluid.
The force on the sphere consists of viscous and pressure contributions and can
be split into streamwise (F,), vertical (Fy) and lateral (F.) components. These are
non-dimensionalized in the standard way: C,,, = 8F,,./(pU*nD?), with p the fluid
density. Finally, the non-dimensional shedding frequency is given by the Strouhal
number St =fD/U, where f is the shedding frequency.

2.1

2.1. Numerical formulation and validation

The time-dependent incompressible Navier—Stokes equations are solved in cylindrical
polar coordinates (r, 6, z). The numerical scheme employs a three-step time-splitting
approach (Chorin 1968), with the sub-steps accounting for the advection, diffusion
and pressure terms in the Navier—Stokes equations. Previous studies have shown
that the implementation achieves second-order temporal accuracy. In terms of spatial
discretization, the spectral element method is used for the r—z discretization and a
Galerkin Fourier approach for the azimuthal dependence. The method/implementation
has previously been used to simulate flows past bluff bodies such as cylinders, spheres
and rings both in the free stream (Thompson, Leweke & Williamson 2001b; Sheard,
Thompson & Hourigan 2003; Schouveiler et al. 2004; Ryan, Thompson & Hourigan
2005; Leontini, Thompson & Hourigan 2007) and also close to a surface (Thompson,
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Leweke & Hourigan 2007; Stewart et al. 2010b). Details of the numerical method are
provided in Thompson et al. (2006).

Because quadrilateral elements are used to build the mesh, the sphere is placed
slightly above the wall at a distance G in order to prevent degeneracy of nodes for the
elements directly underneath the sphere. A gap ratio of G/D = 0.005 is typically used
for the simulations. By varying this distance, it was found that the flow structures in
the wake were not affected, although the (lift) force on the sphere does vary slightly
with increasing gap height (Stewart et al. 2010a).

The computational domain consisted of 320 macro-elements in the r—z plane. This
was extended into three dimensions using N, Fourier planes in the azimuthal direction.
The origin of the cylindrical polar coordinate system was taken as the point on the
wall directly below the sphere with the polar axis passing through the sphere. Each
quadrilateral (spectral) element employs N x N internal node points. These internal
node points correspond to the Gauss—Legendre-Lobatto quadrature points with the
velocity and pressure fields represented by a tensor product of Lagrangian polynomial
interpolants of order N — 1 within elements. The macro-elements are concentrated
around the sphere and decrease in concentration with increasing distance from it. The
top boundary is located 150D away from the lower wall while the lateral boundaries
are 100D away; thus, blockage is negligible. During resolution testing, the interpolant
order was varied between N —1 =4 and 7, with up to 256 Fourier planes. It was found
that at Re = 300 for N = 6 and N, = 128, convergence of the drag force is better than
0.5 %, with the Strouhal number resolved to better than 0.1 %.

2.2. Experimental setup

Previous experiments by Stewart et al. (2010a) were undertaken in a closed circuit
water tunnel with a moving floor and the sphere mounted on a motor-driven axle
parallel to the moving floor. In addition, the upstream boundary layer was sucked off
prior to the moving floor section to improve the quality of the entry flow. This setup
allowed the sphere to be rotated independently of the wall motion. In the current
set of experiments, that extra flexibility was not required and a simpler, less invasive
setup was employed. The experimental apparatus consisted of a water-filled tank, with
an inclined Plexiglas plate used as a false floor. Steel spheres of diameters 4.7 and
6.5 mm were first coated with fluorescein dye, slowly lowered into the water using
a glass pipe and allowed to roll down the incline. The angle between the horizontal
and the plate surface was of the order of 0.5° and could be precisely controlled to
obtain the desired terminal velocity of the sphere, and hence set the Reynolds number.
A 1 mm groove in the inclined surface ensured the sphere rolled along a straight path.
The fluid in the tank was illuminated in volume using an argon ion laser, allowing
the wake behind the sphere to be visualized and photographed. One distinct advantage
of the current setup is the removal of the driven axle, which slightly modifies the
flow, and reduced vibration, even though it was necessary to add the groove to ensure
passage along a straight path. With the current setup, it was also easy to coat the
sphere with dye prior to immersing it and beginning the experimental runs. The
velocity of the sphere and thus the Reynolds number was easy to determine accurately
from its position in video images.

Various authors (Chhabra & Ferreira 1999; Verekar & Arakeri 2010) have previously
studied the distance required to effectively reach the terminal velocity for a sphere
rolling down an incline. Chhabra & Ferreira (1999) established an approximate
relationship for Re < 500 in terms of the density ratio. For the case here using
steel spheres, this shows that the terminal velocity is reached within approximately
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13 sphere diameters. For the experiments reported in this paper, data were recorded for
120D after the sphere had travelled 30D from its initial position.

3. Results
3.1. Flow structures

The flow behind the wake of a rolling sphere has been visualized by Stewart et al.
(2010a), both experimentally by dye visualization in a water channel and also
numerically using the method of Jeong & Hussain (1999). In those investigations,
steady flow was observed for Re < 125. The visualizations of the flow structures
showed the wake is displaced away from the wall at low Reynolds numbers and the
formation of a double threaded wake is observed, similar to that behind a non-rotating
sphere in unbounded flow for 212 < Re < 272 (Johnson & Patel 1999). Similar
structures were observed in our simulations for Re < 135. However, at Re = 140,
periodic fluctuations in the time histories were observed for the streamwise and wall
normal components of force. The kinking of the double-threaded wake, as described
by Magarvey & Bishop (1961a,b) and Thompson et al. (2001a), was observed, and
hairpin vortices formed behind the sphere advected downstream and moved away
from the wall. On further increasing the Reynolds number, the amplitude of the
fluctuations increased, while no variation was observed in the lateral component
of force, indicating a planar symmetry about the wake centreline. The studies of
Stewart er al. (2010a) show that the symmetry was maintained until Re = 200, with
the shedding frequency remaining approximately constant at St >~ 0.125 across the
unsteady range.

In the current study, numerical simulations at Re > 195 showed the growth of the
lateral component of the force C,, whose frequency of oscillation was approximately
(but not exactly) twice that of the shedding period for the streamwise direction. The
amplitude of the lateral component of force grew with increasing flow speeds beyond
Re = 195. Tracer particles injected into the flow showed small displacements about
the wake centreline at flow speeds near the transition. However, at slightly higher
Reynolds numbers, the vortex cores were displaced alternately on either side. The
injected dye was drawn into these vortex cores, making it easier to visualize them in
the water tank experiments.

Shown in figure 2 are the vortex structures before and after this transition. Figure 2
shows the comparison between the dye visualizations from the experiments (a,b) and
analogous numerical visualizations (c,d) obtained by injecting tracer particles from a
location just above the surface of the sphere. Note that the wake became increasingly
chaotic beyond Re = 220. This is indicated by the force time traces showing irregular
fluctuations, and is discussed in further detail in the following sections.

3.2. Nature of the transitions

The Stuart-Landau model for flow supercritical transitions predicts that, close to the
critical Reynolds number, the square of the amplitude at saturation should vary linearly
with the Reynolds number increment above the critical value (e.g. Provansal, Mathis
& Boyer 1987; Dusek, Le Gal & Fraunié 1994; Le Gal, Nadim & Thompson 2001;
Thompson & Le Gal 2004). Here, the amplitude can be any flow quantity that is
zero prior to transition. For the current flow system, the initial transition is from a
steady two-threaded wake to an unsteady wake. In that case, an appropriate measure
is the amplitude of the oscillatory component of the drag force coefficient. The
second transition corresponds to the breaking of mirror symmetry of the wake as
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FIGURE 2. Comparison of experimental dye visualizations (a,c, negative image) and
numerically obtained tracer particle images (b,d). (a,b) Re = 190; (c,d) Re = 230.

viewed from above. In that case, the amplitude of the side force coefficient can be
used as a suitable measure. Figure 3 shows plots of the amplitude squared against
Reynolds numbers for both transitions determined using data from direct numerical
simulations. The unsteady transition occurs at Re.; = 138.9 and the mirror symmetry
breaking transition occurs at Re., = 191.6. Previously, the critical Reynolds number
for the first transition had only been determined to lie in the range 125 < Re.; < 150,
while the second transition was unobserved (Stewart er al. 2010a). Both plots show
that the functional behaviour close to transition is well represented by straight lines,
confirming the supercritical (non-hysteretic) nature of both transitions. In terms of the
mathematics underlying the Landau model, this means that the real component of the
cubic amplitude term in the amplitude evolution equation is negative, meaning that
term is responsible for limiting the initial linear growth once the critical Reynolds
number is exceeded.

3.3. Behaviour of the lateral component

To the knowledge of the authors, the mirror-symmetry breaking transition has not
been seen previously in either experiments or numerical simulations. That transition
can be further analysed by taking a Fourier transform of the time series of the
force coefficients. Power spectra corresponding to the lift and side force components
are shown in figure 4 for a range of Reynolds numbers near the lateral transition.
At Re =200, just above the transition Reynolds number of Re = 191.6, both spectra
show peaks at the Strouhal numbers corresponding to the shedding of vortex loops
(8t,, = 0.1167) and the lateral oscillation (St, = 0.05). These are identified in the
spectra. In addition, nonlinear interaction frequency peaks are clearly seen. Some
of these have also been marked. As the Reynolds number is increased further to
Re = 240, the characteristic shedding or lateral oscillation frequency is still present as
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FIGURE 3. Linear fits of the square of the amplitude against Re using data obtained from
numerical simulations for the first two transitions. The critical values for the transitions are
obtained by extrapolating the straight line fits to zero amplitude. See text for further details.
(a) First transition (steady to unsteady); (b) second transition (loss of planar symmetry).
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FIGURE 4. Power spectra showing the change in frequency content as a function of Reynolds
number. (a) The frequency decomposition for the side force (C,), (b) the same for the lift
force. Some peaks corresponding to the nonlinear interactions have been labelled.

a broad feature in the C, and C, spectra, respectively, but overall the spectra do not

show a set discrete set of peaks, indicating a richer frequency content consistent with
the evolution towards a chaotic state.
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FIGURE 5. Comparison of experimental dye visualizations (a,c, negative image) and
numerically obtained tracer particle images (b,d), for two higher Reynolds numbers.
(a,b) Re = 328; (c,d) Re = 415.

3.4. Wake behaviour at higher Reynolds number

Experimental visualizations of the wake show irregular shedding at higher Reynolds
numbers. As indicated previously, the wake structures are visualized with dye in
the experiments, and for the computations, visualization is undertaken with massless
tracer particles originating near the surface of the sphere. Figure 5 shows the visual
comparisons in plan view at Reynolds numbers above transition. For the two cases
shown, the wakes are clearly asymmetric about the wake centreline and vortex
shedding is irregular. The cross-stream extent of the wake increases as the Reynolds
number increases. The wake structures obtained appear similar to those in the wake of
a non-rotating sphere placed in a free stream at Re > 650 (Mittal & Najjar 1993).

3.5. Force histories

Sample force histories of the streamwise C, and lateral C, components are shown in
figure 6 for Re =200 and 300. The lower Reynolds number is just above transition,
so the variation of the force components is close to sinusoidal. The C, component
predominantly shows the wake signal corresponding to the formation and shedding
of the vortex loops. There is a small degree of modulation due to the cross-stream
oscillation. This oscillation in the cross-stream component chiefly corresponds to
the post-transition symmetry-breaking sinuous spanwise oscillation, but in turn it is
modulated by the vortex-loop formation/shedding signal. At Re = 200, the Strouhal
numbers of these dominant components are St,, = 0.117 and St, = 0.050.
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FIGURE 6. Evolution of the drag coefficient C, (a,b), and the lateral force coefficient C, (c,d).
(a,c) Re = 200; (b,d) Re = 300.

At the higher Reynolds number of Re = 300, the time signals of the force
coefficients are very irregular, although the underlying signal corresponding to the
shedding of vortex loops is still clearly visible.

Figure 7 shows the variation of the force coefficients with Reynolds numbers. The
streamwise component (C,) decreases, as does the magnitude of the lift coefficient,
noting that the force is towards the wall. The lateral component (C,) fluctuates beyond
the transition point. The force coefficients vary smoothly across the transition from the
steady to unsteady state. This figure also shows the Strouhal number variation with
Reynolds number (7d) corresponding to the drag and lateral force components. After
the second transition, there is a sudden shift upwards in the St, curve. Intriguingly the
Strouhal number ratio, St,/St,, appears locked to a 7:3 resonance post-transition for
Re, < Re < 205. This is seen clearly in figure 7(e), which shows this ratio close to
the transition. A phase space plot (C,(¢) against C,(t — 1)) is displayed in figure 8(a).
(Note that the time lag is to make the trajectory more circular so that the individual
orbits can be seen more easily.) The boxed region of this subfigure for Re = 200 is
magnified in figure 8(b). This shows that the trajectory repeats after every 7 orbits
for Re = 200. Approximately 100 orbits are plotted in this figure. To investigate
the apparent resonance further, a simulation was performed at Re = 215 with planar
symmetry enforced. This gave a Strouhal number consistent with extrapolating the
sub-critical St, curve (see figure 7d), which is quite different to the measured Strouhal
number without the restriction. Thus, it does appear that the frequency of the hairpin
shedding alters substantially when the lateral oscillation mode is present in order to
lock onto the 7:3 resonance. If Re is increased to 220, the phase plot shows that the
trajectory is no longer closed with individual orbits broadly following a mean orbit,
but with a significant spread. By Re = 250, the orbits appear to fill a closed region of
phase space, indicating the rapid progression to chaotic behaviour. The broad spectral
content at higher frequencies shown in figure 4 supports this conclusion.

A variant of Poincaré surfaces of section was used to investigate this further. These
maps are obtained by plotting the streamwise (or lateral) force coefficient against its
value one complete lateral (or streamwise) cycle previously, as explained below.

(a) The streamwise and lateral force coefficients were recorded for 400 time units.
This corresponds to approximately 20 cycles in the lateral direction and 50 cycles
in the streamwise direction.
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FIGURE 7. Variation of force coefficients and Strouhal numbers with Reynolds number. (a)
Mean drag coefficient C,; (b) mean wall-normal force coefficient Cy; and (c) the r.m.s. of
the lateral force coefficient C, . Error bars represent one standard deviation. (d) Strouhal
numbers for the drag (St,) and lateral force (St,) corresponding to the shedding of hairpin
vortices and asymmetric wake oscillations, respectively. (e) Strouhal number ratio, St,/St,,
against Reynolds number near the second critical Reynolds number.

(b) The mean value of the coefficient C, (or C,) was subtracted from the values of
each coefficient.

(c) For every complete cycle of C, (or C,), the corresponding value of C, (or C,) was
recorded.

(d) Cyy (or Cyy) was plotted against Cy,—1y (or Cyp—1y)-

These maps are shown in figure 9. The Poincaré maps are first plotted for Re = 200,
which is slightly above the critical value of lateral symmetry-breaking transition and
in the regime where the flow locks onto the 7:3 resonance. From the two Poincaré
maps shown in figure 9(a,b), we observe that the points lie on a discrete set of fixed
points on the surface of section for both the C, and C, maps, with the first showing
only 3 nodes and the second showing 7 nodes, as required by the 7:3 resonance.
These fixed points represent the intersection points of the limit cycle. At Re =210,
(figure 9c.d) the maps show some similarity to those at Re = 200, but with the
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FIGURE 8. (a) Qualitative evolution of the phase trajectories of the drag and lift coefficients.
Mean values are adjusted, and C, is plotted with a lag of one time unit for better visual clarity.
Tick marks are separated by 0.02 on both axes. (b) Close-up of the boxed region for Re = 200,
showing the trajectory in C,/C, space.
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FIGURE 9. ‘Poincaré’ maps for C, and C,, taken for each cycle of C, and C,, respectively, at
Re =200 (a,b), 210 (c.d) and 220 (ef).

intersection points instead now clustered around the fixed points. For the C, map
(figure 9c) it appears that the points broadly lie in three sets mostly distributed around
the three fixed points. While there are insufficient data to be definitive, it appears
that this clustering provides evidence of (the disruption of) KAM tori centred on the

124




146 A. Rao and others

(@) (d)
’ 2l

®) el © . S

(c)

FIGURE 10. Predicted vortical structure of the rolling sphere wake, for increasing Re,
visualized using the approach of Jeong & Hussain (1999). The sphere is rolling from right
to left. (@) Re = 125, (b) Re = 150, (¢) Re = 175, (d) Re =200, (¢) Re =230, (f) Re = 265.

fixed points, on the route to chaos. This is less clear from the C, map (figure 9d),
although it does appear that the points are not yet space-filling at this stage. A clearer
picture might be obtained from longer time series, but the simulation times required
are very long. At the higher Reynolds number of Re =220 (figure 9e.f), the Poincaré
sections show that the intersection points of the orbits are no longer restricted to lie
on or near only fixed points, with the points now appearing randomly distributed over
a large region. This shows that the remnants of the 7:3 resonance have disappeared
and the governing periods are incommensurate. Together with phase portraits and the
frequency spectra, this indicates that the system is undergoing a transition to temporal
chaos.

The wake structures in the different flow regimes are summarized in figure 10 for
125 < Re < 265. These images show (a) the double-threaded wake, (b) the initiation
of unsteadiness, (c¢) formation of strong vortex loops, (d) breaking of planar symmetry,
(e) the development of a lateral oscillation and (f) the progression towards a chaotic
wake state.

4. Conclusions

The flow around a rolling sphere has been investigated in detail both numerically
and experimentally, including new low background noise level experiments, and a new
symmetry breaking transition has been discovered. After the first transition, from a
steady to unsteady wake at Re, =~ 139, the wake remains strictly periodic. Above
the second transition at Re, ~ 192, the two governing frequencies are approximately
St =0.117 (for the C, and the C, force components) and 0.050 (for the C, force
component). The corresponding oscillations vary in time nearly sinusoidally, each
modulated by the other mode, but with these two quite different frequencies. The
frequency ratio St,/St, appears to lock to 7:3 post-transition up to Re = 205, even

125




Tiansition to chaos in the wake of a rolling sphere 147

though the natural frequencies need to adjust considerably for this resonance to occur.
By Re =250, the power spectrum shows broad frequency content, and a plot of C,
versus C, shows the trajectory starting to fill a closed region of phase space; both are
consistent with the rapid progression to chaotic flow.

The wake transition sequence matches that for a non-rotating sphere in a free
stream, but not a non-rotating sphere sliding along a wall. In the latter case, the first
transition to the double-threaded wake is the sinusoidal cross-oscillation rather than
the periodic shedding of loops. For the non-rotating sphere on the wall, fluid can
flow freely over the top but not directly underneath. The addition of positive rotation
presumably assists the transport of fluid around the underside of the sphere, which
counteracts the blockage effect and makes the downstream flow closer to that of an
isolated sphere. However, the presence of the wall does reduce the critical Reynolds
numbers considerably: from Re. = 272-139 for the unsteady transition, and from
Re., = 345-192 for breaking of mirror symmetry. Finally, it is observed that the wake
structure shown in figure 10 for Re = 265 (and higher) resembles closely that of an
isolated non-rotating sphere wake at Re = 650 (figure 2¢ of Mittal & Najjar 1993).
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Chapter 7

Conclusions

7.1 Conclusions

In this study, we have examined the flow dynamics and stability of bluff bodies in
isolation and near a wall by two- and three-dimensional numerical simulations. Exper-
imental visualisations have been used for comparative purposes. The main findings are
summarised below.

The first of these studies explored the onset of three-dimensionality for a spinning
cylinder in freestream for a < 2.5, Re < 350, extending the findings of Akoury et al.
(2008) who observed that the onset of the mode A instability was delayed to higher
Reynolds numbers as compared to that of a non-rotating cylinder. Using linear stability
analysis, the onset of the three-dimensional flow was investigated at other rotation
rate. Our studies were found to be consistent with the findings of Akoury et al. (2008),
where the onset of modes A an B showed a monotonic increase in Reynolds number for
a < 1. At higher rotation rates, the wake no longer retains its symmetry across the
centreline, leading to the possibility of three-dimensional modes other than A and B.
At o = 1.5, mode C was the first three-dimensional mode to become unstable, while
mode A occurred at higher Reynolds numbers, the mode C instability decayed. At
higher rotation rates, mode C was found to persist alongside other three-dimensional
modes. In the unsteady regime, two new modes were found to be unstable at rotation
rates higher than o = 1.8. A long wavelength mode, mode G first became unstable at
a = 1.85, Re 2 280, while mode D was observed in the high frequency shedding region
of a >~ 1.9. At rotation rates a > 2.1, vortex shedding was suppressed for Re < 400 in
the parameter space investigated. In this steady regime, two three-dimensional modes
were observed, of which one had an associated spanwise frequency, while the other was

a real mode, similar to the spatio-temporal characteristics of the mode D instability.
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Mode A/D Nature of p Base flow Symmetry

A ~4  Real and positive Unsteady  u(z,y,z,t) = u(z,y,z +n\t+1T)
B ~ (0.8 Real and positive Unsteady  u(z,y,z,t) = u(z,y,z +n\t+T)
C ~ 1 Real and negative Unsteady wu(x,y,z,t) = u(x,y,z+n\t+27T)
D ~ 1.9 Real and positive Unsteady  u(z,y,z,t) = u(z,y,z +n\t+T)
E ~ 1.8 Real and positive  Steady u(z,y, z,t) = u(z,y,z + nA)

F ~ 0.4 Complex Steady  u(z,y,z,t) = u(x,y,z +nA\t+ Tsp)
G ~ 18 Real and positive Unsteady  u(z,y,z2,t) = u(z,y,z +n\t+T)

TABLE 7.1: Summary of the modes showing the characteristic wavelength, nature of the
Floquet multiplier (1), the periodicity of the two-dimensional base flow and the spatial sym-
metries of these modes with respect to the streamwise velocity, w.

The spatio-temporal symmetries of these modes have been described in table 7.1.

The studies of non-rotating cylinders in freestream occurred in the unsteady regime
of flow, while for bodies near a wall, the flow undergoes transition in the steady regime
at Reynolds numbers lower than the predicted onset of periodic flow (Stewart et al.
2010b). The variation of this transition as the body was brought closer to the wall has
been investigated from G/D = oo (freestream) to G/D = 0 (near a wall) for Re < 200.
Over this parameter range, the force coefficients and shedding frequencies have been
quantified. The onset of three-dimensionality has been determined by linear stability
analysis. For G/D > 0.28, the three-dimensional transition occurred in the unsteady
regime, while for G/D < 0.28, flow undergoes transition in the steady regime. Fur-
thermore, the critical values at onset were obtained. Stability analysis for the circular
cylinder near the wall at higher Reynolds numbers indicate multiple modes being un-
stable to the perturbations. Three-dimensional investigations undertaken to study the
non-linear interactions of these modes indicate that the flow rapidly descends into a

chaotic state.

For a circular cylinder near a wall, the influence of the rotation rate parameter on
the flow characteristics was investigated for Re < 750. On increasing the rotation rate
to positive values of « (forward or prograde rolling), the vortex pairs which resulted
from the combination of the shear layers over the cylinder and the wall were larger and
less oblate, while on decreasing the rotation rate to negative values of « (reverse or
retrograde rolling), vortex shedding was delayed to higher values and suppressed for

a < —1.5. The critical Reynolds number for the onset of three-dimensional flow was
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lowered for « > 0, while three-dimensionality was suppressed for a = 2. The critical
spanwise wavelength at the onset was found to decrease monotonically as the rotation

rate was decreased.

These studies were further extended to investigate the influence of an identical
body placed in the wake of the original body. Flow stabilisation was achieved at higher
Reynolds numbers, where steady flow was observed for bodies closely separated. For
spacings of S/D < 4, the flow remained steady compared to the onset of unsteady
flow for an isolated cylinder near a wall at Re ~ 160 (Stewart et al. 2010b). The
drag force on the downstream cylinder was much lower compared to the upstream
cylinder in the steady regime, while in the unsteady regime, the drag force increased
on both bodies. At small and large spacings, three-dimensional onset of flow occurred
at Reynolds numbers lower than that observed at intermediate spacings. For a range
of spacings (4.5 < S/D < 6), the two-dimensional flow became unstable to three-
dimensional perturbations and then at higher Reynolds numbers, the flow returned
to a two-dimensional state. At much higher Reynolds numbers, the flow returned
to a three-dimensional state for the second time. Three-dimensional simulations at
Re = 200, over a range of separation distances, showed the flow to be chaotic akin to

the isolated cylinder near a wall.

The wake of a rolling sphere was investigated at higher Reynolds numbers. The
experimental findings of Bolnot et al. (2011) showed the onset of a sinuous mode in
the wake for Re ~ 230 from an otherwise laterally symmetric wake which was observed
at lower Reynolds numbers. Previous numerical and experimental investigations by
Stewart et al. (2010a) showed the formation of hairpin vortices at Re = 200 for a
forward rolling sphere. In our investigations, the rolling sphere wake is extended to
Re = 500. The first transition to a periodic state was found to occur at Re.; =~
140, followed by a second transition at Re.o =~ 192, where the hairpin vortices were
displaced alternately across the wake centreline, thereby giving a sinuous structure.
Both transitions were found to be supercritical by Landau modelling. For Reynolds
numbers past the secondary transition, the wake is locked into a 7 : 3 resonance for
Res < Re < 205. Beyond this range, the wake is irregular and at higher values of
Reynolds numbers, the flow was found to be chaotic. The transition to chaotic flow was
investigated by analysing the streamwise and lateral force histories by Fourier analysis,

phase plots and Poincaré maps. At the maximum tested Reynolds number of 500, the
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wake was chaotic and retained its sinuous structure. Furthermore, the numerical tracer

visualisations were in good agreement with the dye visualisation from the experiments.

7.2 Future directions

This thesis investigates several studies where flow control and stabilisation has been
achieved in the low Reynolds number regime by varying control parameters such as «,
G/D and S/D over wide ranges in the parameter space. However, there remains scope
for future work within the current set of parameters and some suggestions are listed

below:

e For the spinning cylinders in freestream, full three-dimensional simulations would
provide a clear picture of the dominant three-dimensional structures at higher
Reynolds numbers. The non-linear interactions in the wake where multiple three-
dimensional modes are unstable could be investigated. Furthermore, the pa-
rameter space could be extended to higher rotation rates, where previous studies
(Mittal 2004; Kumar et al. 2011; Meena et al. 2011) have identified the dominance

of centrifugal instabilities along the span of the cylinder.

e Experimental investigations for a spinning cylinder in freestream have not fo-
cussed on the three-dimensional aspects at low Reynolds numbers. These inves-
tigations could be undertaken to demarcate regions of instability for each mode

identified from the stability analysis.

e For bodies near a wall, three-dimensional simulations indicate the onset of chaotic
flow at higher Reynolds numbers where the flow no longer retains the flow struc-
tures observed in the two-dimensional simulations. Three-dimensional simula-
tions, albeit computationally expensive, will provide a better understanding of
the transition to chaotic flow. This could also be extended to rotating cylinders
and to cylinders sliding in tandem along a wall, where three-dimensionality occurs

at low Reynolds numbers prior to the onset of periodic flow.

e For cylinders sliding in tandem, the studies could be extended to other rotation

rates and their stability to three-dimensional perturbations could be investigated.

e For a forward rolling sphere, the onset of the symmetry breaking transition occurs

at higher Reynolds numbers as the rotation rate is decreased from o = +1 to
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40.5. This could be extended to other rotation rates. The experimental studies
of Stewart et al. (2010a) showed undulations in the double threaded wake of
a sliding sphere at Re = 330, while the maximum tested Reynolds number in
their numerical simulations was 300, where the steady wake was observed. The
parameter range could be extended to higher Reynolds number to observe this
transition. For the reverse rolling sphere (a < 0), the nature of the transitions can

be investigated by performing simulations in the vicinity of the predicted values.

These studies can further be extended to investigate the flow dynamics of a freely
suspended bluff body near a wall when a flow is impulsively started. The induced forces
and moments would impart body rotation, and/or a possible displacement away from
the wall. This continuous particle-wall interactions could be investigated over a range
of Reynolds numbers using numerical solvers similar to those used here. Furthermore,
the interaction between multiple particles and their associated wake dynamics would
lead to fluid mixing in the vicinity of a wall, which is an important aspect of many
industrial applications. While the current study investigates particle-wall interactions

in various scenarios; several studies have been suggested for further exploration.
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