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Take the risk of thinking for yourself.

Much more happiness, truth, beauty and

wisdom will come to you that way.

Christopher E. Hitchens, 2010.
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Abstract

A computational study investigating the flow past bluff bodies in the low Reynolds

numbers range (Re 6 750) is presented. Two- and three-dimensional investigations are

performed to investigate various flow transitions that occur when canonical bluff bodies

such as circular cylinders and spheres are placed near a planar boundary, rotated or a

combination of the two effects.

Control parameters such as α, the non-dimensionalised rotation rate, defined as the

ratio of the tangential velocity on the body surface to the oncoming fluid velocity, and

gap height G/D, the distance between the body and the wall (G) non-dimensionalised

by the diameter D, are extensively used together with the Reynolds number. For these

investigations, α is varied between ±3, where positive values correspond to prograde

rotation and negative values correspond to retrograde rotation. The gap height is varied

from G/D =∞ for bodies in freestream to G/D ' 0 for bodies near a wall.

A spectral element based solver is used to solve the Navier-Stokes equations in two-

and three-dimensions. Computational domains are constructed so that the evaluated

flow parameters, such as the force coefficients and the shedding frequency, are accurate

to an error of less than 1%. Spatial resolution studies are performed to obtain a trade-

off between accuracy and computational time. For all investigations, the results vary

by less than 0.5% with respect to the domain with the highest resolution.

The first of these studies investigates the onset of various three-dimensional modes in

the wake of a rotating cylinder in freestream as the rotation rate is varied for α 6 2.5 and

Re 6 400. Two transitions are considered in this study; the first being the transition

to periodic flow where vortex shedding occurs. As the rotation rate was increased,

the onset of periodic flow was delayed and altogether suppressed for α > 2.1. The

second transition considered is the transition to three-dimensionality using a technique

known as linear stability analysis. For rotation rates α 6 1, the onset of the three-

dimensional modes occurs in the unsteady regime, and is identical to that observed

for a non-rotating cylinder, although the rotation rate delays the onset of transition

to higher Reynolds numbers. For higher rotation rates, the three-dimensional scenario

becomes increasingly complex, where three new modes bifurcate from the unsteady

base flow and two new modes bifurcate from the steady base flow. The spatio-temporal

characteristics and the physical mechanism leading to the instability of these modes are

discussed.
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A second study investigates the flow dynamics for a circular cylinder translating

along a wall at different gap heights. From the two-dimensional computations, the force

coefficients and the shedding frequencies were quantified. At large spacings, G/D &
0.28, the transition to three-dimensionality was observed on the unsteady base flow,

while below this gap height, the three-dimensional transition occurred in the steady

regime at Reynolds numbers lower than the transition to periodic flow. Simulations

were further carried out to determine the variation of the transitional Reynolds numbers

for cylinders rolling along a wall. For forward rolling cases, the transition to unsteady

flow occurred at increasingly low Reynolds numbers, while reverse rolling delayed the

onset of periodic flow to higher Reynolds numbers and periodic flow was suppressed for

α 6 −1.5. Linear stability analysis indicated that the onset of three-dimensional flow

was lowered as the rotation rate was increased to higher positive values of α, while three-

dimensionality was suppressed for negative rotation rates of α 6 −2. For the cylinder

sliding along a wall (α = 0), stability analysis at higher Reynolds numbers in the

unsteady state shows multiple modes unstable to spanwise perturbations. The three-

dimensional simulations indicate that the flow eventually becomes chaotic, possibly due

to the interaction between the various modes.

The second study was further extended to investigate the flow past multiple bodies

near a wall. The additional control parameter for this study was the separation distance

S/D, where S is the distance between the cylinders and Reynolds number, while the

rotation rate was fixed at α = 0. For cylinders at very small and very large separations,

the flow features were identical to that of the singular cylinder. As Reynolds number

was increased, unsteady flow was detected at close spacings, which led to an increase

in the drag coefficient on the downstream cylinder. Stability analysis showed similar

trends for the limiting cases, while for intermediate spacings, the flow first became

unstable, and then restabilised at slightly higher Reynolds number. This flow further

became unstable at higher Reynolds number. Three-dimensional simulations over a

range of separations show the flow transitioning to a chaotic state akin to the singular

cylinder.

The final study investigated the wake of a forward rolling sphere for Re 6 500.

At Re ' 140, vortex shedding occurred by the formation of hairpin vortices which

moved away from the wall and convected downstream. A secondary transition involving

the loss of planar symmetry occurred at Re ' 192, where the hairpin vortices were

displaced laterally along the wake centreline, giving a sinuous structure to the wake

when viewed from above. Beyond this transition, the lateral oscillations exhibited a

7 : 3 resonance with the hairpin vortex shedding. As Reynolds number was increased,

the flow progressively became more disorganised and chaotic. At the highest tested

Reynolds number of 500, the wake was spatio-temporally chaotic, while retaining its

sinuous structure.
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Nomenclature

A list of nomenclature used throughout the thesis is included here.

Symbol Description

A Projected frontal area, amplitude

CD Coefficient of drag, FD/(0.5ρU
2A)

CDD Coefficient of drag on the downstream cylinder

CDU Coefficient of drag on the upstream cylinder

C̄D Mean drag coefficient

CL Coefficient of drag, 2FL/(0.5ρU
2A)

C̄L Mean lift coefficient

Cx,y,z Coefficient of force in x, y, z

D Diameter

f frequency of shedding

FD Drag force

FL Lift force

G Distance between the cylinder and the wall

n Index

N Number of internal node points per macroelement

Nθ Number of Fourier planes in the azimuthal direction

r Radial cylindrical polar coordinate

rms Root Mean Square

Re Reynolds number

Rec Critical Reynolds number for transition

S Separation distance between the cylinders

St Strouhal number

Continued on the next page.
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Continued from previous page.

Symbol Description

St3D Strouhal number in the spanwise direction

Stx,y,z Strouhal number in x, y, z

t Time (dimensional)

T Period of oscillation,
Period of sampling

Tλpref Half the period of the global instability mode

∆t Timestep

U Velocity of the freestream

u Cartesian streamwise velocity

v Cartesian transverse velocity

w Cartesian spanwise velocity

x Cartesian streamwise coordinate

y Cartesian transverse coordinate

z Cartesian spanwise coordinate, Axial cylindrical polar coordinate

Symbol (Greek)

α Non-dimensionalised rotation rate, Dω/(2U)

β, k Non-dimensional spanwise wave number

Γ Circulation

ω Angular velocity

θ Azimuthal cylindrical polar coordinate

λ Wavelength

λc Critical wavelength at the onset of the instability

λpref Wavelength with the maximum growth rate

µ Fluid viscosity,
Floquet multiplier

ν Kinematic viscosity, µ/ρ

ρ Fluid density

σ Growth rate of the instability or the Floquet exponent

σ∞ Inviscid growth rate

σinviscid Growth growth from the inviscid theory of Bayly (1988)

Continued on the next page.
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Continued from previous page.

Symbol Description

τ Non-dimensionalised time, tU/D

Ψ Streamfunction

Ψλpref Measure of the streamfunction with an orbital period, Tλpref
Symbol (Miscellaneous)

§ Thesis section
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Chapter 1

Introduction

The flow past two different bluff bodies at various distances from a plane wall is in-

vestigated by two- and three-dimensional numerical simulations. In this chapter, we

briefly review relevant previous studies and then describe the key aims of this body of

work. In section 1.1.1, the classical studies on the wake dynamics of a circular cylinder

in freestream are discussed, and this is extended to multiple cylinders in tandem in sec-

tion 1.1.2. Previous studies on the wake dynamics of a rotating cylinder are discussed

in section 1.1.3. The next section deals with the flow dynamics of cylinders in close

proximity to a wall. A brief review on the wake dynamics of a sphere moving near a

wall is presented in section 1.1.4.3. Following this, the aims of this study are defined in

section 1.2, and the flow problems investigated here are described in section 1.3. The

structure of this thesis is presented in 1.4.

1.1 Review of literature

In this section, we review some of the key studies conducted on bluff body flows in

freestream and near a wall. However, since detailed specific literature reviews have been

presented in the journal articles forming subsequent chapters; only a brief overview of

relevant studies is presented here.

1.1.1 The flow past bluff bodies in freestream

Flows past bodies in freestream have been a subject of investigation for over a century,

where the wake of a circular cylinder was first investigated by Bénard (1908) and von

Kármán (1911). The variable parameter in this case is the velocity of the oncoming

flow or its non-dimensional counterpart, the Reynolds number (Re), given by the ra-

tio of the inertial to the viscous forces on the body. The flow transitions that occur
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in the low Reynolds number regime have been extensively investigated both experi-

mentally (Williamson 1988a,b, 1996a), and numerically (Karniadakis & Triantafyllou

1992; Thompson et al. 1996; Barkley & Henderson 1996). The flow remains steady

for Re . 46, and on increasing the Reynolds number, the transitions to periodic flow

occurs via a Hopf bifurcation (Norberg 2003), where vortices are alternately shed pe-

riodically from either side of the cylinder. At a Reynolds number of Re ' 190, span-

wise waviness develops in the wake, leading to three-dimensional flow. At onset, the

spanwise wavelength was found to be approximately 4D, and was termed the mode A

instability (Williamson 1988b). At slightly higher Reynolds numbers, Re ' 230, the

three-dimensional wake becomes unstable to a second instability, having a characteristic

wavelength of ' 1D, and this is termed mode B. These transitions were confirmed by

the numerical analysis of Barkley & Henderson (1996), who employed linear stability

analysis to obtain the critical Reynolds numbers for the onset of these three-dimensional

modes. The critical Reynolds number for the onset of Mode A instability was deter-

mined to be ' 188.5 for a spanwise wavelength of 3.96D, while mode B became unstable

at Re ' 260 for a spanwise wavelength of 0.8D. In reality, of course, mode B devel-

ops on the saturated three-dimensional wake state of mode A. These three-dimensional

modes were visualised by the Direct Numerical Simulations (DNS) of Thompson et al.

(1996) amongst others. According to stability analysis, Mode A was found to still be

the dominant mode at Re = 280 (Barkley & Henderson 1996), while mode B becomes

the fastest growing mode for Re > 300 (Blackburn et al. 2005). However, in practice,

mode B becomes dominant at lower Reynolds numbers (Re & 230). At higher Reynolds

numbers (Re ' 400), the flow quickly becomes chaotic (Henderson 1997).

The three-dimensional modes described above have analogues in the wakes of other

geometries. Modes A and B are known to develop in the wakes of square cylinders

(Robichaux et al. 1999) and rings Sheard et al. (2003), and are commensurate with the

periodicity of the base flows. Modes which are non-synchronous with the base flow are

also known to exist in bluff body wakes, and these modes are quasi-periodic. A mode

with this characteristic for a circular cylinder was termed mode QP (Blackburn & Lopez

2003). When the symmetry of the Kármán street is broken for a less symmetric body, a

different three-dimensional mode develops. Subharmonic modes are periodic over twice

the period of the base flow. Modes of such nature are observed when a control wire is

placed in the wake of a circular cylinder (Zhang et al. 1995), or in the case of flow over
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rings (Sheard et al. 2003, 2005a,b) and inclined square cylinders (Sheard et al. 2009;

Sheard 2011).

The studies described here detail the important transitions that occur in the low

Reynolds number range for a flow past a circular cylinder. These studies will form the

basis for further studies described here. Although the circular cylinder is the simplest

configuration investigated, the flow dynamics can be significantly altered by placing

an identical body in its vicinity, by induced rotation, or by bringing it near a plane

boundary. The effect of these changes on the flow dynamics is described in the following

sections.

1.1.2 The flow past multiple circular cylinders in freestream

The studies on multiple bodies were investigated in light of flow stabilisation that occurs

by placing an identical cylinder downstream of the original cylinder at various longitu-

dinal spacings. At very close and very large spacings, the associated flow dynamics are

effectively identical to a single body in freestream. Based on the separation distance,

S/D, various researchers (Igarashi 1981; Zdravkovich 1987; Didier 2007) have identified

different regimes of flow. The broad classifications based on this parameter are:

• 0.1 6 S/D 6 0.2 − 0.8, a region of close spacing, where the shear layers shed

from the upstream cylinder do not reattach on the downstream cylinder. The

two cylinders behave as a single extended body and vortices formed are from the

detached shear layers of the downstream cylinder.

• 0.2− 0.8 6 S/D 6 2.4− 2.8, an intermediate regime where the shear layers shed

from the upstream cylinder reattach onto the downstream cylinder, and shedding

takes place behind the downstream cylinder. Also observed in this regime was the

intermittent vortex formation behind the upstream cylinder and reattachment of

the shear layers.

• S/D > 2.8, vortices are shed from both cylinders.

Another important observation was that the drag force coefficient on the down-

stream cylinder was negative until the critical spacing of S/D ' 2.5, and this distance

was labelled the “drag inversion distance”. Mizushimaa & Suehiro (2005) reported the

delay in transition to periodic flow to higher Reynolds numbers at close spacings. For
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S/D = 1 and 3, the critical values for the transition were Re = 68 and 78.5, respec-

tively, which are much higher than that observed for an isolated cylinder. Furthermore,

by placing a downstream cylinder in this critical region, the onset of three-dimensional

flow can be controlled. The three-dimensional investigations by Deng et al. (2006) show

that the flow remains two-dimensional largely due to the limiting space for the shed

vortices to roll up when the separation distances are small. They further observed

that the flow became increasingly three-dimensional as the critical spacing distance is

reached.

Recent numerical investigations of the flow around isolated tandem cylinders by

Carmo et al. (2010) on the onset of three-dimensionality showed the growth of three

new modes at various separation distances for Re > 200. For low separation distances,

the onset of three-dimensionality occurs via mode T1, whose spatio-temporal symmetry

resembles that of the mode B instability observed in the wake of an isolated circular

cylinder at higher Reynolds numbers. This mode had a spanwise wavelength of '
2D. Two other modes were observed when the cylinders were spaced between 0.8

6 S/D 6 1.5. The physical mechanism of the mode T2 instability was believed to

be centrifugal, while mode T3 had similar characteristics to mode A. Mode T2 had a

spanwise wavelength of ' 3D, while mode T3 had a spanwise wavelength of ' 4.6D

at onset. At large separations, the mode A instability was followed by the mode B

instability, akin to that observed for an isolated cylinder in freestream.

1.1.3 The flow past a spinning circular cylinder in freestream

The rotation of a circular cylinder has previously been used to control the flow dynamics

and achieve flow stabilisation. Due to the imposed rotation, the flow on one side of the

cylinder remains attached while on the other side, flow separation occurs, leading to a

net lift force in the direction away from the side where the flow is attached. This is

known as the “Magnus effect” and one of its earliest applications was in the propulsion

of ships (Prandtl 1925).

Several researchers have investigated the flow at different rotation rates both exper-

imentally and numerically. Although early numerical work was carried out at very low

Reynolds numbers Re 6 40 (Ingham 1983; Badr et al. 1989, 1990), recent studies (Chen

et al. 1993; Chew et al. 1995; Kang et al. 1999; Stojković et al. 2002; Pralits et al. 2010)

have extended the Reynolds number range to higher values. Vortex shedding occurred
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for α . 1.9, beyond which vortex shedding was suppressed. The rotation rate at which

vortex shedding ceased was found to vary with Reynolds number.

Mittal & Kumar (2003) performed numerical experiments at Re = 200 for α 6 5.

At this Reynolds number, vortex suppression was observed around α = 2, and the

flow remained steady until higher rotation rates, where vortex shedding reappeared

over a small range of rotation rates (4.34 6 α 6 4.75). The vortex shedding in this

regime was single-sided and the shedding frequency was much lower compared to that at

lower rotation rates. A similar study performed by Stojković et al. (2003) showed that

the range of α at which the two shedding regimes (two- and one-sided) existed varied

with Reynolds number. The upper limit at which primary shedding ceased, increased

monotonically with Reynolds number. The range at which secondary shedding was

observed shifted to lower rotation rates at high Reynolds numbers. Also, the range was

narrower at lower Reynolds numbers. The Strouhal number was found to be dependent

more on the rotation rate than the Reynolds number.

Recent experimental investigations were performed by Kumar et al. (2011) α 6 5

using the hydrogen bubble technique to obtain flow field visualisations for Re 6 400. At

Re = 200, they report that the vortex street behind the body was deflected for α 6 1.9,

beyond which the vortex shedding becomes less pronounced and being suppressed for

α ' 2. At higher rotation rates, the single-sided vortex shedding observed numerically

by Mittal & Kumar (2003) and others was confirmed by the use of Particle Image

Velocimetry (PIV). In addition, they visualised the flow for Re = 300 and 400 and

computed the variation of Strouhal number at different rotation rates. In the primary

shedding mode, the shedding frequency was independent of the rotation rate, while

in the secondary shedding regime, the shedding frequency decreased on increasing the

rotation rate. The experimentally obtained values of Strouhal number in the secondary

shedding regime were consistent with the numerical studies of Akoury et al. (2008) and

Mittal & Kumar (2003). At higher Reynolds numbers, the wake was reported to be

highly three-dimensional.

The onset of three-dimensionality for rotation rates of α > 0 had not been inves-

tigated until recently, although it has been generally stated that the flow is three-

dimensional beyond Re = 200. Akoury et al. (2008) performed direct numerical

simulations in two and three dimensions for a rotating cylinder. From their two-

dimensional studies, they mapped the variation of St at increasing rotation rates at
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different Reynolds numbers for α 6 6. The secondary shedding regime, where a single-

sided vortex is shed from the cylinder, broadened at higher Reynolds number, with

the regime shifting towards lower rotation rates. This was attributed to the decreasing

influence of the viscous component at higher Reynolds numbers (Stojković et al. 2003).

This secondary shedding regime occurred between α = 4.75 and α = 5.25 at Re = 100,

while at Re = 500, secondary shedding occurred in the range 3.6 6 α 6 5. The Strouhal

number was ' 0.05, much lower than that observed for the spinning cylinder at low

rotation rates, consistent with the findings of Mittal & Kumar (2003). The Strouhal

number decreased as rotation rate was increased in this regime. Three-dimensional

simulations were performed for the cylinder rotating at α 6 1.5. At Re = 300, the

growth of the spanwise component of velocity grew steadily, indicating the onset of

three-dimensional flow. This transition was found to occur through a supercritical bi-

furcation. Using Landau modelling, they determined the critical Reynolds number for

the transition to three-dimensional flow for α = 0.5 to occur at Rec = 219.8. Further

investigations at α = 1.5 and Re = 200 showed damping of the spanwise component

of flow, indicating two-dimensional flow. Using proper orthogonal decomposition, they

reconstructed the three-dimensional modes for α = 0.5. The reconstructed mode was

found to have a similar spanwise wavelength to the mode A instability (' 4D) observed

for a non-rotating cylinder at the onset of three-dimensionality (Williamson (1988b),

Thompson et al. (1996)). Furthermore, at Re = 300, the wake retained its mode A

structure, possibly due to enhanced stability of the vortex pairs attributed to the vor-

ticity induced by cylinder rotation in the spanwise direction. The critical values of

transition to three-dimensional flow for rotation rates other than α = 0.5 were not

reported.

The effect of three-dimensional instabilities at higher rotation rates has been in-

vestigated by Mittal (2004) for α = 5 at Re = 200. The two-dimensional flow field

is steady while the three-dimensional simulations show the growth of centrifugal in-

stabilities. They also tested the effect of various boundary conditions for cylinders of

different aspect ratios (the ratio of the cylinder diameter to its length). For aspect

ratios of 5, 10 and 15 with slip walls, the time-history of the drag coefficient showed

oscillatory behaviour. The cylinder with lower aspect ratio and slip walls resembled

two-dimensional flow (which was steady). However, longer aspect ratio cylinders with

no-slip walls showed fluctuations, primarily because of the interaction of the boundary
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layer of the wall and the rotating cylinder. The three-dimensional flow was associated

with centrifugal instabilities of around 1D spanwise wavelength. This instability was

predicted to cause a reduction in lift and an increase in drag.

Recent linear stability investigations by Meena et al. (2011), at Re = 200 for 3 6

α 6 5, indicate the presence of modes with purely real growth rates (indicating they

are synchronised with the two-dimensional flow) for α 6 4.3. Their three-dimensional

investigations show what appear to be centrifugal instabilities near the cylinder and

the time histories of the force coefficients indicate the onset of aperiodic flow.

Although modes A and B are known to occur for a non-rotating cylinder, the critical

values at the onset of these modes for higher rotation rates is not known. Furthermore,

at higher rotation rates of α & 3, centrifugal instability is said to dominate in the near

wake. Nonetheless, the parameter map of Re− α remains to be explored for the onset

of three-dimensional flow.

1.1.4 The flow past bluff bodies near a wall

1.1.4.1 The flow past a cylinder near a wall

Several studies (Bearman & Zdravkovich (1978); Price et al. (2002); Lei et al. (2000)

and others) have considered the changes in flow features brought about by placing a

bluff body near a planar surface, where the lower wall remains stationary, leading to

the formation of a boundary layer upstream of the cylinder. Compared to a cylinder in

freestream, several changes, including that of flow structures, are evident. For a circular

cylinder near a wall, vortex shedding occurs by the pairing of the shear layer rolled up

behind the cylinder and the oppositely signed boundary layer on the wall, where the

induced vorticity lifts away from the wall to form a compact vortical structure which

convects downstream. The changes in the shedding frequency and the force coefficients

have been documented. Very few studies (Huang & Sung 2007; Yoon et al. 2010)

have considered a circular cylinder translating near a stationary a wall, where a wall

boundary layer does is absent.

Huang & Sung (2007) performed two-dimensional simulations for a circular cylinder

moving near a wall for 0.1 6 G/D 6 ∞ and Re 6 600. The gap height, G, at which

alternate vortex shedding disappeared decreased from 0.28D to 0.25D as the Reynolds

number was increased from 300 to 600. The non-dimensionalised shedding frequency

(St) at different Reynolds numbers increased as the cylinder was brought closer to the
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wall (' 0.5D), followed by a rapid decrease as the gap height was decreased. They

further quantified the lift and drag coefficients, with the lift coefficient showing a linear

increase as the cylinder was brought closer to the wall. They however, did not rule out

the possibility that three-dimensional effects would be important for such flows.

Using an immersed boundary technique, Yoon et al. (2010) performed numerical

investigations at various gap heights for a circular cylinder moving parallel to a wall at

Re 6 200. The time-averaged lift and drag coefficients decreased exponentially as the

gap height was increased. They observed steady flow at higher Reynolds numbers as

the gap height was decreased. Vortex shedding persisted at Re = 120 for the cylinder

with G/D = 0.1.

Mahir (2009) investigated the onset of three-dimensional flow for a square cylinder

near a fixed wall for Re 6 250 as the gap height was increased from 0.1 to 4. At

Re = 185, mode A type vortex structures of spanwise wavelength 3D were observed

for gap heights greater than G/D = 1.2, whilst at G/D = 0.8, mode B type vortex

structures with 1D spanwise wavelength were observed. Below G/D = 0.5, neither

mode A nor B type vortex structures were observed. At Re = 250, mode B type vortex

structures were observed at larger gap heights, whilst at lower gap heights the vortex

structure was strongly distorted in the vicinity of the cylinder. In the frequency spectra

of the streamwise and spanwise velocities for G/D = 0.8 and Re = 185, period-doubling

was observed.

Stewart et al. (2006, 2010b) performed numerical and experimental investigations

for a circular cylinder rolling along a wall at a very small gap height (G/D = 0.005) and

Re 6 500 for 1 6 α 6 −1. For the non-rotating cylinder, they reported that the flow

was steady up to Re ' 160, beyond which periodic flow was observed, where oppositely

signed vortex structures combined and self-propelled away from the wall. This value

is much higher than that observed for an identical cylinder in freestream. The effect

of rotation on the flow dynamics and force coefficients was reported. Forward rolling

lowered the transitional Reynolds number to periodic flow, while reverse rolling delayed

the onset of periodic flow to higher Reynolds numbers. From their linear stability

analysis, the transition to three-dimensional flow occurred in the steady regime for

all rotation rates, which is in contrast to that observed for a cylinder in isolation. A

decrease in the spanwise wavelength of the three-dimensional instability was observed as

the rotation rate was decreased to lower values. Furthermore, their experimental wake
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visualisations for the cylinder near a wall in a water tunnel were in good agreement

with the numerical simulations.

The two-dimensional studies have detailed the two-dimensional structures for bodies

in freestream and near a wall; very little is known about the onset of three-dimensional

flow for intermediate gap heights. To reiterate, for cylinders in freestream, the flow first

transitions to a periodic state prior to becoming three-dimensional, while for bodies near

a wall, the flow becomes three-dimensional in the steady regime prior to the onset of

periodic flow. Furthermore, for bodies near a wall, the effect on the flow structures on

increasing the rotation rate to higher values is unknown. The influence of the spanwise

flow on the two-dimensional structures is yet to be determined.

1.1.4.2 The flow past multiple cylinders near a wall

Numerous studies have been conducted investigating the flow dynamics of multiple

cylinders in freestream and for bodies near a wall; very few studies have considered

the two effects in tandem. Bhattacharyya & Dhinakaran (2008) conducted numerical

simulations for a pair of tandem square cylinders in a linear shear flow at G/D = 0.5

for Re 6 200. Below Re = 125, the shear layers, which separate from the two sides,

are unable to interact and cause vortex shedding. At a spacing of S/D 6 2, the

two cylinders effectively behave as one body at Re 6 200. However, for a spacing

of S/D = 2 − 3, vortices were shed from the downstream cylinder only. Beyond this

range, vortices were shed from both cylinders; at even larger separation distances, the

St recorded on the cylinders matched that of a single cylinder under a similar flow

condition. The height above the wall and the spacing distance were critical for the

shear layers to interact leading to the formation of vortices.

Harichandan & Roy (2012) performed numerical investigations for circular cylinders

in tandem when close to a wall at Reynolds numbers Re = 100 and 200 for separation

distances of S/D = 1 and 4. The bodies were placed at 0.5D and 1D above the

stationary wall. They observed that the dependence on the separation distance is

greater for the flow stability compared to the gap to the wall. Vortex shedding occurred

when the gap heights and the separation distance were both large.

For multiple bodies near a wall, the stabilising effect of the flow structures is un-

known. Furthermore, the transition to three-dimensionality for cylinders at various

spacings near a wall is yet to be determined.
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1.1.4.3 The flow past a sphere near a wall

We here extend the studies examined to consider flows past spheres near a wall. For a

sphere in freestream, the flow transitions from a steady axisymmetric state to a steady

asymmetric state at Re = 212 (Johnson & Patel 1999) with the formation of a “double

threaded wake” with a planar symmetry. A second transition occurs at Re = 272,

where this double threaded kinks to form hairpin vortices. The two transitions were

found to be supercritical in nature (Ghidersa & Dušek 2000; Thompson et al. 2001).

Numerical simulations indicate that the planar symmetry is broken at Re ' 345 (Mittal

1999), which is in line with experimental investigations of Sakamoto & Haniu (1990)

who suggested that a transitional regime exists for 420 6 Re 6 480, wherein the hairpin

vortices are intermittently displaced to either side of the wake centreline. At higher

Reynolds numbers (Re & 650), chaotic flow was observed (Mittal & Najjar 1993).

Direct numerical simulations were performed by Zeng et al. (2005) for a sphere

moving parallel to a wall. Their study showed that as the sphere was moved closer to

the wall, the transition to the unsteady state occurred at Reynolds numbers lower than

for the freestream case (Re < 272), with a sudden increase observed for the closest tested

distance of 0.25D. The effect of free rotation was also studied. In their investigations,

a symmetry plane was used, curtailing the development of a lateral wake. Zeng et al.

(2009) also performed direct numerical simulations for a stationary spherical particle

close to a plane wall in a linear shear flow. They present results for gap ratios between

0.005 6 G/D 6 3.5, using a symmetry plane. The double-threaded wake is observed

at Re = 200 for larger gap ratios, while a toroidal structure engulfing the particle

is observed for lower Reynolds numbers. These findings are similar to the results of

Stewart et al. (2010a), where the transition to an unsteady state for the non-rotating

sphere was in excess of Re = 300. Furthermore, they propose empirical relationships

for the lift and drag coefficient variation with distance from the wall.

Stewart et al. (2010a) also performed experimental and numerical simulations for a

rolling sphere at other rotation rates. For a forward rolling sphere at α = +1, unsteady

flow was first observed at Re = 150, where vortex shedding occurred by the formation

of hairpin vortices, which convected away from the wall and diffusing in the far wake.

The same was observed in their experimental and numerical visualisations at Re = 200.

For a reverse rolling sphere at α = −1 and Re = 300, the unsteady wake developed

lateral oscillations on addition of white noise in their numerical simulations. Recent
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experimental findings of Bolnot et al. (2011) showed the development of a sinuous mode

in the wake of a forward rolling sphere. Their dye visualisations at Re = 190 showed

that the wake maintained planar symmetry, while at Re = 230, the hairpin vortices

were displaced across the wake centreline.

From the above studies, the non-planar symmetric wake modes in the wake of

a rolling sphere have not been observed numerically, possibly due to the prohibitive

computational expense for such studies. Furthermore, the instabilities grow from small

amplitudes (O(10−5)) before attaining a saturated state, requiring time integration over

several hundred time units, unless external noise is added to achieve a speed up effect.

Furthermore, the nature of these transitions has not been investigated.

1.2 Aims of this study

This study aims to compute the flow past bluff bodies, such as circular cylinders and

spheres, to determine the flow structures by varying the spatial location of the body with

respect to a fixed boundary and/or by imposing a rotation. The study also extends

to the investigation of flow past multiple bluff bodies and the resulting influence on

the flow state. A two-dimensional spectral element numerical solver is employed to

obtain the base flow solutions, following which the stability of these flows to three-

dimensional perturbations is investigated for the above scenarios. The transitional

values of Reynolds number are ascertained in each case, mapping regions of stability.

For the spinning cylinder in freestream, the major focus is to determine regions of

stability (or instability) on the α−Re plane, apart from determining the spatio-temporal

symmetries of unstable modes. The stability is investigated not only with respect to the

periodicity of the base flow, but also with respect to the three-dimensionality of the base

flow. The following study on the translating cylinders at varied gap heights bridges the

existing knowledge gap between the bodies in isolation and those near a wall. In this

case, the two parameters varied are the gap height and the Reynolds number, while

the rotation rate is fixed at zero. The other studies extend the parameter space by

investigating the flow features at a wide range of rotation rate and by introducing an

identical body at close distances to the original. The final study investigates the route

to chaotic flow for a sphere rolling along a wall at a fixed rotation rate as the Reynolds

number is varied.

The overall study aims to explore and extend the parameter ranges with respect
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to bluff bodies over a multi-dimensional parameter space. The study further aims

to investigate the new three-dimensional modes which are observed in the wake of a

spinning cylinder.

These studies are generally motivated by a desire to extend and improve our un-

derstanding of fluid-particle and fluid-structure systems, between the limits of creeping

flow and high Reynolds number turbulent regimes. It is clear that the wake instability

modes persist, albeit in a less distinct state, for wakes after the flow has become fully

turbulent, and contribute to the persistent larger scale structures in the flow. These

larger scale structures have a strong part to play in cross stream energy and momentum

transport. In addition, the mean and time-dependent forces on particles and structures

are also imminently tied to the wake flow characteristics.

1.3 Problem overview

The effect on the flow dynamics of a bluff body is investigated by a numerical study

involving a set of control parameters, which are selectively varied. A schematic diagram

of the studies undertaken is shown in figure 1.1. The governing parameters which are

used to describe the problem are the non-dimensionalised rotation rate, α, defined by

the ratio of the angular velocity of the body to the freestream velocity, U . It is math-

ematically given by α = ωD/2U . Here, ω is the rotation rate of a circular cylinder of

diameter D. For the circular cylinder rotating forward, where the cylinder rotation at

the top is in the opposite direction of the oncoming flow is assigned positive values of

α, while for reverse rotation, α takes negative values. In order to represent bodies in

freestream, we define a second parameter, G/D, known as the gap height. This param-

eter represents the distance of a body away from a plane wall. For cylinders at large

distances to a wall, G/D =∞, while for bodies in close proximity to the wall, G/D '
0. The third parameter widely used in this study is the Reynolds number, defined as

the ratio of the inertial forces to the viscous forces and is given by, Re = ρUD/µ, where

ρ and µ are the density and viscosity of the fluid. For ease of computation, the frame

of reference is attached to the centre of the bluff body under investigation, and in this

frame the velocity of the lower wall is set to that of the oncoming flow velocity.

The first study involves the investigation of a circular cylinder in freestream, where

the gap height is maintained constant at G/D = ∞, while α and Re are varied. This

is shown in the top left of the image. The second study involves the variation of gap
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Figure 1.1: Schematic showing the relationship between the problems investigated. The
open circles represent cylinders, while the filled circle represents a sphere. The frame of
reference is attached to the centre of the bluff body and the lower wall translates with a
velocity equal to the oncoming fluid velocity.

height for bodies away from the wall to that on the wall. In this case, the rotation

rate is fixed at zero, while the Reynolds number and gap height are varied. For bod-

ies on the wall, the flow features are investigated by varying the rotation rate. The

study is further extended to multiple bodies, where a second cylinder, having the same

diameter is placed downstream. The separation distance between the two cylinders is

non-dimensionalised by the cylinder diameter and is represented by S/D, where S is

the distance between the two cylinders. The final study involves the simplest three-

dimensional bluff body, a sphere of diameter D, shown by the fully filled circle. In this

case, the rotation rate and gap height are held constant, while the Reynolds number is

varied. The limits of the parameter space are mentioned in each study.

Several constraints are imposed in this study. The fluid around the bluff body is

assumed to be homogeneous, incompressible, and invariant to thermal effects. The

oncoming flow is assumed to laminar, uniform and having zero turbulence intensity

upstream of the body. The fluid is further assumed to be Newtonian, where the shear

stress of the fluid varies directly with the rate of strain. The simulations are performed

using an unsteady solver generally starting from a quiescent initial state, and the fluid

flow equations are marched forward in time, for several hundred time units. The non-

dimensional time is represented by τ , where τ = tU/D, with t being the time. The forces
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on the bluff bodies are monitored after the initial transience has died out and the flow is

steady or periodic. The body forces are computed by the summation of the pressure and

viscous forces acting on the body in a particular direction. The body force components

are non-dimensionalised by the upstream dynamic pressure and frontal area of the body,

to obtain the force coefficients. For the circular cylinder, the force coefficients (per unit

width) take the form Cx,y = Fx,y/(0.5ρU
2D), while for the spherical bluff body, the

force coefficients take the form, Cx,y,z = 8Fx,y,z/(0.5ρU
2πD2). For cases where the flow

is periodic, the shedding frequency is measured by the Strouhal number, St, and is

given by St = fD/U , where f is the frequency of shedding.

1.4 Structure of the thesis

The remainder of this thesis is organised as follows. The following chapters contain

results from the studies of bluff bodies. Each chapter consists of a brief overview fol-

lowed by the submitted/accepted/published journal article. Chapter 2 details the wake

of a rotating circular cylinder in freestream, where a number of new three-dimensional

modes are observed. The following chapter, chapter 3, deals with the onset of three-

dimensional flow as the circular cylinder is brought closer to a plane wall. Chapter 4

deals with bodies rolling along a wall at different rotation rates, while chapter 5 in-

vestigates the flow features for multiple bodies near a wall. The final chapter, chapter

6, deals with the new wake mode observed behind a rolling sphere at higher Reynolds

numbers and rapid transition to chaotic flow as the Reynolds number is increased.

Finally, broad conclusions and future directions are presented.
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Chapter 2

Flow past a spinning cylinder in
freestream: Three-dimensional
effects

2.1 Overview

This chapter presents the findings of the linear stability analysis in the wake of a

spinning cylinder in the low Reynolds number range. For a non-rotating cylinder

(α = 0), the linear stability analysis of Barkley & Henderson (1996) showed that the

two-dimensional wake becomes unstable to a long wavelength instability (' 4D) around

Re = 190, followed by a short wavelength instability (' 4D) at higher Reynolds num-

bers. The analysis confirmed the previous experimental investigations by (Williamson

1988b, 1996b) and was further supported by the DNS of Thompson et al. (1996). The

numerical studies for a spinning cylinder have mainly focussed on the flow features from

a two-dimensional perspective, while generalising that a three-dimensional flow state

exists for Re & 200. Nonetheless, the spinning cylinder studies have gained interest

from a flow stability perspective, due to the cessation of the vortex street for rotation

rates & 1.9 (Mittal & Kumar 2003; Akoury et al. 2008; Kang et al. 1999; Stojković

et al. 2003). Vortex shedding was found to resume at higher rotation rates, with a

single-sided vortex being shed with a low shedding frequency. This regime occurred

over a small range of Reynolds numbers and rotation rate.

The recent DNS of Akoury et al. (2008) for a spinning cylinder for α 6 1.5, showed

that the critical Reynolds number for the onset of three-dimensional flow was delayed

to Re = 220 for α = 0.5, with mode A type instability at the onset, which persisted in

the wake even at Re = 300. They further report that the flow was two-dimensional at

α = 1.5, Re = 200. The occurrence of three-dimensionality for other rotation rates is
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yet to be determined. Further questions arise regarding the three-dimensional nature

of the wake. How does the onset of three-dimensional flow vary on increasing rotation

rate and Reynolds number? Does the breaking of the flow symmetry by induced body

rotation give rise to other three-dimensional modes? What three-dimensional modes

occur in the steady regime of flow when vortex shedding ceases?

To answer these questions, two-dimensional numerical simulations are performed for

α 6 2.5 and Re 6 400, followed by linear stability analysis. Curves of marginal stability

of the three-dimensional modes are presented on the α,Re plane. The characteristics

of each of the three-dimensional modes is described and the physical mechanisms of

instability for the modes are proposed. Furthermore, the regions of steady-unsteady

flow are also obtained using a steady solver.

2.2 Three-dimensional flow features of a spinning cylinder
in freestream

The following article was submitted in 2012 to Journal of Fluid Mechanics. This work

was co-authored by J. S. Leontini, M. C. Thompson and K. Hourigan, and is entitled,

“On the three-dimensionality of a spinning cylinder in freestream”. The paper is re-

produced in this thesis directly from the version submitted to the editor for review.
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The wake of a rotating circular cylinder in a freestream is investigated for Reynolds numbers
Re 6 400 and non-dimensional rotation rates ofα 6 2.5. Two aspects are considered. The first is
the transition from a steady flow to unsteady flow characterised by periodic vortex shedding. The
two-dimensional computations show the onset of unsteady flow is delayed to higher Reynolds
numbers as the rotation rate is increased, and vortex shedding is suppressed forα > 2.1 for
all Reynolds numbers in the parameter space investigated. The second aspect investigated is the
transition from two-dimensional to three-dimensional flowusing linear stability analysis. It is
shown that at low rotation rates ofα 6 1, the three-dimensional transition scenario is similar to
that of the non-rotating cylinder. However, at higher rotation rates, the three-dimensional scenario
becomes increasingly complex, with three new modes identified that bifurcate from the unsteady
flow, and two modes that bifurcate from the steady flow. Curvesof marginal stability for all of
the modes are presented in a parameter space map, the definingcharacteristics for each mode
presented, and physical mechanisms of instability discussed.

Key Words: Wakes, vortex shedding, vortex streets, parametric instability

1. Introduction
The flow past a rotating cylinder is a function of two non-dimensional parameters. These

are the Reynolds number,Re = UD/ν, whereU is the freestream velocity,D is the cylinder
diameter, andν is the kinematic viscosity, andα = ωD/2U , whereω is the rotational speed of
the cylinder. This latter parameter is therefore the ratio of the surface velocity of the cylinder to
the freestream velocity.

Flow past a non-rotating circular cylinder in the low Reynolds number range and the bifurca-
tions from one state to another have been extensively studied, and several regimes of flow have
been identified. Experimental work on the transition between the steady and unsteady regime
have been discussed by Williamson (1996b) and others. Numerical investigations have also con-
tributed to the understanding of the flow. Several research groups, e.g., Barkley & Henderson
(1996), Karniadakis & Triantafyllou (1992), Thompsonet al. (1996) have investigated the tran-
sition from two-dimensional vortex shedding to three-dimensional flow atRe ≃ 190, where
the wake vortices develop a waviness in the spanwise direction at a wavelength of around4D,
whereD is the diameter of the cylinder. This wake flow is known as modeA (Williamson
1988), and has also been shown to be the saturated form of a linear mode growing on the two-
dimensional base flow (Barkley & Henderson 1996). Further increasingRe sees a second type
of three-dimensional flow develop, with fine-scale (a wavelength of around0.8D in the spanwise
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direction) streamwise vortices developing in the braid shear layers between wake vortices. This
flow is known as mode B (Williamson 1988). Even though in reality this flow develops from the
already three-dimensional mode A wake, it is also well described by a linear mode growing on
the two-dimensional base flow (Barkley & Henderson 1996).

Both of the linear modes corresponding to mode A and B are commensurate with the base
flow, introducing no new frequencies. However, a mode which is incommensurate has also been
observed in the wakes of cylinders. Due to the introduction of a second frequency, this mode is
expected to be quasi-periodic, and so is designated mode QP (Blackburn & Lopez 2003).

When the spatio-temporal symmetry of the vortex street is broken (as occurs when the cylinder
is rotating), further modes become possible. In particular, subharmonic modes which repeat over
two cycles of the two-dimensional base flow can occur. Such a mode was detected by Zhang
et al. (1995) in the wake of a circular cylinder with a control wire,by Sheard (2011); Sheard
et al. (2009) in the wake of an inclined square cylinder, by Leontini et al. (2007) in oscillating
cylinder wakes, and in a series of papers (Sheardet al.2003, 2005a,b), a subharmonic mode has
been described in the wakes of rings. It is expected that similar modes should occur for rotating
cylinders.

The effect of rotation is to cause opposing viscous effects on either side of the cylinder cen-
treline. Depending on the rotation rate, the flow may remain attached on one side of the cylinder
while separating off the other, causing a net lift force directed away from the side where the flow
remains attached. This is known as the Magnus effect (Prandtl 1925).

One of the earliest numerical studies was performed by Ingham (1983), where steady state
solutions were obtained forRe 6 40 and for rotation rates ofα 6 0.5. At Re = 5, the drag
force increases with rotation rate while at a slightly higher Reynolds number ofRe = 20, the
drag force increases after a slight decrease. Further investigations by Badret al. (1989) were
performed in the steady and unsteady regimes of flow. The major focus of their work dealt with
the flow behaviour of an impulsively started rotating and translating cylinder. They observed
periodic flow at Reynolds numbers greater than 60 for0 6 α 6 1. Badret al. (1990) expanded
the parameter range by performing two-dimensional simulations and experiments for Reynolds
numbers between103 and104 for rotation rates of0.5 6 α 6 3. The flow patterns obtained from
the numerical simulations atRe = 1000 compared well with those from their experiments. They
further showed that vortex shedding is suppressed forα > 2. The numerical simulations of Chen
et al. (1993) showed a single vortex being shed atα = 3.25 atRe = 200.

Chew et al. (1995) investigated the flow dynamics of cylinder rotation at Re = 1000 for
α 6 6 numerically by using a hybrid vortex method. Vortex shedding of the Kármán type ceased
for α > 2, where a closed streamline formed around the cylinder. The authors suggested that
three-dimensional instabilities may occur in real flows in this regime. They further quantified the
lift and drag coefficients. The shedding frequency was reported to increase as the rotation rate
increased.

Two-dimensional numerical simulations were performed forRe < 160 andα < 2.5 by Kang
et al.(1999), following which the lift and drag coefficients were quantified. The critical Reynolds
number for the transition to periodic flow increased as rotation rate was increased, with the
dependence being logarithmic. They further reported that the Strouhal number was independent
of the rotation rate, while being strongly dependent on the Reynolds number. The mean lift force
was found to increase and the mean drag force decreased as therotation rate was increased. The
pressure force on the rotating cylinder contributed to over90% of the lift force at low Reynolds
numbers. Further, the amplitude of the lift coefficient remained constant with rotation rate, while
the amplitude of the drag coefficient increased linearly with rotation rate.

Stojković et al. (2002) performed two-dimensional finite-volume numericalsimulations for
Re 6 100, and rotation rates ofα < 12. ForRe = 100, vortex shedding was suppressed atα =
1.8 and reappeared for a narrow range of4.8 6 α 6 5.15. They performed three-dimensional
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simulations with periodic boundary conditions to confirm that the shedding occurs irrespective
of the flow having a spanwise component. Various relations between the force coefficients with
rotation rates were obtained at low Reynolds numbers. In a subsequent investigation, Stojković
et al. (2003) obtained the stability diagrams forRe 6 200. The shedding frequency was found
to be much lower than that in the initial shedding regime. Furthermore, they quantified the drag
force coefficient at various rotation rates. On increasing the rotation rate, the averaged drag force
was initially found to decrease until the onset of the secondary shedding, where the drag force
coefficient increased marginally before becoming negativeand then increased for rotation rates
past the secondary instability.

Numerical simulations have been performed by Mittal & Kumar(2003) atRe = 200 for a
wide range of rotation rates (0 6 α 6 5). Two shedding regimes were reported. For0 6 α 6
1.91, double sided vortex shedding was observed. In this first shedding regime, the reduction
in the lateral width of the wake and the decrease in the shedding frequency was reported. The
wake was displaced away from the centreline as the rotation rate was increased. Forα & 2,
the disappearance of vortex shedding was reported until higher values ofα. Vortex shedding
reappeared between4.35 6 α 6 4.76, where one sided shedding occurred. The frequency of
shedding in second regime was found to be quite low.

A similar study performed by Stojkovićet al. (2003) showed that the range ofα at which the
two shedding regimes (two- and one-sided) existed varied with Reynolds number. The upper limit
at which primary shedding ceased increased monotonically with Reynolds number. The range at
which secondary shedding was observed shifted to the lower rotation rates at high Reynolds
numbers. Also, the range was narrower at lower Reynolds numbers. The Strouhal number in the
secondary vortex shedding regime was found to be much lower than that in the primary shedding
regime. The Strouhal number was found to be dependent more onthe rotation rate than the
Reynolds number.

The effect of three-dimensional instabilities at higher rotation rates has been investigated by
Mittal (2004) forα = 5 atRe = 200. The two-dimensional flow field is steady while the three-
dimensional simulations show the growth of centrifugal instabilities. They also tested the effect
of various boundary conditions for cylinders of different aspect ratios (the ratio of the cylinder
diameter to its length). For aspect ratios of 5, 10 and 15 withslip walls, the time-history of the
drag coefficient showed oscillatory behaviour. The cylinder with lower aspect ratio and slip walls
resembled two-dimensional flow (which was steady). However, longer aspect ratio cylinders with
no-slip walls showed fluctuations, primarily because of theinteraction of the boundary layer of
the wall and the rotating cylinder. The three-dimensional flow was associated with centrifugal in-
stabilities of around1D spanwise wavelength. This instability was predicted to cause a reduction
in lift and increase in drag.

The onset of three-dimensionality for rotation rates ofα > 0 had not been investigated until re-
cently, although it has been generally stated that the flow isthree-dimensional beyondRe = 200.
Akoury et al. (2008) performed direct numerical simulations in two- and three-dimensions for
a rotating cylinder. From their two-dimensional studies, they mapped the variation ofSt at in-
creasing rotation rates at different Reynolds numbers forα 6 6. The secondary shedding regime,
where a single-sided vortex is shed from the cylinder, broadened at higher Reynolds number, with
the regime shifting towards lower rotation rates. This was attributed to the decreasing influence
of the viscous component at higher Reynolds numbers (Stojković et al. 2003). This secondary
regime occurred betweenα = 4.75 andα = 5.25 atRe = 100, while atRe = 500, secondary
shedding occurred in the range3.6 6 α 6 5. The Strouhal number was≃ 0.05, much lower
than that observed for the spinning cylinder at low rotationrates, consistent with the findings of
Mittal & Kumar (2003). The Strouhal number decreased as rotation rate was increased in this
regime. Three-dimensional simulations were performed forthe cylinder rotating atα 6 1.5. At
Re = 300, the growth of the spanwise component of velocity grew steadily, indicating the onset
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of three-dimensional flow. This transition was found to occur through a supercritical bifurcation.
Using Landau modelling, they determined the critical flow speed for the transition to three-
dimensional flow forα = 0.5 to occur atRec = 219.8. Further investigations atα = 1.5 and
Re = 200 showed the damping of the spanwise component of flow, indicating two-dimensional
flow. Using proper orthogonal decomposition, they reconstructed the three-dimensional modes
for α = 0.5, which have the spanwise wavelength of the mode A instability (≃ 4D), similar to
that of a non-rotating cylinder at the onset of three-dimensionality (Williamson (1988), Thomp-
sonet al. (1996)). Furthermore, atRe = 300, the wake retained its mode A structure, possibly
due to enhanced stability of the vortex pairs attributed to the vorticity induced by cylinder rota-
tion in the spanwise direction. The critical values at the onset of three-dimensional flow at higher
rotation rates was not stated.

Recent experimental investigations were performed by Kumar et al. (2011) forRe 6 400 and
α 6 5 using the hydrogen bubble technique to obtain flow field visualisations to replicate the
secondary shedding regime. AtRe = 200, they report that the vortex street behind the body is
deflected forα 6 1.9, beyond which the vortex shedding became less pronounced with the wake
forming a sinuous pattern untilα ≃ 2, where steady flow is observed. Furthermore, the single-
sided vortex shedding found numerically by Mittal & Kumar (2003) was confirmed by the use of
Particle Image Velocimetry (PIV). In addition, they visualised the flow field forRe = 300 and
400 and computed the Strouhal number. In the primary shedding mode, the shedding frequency
was found to be independent of the rotation rate. The experimentally obtained Strouhal numbers
in the secondary regime were consistent with those obtainedby the numerical investigations of
Akoury et al.(2008) and Mittal & Kumar (2003). The development of the spanwise structures in
the wake has not been discussed.

Recent linear stability investigations by Meenaet al.(2011), atRe = 200 for 3 6 α 6 5, indi-
cate the presence of modes with purely real growth rates (indicating they are synchronised with
the two-dimensional flow) forα 6 4.3. Their three-dimensional investigations show what ap-
pear to be centrifugal instabilities near the cylinder and the time histories of the force coefficients
indicate the onset of aperiodic flow.

All of these previous studies indicate that the flow is a function of bothRe andα, with a
wide variety of vortex shedding regimes and three-dimensional modes occurring. This paper
is therefore a systematic study of the wakes of rotating cylinders as a function of both these
variables. The remainder of this article is organised as follows. The numerical method employed
in our investigations is detailed in§3, supplemented by validation studies. This is followed by
the presentation of results. In that section, first the two-dimensional flow structures observed as a
function ofRe andα are described in§4. Particular attention is paid to the transition from steady
to unsteady flow. This is followed by the results of linear stability analysis in§5, investigating
the transition to three-dimensional flow from the established two-dimensional flows. Curves of
marginal stability of each of these three-dimensional modes are presented in theRe,α plane, and
the characteristics of each of these modes are described. Physical mechanisms of instability are
proposed for a number of these modes. This is followed by someconcluding remarks.

2. Problem definition

A schematic diagram of the problem under consideration is shown in figure 1. The cylinder
of diameterD spins in an anticlockwise sense at a constant angular velocity, ω. The oncoming
uniform flow velocity is represented byU . Results for0 6 Re 6 400 and0 6 α 6 2.5 are
presented.
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On the three-dimensionality of a spinning cylinder in freestream 5

Figure 1: Schematic representation of the spinning cylinder in freestream.

3. Numerical formulation
3.1. Fluid flow equations

For the base flow, the incompressible Navier-Stokes equations are solved in two dimensions
using a spectral-element approach. The computational domain consists of quadrilateral elements
which are concentrated in the regions of high velocity gradients to accurately capture the flow
dynamics. The boundaries of these quadrilateral elements are straight except in the vicinity of
the cylinder, where curved edges are used to accurately represent the circular cylinder. These
elements are further subdivided with internal node points distributed according to the Gauss-
Legendre-Lobatto quadrature points, with the velocity andpressure fields represented by tensor
products of Lagrangian polynomial interpolants. Despite being only formallyC0 continuous
across element boundaries, these methods are known to provide spectral convergence as the
polynomial order is increased (Karniadakis & Sherwin 2005). The number of node points (N ×
N ) can be specified at runtime with the interpolant polynomialorder in each direction being
N − 1. A second-order fractional time-stepping technique is used to sequentially integrate the
advection, pressure and diffusion terms of the Navier-Stokes equations forward in time. The
unsteady solver is used to investigate the parameter range covering both the steady and unsteady
regimes of flow.

More details of the solver can be found in Thompsonet al. (2006a); and the solver has been
previously used in the studies of bluff body flows (Thompsonet al. 1996; Leontiniet al. 2007;
Thompsonet al. 2006b) and in the studies of flows over rolling cylinders near a wall(Stewart
et al.2006, 2010; Raoet al.2011).

It may be recalled that the critical parameters for transition are sensitive to the placement
of boundaries and the resolution of the wake. In order to reduce blockage effects to acceptable
levels, the boundaries of the domain have been placed at 100D from the cylinder in all directions.

3.2. Linear stability analysis

The focus of this investigation is to determine the three-dimensional stability of the two-dimensional
base flows to perturbations with an imposed spanwise wavelength. Equations for the evolution of
perturbations are formed by first decomposing the velocity and pressure fields into base and per-
turbation components. This decomposition is then substituted into the governing Navier-Stokes
equations, and the terms for the base flow subtracted out. Theresulting equations are then lin-
earised by removing the quadratic perturbation term. Because the coefficients do not depend on
z, the perturbation fields can be decomposed into a set of Fourier modes in the spanwise direc-
tion, and the perturbation equations then reduce to a set of decoupled equations describing the
different spanwise modes. The process of forming these equations is well described in Barkley
& Henderson (1996). The result is that perturbation fields for an imposed spanwise wavelength
can be solved for.

The eventual perturbation equations can be viewed as a linear operator that takes the pertur-
bation solution from one time to another. If the base flow is periodic, this results in an operator
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Figure 2: Verification of the spectral-element code and the domain used. Comparisons with previous results
of the vortex shedding frequency for a fixed cylinder in two-dimensional flow. The solid line is the three-
term fit forSt−Re variation belowRe < 1000 from Williamson & Brown (1998).

that takes the perturbation from one period to the next. Thisoperator is never explicitly formed;
application of the operator is obtained by simply integrating the perturbation equations forward
in time. Eigenvaluesµ of this operator indicate whether the base flow is steady to perturbations
of a prescribed wavelength;|µ| < 1 indicates that the flow is stable as perturbations decrease
in size from one period to the next;|µ| > 1 indicates that the base flow is unstable as pertur-
bations grow from one period to the next. For periodic problems,µ is referred to as the Floquet
multiplier. Marginal stability occurs when|µ| = 1.

Of interest are the eigenmodes (Floquet modes or linear instability modes) with the largest
eigenvalues, as these are the modes which grow the fastest (or decay the slowest). As the linear
operator is never explicitly formed, these leading eigenmodes and eigenvalues are found through
indirect iterative methods. Here, an Arnoldi method is employed (e.g., Mamun & Tuckerman
1995) that can resolve the leading eigenmodes and the complex component of the eigenval-
ues ofµ. Whenµ is purely real and positive, the periodicity of the three-dimensional mode is
synchronous with the base flow; e.g., modes A and B, which are observed in the wake of a non-
rotating cylinder, are purely real modes (Barkley & Henderson 1996). Whenµ is complex, the
eigenmode introduces a new frequency. If the base flow is steady, this predicts that the three-
dimensional flow will be periodic; if the base flow is periodic, the introduction of this second
frequency predicts that the three-dimensional flow will be quasi-periodic. Finally, if the Floquet
multiplier is purely real but negative, subharmonic modes are predicted. Further details of this
method and its implementation can be found in Stewartet al. (2010).

3.3. Comparisons with previous studies

Shown in figure 2 is a comparison of theSt with Re for the non-rotating cylinder in freestream,
with the values of Strouhal number,St, from the current study and those from Williamson
(1996a). Here,St = fD/U , wheref is the frequency of vortex shedding. The comparison is
excellent. The solid line in the figure is from the three-termfit by Williamson & Brown (1998),
where theSt is given by

St = (0.2731− 1.1129√
Re

+
0.4821

Re
). (3.1)

Spatial resolutions studies were carried out for the rotating cylinder atα = 2 andRe = 400
to investigated the accuracy of the predictions. This studywas performed at the highest rotation
rate for which the unsteady flow was observed. The solutions at N ×N = 49 converge to within
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(a) (b)

Figure 3: Comparison of the time-averaged force coefficients with the results from Mittal & Kumar (2003).
Variation of the (a), time-averaged lift coefficient,̄Cl, (b) and drag coefficient,̄Cd. The vertical error bars
represent one standard deviation of the instantaneous force coefficients.

Figure 4: Spatial resolution study atα = 2 andRe = 400. Variation of the shedding frequency with
increasing internal node points is shown.

0.2% of the maximum tested resolution atN × N = 81. Furthermore, the values of the time-
averaged force coefficients for a resolution ofN ×N = 36 are well within 1% of the maximum
tested values. A resolution ofN ×N = 49 was therefore determined to be sufficient to capture
the forces accurately up toα 6 2.5, however a resolution ofN ×N = 64 was used to accurately
capture the forces for all rotation rates beyondα > 2. Shown in figure 3 is the comparison of the
time-averaged lift and drag coefficients with rotation rate. Shown in figure 4 is the variation of
St on increasing internal node points. The figures show that theselected resolution is adequate
to resolve the flow accurately.

A linear stability analysis validation study was also performed for the non-rotating cylinder at
Re = 280, and the growth rates obtained were compared with the results of Barkley & Henderson
(1996). The growth rates of the two primary modes (modes A andB) from Barkley & Henderson
(1996) match closely with the results of the present study. The very slight differences can be
attributed to difference between the domain sizes in the computational domains used.

4. Flow structures
Over the range of the parameters tested, three two-dimensional flow regimes have been iden-

tified. Instantaneous snapshots of vorticity providing examples of each of these regimes are pre-
sented in figure 6, all atα = 1.9. The regimes shown are the steady regime (figure 6(a), 6(b),
and 6(d)), the low frequency regime (figure 6(c), 6(g), and 6(h)) and the high frequency regime
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Figure 5: Validation of the stability analysis at higher Reynolds numbers for a non-rotating cylinder: com-
parison of the growth rate at different spanwise wavelengths atRe = 280. Open circles (◦) represent the
values of Barkley & Henderson (1996), while closed circles (•) represent the values from the present study.
The neutral stability line atσ = 0 is marked by a solid line).

(figure 6(e) and 6(f)). As for the limiting case of a stationary cylinder, at low Reynolds numbers
the flow is steady. Forα . 1.95, periodic vortex shedding is found to occur above a critical
Reynolds number, which is a function ofα. Forα & 1.95, the two-dimensional flow was found
to remain steady up to at leastRe = 400.

However, as the sequence of images of figure 6 show, increasesin Re restabilise the two-
dimensional flow, for a narrow band ofα centred aroundα = 1.9. This indicates that the value
of Re at the steady-unsteady transition is not a monotonic function ofα. This finding is further
expanded upon in§ 5.

The periodic vortex shedding can be further divided into tworegimes, based upon the fre-
quency of the oscillation. The variation of the shedding frequency as a function ofRe, for
1.8 6 α 6 2.0, is shown in figure 7. Clearly discernible is the developmentof two “branches”,
with a “high” frequency and “low” frequency branch appearing for Re > 260. At α = 1.8, the
St–Re curve is continuous. Forα > 1.9, the behaviour is much more complex. Takingα = 1.9
as an example, forRe < 190, the frequency of oscillation remains on the low frequency branch.
For 190 < Re < 260, the flow is stabilised, and no vortex shedding occurs (figure6(d)). Then
for 260 . Re . 340, the vortex shedding moves to the high frequency branch (figure 6(e)),
before dropping back again to the low frequency branch forRe > 340 (figure 6(h)).

Shown in figure 8 are force coefficient phase diagrams forα = 1.9 at the specified Reynolds
numbers. The variation of the drag coefficient with lift coefficient is shown over one complete
period of shedding. The flow states in the steady regimes are represented by singular points,
while those in the periodic states are characterised by closed orbits. These phase diagrams also
provide an indication of the amplitude of shedding. The amplitude of force (and wake) oscil-
lations is small at low Reynolds numbers, and remains so on the “high” frequency branch. In
comparison, larger amplitudes observed at high Reynolds numbers, when the flow returns to the
“low” frequency branch.

5. Stability analysis
The results presented in§ 4 show that, over the parameter space investigated, all of the two-

dimensional flows are either steady or periodic. This means that all are amenable to either linear
stability analysis (for the steady flows) or Floquet stability analysis (for the periodic flows). In
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(a) Re = 50 (b) Re = 100

(c) Re = 180 (d) Re = 250

(e) Re = 325 (f) Re = 340

(g) Re = 350 (h) Re = 400

Figure 6: Flow structures atα = 1.9 at the specified Reynolds numbers. Contour levels between± 5D/U .
The flow is from left to right.

Figure 7: Variation of the shedding frequency with Reynoldsnumbers for the specified rotation rates. For
α > 1.9, two branches or regimes of shedding occur.

fact, the two techniques are effectively identical in practice, if the steady flow is treated as a flow
with arbitrary period. Stability analysis was performed onthe flows over the parameter space
(Re 6 350, 0 6 α 6 2.5) to determine the critical transitional values for the onset of a number
of three-dimensional modes, that govern the transition to three-dimensional flow.
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10 A. Rao et al.

Figure 8: Phase diagrams of the force coefficients at the specified Reynolds numbers forα = 1.9.

For the limiting case of a non-rotating cylinder (α = 0), the transition to three-dimensionality
has been well documented by various numerical studies (Barkley & Henderson 1996; Thompson
et al. 1996) and is found to occur atRe = 188.5 ± 1 for a spanwise wavelength ofλ/D =
3.96. For a cylinder rotating atα = 0.5, a recent study by Akouryet al. (2008) found the
critical value of transition to three-dimensionality to occur atRe = 220. They report that the
wake structure was similar to the mode A structure obtained for the flow past a non-rotating
cylinder, and it remained unchanged atRe = 300. At much higher rotation rates ofα = 5,Re =
200, the primary cause of three-dimensionality has been attributed to centrifugal instabilities
(Mittal 2004). The variation of the critical Reynolds number at other rotation rates has not been
investigated. Therefore, a systematic study of the three-dimensional modes present in the (Re,α)
plane is presented in§ 5.1.

5.1. Transition diagram

Figure 9(a) shows curves of marginal stability for seven separate three-dimensional modes grow-
ing on the two-dimensional base flows outlined in§ 4. Also shown is the boundary for the steady-
unsteady transition. The results compare well with the predictions of Pralitset al. (2010) for
α 6 2. The points on each of the curves denotes a point at which the marginal stability of the
mode in question has been established; the curves have then been fitted to these points. As the
majority of the modes’ marginal stability curves occur in the top-right corner of the figure, this
region is presented “zoomed in” in figure 9(b). These curves have been found by first resolving
the two-dimensional flows over a grid of points in the (Re,α) plane, then performing the stability
analysis over a spectrum of wavelengths at each of these points, and then refining this grid in the
region of marginal stability for each mode. This process wasvery computationally intensive; the
data for the current study consumed the order of105 CPU hours.

There are a number of features of figure 9 that are examined in some detail in the following
sections. First, the variation of the steady-unsteady transition is described. Following this, de-
scriptions of each of the three-dimensional modes are presented, including the mode structure,
critical wavelengths, spatio-temporal symmetries, and some further analysis and interpretation
of the physical mechanisms of instability.

5.2. The steady-unsteady transition

For lower rotation rates (α 6 1), the transition to the unsteady regime occurs at a value ofRe
close to that of the non-rotating cylinder. However, forα & 1.3, small changes in the rotation
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Figure 9: (a) Diagram showing the lines of marginal stability in the parameter space investigated. Modes are
typically unstable to the right of each line. (b) Enlarged view of (a) between1.25 6 α 6 2.5, 175 6 Re 6
350. For both images, the steady-unsteady transition is markedby a continuous line, while the boundaries
of the stability of the three-dimensional modes are shown bythe broken lines.
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rate rapidly shift the transition to higher Reynolds numbers. Forα > 2.1, the two-dimensional
base flow is seen to remain steady up to at leastRe = 400.

As shown in figure 6, for a small band ofα centred aroundα = 1.9, further increases inRe
can restabilise the flow. This is shown particularly clearlyin figure 9(b), where the solid line
marking this transition is shown to descend over the range180 < Re . 220, and then ascend for
Re & 220. The cause of this complicated behaviour is not clear. The onset of the high-frequency
regime shown in figure 7 roughly coincides with the point at which the curve again begins to
ascend; it is therefore possible that this high-frequency regime is due to an instability of the
stabilised flow, however further work is required to fully understand this phenomenon.

5.3. Properties of the three-dimensional modes

5.3.1. The mode A instability

For a non-rotating cylinder in freestream, the onset of three-dimensional flow is observed
aroundRe = 180 in experiments, with a spanwise wavelength of approximately 4D (Williamson
1996b). This same mode has been observed numerically by the three-dimensional simulations of
Thompsonet al. (1996), and the linear stability analysis (Barkley & Henderson 1996) explained
the basis of the transition. This mode is referred to as mode Aand for a non-rotating cylinder
has been shown to be the fastest-growing linear mode up toRe = 280 (also see figure 5). The
physical mechanism of this mode has been associated with an elliptic instability of the forming
vortex cores (Thompsonet al.2001; Leweke & Williamson 1998).

From the stability analysis of this paper, mode A is found to persist forα 6 1.9, over the
entire range where the two-dimensional base flow is unsteady. As shown in figure 9, the critical
Reynolds number with respect to the marginal stability of mode A is a strong function ofα. For
α 6 1.25, the critical Reynolds number increases on increasing the rotation rate. Over this range,
mode A is also the first mode that occurs with increasingRe, and so will lead the transition to
three-dimensionality. The Floquet multiplier obtained ispositive and real.

Previous studies using fully three-dimensional DNS (Akoury et al.2008) have found that, for
α = 0.5, the critical Reynolds number for the transition to three-dimensional flow occurred at
Re ≃ 220. This result matches well with the curve of marginal stability for mode A in figure
9(a).

The critical wavelength at the onset of this instability wasapproximately4D. At a higher
rotation rate ofα = 1.5, the transition occurs atRec ≃ 288, and occurs at higher Reynolds
numbers as the rotation rate is increased (figure 9).

Shown in figure 10 are the perturbation vorticity contours atReynolds numbers just beyond
the criticalRe, for a series of increasingα. The images are all shown at a similar phase in the
vortex shedding process of the base flow. The images show thatthe spatial structure of this mode
is essentially retained at higher rotation rates, regardless of the fact that the vortex shedding
becomes increasingly asymmetric about the centreline withincreasingα.

5.3.2. The mode B instability

For a non-rotating cylinder, mode B is observed to become unstable at Reynolds numbers
higher than that observed for mode A. In the experimental visualisations of Williamson (1988),
this mode was observed intermittently alongside mode A forRe ≃ 230 with a spanwise wave-
length of approximately1D. The numerical simulations of Barkley & Henderson (1996) pre-
dicted the onset of this linear mode from the two-dimensional base flow atRe = 259 with a
spanwise wavelength ofλ ≃ 0.8D. The contrast to the experimental findings is due to the fact,
in experiments, the flow is already three-dimensional due tothe presence of mode A. Barkley
et al. (2000) showed the presence of mode A is destabilising on the mode B instability, leading
to mode B occurring at lower Reynolds numbers in experiments. The linear mode associated with
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(a) α = 0, Re = 200, λ/D = 4

(b) α = 1, Re = 280, λ/D = 4

(c) α = 1.9, Re = 350, λ/D = 4

Figure 10: Spanwise perturbation vorticity contours in thewake of the rotating cylinder between levels
±0.1 at the specified rotation rates and Reynolds number at an arbitrary time in the shedding cycle. Base
flow vorticity contours at levels±1 U/D are overlaid as dashed lines. A centreline line is drawn in the
streamwise direction behind the cylinder.

mode B is the fastest growing mode forRe > 300 (Blackburnet al.2005; Barkley & Henderson
1996) for the non-rotating cylinder.

The simulations of this paper recover mode B, and show that itcontinues to exist up to at
leastα = 1. Similar to the non-rotating cylinder, the Floquet multiplier for this mode remains
purely real and positive. As shown on figure 9(a), the value orRe at marginal stability is a strong
function ofα, increasing asα is increased. However, the characteristic wavelength is relatively
unaffected byα, remaining close toλ = 0.8D. Over the range of the parameter space tested,
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(a) α = 0, Re = 280, λ/D = 0.85

(b) α = 0.5, Re = 320, λ/D = 0.8

(c) α = 1, Re = 360, λ/D = 0.8

Figure 11: Spanwise perturbation vorticity contours showing the mode B type structures observed at higher
Reynolds numbers for the specified rotation rates. The contour shading is as per figure 10.

mode B is always found to become unstable atRe higher than that at which mode A becomes
unstable.

Figure 11 shows the perturbation vorticity contours of modeB at rotation rates ofα = 0,
0.5 and 1. Note that for the case atα = 0.5 (figure 11(b)), the base flow is approximately half a
period out of phase with respect to the other images, howeverthe similarity in the structure of the
mode is evident. For allα, the perturbations grow strongly in the braid regions between the shed
vortices, similar to that observed for a non-rotating cylinder (shown asα = 0 in figure 11(a)).

5.3.3. The mode C instability

The previous modes described, A and B, are basically extensions of the modes found in the
wake of a non-rotating cylinder. However, there are a numberof modes presented on figure 9 that
occur only for the rotating cylinder. The first of these is mode C.

The mode C instability occurs in an apparently closed regionof the (Re,α) plane, centred
aroundRe = 260, α = 1.7. The Floquet multiplier for mode C is purely real but negative,
indicating that this mode is subharmonic, repeating over two cycles of the base flow. The critical
spanwise wavelength for this mode is marginally higher thanmode B, but lower than mode A,
and encompasses the range0.8 < λc/D < 1.2 (Sheardet al.2005a).

The group theory analysis of the symmetries of bluff body wakes of Blackburnet al. (2005)
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Figure 12: Variation of the spanwise wavelength of the mode Binstability at marginal stability as a function
of rotation rate,α.

shows that for flows with the spatio-temporal symmetry of thewake of a non-rotating cylinder
(reflection about the wake centreline plus evolution in timeof half a period), subharmonic insta-
bilities are not generic, and are therefore not likely to be discovered. However, once this spatio-
temporal symmetry is broken, subharmonic modes become possible. Here, the spatio-temporal
symmetry is broken by the rotation of the cylinder, hence thepresence of the subharmonic mode
C. In structure, mode C appears very similar to the subharmonic mode C found in the wakes
behind rings (Sheardet al. 2003, 2005a,b). In both of these flows, the symmetry is broken by a
local acceleration of the flow on one side of the body; here theacceleration is due to the rotation
of the cylinder, in ring wakes it is caused by the acceleration of the flow through the constriction
of the centre of the ring. Similar subharmonic modes have be found in other wake flows, such as
cylinders with trip wires (Zhanget al.1995), and in the wakes of transversely oscillating cylin-
ders after undergoing spontaneous transition to aP + S base state (Leontiniet al. 2007), and
more recently in the wakes of inclined square cylinders (Sheard 2011; Sheardet al.2009).

Shown in figure 13 are the instantaneous perturbation vorticity contours of mode C at half-
period intervals atα = 1.5, Re = 250. Clearly, the perturbation field reverses in sign every pe-
riod, indicating that this mode is periodic over2T , whereT is the period of the two-dimensional
periodic base flow.

The growth rates of mode C are highest in the centre of the region over which it is unstable.
Unlike mode A or mode B, the magnitude of the Floquet multiplier does not show a monotonic
increase with rotation rate. Shown in figure 14 are the variation of growth rate at constant rotation
rate (figure 14(a)), and at a constant Reynolds number (figure14(b)). These values have been
chosen to traverse the region where mode C is unstable. The figures show conclusively the closed
boundary region of the mode C instability, and the variationof the growth rateσ with bothRe
andα.

5.3.4. The mode D instability

The mode D instability develops on the unsteady base flow, becoming unstable in a narrow
region of the parameter space, for values ofα just below those at which the base flow is stabilised,
as shown on figure 9. The Floquet multiplier for this mode is real and positive. The mode grows
with a characteristic spanwise wavelength of approximately 2D.

Of particular interest is the region of occurrence of this instability; it occurs in essentially the
same region of the parameter space as the high frequency shedding regime (figure 7 and figure
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(a) t = T0 (b) t = T0 + 0.5T

(c) t = T0 + T (d) t = T0 + 1.5T

(e) t = T0 + 2T (f) t = T0 + 2.5T

Figure 13: Spanwise perturbation vorticity contours of mode C atα = 1.5, Re = 250, λ/D = 1.2, shown
over a period of 2.5T . Contour shading is as per figure 10. The perturbation vorticity contours are identical
after two periods of the base flow.

(a) (b)

Figure 14: Variation of the maximum growth rate (σmax) with respect to wavelength (λ/D), for the mode
C instability: (a) at constant rotation rate ofα = 1.65; and (b) constant Reynolds numberRe = 260. These
indicate the closed region of instability for mode C.

9). This high frequency shedding regime consists of two highly strained vortices trailing the
cylinder, and small vortices are emitted from the end of these (see, for example, figure 6).

This instability grows in the region between these two strained vortices. Shown in figure 15
are the spanwise and streamwise perturbation vorticity contours atα = 1.9 andRe = 300.
This structure is very similar to mode E, described next, which grows on the steady base flow.
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(a) (b)

Figure 15: Perturbation vorticity contours in the wake of the rotating cylinder atα = 1.9, Re = 300,
λ/D = 1.9, highlighting the perturbation field structure for Mode D. (a) Spanwise vorticity. (b) Streamwise
vorticity. Contour shading is as per figure 10.

(a) (b)

Figure 16: Perturbation vorticity contours in the wake of the rotating cylinder for mode E atα = 2,
Re = 220, λ/D = 2.0. (a) Spanwise vorticity. (b) Streamwise vorticity. Contour shading is as per figure
10.

In particular, disregarding the steady or unsteady nature of the base flow, the perturbation field
structures appear similar. It is therefore hypothesised that modes D and E occur due to the same
physical instability mechanism.

5.3.5. The mode E instability

The first three-dimensional mode to become unstable asα is increased on the steady base
flow is mode E. The multipliers, or growth rates, for this modeare purely real, indicating that
when this mode becomes unstable, it triggers a transition from a two-dimensional steady state to
a three-dimensional steady state. The characteristic wavelength for this mode is approximately
2D, again consistent with mode D. The spanwise wavelength at which the maximum growth rate
occurs decreases as the Reynolds number is increased.

Shown in figure 16 are the perturbation vorticity contours for α = 2 andRe = 220, showing
an example of mode E. As already discussed above, this mode has similar characteristics to
those of the mode D instability. The regions of high perturbation amplitude are similar to those
of mode D in the near wake, while the instability extends in the flattened wake far downstream
of the cylinder.

5.3.6. Physical nature of the mode D and E instability

Figure 17 shows the spanwise and streamwise perturbation vorticity as colour contours, over-
laid with the streamlines of the base flow, forα = 2,Re = 220. The base flow vorticity contours
of figure 16 for the same case show regions of positive and negative vorticity in the wake. How-
ever, the streamlines of figure 17 show that only a single recirculation region exists.

Figure 17 shows that the perturbation vorticity is mostly focussed in a thin region emanating
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(a) (b)

Figure 17: Perturbation vorticity contours, overlaid withstreamlines, in the wake of the rotating cylinder
for mode E atα = 2, Re = 220, λ/D = 2.0. (a) Spanwise vorticity. (b) Streamwise vorticity. Contours
range between±0.6 for spanwise vorticity,±0.4 for streamwise vorticity. The figure shows that the mode
is focussed in the extensional regions emanating from the hyperbolic point at the rear of the recirculation
region.

both upstream and downstream of the hyperbolic stagnation point at the rear of this recirculation
region. This region of the base flow is characterised by a stretching in the flow direction (along
the streamlines); fluid particles increase in speed as they leave the hyperbolic point in this direc-
tion. Lagnadoet al.(1983) showed, in an inviscid setting, that simple extensional flows lead to an
amplification of perturbation vorticity. Leblanc & Godeferd (1999) showed that in Taylor-Green
cells (a square geometry containing four rotating cells of fluid, creating a hyperbolic point at the
centre), the perturbation vorticity was most amplified along the streamlines leaving the hyper-
bolic point, forming rib vortices in between the rotating cells. A similar amplification mechanism
has been proposed by Leweke & Williamson (1998) as the cause of the mode B instability.

Due to the clear amplification of perturbation vorticity along the streamlines leaving the hy-
perbolic point in figure 17, it is therefore proposed that this is the amplification mechanism that
leads to mode E becoming unstable. The similarity in structure of the perturbation vorticity for
modes D and E (albeit that mode D is periodic, with vortex shedding occurring downstream of
the recirculation region as shown in figure 15) suggests thatit is this same stretching mechanism
that leads to the instability of mode D.

5.3.7. The mode F instability

A second three-dimensional mode is found to grow on the steady base flow, designated as
mode F. This mode typically occurs at higher rotation rates (α ≥ 2.25) than mode E. The char-
acteristic wavelength of this mode is approximately0.45D, much shorter than mode E which
grows in region between the highly strained standing vortices in the wake.

Shown in figure 18 are the vorticity contours atα = 2.5, Re = 280. The figure shows that
mode F grows primarily in the boundary layer of the spinning cylinder, and in the near wake.

The Floquet multipliers for this mode occur in complex conjugate pairs. This indicates that
while the two-dimensional base flow is steady, transition tothis mode marks a transition to three-
dimensional flow and the onset of time dependence.

The frequency of this time dependence can be ascertained from the complex component of the
Floquet multiplier. This was done for values of2.25 6 α 6 2.5. The frequencies calculated from
these multipliers are presented in figure 19. The three-dimensional shedding frequency at the
onset of the instability is computed as follows:St3D = tan−1(Im(µ)/Re(µ))/2πT , whereSt3D
is the three-dimensional shedding frequency andT is the period of sampling. This frequency
was also determined independently by directly measuring the perturbation field period to ensure
that the choice ofT had not caused aliasing to a different frequency. For all rotation rates at
which this mode is unstable, the three-dimensional frequencies are low, considerably lower than
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(a) (b)

Figure 18: Perturbation vorticity contours in the wake of the rotating cylinder for mode F atα = 2.5,
Re = 280, λ/D = 0.45. (a) Spanwise vorticity. (b) Streamwise vorticity. Contour shading is as per figure
10.

Figure 19: Variation ofSt3D for the three rotation rates (α = 2.25 (•), 2.4 (◦) and 2.5(�)) at Reynolds
number just beyond the onset of instability for mode F.

those of the unsteady two-dimensional base flows at lower values ofα. Fully three-dimensional
DNS, or experiments, are required to see if this predicted frequency corresponds to that found in
the fully saturated three-dimensional flow, and what saturated spatial wake structure this three-
dimensional flow will take.

5.3.8. Physical nature of the mode F instability

As discussed in the introduction, it has already been speculated that the higher rotation rate
flows are subject to a centrifugal instability (e.g., Mittal2004; Meenaet al. 2011). The gener-
alised centrifugal theory of Bayly (1988) has therefore been applied to investigate the nature
of this instability mode. That work extends the classical analysis of Rayleigh (1917) to non-
axisymmetric inviscid flows with closed streamlines. More recently it has been applied to anal-
yse the recirculating flow downstream of a bump (Gallaireet al. 2007) and a semicircular hill
(Griffith et al.2007). In addition, there have been extensions of the theoryto other cases such as
to nonzero azimuthal wavenumbers (Billant & Gallaire 2005), and to rotating systems (Sipp &
Jacquin 2000).
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Figure 20: Physical evidence of centrifugal instability leading to mode F atRe = 280, α = 2.4, for a
wavelengthλ/D = 0.45. (a) Streamlines of the base flow in the neighbourhood of the cylinder showing
that the streamlines are closed in the vicinity of the cylinder. (b) Evolution of the perturbation streamwise
vorticity field over half a period: (i)t = 0T/10; (ii) T/10; (iii) 2T/10; (iv) 3T/10; (v) 4T/10; (vi) 5T/10;
whereT is the period of the global instability. This progression shows that the period of the instability
corresponds to the time taken for the perturbation to orbit the cylinder twice. (c) Instantaneous growth rate
of the instability as a function of time. The times/growth rates corresponding to the set of images in (b) are
marked.

Physical evidence of centrifugal instability

Figure 20a displays streamlines for the mode F base flow forRe = 280 andα = 2.4. The
closed streamlines in the neighbourhoodof the surface of the cylinder are clearly apparent. Figure
20b also shows the evolution of the perturbation streamwisevorticity field over one half of a
period (the period being1/St3D defined in figure 19). After a half period the perturbation field
is identical but of opposite sign. The period therefore corresponds to the time it takes for a fluid
element at the mean radial position of the instability to travel twice around the cylinder, hence in
some sense the instability can be considered a subharmonic.

The development and evolution of the instability involves the development of streamwise per-
turbation vorticity at the north-west position on the cylinder, approximately at the point where the
incoming fluid separates to move either over the top or the bottom of the cylinder. This is shown
in figure 20b(i) att = 0T/10. Subsequently, the instability grows as it is advected anticlockwise,
following close to the cylinder surface, as shown in the nexttwo images. Figure 20b(iv) shows
some vorticity moves into the wake but some continues along the surface towards the dividing
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Figure 21: (a) Circulation (Γ(Ψ)) as a function of streamfunction(Ψ) moving from the cylinder surface
(dashed line atΨ ≃ −0.29) to the last closed streamline (dotted line). This clearly shows the circulation
decreasing outwards as required for centrifugal instability. (b) Magnitude of the growth rate as a function
of the streamfunction. The local Floquet multiplier is positive close to the cylinder, but becomes negative
further away.

streamline, as shown in figures 20b(v) and 20b(vi). This lastimage shows the process starts again,
but this time the development begins from vorticity of opposite sign. This image sequence con-
firms that the perturbation field remains strong predominantly near the cylinder surface, where
the streamlines are closed, as would be expected for a centrifugal instability.

Figure 20c shows the instantaneous temporal growth rate as the instability evolves. This is
obtained directly from integrating the perturbation field over a period and determining the ampli-
tude of the instability field as a function of time. For figures20b(i-iii), growth is positive as the
instability advects anticlockwise around the cylinder. For figures 20b(iv) and 20b(v), growth is
negative as it traverses across the wake region, before becoming positive again for figure 20b(vi).
The Floquet multiplier for a single orbital period ofT = 4.513 is 1.240, hence the growth rate is
σ = log(1.240)/4.513 = 0.021.

Application of inviscid centrifugal instability theory

The analysis of Bayly (1988) requires the existence of closed streamlines and the circulation to
decrease outwards. Figure 20a shows the condition of closedstreamlines is satisfied. Figure 21(a)
shows the circulation (Γ(Ψ)) as a function of the streamfunction (Ψ), moving outwards from the
cylinder surface. Clearly, the variation with increasing streamfunction, which also corresponds
to increasing radius, is monotonically decreasing. The inviscid analysis of Bayly (1988) is used
to determine the eigenvalues of thelocal Floquet matrixon integrating around an entire orbit for
each closed streamline. The eigenvalues correspond to local Floquet multipliers, which can be
reduced to Floquet exponents, i.e., growth rates, by takingthe natural logarithm of the modulus
and dividing by the orbital period. Thus the inviscid growthrate (σ∞) can be determined as a
function of streamfunction. Figure 21(b) shows this variation. The local Floquet multiplier is
real and positive close to the cylinder, before it becomes real and negative out to the last closed
streamline.

Bayly (1988) assumes that the actual instability mode is centred about the quadratic maxi-
mum of the growth rate curve, and uses an asymptotic expansion to determine an expression
for the growth rate as a function of the wavenumber. In terms of the findings here, there is no
quadratic maximum where the Floquet multiplier is positivereal, although there is one in the
streamfunction range where it is negative real. A negative real Floquet multiplier corresponds
to the instability changing sign after each orbit, which figure 20b shows is the case here. The

38



22 A. Rao et al.

0.0 0.5 1.0 1.5 2.0
−4

−2

0

2

4

Re = 1120
560
280

λ/D

σ

Figure 22: Computed growth rate curves as a function of wavelength from global stability analysis. The
viscosity (Reynolds number) was varied only for the stability analysis of the base flow atRe = 280.

actual instability shown in the images of figure 20 is not centred at the streamline position of the
streamfunction maximum of figure 21(b), but rather it appears to be centred near the streamline
which has an orbital period equal to the measured period of the global instability mode, as would
be expected for a centrifugal instability. The value of the streamfunction on this streamline is
Ψ ≃ −0.173, i.e., close to the outer edge on the recirculation region (see figure 21(b)). The in-
viscid growth rate is close toσ∞ ≃ 3.5 for that trajectory, which represents substantial positive
growth.

Expanding about the quadratic maximum indicates that the growth rate should fall off linearly
with wavelength (λ) (or inversely with wavenumber (k)) from the inviscid prediction correspond-
ing to thek → ∞ case. Also assuming that the effect of viscosity is mainly todamp the instability
rather than change its character, the viscous correction tothe growth rate should be proportional
to the reciprocal of the square of the wavelength. That is,

σ(λ,Re) ≃ σ∞ −A(λ/D)− 4π2B

Re (λ/D)2
, (5.1)

with B a constant of order one. As indicated above, it appears that the instability is not centred
about either the absolute maximum or the local quadratic maximum of the inviscid growth curve,
but rather about the streamline with the orbital period equal to the global mode period. This is
perhaps not surprising given the strong forcing on the fluid from the rapidly spinning cylinder
and subsequently stronger viscous effects towards the surface.

To investigate further, the variation of the global mode growth rate with wavelength is plot-
ted in figure 22. The different curves correspond to different Reynolds numbers. The Reynolds
number for the steady flow was fixed at 280; it was only varied for the linear stability equations,
using the same steady frozen base flow. A similar procedure was used by Gallaireet al.(2007) to
explore the centrifugal nature of the instability for flow over a bump. According to the proposed
variation given by equation 5.1, the curves should fall inside an envelope curve, with the curves
for increasing Reynolds number peaking at progressively smaller wavelengths. They intercept
of the envelope curve should correspond to the predicted inviscid growth rateσ∞. In practice the
situation is a little more complex. Increasing the Reynoldsnumber causes the global instability
mode to be centred closer to the cylinder and the period to reduce. Table 1 shows this behaviour.
Here,λpref is the wavelength with the maximum growth rate in figure 22,Tλpref

is half the
measured global instability mode period from the global analysis (recall the mode repeats every
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Re λpref Tλpref
Ψλpref

σinviscid

280 0.44 4.4 -0.172 3.5
560 0.30 3.0 -0.188 5.1
1120 0.22 2.5 -0.201 6.2

Table 1: Parameters for global stability analysis based on varying the Reynolds number for the stability
equations only.

two orbits),Ψλpref
is the value of the streamfunction with this orbital period andσinviscid is the

predicted growth rate from the inviscid theory of Bayly (1988) shown in figure 21(b). In partic-
ular, this shows that as the effect of viscosity is reduced, the instability mode moves inwards,
centred on streamlines that have smaller orbital periods and higher growth rates, as shown in
figure 21(b). Thus, it is consistent that the computed growthrate curves shown in figure 22 move
upwards, rather than asymptoting to an envelope curve.

Summary of the success of the inviscid theory

In summary, the mode F instability appears to be associated with a centrifugal instability, in
terms of primary localisation to the region with both closedstreamlines and circulation decreas-
ing outwards. The preferred wavelength of the instability also appears to be related to, i.e., a small
multiple of, the radial extent of the region with closed streamlines. In addition, the evolution of
the periodic instability mode as it advects around the cylinder is consistent with the formation
and growth of streamwise rollers, transferring faster moving fluid to larger radii and vice versa,
as expected for a centrifugal instability. This growth happens as the perturbation moves from the
dividing streamline at the north-west position of the cylinder until it reaches the wake region at
the north-east position on the cylinder, perhaps reminiscent of Görtler vortices (Görtler 1955)
for flow on curved streamlines. Analysis using the inviscid instability theory of Bayly (1988) to
find the eigenvalues of thelocal Floquet matrixassociated with an orbital period on a streamline
predicts substantial amplification during the orbit. Thereis an inner region where the eigenvalues
are positive, and an outer region where they are negative. Negative eigenvalues indicate that the
instability changes sign each orbital period. This is precisely what happens with the global mode,
i.e., it repeats every two orbits. However, the global mode is not centred close to the streamline
at which there is a local maximum of the inviscid growth rate,but rather close to the streamline
with the same orbital period. For that streamline, the inviscid growth rate is still strongly posi-
tive. Decreasing viscosity for the global mode calculationonly, leads to a reduction in the global
mode period, corresponding to the instability being centred closer to the cylinder surface, where
the inviscid growth rate is higher. Thus, it does not seem that the generalised inviscid instability
theory, even adjusted for the first-order effects of viscosity, can supply quantitative estimates of
the growth rate or the preferred wavelength, although it certainly is qualitatively consistent with
many features of the inviscid predictions.

40



24 A. Rao et al.

Mode λ/D Nature ofµ Base flow Symmetry

A ≃ 4 Real and positive Unsteadyu(x, y, z, t) = u(x, y, z + nλ, t+ T )
B ≃ 0.8 Real and positive Unsteadyu(x, y, z, t) = u(x, y, z + nλ, t+ T )
C ≃ 1 Real and negative Unsteadyu(x, y, z, t) = u(x, y, z + nλ, t+ 2T )
D ≃ 1.9 Real and positive Unsteadyu(x, y, z, t) = u(x, y, z + nλ, t+ T )
E ≃ 1.8 Real and positive Steady u(x, y, z, t) = u(x, y, z + nλ)
F ≃ 0.4 Complex Steady u(x, y, z, t) = u(x, y, z + nλ, t+ T3D)
G ≃ 18 Real and positive Unsteadyu(x, y, z, t) = u(x, y, z + nλ, t+ T )

Table 2: Summary of the modes showing the characteristic wavelength, nature of the Floquet multiplier (µ),
the periodicity of the two-dimensional base flow and the spatial symmetries of these modes with respect to
the streamwise velocity,u.

5.3.9. The mode G instability

The last three-dimensional mode discovered for this parameter space is mode G. This mode
grows on the unsteady base flow, forα near the upper limit for the existence of the unsteady flow,
and forRe > 280. This is a long wavelength mode, with a characteristic wavelength around
λ/D ≃ 18. This mode has a purely real Floquet multiplier.

Shown in figure 23 are the perturbation vorticity contours ofthis long wavelength mode. The
spatial structure of this instability is similar to that of the mode A instability, except for a small
apparent phase shift of the perturbation relative to the base flow in the downstream vortices.

6. Discussion of the modes spanning the parameter space
A summary of the modes is shown in table 2. For the cylinder spinning at low rotation rates,

the onset of the three-dimensional modes is similar to that observed for the non-rotating cylinder;
that is, mode A occurs first with increasingRe, prior to the onset of mode B instability. This is
essentially due to the similarities in base flow; the structure of the Bernard von Kármán vortex
street is only changed slightly by the body rotation at thesevalues ofα. However, forα & 1.3,
the wake structure becomes strongly asymmetric. Consistent with previous studies where the loss
of wake symmetry leads to a different three-dimensional mode being observed, a subharmonic
mode (mode C) is the first three-dimensional mode to become unstable to spanwise perturbations
at these higherα. A mode with these symmetries and characteristics has been observed in earlier
studies on flow past rings (Sheardet al. 2005a). At α = 1.5, this mode is unstable for a small
range of Reynolds numbers before decaying at higher Reynolds numbers, following which the
onset of mode A instability is observed. However, atα > 1.75, mode C is found to persist over
a larger range of Reynolds numbers; for certain values ofRe, multiple three-dimensional modes
are predicted to be unstable. An instance of this is shown in figure 24, where modes C, A and
G are observed atα = 1.85, Re = 330. The mode C instability is the fastest growing mode
followed by mode G and mode A.

The mode D instability occurs in the high frequency sheddingregion at rotation rates in excess
of 1.9. Figure 9 shows that mode D exists in a region of the parameter space very close to the
steady - unsteady transition of the two-dimensional base flow; in some senses, mode D can be
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(a)

(b)

(c)

Figure 23: Perturbation vorticity contours for mode G atα = 1.85, Re = 330, λ/D = 20. (a) Spanwise
vorticity. (b) Streamwise vorticity. (c) The streamwise vorticity contours forλ/D = 3.75 (mode A) are
plotted for comparison. Contour shading is as per figure 10.

viewed as the “periodic” state of mode E. Figures 15 and 16 clearly show the similarities in the
structure of these two modes.

For a given rotation rate, the spanwise wavelength at which the maximum growth rate of the
mode D and E instabilities occur, decreases as Reynolds number is increased. For instance, the
mode E instability atα = 2, Re = 220 (a case just past the onset of three-dimensionality) has a
peak wavelength of1.96D, while atRe = 340 the peak wavelength decreases to1.8D. Further,
as rotation rate is increased fromα = 2 toα = 2.25, the peak wavelength atRe = 300 decreases
from 1.9D to 1.65D.
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Figure 24: Growth rate curves showing the three modes which are unstable to perturbations atα = 1.85,
Re = 330.

Figure 25: Growth rate curves showing the mode E and mode F instabilities atα = 2.25, Re = 320.

At α = 2.25, the mode E instability exists alongside the mode F instability (see figure 25). The
short wavelength instability of mode F has a complex Floquetmultiplier, indicating it is periodic
as it occurs in the steady regime of flow. The spanwise wavelength is much smaller than that
predicted by the DNS of Meenaet al.(2011) at slightly higher rotation rates. Further analysisof
the nature of the instability using the inviscid instability theory of Bayly (1988) is consistent with
it being primarily centrifugal in nature, although the influence of viscosity appears too strong for
the theory to provide realistic estimates for wavelengths or growth rates.

7. Conclusions
The results of the linear stability analysis for a spinning cylinder in a freestream have been

presented. These results build upon the existing knowledgeof the three-dimensional wake modes
that were first observed in the wake of a non-rotating cylinder by Williamson (1988). The non-
dimensionalised rotation rate,α, and Reynolds number,Re, were varied over a wide parameter
space to first obtain the base flow over which stability analysis was performed to determine
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the growth (or decay) of perturbations. Furthermore, stability analysis was used to predict the
characteristic wavelength of each instability, and the spatio-temporal symmetries.

At low rotation rates, the change in the structure of the Kármań shedding is minimal, and
the onset of the three-dimensional modes resembles that of the non-rotating cylinder, although
the critical values for the onset of the mode A and mode B instabilities are delayed to higher
Reynolds numbers. At higher rotation rates, a subharmonic mode, mode C, is unstable to the
perturbations and is unstable in a closed region of the parameter space. This mode is the first
three-dimensional mode which becomes unstable with increasingRe, followed by the onset of
the mode A type instability. At higher rotation rates ofα = 1.85, a long wavelength instability
is observed alongside mode C and mode A instabilities.

For high rotation rates (α > 2), the rotation stabilises the vortex shedding, resulting in a steady
two-dimensional base flow. This class of steady base flows hasbeen shown to be unstable to at
least two modes: mode E, which appears to be due to amplification of perturbations in the high-
strain regions of the near wake; and mode F, which is a centrifugal instability of the closed region
of flow near the cylinder surface for high rotation rates.
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tation Initiative (VLSCI), the National Computational Infrastructure (NCI) and Monash Sungrid,
Clayton. The authors acknowledge financial support from Australian Research Council grants
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Chapter 3

Flow past a circular cylinder
translating at different gap
heights to a wall

3.1 Overview

The previous chapter explored the effects of rotation for a body in freestream, where

new three-dimensional modes were observed as the rotation rate was increased. Here,

we explore the flow characteristics as the cylinder is brought closer to a plane wall from

large gap heights. For this case, the rotation rate is set to zero, while the gap height

is varied. Recent two-dimensional simulations (Yoon et al. 2010, 2007; Huang & Sung

2007) show that the alternate vortex shedding ceases for G/D . 0.25 over a range of

Reynolds numbers. For a circular cylinder in freestream, previous studies (Williamson

1988b, 1996a; Thompson et al. 1996) have shown the onset of three-dimensional flow

to occur in the unsteady regime of flow at Re ' 190, while for cylinders sliding along a

wall, Stewart et al. (2006, 2010b) showed the three-dimensional transition occurred in

the steady regime of flow at Re ' 71 prior to the onset of unsteady flow at Re ' 160.

However, the onset of three-dimensional flow between the two extremities of gap height

has received very little attention. Mahir (2009) observed mode A type structures at

gap heights G/D & 1.2 and mode B type structures at G/D = 0.8 in the wake of a

square cylinder near a fixed wall. At very low gap heights, neither mode A nor mode

B type structures were observed.

We here investigate the variation of the onset of three-dimensionality for a circular

cylinder as the gap height is varied from G/D = ∞ to G/D ' 0 by linear stability

analysis. For the circular cylinder near a wall, the dominant three-dimensional modes

at Re = 200 are investigated followed by three-dimensional simulations to visualise the
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flow structures.

3.2 Flow dynamics of a cylinder translating parallel to a
wall

The following article was submitted in 2012 to Journal of Fluids and Structures. This

work was co-authored by M. C. Thompson, T. Leweke and K. Hourigan, and is entitled,

“The flow past a circular cylinder translating at different heights above a wall”. The

paper is reproduced in this thesis directly from the version submitted to the editor for

review.
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UMR 7342 CNRS, Aix-Marseille Université, F-13384 Marseille CEDEX 13, France
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Abstract

The flow past a circular cylinder moving through a fluid at different heights above a plane no-slip boundary is investi-
gated numerically for Reynolds numbers6 200. The gap height is varied from large values, effectively corresponding
to the freestream case (G/D = ∞), down to a small value where the cylinder is just above the wall (G/D = 0.005).
The initial transition from steady two-dimensional flow canoccur through either a Hopf bifurcation to unsteady flow
or through a regular bifurcation to steady three-dimensional flow. The critical Reynolds numbers for each case are
determined as a function of gap height. It is found that steady two- to three-dimensional transition occurs first at
gap ratiosG/D . 0.25, beyond which the initial transition is to unsteady flow. At G/D = 0.3, a sharp increase in
the critical Reynolds number is observed at which three-dimensionality occurs. On increasing gap height, the criti-
cal Reynolds number initially decreases before again increasing towards the value observed for an isolated cylinder.
The force coefficients and Strouhal numbers are quantified. Finally, three-dimensional simulations are performed at
Re= 200 for the smallest gap ratio, effectively corresponding to a cylinder sliding along a wall, to examine how the
wake evolves as it saturates.

Keywords: Wakes, Stability analysis, Body forces, Flow transition

1. Introduction

The flow past a circular cylinder has represented a generic fluid flow problem for more than a century, and the ex-
perimental and mathematical details of the transition to three-dimensional flow have been revealed over the last twenty
five years. The flow undergoes an initial transition from two-dimensional periodic flow to three-dimensional flow via
a sub-critical transition atRe≃ 190 (Barkley and Henderson, 1996; Williamson, 1996a,b), where the Reynolds num-
ber (Re) is based on the free-stream velocity (U) and the cylinder diameter (D). The spanwise modulation of this
three-dimensional flow at onset was found to be approximately four cylinder diameters and the corresponding wake
instability is commonly known as theMode Ainstability. Another three-dimensional instability mode, Mode B, be-
comes unstable at a higher Reynolds number and the remnants of that mode seem to persist to much higher Reynolds
numbers as the wake undergoes a transition to a chaotic state(Henderson, 1997; Williamson, 1996a,b). The equivalent
modes have also been recognised in the wakes of other two-dimensional cylindrical bodies, such as square cylinders
(Robichaux et al., 1999) and elongated cylinders (Ryan et al., 2005). Until recently, very few studies have investigated
the related problem of flow past a circular cylinder moving parallel to a wall and the associated wake transitions.

Bearman and Zdravkovich (1978) performed experimental investigations for a cylinder near a fixed wall atRe=
4.5 × 104 for 0 6 G/D 6 3.5. The cylinder was located 36D from the start of a turbulent boundary layer which
developed along the wall. They observed the suppression of regular vortex shedding forG/D < 0.3, with the Strouhal
number remaining almost constant until this gap height was approached.

Price et al. (2002) visualised the flow for a circular cylinder at different gap heights from a fixed wall for Reynolds
number in the range 12006 Re6 4960 and identified four different regimes of flow. For the case where the cylinder
was close to the wall (G/D < 0.125), vortex shedding was suppressed and the wall boundary layer separation occurred
both upstream and downstream of the cylinder. For 0.25 6 G/D 6 0.375, the flow was qualitatively similar to that
for the small gap ratios, while pairing occurred between theinner shear layer from the cylinder and the wall boundary
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layer. Vortex shedding was detected forG/D > 0.5, and at higher gap heights, the flow resembled that of an isolated
cylinder.

Experimental investigations undertaken by Bailey et al. (2002) for a square cylinder near a stationary wall at
Re= 1.89× 104 showed the presence of dislocations (which are commonly associated with mode A type instability)
for gap heights greater thanG/D = 0.7. For 0.536 G/D 6 0.7, the spanwise perturbations were suppressed as a result
of higher flow velocities in the gap region, thereby leading to the flow being mainly two-dimensional and a reduction
in the occurrence of dislocations. BelowG/D 6 0.53, intermittent vortex shedding was observed. Experimental
investigations at a slightly higher Reynolds number of 22, 000 by Bosch et al. (1996) showed that the vortex shedding
was completely suppressed atG/D = 0.25, while low intensity intermittent shedding occurred at higher gap ratios.

Using a finite-difference method, Lei et al. (2000) performed numerical simulations for a circular cylinder forG/D
between 0.1 and 3 and for Reynolds numbers 806 Re6 1000. In their simulations, the lower wall and the cylinder
were fixed and a boundary layer started 16D upstream of the cylinder. They observed that the gap height at which
vortex shedding was suppressed decreased as the Reynolds number was increased up toRe= 600. Beyond this value,
the critical gap height remained constant. A similar study was performed by Harichandan and Roy (2012) for a flow
starting 10D upstream of the cylinder atRe= 100 and 200. Single sided vortex shedding was observed forG/D = 0.2
andRe= 200, and as the gap height was increased, Kármán type shedding was observed.

One of the earliest visualisations of the wake of a circular cylinder moving parallel to a wall was by Taneda
(1965), who visualised the vortex streets for the cylinder moving at gap heights ofG/D = 0.6 and 0.1 atRe= 170.
For G/D = 0.1, a single row of vortices formed and these were unstable anddissipated quickly. Furthermore, the
wavelength of vortex street increased as the gap ratio was decreased.

Nishino et al. (2007) performed experimental investigations for a circular cylinder near a moving wall for higher
Reynolds numbers (O(105)). For a cylinder with endplates, they reported that the flowessentially remained two-
dimensional, with Kármán type vortices being shed for gapheightsG/D > 0.5, and an intermediate shedding regime
being observed for 0.356 G/D 6 0.5, followed by complete cessation of shedding belowG/D < 0.35. They further
reported that the drag coefficient was nearly constant when the body was belowG/D < 0.35. However, for a cylinder
without endplates, they reported that the Kármán type vortices were not being generated and the drag coefficient was
nearly constant in this regime.

Zerihan and Zhang (2000) investigated the variation of liftand drag forces on a single element wing (of chord
c) with a moving ground in a wind tunnel at high Reynolds numbers (O(104)). For the airfoil tested, the (negative)
lift coefficient increased from its value at low gap heights to a maximumvalue at heighth = 0.08c, beyond which a
decrease in the lift coefficient was observed. The drag coefficient decreased on increasing gap height. They further
varied the incidence angle of the airfoil and observed that the gap height at which the maximum (negative) lift was
generated varied marginally.

Zhang et al. (2005) investigated the ground effect of a half-cylinder using a moving ground in a wind tunnel
facility for Reynolds numbers in the range 6.8 × 104 6 Re6 1.7 × 105. The critical gap height range over which
vortex shedding was suppressed was found to be 0.5256 G/D 6 0.55. The drag force was nearly constant below
this height but a sharp increase to twice the value was observed around the critical gap height. The lift coefficient
decreased as the gap height was increased. Furthermore, theStrouhal number was found to be insensitive to the gap
height.

Bhattacharyya and Maiti (2005) investigated the flow for a square cylinder near a moving wall for a wide range
of Reynolds numbers (below 1400) for 0.1 6 G/D 6 0.5. They observed that the mean lift coefficient decreased
gradually as Reynolds number was increased, while the drag coefficient increased with Reynolds number. The lift and
drag coefficients were higher for lower gap heights. They further observed that the Strouhal number decreased as the
gap height was decreased. They obtained the velocity profiles in the gap between the cylinder and the wall.

Huang and Sung (2007) performed two-dimensional simulations for a circular cylinder moving near a wall for
0.1 6 G/D 6 ∞ for Re6 600. The gap height at which alternate vortex shedding disappeared decreased from 0.28D
to 0.25D as the Reynolds number was increased from 300 to 600. The non-dimensionalised shedding frequency (S t)
at different Reynolds numbers increased as the cylinder was brought closer to the wall (≃ 0.5D) followed by a rapid
decrease as the gap height was decreased. They further quantified the lift and drag coefficients, with the lift coefficient
showing a linear increase as the cylinder was brought closerto the wall. They however did not rule out the possibility
that three-dimensional effects would be important for such flows.

Using an immersed boundary technique, Yoon et al. (2010) performed numerical investigations at various gap
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heights for a circular cylinder moving parallel to a wall atRe6 200. The time-averaged lift and drag coefficients
decreased exponentially as the gap height was increased. They observed steady flow at higher Reynolds numbers as
the gap height was decreased. Vortex shedding persisted atRe= 120 for the cylinder withG/D = 0.1.

For a body moving along a wall, Arnal et al. (1991) observed that the presence of a wall had a stabilising effect on
the flow dynamics, delaying the transition to unsteady flow tohigher Reynolds numbers. For a square cylinder sliding
along a wall, they observed that the onset of unsteady flow occurred aroundRe= 100, where the vortex pair moved
away from the wall. Instabilities of this nature occurred when vortex cores convected at slower velocities than the
mean flow, as shown by the experimental investigations of Limet al. (2004) for a flat plate boundary layer. Dipankar
and Sengupta (2005) further showed that the instability occurs in the convecting vortex core shed from the freestream
side of the cylinder.

Mahir (2009) investigated the onset of three-dimensional flow for a square cylinder near a fixed wall forRe6 250
as the gap height was increased from 0.1 to 4. AtRe= 185, mode A type vortex structures of spanwise wavelength 3D
were observed for gap heights greater thanG/D = 1.2, whilst atG/D = 0.8, mode B type vortex structures with 1D
spanwise wavelength were observed. BelowG/D = 0.5, neither mode A nor B type vortex structures were observed.
At Re = 250, mode B type vortex structures were observed at larger gap heights, whilst at lower gap heights the
vortex structure was strongly distorted in the vicinity of the cylinder. In the frequency spectra of the streamwise and
spanwise velocities forG/D = 0.8 andRe= 185, period-doubling was observed.

Stewart et al. (2006, 2010b) performed numerical and experimental investigations for a circular cylinder moving
near a plane wall at a very small gap height (G/D = 0.005) forRe6 200. They reported that the flow was steady
up to Re = 165, beyond which periodic flow was observed, where oppositely signed vortex structures combined
and self-propelled away from the wall. They further performed linear stability analysis and determined the onset
of three-dimensional flow. The flow became three-dimensional directly from steady flow atRec = 70.5, unlike the
case for an isolated cylinder, for which the transition to a three-dimensional state occurs from the unsteady flow.
Experimental wake visualisations for the cylinder near a wall in a water tunnel were in good agreement with the
numerical simulations.

In this study, we perform two-dimensional simulations for acircular cylinder moving parallel to a wall at different
gap heights using a spectral-element method. This is coupled with linear stability analysis to investigate the wake
transitions and wake behaviour at different gap heights. The dependence of the force coefficients and the shedding
frequency on Reynolds number and gap height is quantified.

2. Problem definition and methodology

The schematic representation of the cylinder moving parallel to the wall is shown in figure 1. A cylinder of
diameterD is moving at a gap height ofG from the wall. In the numerical setup, it is convenient to usea uniformly
translating frame of reference centred on the cylinder. Relative to this non-accelerating frame, the fluid and the
lower wall move at a uniform speed and the cylinder remains stationary. There are two controlling non-dimensional
parameters: the Reynolds number,Re= UD/ν, whereν is the kinematic viscosity of the fluid, and the gap ratio,G/D.
For this study, the Reynolds number lies in the range 256 Re6 200. Computational domains were constructed for
different gap heights from freestream (G/D = ∞, i.e., no wall) to a minimal gap (G/D = 0.005). The small gap was
maintained to prevent a singular mesh element between the bottom of the cylinder and the lower wall. Previous studies
(Rao et al., 2011; Stewart et al., 2010b, 2006) have shown good agreement between the flow structures visualised in
the experiments and those observed numerically, even though the force coefficients are sensitive to gap height for small
gaps. As is usual, the lift force (Fl) and drag force (Fd) are normalised by the dynamic pressure and area (0.5ρU2D)
to obtain the lift (CL) and drag (CD) coefficients, respectively. In the unsteady regime of flow, vortexshedding occurs
and the force coefficients vary periodically, so time-averaged quantities arereported. The simulations were performed
for τ > 400, where time,t, is non-dimensionalised byU/D (τ = tU/D). The frequency of shedding,f , is normalised
by the cylinder diameter and flow speed to obtain the non-dimensional Strouhal number,S t= f D/U.

2.1. Numerical formulation

The incompressible Navier-Stokes equations are solved using a spectral-element method. The computational do-
main is constructed from quadrilateral elements, mainly rectangular, while some have curved boundaries to accurately
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Figure 1: Schematic representation of the circular cylinder of diameterD at a distanceG from the wall.

treat the curved surface of the cylinder. These elements arefurther subdivided into internal node points which are dis-
tributed according to the Gauss-Legendre-Lobatto quadrature points, with the velocity and pressure fields represented
by tensor products of Lagrangian polynomial interpolants within the elements. Such methods are known to provide
spectral convergence as the polynomial order of the interpolants is increased (Karniadakis and Sherwin, 2005). The
number of node points (N×N) is specified at runtime, with the interpolant polynomial order beingN−1. A fractional
time-stepping technique is used to integrate the advection, pressure and diffusion terms of the Navier-Stokes equation
forward in time. The unsteady solver is used to investigate the parameter range covering both the steady and unsteady
regimes of flow. More details on this method can be found in Thompson et al. (2006a) and has previously been used
in studies of bluff bodies in freestream (Thompson et al., 1996; Leontini et al., 2007; Thompson et al., 2006b) and for
bodies near a wall (Stewart et al., 2006, 2010a,b; Rao et al.,2011; Thompson et al., 2007).

2.2. Linear stability analysis

For an isolated cylinder, three-dimensional flow occurs forRe& 190 (Barkley and Henderson, 1996; Williamson,
1996a,b) in the unsteady regime, while for bodies close to a wall the flow becomes three-dimensional directly from
a steady base flow (Stewart et al., 2010b; Rao et al., 2011). Wehere investigate the variation between these two
extremes mapping the transition for different gap heights. The bifurcation to three-dimensional flow is determined
using linear stability analysis. Numerically, the Navier-Stokes equations are linearised and the spanwise perturbations
are constructed as a set of Fourier modes. The resulting equations are marched forward in time, and after several
periods, the fastest growing or slowest decaying modes dominate the system. For unsteady (periodic) flows, the
analysis is based on the growth over a base flow period (T) and is known as Floquet analysis. In that case, the ratio of
the amplitudes of the perturbation field for consecutive periods is denoted byµ = eσT , whereµ is the Floquet multiplier
or the amplification factor andσ is the growth rate. For exponentially growing modes, the Floquet multiplier returns a
value of|µ| > 1, or a positive growth rate (Re(σ) > 0). For a circular cylinder, the fastest growing modes at theonset of
three-dimensionality have a purely real Floquet multiplier, i.e., the periodicity of the three-dimensional perturbations
is the same as the base flow period. However, other unstable modes which are incommensurate with the base flow
also occur, e.g., for a circular cylinder (Blackburn and Lopez, 2003), square cylinder (Robichaux et al., 1999) or flat
plate (Thompson et al., 2006b). In addition, is it also possible for the perturbation modes to have twice the period of
the base flow such as for the wake behind rings Sheard et al. (2003, 2004). These are termed sub-harmonic modes.

Details of the approach can be found in, e.g., Ryan et al. (2005) and Leontini et al. (2007).

2.3. Resolution studies

The domain used for the two-dimensional flow computations had boundaries positioned at large distances from
the cylinder-wall system to minimise blockage. The inlet and outlet boundaries were placed 100D from the cylinder,
while the transverse boundary was located 150D from the lower wall. Studies conducted by Rao et al. (2011) showed
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negligible changes to the force coefficients and Strouhal number if larger domains were used. Furthermore, spatial
resolution studies were conducted forG/D = 0.01 atRe= 200 by varying the number on internal nodes within each
element (N × N), betweenN2 = 42 to 102. For N2 = 72, maximum variation in the force coefficients and Strouhal
number from the most highly resolved case was less than 0.1%.However, because the macro-element mesh resolution
is considerably lower away from the solid surfaces, to ensure adequate resolution of the flow structures in the far wake
the internal resolution was set toN2 = 92. Further, to ensure stability of the solver at these resolutions, which is
governed by a Courant condition for the explicit non-linearsub-step, the time-step used was 0.001.

3. Results

3.1. Flow structures

The parameter investigation was carried out betweenG/D = 0.005 andG/D → ∞ for Reynolds numbers 25
6 Re 6 200. The flow for all cases investigated is steady at low Reynolds numbers and is characterised by the
formation of recirculation zones behind the cylinder. For small gap heights, a single recirculation zone forms in the
wake away from the wall, and as the gap height is increased, the formation of a secondary recirculation can be observed
as the wake becomes more symmetrical. In line with the isolated cylinder case, the length of these recirculation zones
increases as the Reynolds number is increased. At still higher Reynolds numbers, the flow undergoes transition to
an unsteady state, with the wake state is characterised by the periodic shedding of vortices. For bodies close to the
wall (G/D 6 0.1), the critical Reynolds number for transition to an unsteady state was higher thanRe= 165, and
as the gap height was increased, the unsteady transition occurred at lower Reynolds numbers. Recall that for bodies
near a wall, three-dimensional flow occurs in the steady regime of flow (Stewart et al., 2010b). For bodies close to a
wall, vortex shedding occurs when the negatively signed separating shear layer from the top of the cylinder combines
with oppositely signed vorticity from the boundary layer atthe wall to form vortex pairs, which self-propel away
from the wall. However, for the cylinder moving at larger gapheights, the unsteady wake is characterised by the
formation of the classical von Kármán vortex street. Shown in figure 2 are the coloured vorticity contour plots for the
cylinder moving at different gap heights above the wall atRe= 200. The images shown are at instant of maximum
lift coefficient in the shedding cycle.

The variation of the time-averaged drag and lift coefficients are shown in figure 3 in the steady regime of flow.
Studies by Stewart et al. (2010b) show that the drag coefficient obeys a power law relationship with Reynolds number.
Shown here on a log-log plot, the drag coefficient varies approximately linearly in the steady regime. There is a
difference in the drag coefficient of approximately 2 between the smallest and largest gap cases. The mean lift
coefficient varies substantially more since the mean lift approaches zero asG/D→ ∞.

The variation of the time-averaged drag and lift coefficients together with the standard deviations are shown in
figure 4 for the unsteady regime of flow. Over this Reynolds number range the mean drag coefficient changes only by
approximately 10% or less as the gap ratio or Reynolds numberis varied.

Phase diagrams for various gap heights are provided in figure5 atRe= 200.Cl is plotted againstCd at each gap
height. The curves show the phase relationship between the force coefficients and the variation of the amplitude over
one period of the lift coefficient. ForG/D = ∞, the phase relationship is symmetric between two halves of the cycle,
and an apparent loss in symmetry is observed forG/D 6 1. For very small gaps (G/D 6 0.1), the shedding becomes
substantially one-sided, as shown in figure 2, where the liftand drag signals are out of phase by approximately 180◦.

The variation of the shedding frequency (St) with gap heightfor various Reynolds numbers is shown in figure
6. The Strouhal number drops substantially as the cylinder is positioned closer to the wall, approaching a value
of approximately 0.1 as the gap approaches zero. As the gap height is increased, the Strouhal number increases
almost linearly initially before reaching a maximum for 0.5 6 G/D 6 0.75, above which it decreases slightly as
it asymptotes to the value for an isolated cylinder in freestream. Predictions from Huang and Sung (2007) and an
independent immersed boundary code (J.S. Leontini, private communication) are in good agreement with the current
Strouhal number predictions. It is also interesting that a similar decrease in Strouhal number is found when a cylinder
approaches a free surface (Reichl et al., 2005).
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(a) G/D = 0.01 (b) G/D = 0.1

(c) G/D = 0.25 (d) G/D = 0.4

(e) G/D = 0.5 (f) G/D = 0.75

(g) G/D = 1 (h) G/D = 2

Figure 2: Flow structures atRe= 200 for the circular cylinder moving from right to left at thespecified gap heights. Vorticity contours levels are
between±5D/U. The wake is visualised for a streamwise distance in excess of 25D downstream of the cylinder.
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Figure 3: Variation of the drag (a) and lift (b) coefficients with Reynolds numbers for the gap heights shown. The flow is steady for these parameters.
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Figure 4: Variation of the force coefficients with Reynolds numbers in the unsteady regime for the gap heights shown. The error bars represent one
standard deviation from the mean values.

Figure 5: Force coefficient phase trajectories at different gap heights for periodic flow atRe= 200.

Figure 6: Variation of Strouhal number with gap height for different Reynolds numbers.
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(a) (b)

Figure 7: Variation of critical values for the onset of three-dimensional flow with gap height. Left: Variation of the critical Reynolds number
with G/D. The boundary of the transition between the steady and unsteady regimes obtained using a two-dimensional base flow is shown by the
dotted line. Right: Variation of the critical spanwise wavelength withG/D. The three-dimensional modes which grow on the steady base flow are
marked by open circles (◦) and those on the unsteady base flow by filled circles (•). In each diagram, the gap height at which the flow is stable to
three-dimensional perturbations forRe6 200 is shown by the vertical grey line.

3.2. Stability Analysis

The stability of the flow to spanwise perturbations is investigated for cylinders moving at different gap heights
above the wall. Two-dimensional steady or unsteady flow solutions are used to provide base flows to investigate the
stability to three-dimensional perturbations.

ForG/D = ∞, Barkley and Henderson (1996) showed that the flow became linearly unstable to three-dimensional
perturbations atRec = 188.5 for λc/D = 3.96. Our stability analysis performed on the unsteady base flow showed
that for this case the flow becomes unstable atRec = 190.5 for the same spanwise wavelength. The marginal variation
in the critical Reynolds number between these two predictions (O(1%)) can be attributed to the considerably larger
domain size used here, which also leads to a slightly different Strouhal number to that found by Barkley and Henderson
(1996). Stability analysis performed on the steady base flowat G/D = 0.005 (Rao et al., 2011) is in agreement with
the previous studies of Stewart et al. (2010b). The current investigation was carried out to quantify the variation with
gap height, mapping the boundary between the two- and three-dimensional regimes.

The variation of the critical spanwise wavelength and critical Reynolds number with gap height are shown in figure
7 for gap heightsG/D 6 1.2. In figure 7(a), the approximate demarcation between the steady and unsteady regimes
is shown by the dotted line.

For G/D 6 0.22, stability analysis was performed on a steady base flow, where the power method was used
to resolve the dominant growing mode. However, for gap heights greater thanG/D = 0.22, stability analysis was
performed on an unsteady base flow using the Arnoldi method toresolve the dominant Floquet modes based on
Krylov subspace iterates. This method can resolve both the real and imaginary components of the Floquet multiplier
of the first few most-dominant modes. Domains used for the computations of the steady base flow were used for
the stability analysis for the steady regime, while the computational domain had to be resized for the analysis in the
unsteady regime. In that case, the perturbation fields were not adequately resolved in the far wake (x/D > 30), where
the macro-elements are large. Since the modes are global modes (with the same growth rate everywhere), inadequate
resolution, such as in the far wake, can lead to spurious growth rate predictions if unphysical large mode amplitudes
occur there. To combat this problem, new computational domains were constructed with boundaries closer to the
cylinder. The Strouhal numbers for the smaller domains werecomputed. The variation in the Strouhal number values
between the larger and smaller sized domains were≃ 15%. Although this will affect the accuracy of critical Reynolds
numbers and growth rates by a similar percentage, it is unlikely to affect the underlying physics.

Figure 8 shows the computed spanwise perturbation vorticity contours for the most unstable wavelengths near
the critical Reynolds numbers for onset of the instability.Spanwise vorticity contours of the base flow are overlaid
to highlight the relative position of high mode amplitudes.This instability contours resemble those for a backward-
facing step (Blackburn et al., 2008), flow downstream of a blockage or sudden expansion (Griffith et al., 2007, 2008;
Marquet et al., 2008) or even the instability in the flow over aforward-facing blunt plate (Thompson, 2012). Those
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(a) G/D = 0.05,Re= 80,λ/D = 6, |µ| = 1.027

(b) G/D = 0.1, Re= 100,λ/D = 7, |µ| = 1.072

(c) G/D = 0.2, Re= 135,λ/D = 6, |µ| = 1.037

Figure 8: Spanwise perturbation vorticity colour contours(between levels±0.1D/U) for the cylinder moving at different gap heights at the specified
Reynolds number and spanwise wavelength. Base flow vorticity contours between levels±1D/U are overlaid. The cylinder is moving from right
to left in each image.
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Table 1: Variation ofλc/D andRec with G/D. The values above the horizontal line are obtained from a steady base flow and those below from a
periodic base flow.

G/D λc/D Rec

0.005 5.48 70.91
0.05 5.86 78.07
0.1 6.77 92.85
0.15 7.27 109.55
0.2 6.34 127.20
0.22 5.81 128.23
0.25 5.24 128.11
0.3 4.17 185.90
0.32 4.04 172.30
0.35 3.96 152.45
0.4 3.85 136.68
0.5 3.65 144.39
0.6 3.65 153.45
0.75 3.66 162.16

1 3.73 168.75
2 3.98 177.48
4 4.03 181.22
∞ 3.96 190.5

cases have in common an attached downstream recirculation zone, and lead to a large spanwise-wavelength steady
three-dimensional instability, which generates recirculating flows in the horizontal (x-y) plane.

At G/D = 0.28, the flow remained two-dimensional forRe 6 200. For larger gap ratios (G/D & 0.3), the
three-dimensional instability first manifests after the flow has already become unsteady. This case is analogous to
Mode A for an isolated circular cylinder, with the critical Reynolds number and wavelength curves shown in figure 7
indicating a continuous transition towards the corresponding Mode A values. The mode structures for different gap
heights are shown in figure 9, highlighting the broad similarities in the perturbation fields. In particular, the near wake
shows high perturbation amplitude in the forming vortex cores as well as in the sheared region between the cores,
and further downstream the perturbation is high in the vortex cores and drops to zero at the edge, reminiscent of the
perturbation field structure for an elliptic instability asfound for mode A, e.g., Thompson et al. (2001) and Leweke
and Williamson (1998). Although for small gap heights thereis some interaction with the no-slip wall contributing to
the mode structure, this does not dominate the evolving perturbation field.

Table 1 provides the critical values of Reynolds number and spanwise wavelength for the three-dimensional tran-
sition as a function of the gap height.

3.3. Stability analysis at higher Reynolds numbers for bodies near a wall

Previous studies by Rao et al. (2011) and Stewart et al. (2010b) reported three-dimensional flow in the steady
regime at low Reynolds numbers prior to the onset of unsteadyflow for a circular cylinder near a wall. Barkley and
Henderson (1996) performed stability analysis atRe= 280 for an isolated cylinder and observed a short wavelength
instability, commonly known as mode B. Here, we perform a similar analysis to predict all the amplified growing
modes at a higher Reynolds numbers well past the transition value, and then we use three-dimensional direct numerical
simulations to further investigate the nature of the saturated wake state.

For a cylinder (effectively) sliding along a wall (G/D = 0.005), the two-dimensional flow undergoes transition to
an unsteady wake state atRe≃ 160. Stability analysis was performed on the unsteady base flow atRe= 200 to obtain
the fastest growing modes. The growth rates curves are shownin figure 10. Four distinct modes are observed for
λ/D 6 25, with the shortest wavelength mode atλ/D = 2.4 (termed Mode I) being the fastest growing. Three other
modes whose maximum growth rate peaks are atλ/D = 4.55, 5.35 and 11 and are termed mode II, mode III and mode
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(a) G/D = 0.3, Re= 200,λ/D = 4, |µ| = 1.12

(b) G/D = 0.5, Re= 150,λ/D = 3.75, |µ| = 1.046

(c) G/D = 0.75,Re= 165,λ/D = 3.75, |µ| = 1.025

(d) G/D = 1, Re= 180,λ/D = 3.75, |µ| = 1.086

(e) G/D = 2, Re= 180,λ/D = 4, |µ| = 1.028

(f) G/D =∞, Re= 200,λ/D = 4, |µ| = 1.084

Figure 9: Spanwise perturbation vorticity contours at the specified gap heights. The contour shading is as per figure 8.
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I

II III

IV

Figure 10: Growth of the linear wake modes for the circular cylinder sliding along a wall atRe= 200. The inset shows the two modes between
4 6 λ/D 6 6.

IV, respectively. The corresponding spanwise perturbation vorticity fields at these preferred spanwise wavelengths are
shown in figure 11.

To further investigate the nature of these modes, the real and imaginary components of the resulting Floquet
multipliers are resolved. These are plotted in the complex plane for each of the four modes in figure 12. The horizontal
and the vertical axis corresponds to the real and imaginary components of the Floquet multipliers, respectively. The
unit circle (|µ| = 1) is shown by the solid line. This separates the region whereperturbations decay (inside the circle)
from where perturbations grow (outside the circle). Modes I, III and IV were found to be quasi-periodic, i.e., the
period of the mode is not commensurate with that of the base flow. Mode II, on the other hand, as a purely real and
negative Floquet multiplier, which indicates that it is subharmonic.

To validate the results of the stability analysis and to investigate the evolution towards a saturated wake state, we
performed a three-dimensional direct numerical simulation. This was initialised from the two-dimensional periodic
flow for Re= 200, using a three-dimensional version of the computational code employing a Fourier expansion in the
spanwise direction (Thompson et al., 1996; Karniadakis andTriantafyllou, 1992; Ryan et al., 2005; Leontini et al.,
2007). Low intensity white noise (O(10−4)) was added to trigger the development of three-dimensional flow. The
selection of the spanwise domain size restricts the number of wavelengths of each of the modes that can fit into the
domain to discrete values. Here, this length was chosen as 12D, sufficient to contain 5, 3, 2 and 1 mode I, II, III
and IV wavelengths, respectively. In addition, 64 Fourier planes were used for this simulation. Whilst this is clearly
a compromise, it is sufficient to verify the initial linear evolution of the fastest growing perturbation mode, and it
likely to give an idea of the complex evolution towards the asymptotic wake state as the different modes grow towards
saturation and interact non-linearly.

Figures 13(a) and 13(b) show time traces of theu andw velocity components at a point in the wake as the perturbed
two-dimensional flow evolves towards a three-dimensional state. These plots show that the two-dimensional state is
maintained for more than 100 non-dimensional time units. Beyond approximately 160 time units, the periodicity in
theu trace effectively disappears as strong spanwise flow develops. Figure 13(c) is a depiction of mode I from the
linear stability analysis using isosurfaces of positive and negative streamwise vorticity to indicate the wake structure.
This should be compared with the DNS isosurfaces shown in figure 13(d), which correspond toτ = 95, while Mode I
is still undergoing exponential amplification. This relative time is shown by the first filled circles in figures 13(a) and
(b). Figure 13(e) shows the complex nature of the wake at a later time (τ = 240) after the wake has become highly
non-linear. As indicated above, in this state even the remnants of periodicity in theu velocity component are lost.
Also, there does not appear to be a clearly dominant spanwisewavelength. In any case, the two-dimensional base
flow is clearly no longer an adequate model of the real flow in this regime.

12

61



(a) mode I,λ/D = 2.4, |µ| = 2.174

(b) mode II,λ/D = 4.55,|µ| = 1.836

(c) mode III,λ/D = 5.35,|µ| = 1.8476

(d) mode IV,λ/D = 11, |µ| = 1.638

Figure 11: Spanwise perturbation vorticity contours for the cylinder sliding along a wall (G/D = 0.005) atRe= 200. The cylinder is travelling
from right to left in each image. The contour shading is as perfigure 8.
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Figure 12: The Floquet multipliers for each of the four unstable modes atRe= 200. The modes and their conjugate pairs (if they exist) are shown
along with the unit circle (|µ| = 1). Mode I is shown by open circles (λ/D = 2.4), mode II is shown by quarter filled circles (λ/D = 4.55), mode III
is shown by half filled circles (λ/D = 5.35) and mode IV is shown by fully filled circles (λ/D = 11).

(a)

(b)

(c)

(d) τ = 95

(e) τ = 240

Figure 13: Direct numerical simulation (DNS) results for a circular cylinder sliding along a wall atRe = 200. Left: The time histories of the
streamwise and spanwise velocity components for a locationin the wake downstream of the cylinder. Right: Visualisations using streamwise
vorticity isosurfaces viewed from above. Here (c) shows isosurfaces forλ/D = 2.4 from linear stability analysis, which can be compared withthe
perturbation field obtained from DNS atτ = 95 in image (d). The final image (e) shows perturbation isosurfaces atτ = 240 after the wake has
become chaotic.
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4. Conclusions

We have investigated the flow past a circular cylinder translating parallel to a no-slip wall at different gap heights.
Two-dimensional simulations show the onset of unsteady flowis delayed to much higher Reynolds numbers relative
to the isolated cylinder as the gap height is decreased. For agiven gap height, the Strouhal number increased with
Reynolds number. The force coefficients at various gap heights have been computed. The critical Reynolds numbers
and spanwise wavelengths for the onset of three-dimensional flow are established as the gap height is varied. For
G/D 6 0.22, the onset of three-dimensional flow occurs in the steady flow regime. Beyond this, three-dimensional
flow develops from unsteady two-dimensional flow at considerably higher Reynolds numbers (e.g.,Rec = 185 at
G/D = 0.3; Rec ≃ 137 atG/D = 0.4), before moving towards values approaching those observed for an isolated
cylinder (Rec = 190.5 andλ/D = 3.96). The wake development for a Reynolds number well in excess of the initial
critical value was also investigated for the lowest gap height case,G/D = 0.005, effectively a cylinder sliding along
a wall. At Re = 200, Floquet analysis shows that the two-dimensional periodic wake is unstable to four different
instability modes. The evolution of the wake was followed using DNS for this case as the initially two-dimensional
weakly perturbed flow evolves towards its asymptotic state.This simulation shows that initial development of the
fastest growing mode, in agreement with the stability analysis, and subsequent rapid transition to a chaotic wake state,
for which even quasi-periodic shedding of two-dimensionalrollers into the wake seems to be suppressed.
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Chapter 4

Flow past a cylinder rolling along
a wall

4.1 Overview

The previous chapters have investigated the effect of rotation on circular cylinders in

freestream and the variation in flow structures observed when close to a plane wall.

The combination of the two is investigated here. Flows past bluff bodies rolling near

a wall are investigated here, extending the studies of Stewart et al. (2006, 2010b) to

higher rotation rates. Of primary interest is the exploration of the flow structures as the

rotation rate is extended for −3 6 α 6 3. As the rotation rate is increased from α = 0,

the vortex pairs which are formed become larger in size, and a decrease in the critical

Reynolds number for the onset of periodic flow is observed, while on decreasing the

rotation rate to negative values (α < 0), the onset of vortex shedding occurs at higher

Reynolds numbers and for α 6 −1.5, vortex shedding is suppressed. On increasing the

rotation rate, three-dimensionality occurs at increasingly low Reynolds numbers, while

on decreasing the rotation rate to negative values, the onset of three-dimensionality is

delayed to higher Reynolds numbers and altogether suppressed for α 6 −2.

The following section contains the journal article describing the above stated flow

features, with a significant focus on the variation of the drag coefficient with rotation

rate. Also, briefly introduced here is the topic of flow past multiple bodies near a wall,

and the drag reduction on the trailing body as the separation distance and Reynolds

numbers are varied.
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4.2 Flow dynamics of a rolling cylinder near a wall

The following article was published in 2011 in Journal of Fluids and Structures. This

work was co-authored by B.E. Stewart, M. C. Thompson, T. Leweke and K. Hourigan,

and is entitled, “Flows past rotating cylinders next to a wall”. The paper is reproduced

in this thesis directly from the version published online.
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a b s t r a c t

Two-dimensional simulations are used to investigate the flow past rotating circular

cylinders near a wall in the low Reynolds number regime ð20rRer750Þ. For the single

cylinder case, rotation rates higher than previously studied are considered. For cylinders

rolling forward, the wake flow structures observed are similar to those seen in previous

studies; however, it is found that reverse rotation of the cylinder can completely

suppress vortex shedding. The drag force on the cylinder is quantified. Linear stability

analysis is used to determine the onset of three-dimensionality in the wake. Increased

forward rotation triggers three-dimensionality at increasingly lower Reynolds numbers,

while reverse rotation delays this transition to much higher values. For the highest

reverse rotation rate, three-dimensionality was suppressed at the higher end of the

Reynolds number range investigated. A study of two sliding cylinders is also performed,

especially focusing on the interaction of the first wake with the second, the effect on the

overall wake dynamics and quantification of the drag on each cylinder.

& 2011 Elsevier Ltd. All rights reserved.

1. Introduction

The separated flow over a circular cylinder is one of the classical fluid dynamics problems, studied in detail for over a
century since the pioneering investigations of Bénard (1908) and von Kármán (1911). Since then, there have been many
comprehensive review articles, including Williamson (1996a,b), Norberg (2003), and reviews of wake transition for other
cylindrical or axisymmetric bluff bodies (e.g., Thompson et al., 2006b). The flow dynamics are dramatically altered when
such bodies are placed close to a plane wall. A significant change in shedding frequency and forces experienced by these
bodies is observed, compared with similar bodies in an unbounded flow. An added parameter to such investigations is the
effect of body rotation. By use of a numerical solver, we examine the flow structures and wake dynamics, and compute the
forces on a circular cylinder as a function of rotation rate and Reynolds number, and then extend this study to examine two
sliding cylinders.

One motivation for this study is to improve our understanding of the flow dynamics of, and forces on, cells near blood
vessel walls of which the current problem is a simplified two-dimensional analogue. Certain cell types such as platelets
and leukocytes depend on rolling and sliding along a vessel wall as part of the activation process to initiate the clotting or
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immune response (Lawrence and Springer, 1991; Wagner and Frenette, 2008). This study is a prelude to studies
investigating flow behaviour at much lower Reynolds numbers, which may be directly applicable to the above mentioned
examples. The current study is also applicable to many particle–particle and particle–wall interactions, (e.g., particles in a
sedimentation tank), as it considers a wider parameter range.

2. Flows around a single cylinder close to a plane wall

The effect of placing a body in close proximity to a wall brings about a substantial change to the wake flow structure
and consequently the forces experienced by the body, compared with an unbounded flow. Investigations in a wind tunnel
by Bearman and Zdravkovich (1978) showed a strong suppression of vortex shedding for a gap to diameter ratio G/D¼0.3,
for a cylinder adjacent to a stationary wall. The lift force experienced by the cylinder was directed away from the wall for
the cases investigated but the Strouhal number ðStÞ remained approximately constant as the cylinder moved closer
towards G/D¼0.3.

A single row of vortices was observed by Taneda (1965) for a cylinder moving close to a wall at Re¼ 170. The
experiments were conducted using condensed milk and aluminium dust to visualise the vortex structures. It was noted
that the time period for the vortex formation was longer than that in free stream.

Lei et al. (2000) investigated the effect of gap ratio (G/D) between 0.1 and 3 for a Reynolds number range of 80–1000.
Using a finite-difference method, they describe the flow structure formation behind the cylinder for G=Do3. The lower
wall is stationary, leading to the formation of a boundary layer, which interacts with the shear layer shed from the lower
side of the cylinder. At different gap ratios and Reynolds numbers, the opposite signed vorticity in the wall shear layer and
the shear layer shed from the cylinder cancel each other out, leading to the suppression of vortex shedding. It was also
found that the critical gap ratio at which the shedding ceases decreases with an increase in Reynolds number, asymptoting
to 0.2 at higher values.

Nishino et al. (2007) conducted experiments in a wind tunnel for intermediate Reynolds numbers O(105) with a moving
wall to prevent the development of a boundary layer. Three regions of vortex shedding based on the gap height were
identified. For G=D40:5, regular vortex shedding was observed; and as the cylinder was moved closer to the wall, the
shedding became intermittent and ceased to exist for gap ratios r0:35. The experiments showed a decrease in drag
coefficient as the cylinder was moved progressively closer to a wall, becoming constant for G=Dr0:35.

Numerical simulations for a stationary cylinder close to a moving wall have been performed by Huang and Sung (2007).
They obtained a critical vortex suppression value of G/D¼0.28, which is close to that observed for simulations conducted
with a stationary wall. Furthermore, they attributed the formation of the vortex from the lower side of the cylinder to the
higher flow rate between the cylinder and the moving wall. For a constant gap ratio, the lift and drag values increased as
the Reynolds number was increased from 200 to 500. Numerical simulations have also been carried out for rotating bodies
close to a stationary wall. Using the lattice Boltzmann method, Cheng and Luo (2007) obtained flow structures and
quantified the forces on a rotating cylinder near a stationary wall. The magnitude and sense of rotation affect the critical
height at which vortex shedding is suppressed. For a given gap ratio, the lift coefficient increased as the rotation rate was
changed from retrograde to prograde, while the drag coefficient showed the reverse trend.

Two- and three-dimensional studies for a square cylinder near a stationary wall have been conducted by Mahir (2009).
The mean drag force decreased as the cylinder was brought close to a wall. It was also noted that the two-dimensional
simulations overpredicted the mean lift and drag values. Their simulations considered a body adjacent to a stationary wall,
while the present work focuses on a body in motion along a plane surface.

Stewart et al. (2010) conducted two- and three-dimensional numerical simulations for a single cylinder rolling along a
wall. The gap ratio was maintained at 0.005 to prevent the grid singularity that occurs if the cylinder is touching the wall.
Forward rolling of the cylinder destabilised the flow, reducing the Reynolds number at which shedding first occurred,
while reverse rolling stabilised it. The lift and drag values were found to be highly dependent on the rotation rates. The
steady and unsteady regimes of the flow for different rotation rates were mapped. In the unsteady regime, the shear layer
shed from the top of the cylinder combined with the wall shear layer downstream, forming a vortex pair with a net
rotation. Their stability analysis reported that the wake undergoes a transition to three-dimensionality and then becomes
unsteady, as the Reynolds number is increased. The transition mechanism to three-dimensionality was not clearly
understood. Experimental work carried out in a water channel confirmed the flow features visualised in the numerical
simulations. The current work is an extension of that study: first to higher forward and reverse rotation rates and then to
multiple circular cylinders.

3. Problem definition and methodology

This study is an extension to the generic flow problem of a single cylinder rolling, without slipping, along a wall in a
quiescent fluid. That problem is governed by a single parameter, the Reynolds number Re¼UD=n, where D is the cylinder
diameter, U the velocity of its centre, and n the kinematic viscosity of the fluid. In the general case, in which slip between
the cylinder and the wall is allowed, another parameter is needed to fully describe the flow. A convenient choice is the
rotation speed at the cylinder surface relative to the linear speed at its centre a¼ ðoD=2Þ=U, where o is the angular
velocity. Forward rolling (i.e., rotation against the flow at the top of the cylinder—anti-clockwise in this case) corresponds
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to positive a values, and reverse rolling (i.e., aiding the flow or clockwise) corresponds to negative a values. The range of
Reynolds numbers considered in this study is between 20 and 200 for aZ0 and between 20 and 750 for ao0. In the
current study, a is varied between �2 and þ2. A schematic representation of the rolling cylinder is shown in Fig. 1. The
cylinders are placed at a very small distance above the wall to prevent the formation of singular elements directly beneath
the cylinders. The gap height normalised by the cylinder diameter, G/D, is set to 0.005. Previous studies (Stewart et al.,
2006, 2010) have shown that the simulated flow structures match the experimentally observed ones when the cylinder is
actually in contact with the wall, although it is true that the lift and drag forces are sensitive to the gap ratio. At low
Reynolds numbers, the drag force was more sensitive to the gap ratio than at higher flow speeds. The frequency of
shedding of the wake, f, is quantified through the non-dimensional Strouhal number, St¼ fD=U. The drag coefficient (per
unit width) reported here is given by Cd ¼ Fd=ð

1
2rU2DÞ, where Fd is the time-averaged force experienced by the cylinder.

Visualisations for all cases presented here are with flow from left to right in the frame of reference of the cylinder. Vortical
structures have been visualised using a red/blue colour scheme, where red indicates negative, and blue positive vorticity,
respectively. The contour levels for all figures shown are between 75U/D.

3.1. Numerical formulation

In order to compute the flow numerically, the incompressible Navier–Stokes equations are solved in the frame of
reference of the cylinder. In this inertial reference frame, the fluid moves from left to right at constant speed U. A detailed
description of the numerical method and implementation is given in Thompson et al. (2006a); it has previously been
employed to investigate bluff body flow dynamics for many related problems, e.g., Stewart et al. (2010), Thompson et al.
(1996), Thompson et al. (2001), Leontini et al. (2007), Tan et al. (2005), Le Gal et al. (2001). The numerical method uses the
spectral-element approach with the computational domain constructed from a set of quadrilateral elements with curved
sides as necessary to accurately model the cylinder surface. Each element is further sub-divided by a set of internal nodes
distributed according to the Gauss–Legendre–Lobatto quadrature points, with the velocity and pressure fields represented
by a tensor product of Lagrangian polynomial interpolants within the elements. While the method is only continuous in
the function, and not in the derivatives, across element boundaries, it has been shown to provide spectral or exponential
convergence as the interpolant order is increased (Karniadakis and Sherwin, 2005). A key advantage with the method is
the ability to specify the number of nodes per element N�N at runtime. The interpolant polynomial order is then given by
N�1. The fractional step technique is used for the time integration (Chorin, 1968; Karniadakis et al., 1991) for computing
both the steady and unsteady wakes.

At the solid boundaries and the inflow and top domain boundaries, the velocity was set to the relevant known values to
provide the boundary conditions there. At the outflow boundary, the pressure was set to zero together with the normal
velocity gradient. The domain boundaries were placed at sufficiently large distances from the cylinder to reduce blockage
to about 1%.

3.2. Linear stability analysis

The transition to three-dimensionality in the wake forms an important aspect of understanding flows over bluff bodies,
not least because it precedes the transition to fully turbulent flow, and the remnants of these three-dimensional modes
tend to persist into the fully turbulent regime (Williamson, 1996b; Wu et al., 1996). Flows over bodies moving close to the
ground have been found to undergo transition to three-dimensionality before becoming unsteady, as shown by Stewart
et al. (2010), which is noted to be similar to the three-dimensional transition for flow over a backward-facing step (Barkley
et al., 2002). In order to determine the transitional values, we perform linear stability analysis by splitting the velocity and
pressure fields into two-dimensional components describing the stable or unstable base flow plus three-dimensional
perturbations. Mathematically, the linearised Navier–Stokes equations for the perturbation fields admit solutions based on
exponential growth or decay in time, together with sinusoidal variation in the spanwise direction. In general, the full
solution can be constructed as a Fourier sum of spanwise modes, each growing or decaying exponentially in time.
In practice, for each Reynolds number and each spanwise wavelength ðlÞ, the linearised equations can be integrated in time

Fig. 1. Schematic representation of the cylinder.
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starting from a base flow perturbed with white noise. After some time, for each spanwise wavelength, only the dominant
instability mode remains, since it is the one that grows fastest or decays most slowly. In fact, it is possible to extract the first
few most important modes for each spanwise wavelength by using an Arnoldi decomposition of the snapshots of the evolving
fields at fixed time intervals (T), typically the base flow period if the base flow is periodic (see, e.g., Barkley and Henderson,
1996; Ryan et al., 2005). In that case, the instability analysis is called Floquet analysis. The growth rate ðsÞ of each mode can be
related to the amplification factor ðmÞ over time T by m¼ esT . The critical Reynolds number (Rec), corresponding to a maximum
growth rate of s¼ 0 or amplification factor m¼ 1, over all wavelengths, marks the transition to three-dimensional flow. For the
case of rolling cylinders near a wall, the flow is steady before the onset of three-dimensionality, unlike the case of a cylinder in
an unbounded flow, where three-dimensionality develops on an already unsteady periodic base flow (Thompson et al., 1996;
Barkley and Henderson, 1996). More details of the theory and numerical approach can be found, e.g., in Griffith et al. (2007),
Leontini et al. (2007) and Ryan et al. (2005).

3.3. Domain size and mesh resolution studies

The computational domain chosen was of similar dimensions to that used for previous work, with the inlet and outlet
at 100D upstream and downstream of the cylinder, and the top boundary placed 150D from the wall. The spatial resolution
is controlled by varying the number of interpolation points in each direction, N. These points are used as a basis for
constructing the Lagrange interpolating polynomials over which integration is carried out, as described above. The number
of points over each (two-dimensional) element was varied between N2

¼16 and 121. This check was carried out for the two
extreme cases of the Reynolds number at the maximum rotation rates of a¼ 72. Tables 1 and 2 tabulate the drag
coefficient as the spatial resolution is increased. For N¼8, the values are within 0.1% of the maximum tested resolution.
Furthermore, at N¼8, the Strouhal number at Re¼200 and a¼ þ2 was well within 0.2% of that at the maximum tested
resolution.

4. Results

4.1. Flow structures

Initially, we focus on the wake flow structures for different rotation rates. For moderate Reynolds numbers and for
positive a, the shear layer rolls up behind the cylinder forming a strong clockwise vortex, which grows in strength prior to
eventually detaching from the separating shear layer. This vortex induces the generation of vorticity of opposite sign
beneath it in order to satisfy the no-slip boundary condition there. For the Reynolds number shown (Re¼180), diffusion is

Table 1
Variation of the time-averaged drag coefficient for a¼ þ2.

N Re¼20 Re¼200

Cd
Variation (%) Cd

Variation (%)

4 10.295424 �9.063091 3.920135 �2.507025

5 11.210904 �0.976885 4.027608 0.165807

6 11.281302 �0.355077 4.022211 0.031585

7 11.273864 �0.420775 4.015624 �0.132233

8 11.311096 �0.091914 4.024288 0.083239

9 11.321852 0.003091 4.021998 0.026287

10 11.321418 �0.000742 4.018557 �0.059290

11 11.321502 0 4.020941 0

Table 2
Variation of the time-averaged drag coefficient for a¼�2.

N Re¼20 Re¼750

Cd
Variation (%) Cd

Variation (%)

4 9.375690 3.380668 0.228723 �4.688425

5 9.134668 0.723049 0.241246 0.530057

6 9.087320 0.200968 0.240163 0.078759

7 9.084586 0.170822 0.240082 0.045005

8 9.072538 0.037975 0.239991 0.007084

9 9.069034 �0.000662 0.239969 �0.002084

10 9.069136 0.000463 0.239973 �0.000417

11 9.069094 0 0.239974 0
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low enough to allow the secondary vorticity to be pulled away from the wall to form a vortex pair, which subsequently
self-propels away from the wall through self-induction. This same scenario is observed for all positive rotation rates
examined, as shown in Fig. 2. Although the parameter space was generally restricted to a¼ 72, some visualisations were
carried out at a higher rotation rate of a¼ þ3. The vortex formed at the top of the cylinder rolls up in a more circular shape
at higher rotation rates as compared to a¼ 1, where a more oblate vortex pair is formed. Also, the increased rotation rate
moves the separation point of the separating shear layer further forward. The transition from steady state to unsteady flow
was found to occur at lower Reynolds numbers when increasing the rotation speed. Vortex shedding was observed at
Re¼65 at a¼ þ2, in contrast to unsteady flow being first observed at ReZ90 and 160 for a¼ þ1 and 0, respectively. The
flow at these Reynolds numbers is three-dimensional and unsteady; the flow structures have two-dimensional projections
resembling the computed two-dimensional wakes shown here, but with an additional spanwise waviness (see Stewart
et al., 2010).

Vortex shedding was found to occur only at higher Reynolds numbers ðReZ425Þ for a cylinder in clockwise rotation or
reverse rolling ða¼�1Þ (Stewart et al., 2010). In Fig. 3, wakes are shown for Re¼750. The vortex pairs formed in this case
drifted farther away from the wall at this flow speed, compared with those at Re¼450. On increasing the rotation speed in
the clockwise direction to a¼�1:25, vortex shedding was detected only for Re4700. The structure of the shear layers
formed behind the cylinder resembled that at a¼�1. The frequency of shedding was far higher and the vortex structures
formed were much smaller compared to those at a¼�1, and they remained closer to the wall. On further increasing the
magnitude of (negative) rotation speed, the flow structure changed dramatically and vortex shedding ceased to occur for
Rer750 and a¼�2. A stand-alone run for a¼�3 showed that vortex shedding continued to be suppressed at higher
negative rotation rates. For these very high reverse rotation rates, the cylinder boundary layer wraps all the way around
the cylinder, almost preventing separation entirely. Note that for a rotating cylinder in a free stream, vortex shedding is
briefly suppressed between rotation rates of 1:91rar4:34 and beyond aZ4:8 (Mittal and Kumar, 2003).

Stages of vortex shedding for a¼ þ2 at Re¼200 are shown in Fig. 4 for one time period, along with the corresponding
instances on the force history diagram. Points (a) and (e) both correspond to image (a). At t¼ 165, the vortex pair behind
the rolling cylinder is about to drift away from the cylinder wall system. At a slightly later time of t¼ 170 [image (b)],

Fig. 2. Evolution of the wake for the anti-clockwise rotation of a single cylinder at Re¼180 for the rotation rates shown. Vorticity contours and colours

are the same in all images. The vortex pair for a¼ þ3 is the strongest. (For interpretation of the references to colour in this figure legend, the reader is

referred to the web version of this article.)

Fig. 3. Evolution of the wake for the clockwise rotation of a single cylinder at Re¼750 for the rotation rates shown.
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we observe that the drag has almost doubled, due to the low pressure caused by the rolling up of the shear layer above the
cylinder. The vortex grows larger and moves away from the cylinder, leading to the recovery of pressure, thereby causing a
drop in the drag force until t¼ 182 [image (c)]. As explained previously, the wall shear layer is also being drawn up by the
much larger vortex from the top of the cylinder and leads to a slight increase in drag force [image (d)]. At a slightly later
stage, the shear layer on the top of the cylinder has rolled up and has drifted further away, and a decrease in drag is
observed.

4.2. Drag and Strouhal number trends

Drag coefficients for the steady and unsteady cases are shown in Figs. 5 and 6, respectively. For the steady cases, we
observe that the trends vary linearly on a log–log plot. These trends are similar to those previously observed by Stewart
et al. (2010) for cylinders at lower rotation rates.
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Fig. 4. (a–d) Vorticity snapshots for the single cylinder rolling at a¼ þ2 and Re¼200. (e) Instantaneous drag coefficient (Cd).
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Fig. 5. Variation of the drag coefficient for different rotation rates in the steady state regime.
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The Strouhal number variation for the higher rotation rate cases investigated is shown in Fig. 7. Strouhal numbers for
the negative rotation rates are much higher compared with the positive rotation cases.

4.3. Three-dimensional transition

Stability analysis was conducted to determine the critical Reynolds number at which the flow undergoes transition to
three-dimensional flow. As described above, linear stability analysis is performed based on two-dimensional steady or
unsteady base flows. In practice, this amounts to determining the growth rates of the dominant modes corresponding to a
range of spanwise wavelengths, for a set of Reynolds numbers. The aim is to determine the critical Reynolds number at
which the growth rate first becomes zero, and the corresponding wavelength.

For the simulations conducted here, three-dimensionality is initially triggered on the steady base flow at Reynolds
numbers less than the values at which unsteady flow occurs, in agreement with the findings of Stewart et al. (2010). Fig. 8
presents plots of growth rate as function of axial wavelength for different rotation rates. Fig. 9 summarises the results from
the analysis of these curves: the variation of the critical Reynolds number and wavelength with rotation rate. As the
rotation is increased from a¼�1:5 to þ2, the transition Reynolds number monotonically decreases, while the critical
spanwise wavelength monotonically increases.

4.4. Comparison with experimental results

Experiments were performed in a water tunnel using a cylinder driven by a stepper motor placed adjacent to
a purpose-built moving floor, as described in Stewart et al. (2006, 2010). Some dye visualisations showing the two-
dimensional structure of the wake for different rotation rates are shown in Figs. 10–12. Note that these images are taken
just after startup, before the wake has become too three-dimensional, both from end-effects given the short aspect ratio
(13:1), and the growth of the intrinsic three-dimensional instability as discussed above. The corresponding numerical
simulations were conducted at slightly higher Reynolds numbers than for the experiments. This is because unsteady
transition is triggered at subcritical Reynolds numbers with the current experimental setup.
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5. Tandem cylinders

The flow characteristics of a bluff body are altered when a body of similar dimension is placed in its vicinity (see, e.g.,
Sumner, 2010 for a recent review). Here, we consider the case of two-dimensional flow around two cylinders sliding along
a plane wall without rotation ða¼ 0Þ. The trailing body is placed downstream of the first body at different normalised
separation distances (S/D), measured as the dimensionless distance between the cylinders (see Fig. 13). As for the case of a
single cylinder, a gap of size G/D¼0.005 is maintained between the cylinders and the wall. The range of Reynolds numbers
for this investigation is 20–200 and the separation distance is varied between 0:1rS=Dr10. One motivation for this study
comes from the drag reduction of the trailing or the downstream body when placed at close separation distances. At very
large spacings, the cylinders effectively behave as individual entities and the flow characteristics of both should resemble
those of a single cylinder.

The numerical formulation and the problem setup are very similar to that for a single cylinder. However, there is an
increase in the number of macro-elements required in order to resolve the boundary layers of each cylinder and the larger
region with high velocity gradients, which leads to the increase in computational effort. Mesh resolution studies were also
carried out for the case of S/D¼10. A domain size of 50D (inlet) �50D (top surface) �100D (outlet) was used for the
simulations, with the outlet boundary being placed 100D from the downstream cylinder, and a polynomial order N¼7.
This was sufficient to capture the drag force accurately.

It may be recalled that the critical value for transition to unsteady state for a single cylinder sliding along a wall is
Re¼160 (Stewart et al., 2010). In general for the tandem cylinder case, the flow was found to become more stable as (a) the
Reynolds number decreased and (b) as the separation distance between the two cylinders decreased. For example, at
Re¼200, the maximum Reynolds number tested, the flow was steady only for spacings S=Dr4:5. However, decreasing
Re to 180, the flow remained steady out to spacings S=D¼ 6 (Fig. 14). Further decreasing the Reynolds number to Re¼150,
unsteady flow was still detected but only for spacings greater than S/D¼8. Compared with the single cylinder sliding case,

Fig. 10. Dye visualisations from the water channel (left) and vorticity contours from the numerical simulations (right).

Fig. 11. Dye visualisations from the water channel (left) and vorticity contours from the numerical simulations (right).

Fig. 12. Dye visualisations from the water channel (left) and vorticity contours from the numerical simulations (right).

Fig. 13. Schematic representation of the tandem cylinder.
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the presence of a downstream cylinder thus provides a stabilising effect (i.e., increases the transitional Reynolds number)
on the wake for closer separation distances but destabilises the flow for greater separation distances.

The variation of the upstream and downstream cylinder drag coefficients with respect to separation distance is shown
for Reynolds numbers 20 and 180 in Fig. 15. The drag on the downstream cylinder increases as the spacing between the
cylinders is increased. A more rapid rise is observed for cases where the transition to unsteady state occurs. At the higher
Reynolds number, the drag on the downstream cylinder for small separations is low, but remains positive. This is in
contrast to the free-stream case, where the downstream cylinder experiences negative drag force at very close spacings.
Fig. 16 shows the pressure distribution for the tandem cylinders at the closest spacing of S/D¼0.1 at Re¼200. The higher
pressure near the wall on the upstream face of the downstream cylinder, together with the lower pressure on the
downstream face, leads to a positive drag force.

The drag variation of the two cylinders with Reynolds number is shown in Fig. 17 for three separation distances. Only at
very large spacings, the drag on the downstream cylinder approaches that of the upstream cylinder.

On increasing the separation distance, multiple circulation regions were formed in the space between the sliding
cylinders, as shown for a particular case in Fig. 18.

Fig. 14. Instantaneous flow structures at Re¼180, as the spacing ratio S/D is increased. Vortex shedding is seen for S/D¼9.
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6. Conclusions

This paper extends the results for a single rotating cylinder close to contact with a plane wall to higher rotation rates
than previously considered. For the forward rolling case, wake flow structures at rotation rates up to a¼ 3 were found to
be similar to those for lower rotation rates, except for the strength of the vortex pairs which self-propel away from the
wall. This can be understood in terms of the velocity difference across the wake, which results in a higher flux of vorticity
into the separating shear layer and subsequently stronger shed vortices. For the reverse-rotating case, the fluid boundary
layer effectively remains attached as it passes over the surface of the cylinder. For ao�1:25, vortex shedding is
suppressed up to at least Re¼700. In addition, high reverse rotation also stabilises the flow against three-dimensional
instability. For both forward and reverse rotation, the drag experienced by the cylinder has been quantified. This paper also
presents results for a pair of cylinders sliding along a plane wall, as a function of separation distance. Overall, the presence
of the second cylinder results in the delay of transition to unsteady flow to higher Reynolds numbers. The drag on the
downstream cylinder increases after the onset of unsteady flow.
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von Kármán, T., 1911. Über den Mechanismus des Widerstandes, den ein bewegter Körper in einer Flüssigkeit erfährt. Göttinger Nachrichten

Mathematisch-Physikalische Klasse 12, 509–517.
Karniadakis, G.E., Israeli, M., Orszag, S.A., 1991. High-order splitting methods for the incompressible Navier–Stokes equations. Journal of Computational

Physics 97, 414–443.
Karniadakis, G.E., Sherwin, S.J., 2005. Spectral/hp Methods for Computational Fluid Dynamics. Oxford University Press, Oxford.
Lawrence, M.B., Springer, T.A., 1991. Leukocytes roll on a selectin at physiologic flow rates: distinction from and prerequisite for adhesion through

integrins. Cell 65, 859–873.
Le Gal, P., Nadim, A., Thompson, M., 2001. Hysteresis in the forced Stuart–Landau equation: application to vortex shedding from an oscillating cylinder.

Journal of Fluids and Structures 15, 445–457.
Lei, C., Cheng, L., Armfield, S., Kavanagh, K., 2000. Vortex shedding suppression for flow over a circular cylinder near a plane boundary. Ocean Engineering

27, 1109–1127.
Leontini, J.S., Thompson, M.C., Hourigan, K., 2007. Three-dimensional transition in the wake of a transversely oscillating cylinder. Journal of Fluid

Mechanics 577, 79–104.
Mahir, N., 2009. Three-dimensional flow around a square cylinder near a wall. Ocean Engineering 36, 357–367.
Mittal, S., Kumar, B., 2003. Flow past a rotating cylinder. Journal of Fluid Mechanics 476, 303–334.
Nishino, T., Roberts, G.T., Zhang, 2007. Vortex shedding from a circular cylinder near a moving ground. Physics of Fluids 19, 025103.
Norberg, C., 2003. Fluctuating lift on a circular cylinder: review and new measurements. Journal of Fluids and Structures 17, 57–96.
Ryan, K., Thompson, M.C., Hourigan, K., 2005. Three-dimensional transition in the wake of bluff elongated cylinders. Journal of Fluid Mechanics 538, 1–29.
Stewart, B.E., Hourigan, K., Thompson, M.C., Leweke, T., 2006. Flow dynamics and forces associated with a cylinder rolling along a wall. Physics of Fluids

18, 111701.
Stewart, B.E., Thompson, M.C., Leweke, T., Hourigan, K., 2010. The wake behind a cylinder rolling on a wall at varying rotation rates. Journal of Fluid

Mechanics 648, 225–256.
Sumner, D., 2010. Two circular cylinders in cross-flow: a review. Journal of Fluids and Structures 26, 849–899.
Tan, B.T., Thompson, M.C., Hourigan, K., 2005. Evaluating fluid forces on bluff bodies using partial velocity data. Journal of Fluids and Structures 20 (1),

5–24.
Taneda, S., 1965. Experimental investigation of vortex streets. Journal of the Physical Society of Japan 20, 1714–1721.
Thompson, M.C., Hourigan, K., Cheung, A., Leweke, T., 2006a. Hydrodynamics of a particle impact on a wall. Applied Mathematical Modelling

30, 1356–1369.
Thompson, M.C., Hourigan, K., Ryan, K., Sheard, G.J., 2006b. Wake transition of two-dimensional cylinders and axisymmetric bluff bodies. Journal of Fluids

and Structures 22, 793–806.
Thompson, M.C., Hourigan, K., Sheridan, J., 1996. Three-dimensional instabilities in the wake of a circular cylinder. Experimental Thermal and Fluid

Science 12, 190–196.
Thompson, M.C., Leweke, T., Williamson, C.H.K., 2001. The physical mechanism of transition in bluff body wakes. Journal of Fluids and Structures

15, 607–616.
Wagner, D.D., Frenette, P.S., 2008. The vessel wall and its interactions. Blood 111, 5271–5281.
Williamson, C.H.K., 1996a. Three-dimensional wake transition. Journal of Fluid Mechanics 328, 345–407.
Williamson, C.H.K., 1996b. Vortex dynamics in the cylinder wake. Annual Review of Fluid Mechanics 28, 477–539.
Wu, J., Sheridan, J., Welsh, M.C., Hourigan, K., 1996. Three-dimensional vortex structures in a cylinder wake. Journal of Fluid Mechanics 312, 201–222.

A. Rao et al. / Journal of Fluids and Structures 27 (2011) 668–679 679

81



82



Chapter 5

Flow past tandem cylinders
sliding along a wall

5.1 Overview

This chapter is an extension of the previous study, where an identical body is placed

downstream of the original body in the near wake region. While the case of tandem

cylinders was investigated with respect to flow stabilisation and drag reduction in chap-

ter 4, a detailed study is presented here. Flows past tandem cylinders in freestream

have been investigated by several researchers (Biermann & Herrnstein 1933; Igarashi

1981; Mizushimaa & Suehiro 2005; Meneghini et al. 2001); where different regimes of

flow were identified based on the longitudinal separation distance (S/D). The three-

dimensional stability over a range of spacings was investigated by Papaioannou et al.

(2005) and Carmo et al. (2010), where modes with similar spatio-temporal symmetries

as those of mode A and B were observed at different spacings. Very few studies have

investigated the flow dynamics for multiple cylinders near a wall. Bhattacharyya &

Dhinakaran (2008) performed numerical simulations for square cylinders in a linear

shear flow at Re = 200 at G/D = 0.5, where vortex shedding was observed at large

cylinder spacings. Recent numerical simulations by Harichandan & Roy (2012) for cir-

cular cylinders show the onset of vortex shedding at high Reynolds numbers and large

cylinder spacings and higher gap heights.

Here, two-dimensional simulations are performed for circular cylinders translating

along a wall for 0.1 6 S/D 6 10 and Re 6 200 to investigate the flow structures and

to quantify the forces. Linear stability analysis is then performed for these cases to

investigate the onset of three-dimensionality. As the separation distance is increased

from small spacings, the critical Reynolds number increases until S/D ' 4.5. For 4.5 6
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S/D 6 6, flow first transitions to three-dimensionality at a lower Reynolds number

and on increasing Reynolds number, the flow stabilises prior to becoming unstable for

a second time at much higher Reynolds numbers. For S/D > 6, the critical Reynolds

numbers for the onset of three-dimensionality is similar to an isolated cylinder sliding

along a wall. Three-dimensional simulations carried out at Re = 200 indicate the rapid

transition to chaotic flow for a wide range of cylinder spacings.

5.2 Flow dynamics of tandem cylinders sliding along a
wall

The following article was submitted in 2012 to Journal of Fluid Mechanics. This work

was co-authored by M. C. Thompson, T. Leweke and K. Hourigan, and is entitled,

“Dynamics and stability of the wake behind tandem cylinders sliding along a wall”.

The paper is reproduced in this thesis directly from the version submitted to the editor

for review.
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The dynamics and stability of the flow past two cylinders sliding along a wall in a tandem con-
figuration is studied numerically at low to intermediate Reynolds numbers (Re). For cylinders
at close separations, the onset of unsteady two-dimensional flow is delayed to higherRe com-
pared to the case of a single sliding cylinder, while at larger separations, this transition occurs
earlier. For Reynolds numbers above the threshold, shedding from both cylinders is periodic and
locked. At intermediate separation distances, the wake frequency shifts to the subharmonic of
the leading-cylinder shedding frequency, which appears tobe due to a feedback cycle whereby
shed leading-cylinder vortices interact strongly with thedownstream cylinder to influence sub-
sequent leading-cylinder shedding two cycles later. In addition to the shedding frequency, the
drag coefficients for the two cylinders are quantified for thesteady and unsteady regimes. The
three-dimensional stability of the flow is also investigated. It is found that, when increasing the
Reynolds number at intermediate separations, an initial three-dimensional instability develops,
which disappears at higherRe. The new two-dimensional steady flow again becomes unstable,
but with a different three-dimensional instability mode. At very close spacings, when the two
cylinders are effectively seen by the flow as a single body, and at very large spacings, when
the cylinders form independent wakes, the flow characteristics are similar to those of a single
cylinder sliding along a wall.

Key words: wakes, vortex shedding, vortex streets

1. Introduction
The wakes behind generic bluff bodies such as cylinders and spheres placed in a free stream

have been widely investigated. Williamson (1996) summarises the behaviour of the flow around
a circular cylinder in the laminar and transition regimes. For Reynolds numbers (Re, based on
the cylinder diameterD and free-stream velocityU ) below 47, the wake is steady. Above this
value, and up toRe ≃ 180, laminar vortex shedding is observed, which, in the absenceof end
effects, is periodic and two-dimensional. The three-dimensional transition regime, found in the
range180 . Re . 300, was first described in detail by Williamson (1988). The initial three-
dimensional shedding mode (Mode A) involves a spanwise waviness of the shed vortices, with
a wavelength of approximately four cylinder diameters, anda discontinuity in the evolution of
the shedding frequency. It can be related to an elliptic instability of the vortex cores (Thompson
et al. 2001). A second mode (Mode B) appears at higher Reynolds numbers (Re & 230), with

† Email address for correspondence: Thomas.Leweke@irphe.univ-mrs.fr
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a smaller spanwise wavelength of approximately one diameter. It involves the amplification of
secondary streamwise vortices in the strain-dominated braid regions between the shed vortices.
Initially, the two modes co-exist, with a subsequent gradual shift to a pureMode B, accompanied
by a second discontinuity in the frequency relation. The characteristics of the two instability
modes, including the associated vortex structures, were documented numerically by a number of
authors (Barkley & Henderson 1996; Zhanget al.1995; Mittal & Balachandar 1995; Thompson
et al.1996; Henderson 1997).

The presence of a second bluff body of similar dimensions in close proximity influences the
wakes behind each body, and also the forces experienced by each of them. Critical parameters
for categorising the flow regimes for a particular Reynolds number are based on the separation
distance and the magnitudes of lift and drag forces experienced by the cylinders. Biermann &
Herrnstein (1933), in their investigation of streamlined struts and cylinders, found that the drag
on the upstream cylinder is not greatly influenced by the presence of the downstream cylinder,
however the drag on the rear cylinder was greatly reduced by the upstream cylinder. They also
found that the wake from the upstream cylinder was not fully developed in the presence of another
body at close separation distances. Igarashi (1981) carried out an experimental study for cylinders
in a tandem configuration atRe ≃ 104 and classified the flow based on the separation distance.
A similar study was conducted by Zdravkovich (1987), who recorded the force variations for
cylindrical arrays of tubes in various configurations such as in-line, side by side, and staggered.
The broad classification based on the longitudinal separation distanceS is as follows:
• 0.1 ≤ S/D ≤ 0.2 − 0.8, a regime of close spacing, where the shear layers shed from the

upstream cylinder do not reattach to the downstream cylinder. The two cylinders behave as a
single extended body and vortices are formed from the detached shear layers of the downstream
cylinder.
• 0.2 − 0.8 ≤ S/D ≤ 2.4 − 2.8, an intermediate regime, where the shear layers shed from

the upstream cylinder reattach onto the downstream cylinder and shedding takes place behind the
downstream cylinder. Also observed in this regime is the intermittent vortex formation behind
the upstream cylinder.
• S/D ≥ 2.8, a regime of large spacing, where vortices are shed from bothcylinders.
The critical separation distance (2.5 − 3 cylinder diameters) for the onset of vortex shedding

from both cylinders has been identified by many researchers (Liang et al. 2008; Didier 2007;
Mussaet al.2009; Zhou & Yiu 2005), both numerically and experimentally, for a wide range of
Reynolds numbers. The two-dimensional numerical simulations by Lianget al.(2008) showed a
sharp increase of the drag coefficient and Strouhal number (St = fD/U , wheref is the vortex
shedding frequency), once this critical spacing was exceeded.

Mizushimaa & Suehiro (2005) concluded that the flow behind the upstream body is greatly
stabilised by the presence of the downstream body and the transition to unsteady flow for spac-
ings ofS/D = 1 andS/D = 3 occurred atRe = 68 andRe = 78.5, respectively. This is
much higher than the critical value observed for an isolatedsingle cylinder (Re = 47). It was
also shown that for a spacing ofS/D = 1, the transition was supercritical, and subcritical at
S/D = 3. For large spacing ratios (S/D > 3), the downstream cylinder experienced large
lift and drag forces. The amplitude of the lift on the downstream cylinder was observed to be
approximately four times that of the upstream cylinder.

Meneghiniet al.(2001) performed numerical simulations for cylinders in tandem and side-by-
side arrangement in a free stream forRe 6 200. They quantified the forces on the two cylinders
and the shedding frequency. For close spacings, the Strouhal number was 65% lower than for
a single cylinder in a free stream. Also, the drag on the downstream cylinder was negative for
spacingsS/D 6 2.

Two- and three-dimensional numerical simulations were performed by Denget al. (2006) for
Re > 220 and different separation distances. In their two-dimensional simulations atRe = 220

87



The wake of tandem cylinders sliding along a wall 3

for S/D 6 2.5, vortex shedding does not take place between the two cylinders, while for
S/D > 3, each cylinder produces a vortex wake. However, in their three-dimensional simu-
lations, three-dimensionality was observed forS/D > 2.5, but not for smaller spacings. For the
critical spacing ofS/D = 2.5, the transition to three-dimensionality occurs atRe = 250. Similar
computations have been performed by Papaioannouet al.(2005) for tandem cylinder cases. Their
simulations show an increase in three-dimensionality of the wake as the critical spacing distance
was approached. At close spacings, the primary vortices were unable to roll up and form strong
vortex cores, which reduces the sensitivity to three-dimensional effects and thereby stabilises the
flow.

Stability analysis for a tightly packed cylinder array was performed by Kevlahan (2007) for
cylinders spaced byS/D = 1.5, and for the array being in line with, or at an angle of45◦ to,
the flow. For the inline cylinders, periodic flow was was detected beyondRe = 119 and three-
dimensional flow set in atRe ≃ 132, with the formation ofMode Atype structures of spanwise
wavelength3D. He further reports that theMode Btype structures are absent in cylinder arrays,
since the braid structures are suppressed by the tight packing. AtRe = 200, the growth rates of
the three-dimensional modes were higher for the angled array than for the inline array.

Recent numerical investigations by Carmoet al. (2010) of the flow around isolated tandem
cylinders, showed the existence of three new modes at various separation distances forRe > 200.
For small separations, the onset of three-dimensionality occurs via aMode T1, whose spatio-
temporal symmetry resembles that of theMode B instability of an isolated cylinder at higher
Reynolds numbers. This mode has a spanwise wavelength of∼2D. Two other modes were ob-
served when the cylinders were spaced in the range0.8 6 S/D 6 1.5. The physical mechanism
of theMode T2instability is believed to be centrifugal, whileMode T3has similar characteristics
to Mode Aof the single-cylinder wake.Mode T2has a spanwise wavelength of∼3D, whileMode
T3 has a wavelength of∼4.6D at onset. At large separations, theMode Ainstability is followed
by theMode Binstability, akin to the case of an isolated cylinder in a free stream.

Flow features behind a single cylinder near a wall have been discussed by several researchers
(Mahir 2009; Stewartet al. 2006, 2010b; Raoet al. 2011; Huang & Sung 2007). The case of
cylinders sliding along a wall with rotation effects was investigated numerically by Stewartet al.
(2006, 2010b) for Re 6 500. The transition to unsteady flow was delayed to higher Reynolds
numbers (Re ≃ 160) relative to isolated cylinders, and three-dimensional flow was detected at
much lower Reynolds numbers (Re > 71). Experiments performed in a closed-loop water tunnel
were consistent with the flow structures observed numerically.

Very few studies have considered the flow features of multiple bodies moving along a wall.
Bhattacharyya & Dhinakaran (2008) conducted numerical simulations for a pair of tandem square
cylinders in a linear shear flow atG/D = 0.5, whereG is the distance between the cylinder and
the wall. BelowRe = 125, the shear layers separating from the two sides, are unable to interact
and cause vortex shedding. At a spacing ofS/D 6 2, the two cylinders effectively behave as
one body atRe 6 200. For 2 < S/D < 3, vortices are shed from the downstream cylinder
only. Above this range, vortices are shed from both cylinders, and at even larger separation dis-
tances, the shedding frequency recorded for both cylindersmatch that of a single cylinder under
similar flow conditions. The height above the wall and the separation distance both influence
the shear layer interaction responsible for the formation of vortices. Harichandan & Roy (2012)
performed numerical investigations for circular cylinders in tandem close to a wall at Reynolds
numbersRe = 100 and 200 for separation distances ofS/D = 1 and4. The bodies were placed
at 0.5D and1D above the stationary wall. They observed that the variationof the separation
distance has a stronger influence on the flow stability than changes in the gap to the wall. Vortex
shedding occurred when the gap heights and the separation distance were both large.

The present numerical work focuses on the wake and drag characteristics of two circular cylin-
ders sliding along a wall, as function of the separation distance and the Reynolds number. The
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Figure 1: Schematic representation of the tandem cylinder problem showing key parameters.

transitions to unsteady and three-dimensional flow are examined by stability analyses, and we at-
tempt to characterise these different transition regimes in terms of the flow physics as the control
parameters are varied. We first describe the numerical method and stability analysis techniques,
and provide domain size and resolution studies. We then present the observations and analysis
of the transition behaviour in two chapters, one dealing with the transition to unsteady two-
dimensional flow, hand one with the transition to three-dimensional (steady or unsteady) flow.
Finally, we use Direct Numerical Simulations (DNS) to investigate some fully developed three-
dimensional wakes, for Reynolds numbers such that multiplethree-dimensional linear modes are
known to be unstable.

2. Numerical methods
2.1. Problem definition

Figure 1 shows a schematic of the flow problem under consideration. We investigate the flow
over two identical tandem cylinders of diameterD, separated by a distanceS, sliding to the left
along a wall at constant speedU . A small gap of sizeG is maintained between the cylinders and
the wall to prevent the high-order mesh elements from becoming degenerate directly underneath.
The gap ratioG/D is held fixed at 0.005 for both cylinders, after verifying that the effect on
the downstream flow is negligible, in line with previous studies for single cylinders and spheres
(Zenget al.2005; Stewartet al.2006, 2010a,b; Raoet al.2011). The fluid is assumed to be New-
tonian and incompressible. For computational convenience, we employ a uniformly translating
frame of reference attached to the cylinders, with the origin at the centre of the first cylinder. In
this frame, the cylinders appear stationary, with both the far fluid and the wall moving to the right
at uniform speedU . In the following, all quantities are non-dimensionalizedwith the cylinder
diameterD and the free stream velocityU .

2.2. Numerical scheme

The numerical approach is based on a spectral-element formulation to discretise the unsteady
incompressible Navier-Stokes equations in two dimensions. The domain consists of a collection
of quadrilateral elements with a higher element density in regions of high velocity gradients near
the cylinders and in the wake regions. These quadrilateral (or macro-) elements are further sub-
divided internally intoN ×N nodes. The nodes correspond to Gauss-Legendre-Lobatto quadra-
ture points, and the velocity and pressure fields are represented by tensor products of Lagrangian
polynomial interpolants of orderN -1 within elements. The resolution can be set at runtime by
selecting the number of internal node points. The method exhibits exponential convergence asN
is increased (Karniadakis & Sherwin 2005), consistent withglobal spectral methods.

The unsteady discretised Navier-Stokes equations are thensolved using a time-splitting ap-
proach, originally developed by Chorin (1968), where the advection, pressure and diffusion terms
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are solved using different time-stepping schemes to ensurestability of the solver. A more de-
tailed explanation of the numerical procedure can be found in various articles (Ryanet al.2005;
Thompsonet al. 2006a; Leontini et al. 2007). It has been previously used to investigate related
problems such as flows past cylinders in a free stream (Thompson et al. 2001, 1996; Leontini
et al.2007; Thompsonet al.2006b) or around bodies near a wall (Stewartet al.2006; Thompson
et al.2007; Stewartet al.2010b; Raoet al.2011).

2.3. Linear stability analysis

Linear stability analysis is used here to determine the stability of the flow with respect to span-
wise perturbations. The numerical approach is similar to that employed by Barkley & Henderson
(1996), Blackburn & Lopez (2003), Sheardet al. (2003), Leontiniet al. (2007), Griffithet al.
(2009), and others. The Navier-Stokes equations are used toderive linearised equations for the
velocity and pressure perturbation fields about a two-dimensional base flow, which are explicitly
dependent on the spanwise coordinate. Because of the linearity and lack of spanwise dependence
of the base flow, the spanwise dependence of the perturbationfields can be represented as a
combination of Fourier modes, each of which can grow or decayexponentially in time. In prac-
tice, to determine stability, the linearised Navier-Stokes equations for the perturbation fields are
marched forward in time until the fastest-growing or slowest-decaying Fourier mode dominates
the solution. Alternatively a Krylov subspace method can beused with Arnoldi decomposition to
extract more of the most dominant modes (see, e.g., Mamun & Tuckerman 1995). The evolution
(growth or decay) of a given perturbation mode depends on itsspanwise wavelengthλ and the
Reynolds number. The growth rateσ can be evaluated from the amplitude ratio at two instants
in time, separated by a time intervalT : |A(t = t0 + T )|/|A(t = t0)| = exp(σT ) = µ. For
σ > 0 (or |µ| > 1), the perturbations grow and three-dimensionality develops, while forσ < 0
(or |µ| < 1), the perturbations die out. Neutral stability occurs forσ = 0 or |µ| = 1. For periodic
base flows, the time period for monitoring the growth is set tothe base flow period, a process
known as Floquet analysis, withµ being the Floquet multiplier. For flow past a single cylinder
near a wall, three-dimensional flow usually occurs in the steady flow regime, prior to the onset of
periodic flow (Stewartet al. 2010b; Raoet al. 2011). For periodic flows, the three-dimensional
modes may also have a periodicity different to the oscillatory base flow, in which case the Flo-
quet multipliers are complex. Such methods have been used previously to resolve subharmonic
modes in the wake behind rings (Sheardet al.2005, 2003) and other bluff bodies (Blackburn &
Lopez 2003).

2.4. Effect of domain size

The domain is defined in terms of the location of the inlet, topand outlet boundaries relative
to the cylinders. Several meshes were constructed with their boundaries placed at different dis-
tances from the cylinders. For these investigations, the simulations were run atRe = 200 with a
polynomial order ofN = 7 for the cylinders separated by the maximum distance considered of
S/D = 10. The inlet and the lateral/top boundaries were placed between25D and100D from
the leading cylinder, and the outlet boundary between50D and200D downstream of the trailing
cylinder. The simulations were run for the same time interval and the forces on the cylinders
were monitored. The time-averaged drag coefficient of the downstream cylinder was computed
from the force histories. Periodic flow was observed for thiscase and the Strouhal number was
also computed. Based on the results, the values50D, 100D and50D were chosen for the inlet
and outlet distances and the domain height, respectively. With this choice, the mean drag coeffi-
cient and the Strouhal number differed by less than 0.5% and 0.6%, respectively, from the values
obtained with the largest domain.
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Table 1: Variation of the time-averaged drag coefficient (Cd) and shedding frequency (St) for S/D = 10
at the specified Reynolds numbers (Re).

Re = 20 Re = 200 Re = 200

N2 Cd % variation Cd % variation St % variation

52 10.097389 0.1398206 1.732380 -2.035431 0.090208 -0.898475
62 10.102081 0.0934181 1.708033 -0.601417 0.089602 -0.220676
72 10.110580 0.0093655 1.704390 -0.386848 0.089509 -0.116657
82 10.111458 0.0006824 1.700441 -0.154256 0.089451 -0.051785
92 10.111456 0.0007021 1.699990 -0.127693 0.089447 -0.047311

102 10.111518 0.0000890 1.698354 -0.031334 0.089417 -0.013757
112 10.111527 0 1.697822 0 0.089407 0

2.5. Effect of mesh resolution

The number of macroelements varies with the separation distance and is significantly higher than
that required for previous single cylinder studies. One advantage of the spectral-element method
is the ability to specify the numberN of internal node points on each edge, and therefore the
resolution, at run time. Once a reasonable macroelement distribution is established, the resolution
can then be further controlled by varyingN . The maximum separation distance (S/D = 10) was
chosen in order to test the value ofN required to resolve the flow correctly. The number of
node points in each macroelement was varied betweenN2 = 52 andN2 = 112, and tests were
performed at two Reynolds numbers of20 and200. The resolution ofN2 = 42 was insufficient
to capture the flow characteristics, whileN2 = 122 proved to be computationally expensive
with a strong (Courant) restriction on the time-step. The simulations for the grid resolution study
used a fixed non-dimensional time-step of∆τ = 0.001. Table 1 shows the variation of the
time-averaged drag coefficientCd of the downstream cylinder and the Strouhal number, as the
resolution is varied. ForN2 = 72, the variation inCd andSt is less than 0.5% and 0.15%,
respectively, relative to the most resolved case. Computations atRe = 20 showed a variation of
less than 0.1% atN2 = 72 compared with the highest resolution tested. Thus an inter-element
resolution ofN2 = 72 was chosen for all computations, since it provided an acceptable accuracy
for a reasonable computational effort.

3. Two-dimensional flow
3.1. Flow structures

The flow past a single cylinder sliding along a wall was investigated by Stewartet al. (2006,
2010b). Two recirculation zones form in the near wake of the cylinder, whose lengths vary lin-
early with Reynolds number. The recirculation zones extendto a maximum of approximately8D
downstream of the cylinder atRe = 150, above which unsteady periodic flow occurs. The shear
layer moving over the cylinder and the induced wall boundarylayer form vortex pairs, which
drift downstream of the cylinder. The flow features associated with two tandem cylindersrolling
along a wall were previously investigated by Raoet al. (2011). At large separation distances,
unsteady flow was encountered at high Reynolds numbers, while steady flow was found at low
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Figure 2: Transition diagram showing the onset of unsteady state with Reynolds number (Re) for 0 6
D/S 6 0.25. The steady flow regime is marked by open symbols (◦) and the unsteady flow regime is
marked by closed symbols (•). Steady flow was observed for all spacings atRe = 135. The dashed line
shows the approximate demarcation between the steady and unsteady flow regimes.

Figure 3: Streamlines of the flow past tandem cylinders forS/D = 6 atRe = 180. Multiple recirculation
zones are observed in the space between the cylinders. The cylinders are translating from right to left.

Reynolds numbers. In a similar way, we here investigate the onset of periodic flow forsliding
tandem cylinders, in the range of spacings4 6 S/D 6 10 for Re 6 200.

Figure 2 presents the transition map, showing the onset of unsteady flow as the Reynolds
number and cylinder spacing are varied. In this plot, the inverse of the separation distance,D/S,
is used, in order to include the isolated cylinder case (D/S = 0). Unsteady flow is observed at
Re = 150 for cylinders withS/D = 9 and 10. This is marginally below the critical Reynolds
number for the transition to the unsteady regime for an isolated cylinder sliding along a wall
(Rec ≃ 160, Stewartet al.2010b). At higher Reynolds numbers, unsteady flow occurs at smaller
spacings, as predicted by Raoet al.(2011). At the maximum Reynolds number tested,Re = 200,
unsteady flow was observed at a separation distance as low asS/D = 4.5.

As mentioned above, the steady wake of a single cylinder neara wall comprises two recircula-
tion zones. For two cylinders at very close spacings, a similar wake structure is found behind the
downstream cylinder. As the spacing is increased, multiplerecirculation zones are observed in
the gap between the cylinders (figure 3), which remain steadyeven at higher Reynolds numbers.
These zones are similar to what Igarashi (1981) described asquasi-stationary vortices, which
occur in the range1 6 S/D 6 2.5 for cylinders in a free stream, prior to the onset of unsteady
flow.

The process of vortex shedding, found in the unsteady periodic regime, is illustrated in fig-
ure 4, showing a sequence of vorticity distributions in the near wake during one shedding cycle
for S/D = 9 andRe = 200. In the first snapshot, the separating shear layer from the top of
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(a) t = 0 (b) t = T/5

(c) t = 2T/5 (d) t = 3T/5

(e) t = 4T/5 (f) t = T

Figure 4: Instantaneous vorticity fields atRe = 200, for S/D = 9. Time t is expressed in terms of the
shedding periodT . The cylinders are translating from right to left, and vorticity contours cover the range
±5U/D.

the upstream cylinder is beginning to roll up. The presence of this primary vorticity induces
secondary vorticity at the wall underneath it. This secondary vorticity is pulled away from the
wall between two successive primary vortex structures. In later images, the previously shed pri-
mary vortex and the rolled-up secondary vorticity combine into a non-symmetrical vortex pair,
which impinges on the downstream cylinder and subsequentlymoves away from that cylinder at
an oblique angle due to self-induction. Since the primary vorticity is stronger, and because it is
also supplemented by more vorticity separating from the second cylinder, the combined struc-
ture moves closer to the wall as it travels downstream. At about 10D downstream of the second
cylinder, the remaining clockwise vorticity again inducessecondary vorticity at the wall, which
is pulled away from the wall to combine with the primary vorticity to form a new vortex pair.
This reformed pair then moves away from the wall through self-induction as the structure advects
further downstream (not shown).

3.2. Strouhal numbers

The drag coefficient was monitored for several hundred unitsof non-dimensional time
τ (= tU/D), in order to compute the shedding frequency. Table 2 shows the variation of the
Strouhal number with separation distance for the parameterrange studied, along with the re-
sults of Stewartet al. (2010b), where an isolated cylinder near a wall was investigated atsimilar
Reynolds numbers. Their case is denoted byS/D = ∞, implying that the trailing cylinder is
at a very large distance. The transition diagram (figure 2) shows that forS/D ≃ 10 the flow
becomes unsteady at Reynolds numbers lower than the limit for an isolated cylinder near a wall.
Presumably this can be attributed to the complex flow upstream of the second cylinder due to
the presence of the first cylinder (figure 3). Shedding is synchronous from both cylinders, and a
single frequency is detected from the Fourier spectra of thedrag histories. AtRe = 150 and165,
a slight decrease inSt is observed as the spacing is increased.

The time histories of the drag coefficient for the downstreamcylinder atRe = 200, for the
separation distances in the range 66 S/D 6 9 are shown in figure 5, and the corresponding
frequency spectra in figure 6. AtS/D = 7 and 8, the waveform of the drag history clearly
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Table 2: Variation ofSt with S/D at the specifiedRe. The data forS/D = ∞ is taken from Stewartet al.
(2010b)

Re = 150 Re = 165 Re = 180 Re = 200

S/D St1 St1 St1 St2 St1 St2

4.5 − − − − 0.0887 −
5 − − − − 0.0871 −
5.5 − − − − 0.0880 −
6 − − − − 0.0884 −
7 − − 0.0895 0.0447 0.0461 0.0922
8 − 0.0889 0.0879 − 0.0875 0.0437
9 0.0892 0.0877 0.0878 − 0.0878 −
10 0.0877 0.0872 0.0888 − 0.0893 −
∞ − 0.1004 0.0982 − 0.0983 −

(a) S/D = 6 (b) S/D = 7

(c) S/D = 8 (d) S/D = 9

Figure 5: Time histories of the drag coefficient for the downstream cylinder atRe = 200 for the specified
separation distances.

indicates the presence of two dominant frequencies, which were found to be integer multiples
of each other. ForS/D = 7, the dominant Strouhal numberSt1 (in terms of power spectral
density) is one half of the second strongest frequencySt2, while at a slightly larger spacing of
S/D = 8, the value of the dominant Strouhal number is twiceSt2. At Re = 180, the drag
history forS/D = 7 also contains two frequencies, while for spacings below or above this value
only a single strong frequency component is observed.

The reason for the commensuration of frequencies can be seenby visualising the wake for
different separation distances using vorticity contours.Shown in figure 7 is the sequence of im-
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Figure 6: Fourier spectra for different spacings atRe = 200. Multiple peaks are found forS/D = 7 and
S/D = 8.

(a) t = 0 (b) t = T/5

(c) t = 2T/5 (d) t = 3T/5

(e) t = 4T/5 (f) t = T

(g)

Figure 7: (a)-(f) Instantaneous vorticity contours atRe = 200 for S/D = 6. (g) Drag histories for the
upstream (solid line) and downstream (dashed line) cylinders, showing the times corresponding to (a)-(f).
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(a) t = 0 (b) t = T/9

(c) t = 2T/9 (d) t = 3T/9

(e) t = 4T/9 (f) t = 5T/9

(g) t = 6T/9 (h) t = 7T/9

(i) t = 8T/9 (j) t = T

(k)

Figure 8: Same as figure 7 forS/D = 7. The periodT of the flow oscillations is now twice the shedding
period of the leading cylinder.

ages over one cycle of shedding forS/D = 6, where a single peak is observed in the frequency
spectrum. We observe that the shear layer (blue) separatingfrom the upstream cylinder rolls up
into a vortex which generates and lifts up a wall boundary layer (red) before striking the down-
stream cylinder. The rolled-up shear layer convects further downstream, where it draws more
opposite-signed boundary layer vorticity from the wall to form a vortex pair, which then advects
away from the wall through self-induction. At a slightly larger separation distance ofS/D = 7,
stronger and weaker vortex structures are formed alternately from the shear layer separating from
the first cylinder. This behaviour is clearly evident in the sequence of images in figure 8. Com-
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(a) Re = 20 (b) Re = 65

(c) Re = 100 (d) Re = 120

(e) Re = 165 (f) Re = 200

Figure 9: Drag trends at the specified Reynolds numbers. The filled circles (•) and the open circles (◦)
indicate the time-averaged drag coefficient on the upstreamand downstream cylinders, respectively. The
vertical error bars represent one standard deviation of theinstantaneous force coefficients.

paring figures 8(c) and 8(h), the structure of the separated shear layer between the cylinders is
distinctly different. In the first case, the second rolled-up clockwise vortex structure of the shear
layer is considerably stronger. The vortex draws the secondary vorticity from the boundary to
form a vortex pair, which collides with the second cylinder before moving obliquely away from
it. In the second case, the clockwise vorticity is weaker anddoes not draw boundary layer vortic-
ity into the main flow. The clockwise vorticity merges smoothly with the shear layer separating
from the second cylinder. The result is a very different behaviour between the two halves of the
cycle. The period of shedding is approximately twice that observed forS/D = 6. This phe-
nomenon is similar to the lock-in phenomenon observed in thewakes of elongated bluff bodies,
where the timing of leading-edge vortices passing the trailing edge (equivalent to the second
cylinder in the present configuration) controls the roll-upand shedding of further leading-edge
vortices (Houriganet al. 2001). ForS/D = 8, the behaviour is similar to that forS/D = 7,
while forS/D = 9 (see figure 4), the system period corresponds again to a single shedding cycle
of the leading cylinder (rather than two leading-cylinder shedding cycles as forS/D = 7 or 8).
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Figure 10: Phase plots showing the variation of the drag coefficient of the upstream (Cd,1) and downstream
(Cd,2) cylinders at the specified Reynolds numbers.

3.3. Drag trends

The forces experienced by the cylinders were quantified by the direct summation of the pressure
and viscous forces on the cylinders. The variation of the drag coefficient for the upstream and
downstream cylinders is shown in figure 9 at different Reynolds numbers. The drag on the down-
stream cylinder was found to be much lower than that on the upstream cylinder for close spacings,
as the upstream cylinder experiences a considerably largerpressure force than the downstream
cylinder. However, at all spacings investigated here, the drag on both cylinders is positive. This
can be attributed to the cylinders being close to the wall, where a higher pressure force acts on
the upstream face of each cylinder. As expected, the drag coefficient on the downstream cylinder
increases, as the spacing between the cylinders grows. Whenthe cylinders are placed further
apart, they behave increasingly as individual bodies. At higher Reynolds numbers, the flow is
unsteady, and higher mean drag is experienced by the downstream cylinder. AtRe = 200, the
drag coefficient on the downstream cylinder approaches thatexperienced by the upstream cylin-
der. The vertical error-bars indicate one standard deviation from the mean value for the unsteady
flow cases.

Shown in figure 10 are phase plots for the drag coefficients of the upstream and downstream
cylinders in the unsteady regime for the specified separation distances. They show the complex
phase relationships between the forces acting on the two cylinders, in particular for the cases
discussed above, where two dominant frequencies are present in the drag histories.

4. Three-dimensional stability
In this section, we investigate the stability of the two-dimensional base flow obtained in the

previous section with respect to three-dimensional perturbations. Linear stability analysis is ini-
tially performed for the steady-state regime to detect the initial three-dimensional modes that
grow at low Reynolds number. We employ the Arnoldi method based on a Krylov subspace to
obtain the growth rate of the first few dominant modes, which can be either real or complex. For
a single cylinder sliding along a wall, the flow undergoes a transition to three-dimensionality,
with a spanwise wavelengthλ/D = 5.5, atRe = 71 (Stewartet al.2010b), which is below the
threshold for the transition to unsteadiness of the two-dimensional flow atRe = 160.
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(a) S/D = 0.1 (b) S/D = 10

Figure 11: Growth rate curves for (a) small and (b) large spacing, about the critical Reynolds numbers for
three-dimensional transition.

(a) S/D = 0.1, Re = 100, λ/D = 5 (b) S/D = 0.25, Re = 100, λ/D = 5

(c) S/D = 1, Re = 110, λ/D = 4 (d) S/D = 3.5, Re = 150, λ/D = 4

(e) S/D = 8, Re = 80, λ/D = 6 (f) S/D = 10, Re = 80, λ/D = 6

Figure 12: Spanwise perturbation vorticity contours for different separation distances at the specified
Reynolds numbers and wavelengths. Vorticity contours cover the range±0.1D/U , and base flow vorticity
contour levels±1D/U are overlaid.

4.1. Steady base flow

Simulations were performed in the steady flow regime for the entire range of separation distances
investigated previously. Examples of growth rate curves are given in figure 11 for a small and
a large spacing between cylinders. Growth rates (σ) are shown as function of the perturbation
wavelength for different Reynolds numbers, illustrating how the corresponding modes shift from
stable (σ < 0) to unstable (σ > 0) asRe is increased.

Figure 12 shows perturbation vorticity contours for different separation distances. For small
S/D, large amplitudes occur downstream of the trailing cylinder, while in the gap region the
amplitude is small. When the separation distance between the two cylinders is large, the maxi-
mum mode amplitudes occur inside the gap. The perturbation field resembles that of an isolated
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Figure 13: Variation withS/D of (a) the critical Reynolds number(s) and (b) the critical wavelength(s) for
three-dimensional transition. Data concerning the same transition are represented by identical symbols.

sliding cylinder near a wall (Stewartet al.2010b). The Floquet multiplier for the cases shown is
real and positive.

Figure 13 shows the variation with separation distance of the critical Reynolds numbers for
the three-dimensional transition and the corresponding instability wavelength. The critical values
were obtained by polynomial interpolation from the growth rate curves at Reynolds numbers
above and below the critical values. For large spacings (S/D > 7), these values are quite close
to those observed for a single sliding cylinder.

The transition to three-dimensionality for intermediate spacings occurs in a more complex
way. For4.5 6 S/D 6 6.5, an initial transition to three-dimensionality occurs at low Reynolds
number, followed by a re-stabilisation of the flow to a two-dimensional state as the Reynolds
number is increased. Increasing the Reynolds number further, the flow once again undergoes
a transition to a new three-dimensional state, involving either a steady or an unsteady mode
(see below). This surprising sequence of stable two-dimensional and unstable three-dimensional
regimes is further illustrated in figure 14, where growth rate curves for the case withS/D = 5 are
shown. In figure 14(a), the growth rates forRe < 100 illustrate the first three-dimensional transi-
tion atRe = 69.5. Increasing the Reynolds number to 110, the maximum growth rates decrease,
and atRe = 120 the flow is found to be stable (i.e., two-dimensional) again (figure 14b). Further
increasingRe, a second transition to three-dimensional flow is found atRe ≃ 157 for a signifi-
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(a) Re < 100. The initial 3D transition occurs at
Re = 69.5.

(b) Re > 100. The growth rate decreases
with increasingRe, and the flow is stable (two-
dimensional) atRe = 120.

(c) Re > 150. A second transition to three-
dimensionality occurs atRe ≃ 157.

Figure 14: Growth rate curves forS/D = 5.

(a) Re = 75, λ/D = 5.5 (b) Re = 165, λ/D = 3.5

Figure 15: Spanwise perturbation vorticity for (a) the firstand (b) the second transition to three-
dimensionality forS/D = 5. Contour shading as in figure 12.

(a) Re = 80, λ/D = 6 (b) Re = 165, λ/D = 5

Figure 16: Spanwise perturbation vorticity for (a) the firstand (b) the second transition to three-
dimensionality forS/D = 6. Contour shading as in figure 12.

cantly smaller wavelength ofλ/D = 3.4 (figure 14c), i.e., involving a different instability mode.
Spanwise perturbation vorticity is plotted forS/D = 5 in figure 15 for both three-dimensional
transitions. For the first transition, three-dimensionality develops in the space between the two
cylinders, while for the second one, the growth of perturbations occurs downstream of the trailing
cylinder.
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(a) S/D = 0.25 (b) S/D = 3

Figure 17: Growth rate curves at higher Reynolds numbers forlowerS/D.

(a) S/D = 0.25, Re = 180, λ/D = 10 (b) S/D = 3, Re = 180, λ/D = 5

Figure 18: Spanwise perturbation vorticity contours for lowerS/D. Contour shading as in figure 12.

For comparison, the case withS/D = 6, which also exhibits two successive 3D transitions,
is illustrated in figure 16. In this case, both modes have highamplitudes within the gap region
between the cylinders, although the perturbation vorticity patterns are quite distinct. However,
the growth rate for the second transition has a non-zero imaginary part, indicating that the flow
is periodic, while for the first transition the growth rate ispurely real.

As mentioned above, the two-stage instability scenario occurs for spacings in the range4.5 6
S/D 6 6.5. A further investigation was undertaken by carrying out stability analysis at higher
Reynolds numbers for separation distances on either side ofthis range. Shown in figure 17 are the
growth rate curves at two smaller separation distances ofS/D = 0.25 and3. At higher Reynolds
numbers, the growth rate curves shift to higher values and the flow is more unstable to perturba-
tions with longer spanwise wavelengths. The growth rate curve clearly broadens as the Reynolds
number is increased fromRe = 150 to 180 forS/D = 3 (figure 17b). The corresponding pertur-
bation vorticity contours are shown in figure 18. Comparing figures 17(a) and 12(b), we observe
that the three-dimensional modes possess identical structure, although atRe = 150 the length
of the recirculation zone is longer than atRe = 100. The perturbation fields are broadly similar
to the single cylinder case, so that the two cylinders are effectively acting as a single extended
body.

In figure 19, streamwise perturbation vorticity contours are shown for almost touching cylin-
ders (S/D = 0.1) atRe = 150. The structure of the perturbation contours bears a close resem-
blance to that of figure 22(b) in Stewartet al.(2010b), although the Reynolds number in this case
is much higher, indicating that the three-dimensional modes involved are effectively identical.

Figure 20(a,b) shows the growth rate curves for larger separations,S/D = 7 and8. We observe
that the growth rate decreases at higher Reynolds numbers; however, positive growth is still
maintained prior to the unsteady two-dimensional transition. The maximum growth shifts to
slightly longer wavelengths. This is similar to the trend for the range4.5 6 S/D 6 6.5, although
the mode does not restabilise. AtS/D = 9 and10, the growth rates increase with increasing
Reynolds numbers (figure 20c,d).

The perturbation modes for higherS/D are depicted in figure 21. Their shape is clearly dif-
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Figure 19: Streamwise perturbation vorticity contours forS/D = 0.1 at Re = 150, with λ/D = 8.
Contour shading as in figure 12.

(a) S/D = 7 (b) S/D = 8

(c) S/D = 9 (d) S/D = 10

Figure 20: Growth rate curves at higher Reynolds numbers forhigherS/D.

ferent from the mode structure for smaller separations. Thestrong flow within the gap and the
significant streamline curvature, with strong localised recirculations towards the second cylin-
der, modifies the unstable three-dimensional mode shape. This effect is less pronounced at larger
separations, where once again the perturbation field tends towards the one for a single cylinder.

For the case withS/D = 7, Re = 165 represents the highest Reynolds number at which
the two-dimensional flow remains steady. For this parametercombination, the flow was found to
be unstable to two different three-dimensional modes. The growth rate of the longer-wavelength
mode, as a function of Reynolds number, was given in figure 20(a). Figure 22 shows that this
mode still remains unstable atRe = 165; however, a shorter-wavelength mode is now even
more unstable. The maximum growth rates of these two modes occur atλ/D ≃ 4.5 and12,
respectively (figure 22). The short-wavelength mode is periodic, with a complex growth rate,
while the long-wavelength mode is stationary (purely real growth rate). The perturbation vorticity
contours of these two modes can be seen in figure 23.

4.2. Periodic base flow

In the preceding section, the three-dimensional stabilityanalysis was performed in the regime
where the two-dimensional base flow is steady. To further explore the three-dimensional flow
behaviour in the unsteady state, a Floquet stability analysis was performed atRe = 200 for
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(a) S/D = 7, Re = 150, λ/D = 10 (b) S/D = 8, Re = 150, λ/D = 10

(c) S/D = 9, Re = 120, λ/D = 8 (d) S/D = 10, Re = 135, λ/D = 9

Figure 21: Spanwise perturbation vorticity contours for higherS/D. Contour shading as in figure 12.

Figure 22: Growth rate curves forS/D = 7 atRe = 165. Two modes are present at this Reynolds number,
including the one decaying asRe increases shown in figure 20(a).

(a) λ/D = 4.5 (b) λ/D = 12

Figure 23: Spanwise perturbation vorticity contours forS/D = 7 at Re = 165 for the two instability
modes at the specified wavelengths. Contour shading as in figure 12.

the cylinders at the maximum separation distance ofS/D = 10. Figure 24 shows the growth
rate curves obtained by perturbing the two-dimensional base flow at different wavelengths. Four
distinct modes (labelled I to IV) can be discerned, with their peaks atλ/D = 2.6, 5.5, 6.0 and
12, the fastest growing mode having the shortest wavelength. Shown in figure 25 are the span-
wise perturbation contours for these modes. Inspection of the corresponding Floquet multipliers
shows that Modes I, III and IV are oscillating at frequenciesincommensurate with the one of the
base flow, leading to a quasi-periodic total flow, whereas Mode II was found to be subharmonic
(negative real Floquet multiplier), oscillating with a period twice that of the base flow.
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Figure 24: Growth rate curves for the cylinders separated byS/D = 10, Re = 200. Four distinct modes
are visible, Mode III being partially masked by Mode II. The fastest growing mode has a maximum growth
rate atλ/D = 2.6.

(a) Mode I,λ/D = 2.6

(b) Mode II,λ/D = 5.5

(c) Mode III,λ/D = 6

(d) Mode IV,λ/D = 12

Figure 25: Spanwise perturbation vorticity contours forS/D = 10 atRe = 200 for the specified wave-
lengths. Contour shading as in figure 12.
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(a)

(b)

(c)

(d) τ = 46

(e) τ = 296

Figure 26: DNS results for the tandem cylinders sliding along a wall withS/D = 10 atRe = 200. Left:
The time histories of the streamwise (u) and spanwise (w) velocity components for a location midway
between the cylinders. Right: Visualisations using streamwise vorticity isosurfaces viewed from above. (c)
Mode II withλ/D = 2.4 from linear stability analysis; (d) perturbation field obtained from DNS atτ = 46;
(e) the same field atτ = 296.

5. Direct Numerical Simulation
At Reynolds numbers not too far above the threshold for three-dimensional transition, it ap-

pears that a number of linear modes become unstable, as showne.g. in figure 24. To investigate
the nonlinear interaction between these modes, a three-dimensional Direct Numerical Simula-
tion (DNS) was performed. A three-dimensional version of the computational code employing a
Fourier expansion in the spanwise direction (Thompsonet al.1996; Karniadakis & Triantafyllou
1992; Ryanet al. 2005; Leontiniet al. 2007) was used, with the two-dimensional solution for
S/D = 10 andRe = 200 as initial condition. A spanwise domain length of 16 cylinder diame-
ters with 96 Fourier planes was chosen to capture the wake dynamics. Low-intensity white noise
was added to trigger three-dimensional flow. The spanwise extent of the domain could contain
respectively six and three wavelengths of the two fastest growing modes shown in figure 24.
Figures 26(a) and 26(b) give time traces of the streamwise and spanwise velocity components at
a point midway between the cylinders. Figure 26(c) represents the most unstable mode from lin-
ear stability analysis, using isosurfaces of positive and negative streamwise vorticity to indicate
the wake structure. This should be compared with the DNS isosurfaces shown in figure 26(d),
corresponding toτ = 46, while the mode is still undergoing exponential amplification. Fig-
ure 26(e) shows the complex nature of the wake at a later time (τ = 296), after the wake has
become highly non-linear. As indicated above, in this stateeven the remnants of periodicity in
theu velocity component are lost. Also, there does not appear to be a clearly dominant spanwise
wavelength. Hence the flow shows signs of a rapid transition to a chaotic state.
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(a) S/D = 2 (b) S/D = 5 (c) S/D = 7

Figure 27: The final wake states atRe = 200 for the cylinders sliding along a wall at various spacings.
These images can be compared to figure 26(e), where the flow eventually becomes chaotic.

Figure 27 shows similar visualisations of the wake for tandem cylinders withS/D = 2, 5 and
7 at Re = 200. Starting from the respective two-dimensional solutions,the simulations were
run for approximately 300 time units. For this set of simulations, the spanwise distance was set
to eight cylinder diameters. ForS/D = 2, the flow is three-dimensional and unsteady, and the
long-wavelength instability is the dominant three-dimensional mode, while forS/D = 5 and
7, the final wake state is chaotic, similar to that observed in figure 26(e). In any case, the two-
dimensional base flow is clearly no longer an adequate model of the real flow in this regime.

6. Conclusions
The flow past two tandem cylinders sliding along a wall has been investigated via stability

analyses and Direct Numerical Simulations. Two-dimensional calculations were used to inves-
tigate the transition from two-dimensional steady to two-dimensional unsteady flow, when the
Reynolds number is increased, as function of the cylinder spacing. Steady flow involves multiple
recirculation zones, with complicated streamline patterns arising in the gap between the cylin-
ders for intermediate spacings. For very small and very large spacings, both steady and unsteady
wakes resemble those of a single sliding body. Whereas at lowReynolds numbers in the un-
steady regime, the wakes behind both cylinders oscillate atthe same frequency, for largerRe an
intermediate spacing range exists, where a period doublingis observed. This can be explained
by a feedback mechanism, where the vortex shed from the first cylinder impacting on the sec-
ond one triggers shedding of a new vortex from the first cylinder at slightly different conditions.
The same phenomenon is known to occur in flow around elongatedbluff bodies, where vortices
are shed from both the leading and trailing edges. The drag forces acting on both cylinders in
two-dimensional flow were determined for the steady and periodic regimes up toRe = 200 and
separations up to 10 cylinder diameters.

Three-dimensional stability analysis of the two-dimensional flows showed that, for all pa-
rameter combinations, the flow becomes unstable at Reynoldsnumber well below the threshold
for unsteadiness in two dimensions. Again, for vanishing and very large cylinder separations,
the unstable modes are similar to those found previously fora single sliding cylinder. In an
intermediate spacing range around 5-6 cylinder diameters,a sequence of alternating regimes of
three-dimensional instability and stability is observed for increasing Reynolds numbers. Whereas
outside this interval the unstable three-dimensional modes are steady, the second transition within
part of this range occurs through the amplification of an unsteady three-dimensional mode.
Three-dimensional instability persists at higher Reynolds numbers, where the two-dimensional
base flow is periodic. A Floquet stability analysis atRe = 200 for a large cylinder separation
revealed the existence of at least four unstable modes at various wavelengths and frequencies.
Direct Numerical Simulation of this flow with a spanwise domain size allowing for the growth
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of several of these modes showed their non-linear interaction, leading rapidly to a disordered
chaotic state.

The fact that the first transition of flow around tandem cylinders sliding along a wall involves
three-dimensional steady modes, makes the results from theanalysis of the transition from steady
to unsteady two-dimensional flow appear less relevant for the description of realistic flows in this
configuration. A similar situation was previously encountered in the study of the transitions of the
wake of an isolated circular cylinder. The characteristicsof the three-dimensionalMode Bwere
determined through a Floquet stability analysis of the two-dimensional periodic flow (Barkley
& Henderson 1996), even though in reality the wake is alreadyhighly three-dimensional when
Mode Bis first observed. In that case, although the critical Reynolds number is overpredicted, the
predicted wavelength and spatio-temporal symmetry ofMode Bcarry across to the real flow. For
the sliding tandem cylinders examined here, the onset of three-dimensional flow is likely to alter
the critical Reynolds numbers for the unsteady transition.Other observed characteristics, such as
Strouhal numbers and average two-dimensional flow structures, may nevertheless remain at least
roughly similar to the prediction obtained from a two-dimensional base flow. The full analysis of
the unsteady transition for three-dimensional wakes is a substantial computational problem, and
will form the basis of a future study.
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Chapter 6

The sinuous mode in the wake of
a rolling sphere

6.1 Overview

The preceding chapters have discussed the effects of rotation for a circular cylinder

near a wall. This chapter deals with the flow dynamics of a spherical body, which is

given a fixed rotation rate as it translates along a wall. The flow dynamics for a sphere

rolling along a wall have been previously investigated by Stewart et al. (2010a) for

−1 6 α 6 +1, both experimentally and numerically. For the forward rolling sphere, the

Reynolds number for the onset of periodic flow occurred at lower values as the rotation

rate was increased. The shedding was characterised by the formation of hairpin vortices

which moved away from the wall and convected downstream. This was observed at the

highest tested Reynolds number of 200 for α = +1. Recent experimental findings of

Bolnot et al. (2011) showed the lateral displacement of these hairpin vortices on either

side of the wake centreline at Re = 230.

To examine the sinuous structure of the wake numerically, simulations are under-

taken using a two-dimensional computational domain rotated azimuthally to obtain a

cylindrical volume with the sphere at the centre. The journal article presented in this

chapter elucidates the numerical findings for the wake of a rolling sphere for α = +1

and Re 6 500. As Reynolds number is increased from low values, the flow transitions to

the periodic state at Re ' 140, and at a higher Reynolds number of Re ' 192, the wake

no longer retains its planar symmetry. The nature of these transitions is investigated

by the Stuart-Landau model. Following the second transition, the flow then locks onto

a 7 : 3 resonance, prior to the onset of chaotic flow at higher Reynolds number, while

retaining the sinuous structure. Using frequency spectra, phase plots and Poincaré
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maps, the chaotic nature of this flow is established. Furthermore, the tracer particle

visualisations from the numerical simulations are in excellent agreement with the dye

visualisations from the experiments.

6.2 Transition to chaotic flow in the wake of a rolling
sphere

The following article was published in 2012 in Journal of Fluids Mechanics. This work

was co-authored by P.-Y. Passaggia, H. Bolnot, M. C. Thompson, T. Leweke and K.

Hourigan, and is entitled, “Transition to chaos in the wake of a rolling sphere”. The

paper is reproduced in this thesis directly from the version published online.
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The wake of a sphere rolling along a wall at low Reynolds number is investigated
numerically and experimentally. Two successive transitions are identified in this flow,
as the Reynolds number is increased. The first leads to the periodic shedding of
planar symmetric hairpin vortices. The second and previously unknown transition
involves a loss of planar symmetry and a low-frequency lateral oscillation of the
wake, exhibiting a surprising 7:3 resonance with the hairpin vortex shedding. The
two transitions are characterized by dye visualizations and quantitative information
obtained from numerical simulations, such as force coefficients and wake frequencies
(Strouhal numbers). Both transitions are found to be supercritical. Further increasing
the Reynolds number, the flow becomes progressively more disorganized and chaotic.
Overall, the transition sequence for the rolling sphere is closer to the one for a
non-rotating sphere in a free stream than to that of a non-rotating sphere close to a
wall.

Key words: chaos, vortex shedding, wakes

1. Introduction
We here investigate the first transitions in the flow generated by a forward rolling

sphere on a solid surface, as the Reynolds number is increased from the initially
steady regime. Motivation for this study comes, for example, from the modelling of
wall effects in fluid–particle systems, or from biological applications such as cells
moving and rolling along blood vessel walls, even though the Reynolds numbers in
the latter class are often much lower. Indeed, with rolling near-spherical bodies being
ubiquitous in nature (e.g. sand or dust in wind, rocks in avalanches) and in sports
(e.g. football, bowls, billiards, pétanque), it seems surprising that the dynamics and
transitions of their wakes have been largely unexplored until only recently (Stewart
et al. 2010a).

The case of a non-rotating sphere in a uniform free stream has been studied
extensively. This flow undergoes a transition at Re ' 212 (Johnson & Patel 1999)

† Email address for correspondence: anirudh.rao@monash.edu

114



136 A. Rao and others

from a steady axisymmetric state to a steady non-axisymmetric flow with planar
symmetry: the ‘double-threaded wake’ (Magarvey & Bishop 1961a,b), consisting of
two trailing counter-rotating vortices. Beyond Re = 272, these threads interact during
formation, leading to the shedding of vortex loops (or ‘hairpins’). From analysis of
direct simulations, both transitions have been shown to be supercritical (Ghidersa &
Dušek 2000; Thompson, Leweke & Provansal 2001a), obeying the Landau model
as the flow saturates. Numerical simulations indicate that the planar symmetry is
broken at Re ' 345 (Mittal 1999), which is in line with experimental investigations
of Sakamoto & Haniu (1990). They suggested that a transitional regime exists for
420 6 Re 6 480, wherein the hairpin vortices are intermittently displaced to either side
of the wake centreline.

Direct numerical simulations were performed by Zeng, Balachander & Fisher (2005)
for a sphere moving parallel to a wall. Their study showed that as the sphere was
moved closer to the wall, the transition to the unsteady state occurred at Reynolds
numbers lower than for the free stream case (Re < 272), with a sudden increase
observed for the closest tested distance of 0.25D. The effect of free rotation was also
studied. This group (Zeng et al. 2009) also performed direct numerical simulations
for a stationary spherical particle close to a plane wall in a linear shear flow. They
present results for gap ratios between 0.005 6 G/D 6 3.5, using a symmetry plane.
The double-threaded wake is observed at Re = 200 for larger gap ratios, while a
toroidal structure engulfing the particle is observed for lower Reynolds numbers. These
findings are similar to the results of Stewart et al. (2010a), where the transition to
an unsteady state for the non-rotating sphere was in excess of Re = 300. Furthermore,
they propose empirical relationships for the lift and drag coefficient variation with
distance from the wall.

Previous studies by Stewart et al. (2010a) investigated the wake dynamics of a
sphere moving next to a wall, under conditions of forward rolling, sliding or reverse
rotation. For the forward-rolling case, which is of interest here, the wake is attached
and steady for Re < 125. The wake structure shows some similarities to the two-
tailed wake of a non-rotating isolated sphere, except that the trailing counter-rotating
vortex pair loses strength more quickly with downstream distance due to the damping
effect of the wall. Between 125 < Re < 150, the wake becomes unsteady, periodically
shedding vortex loops. The structure is initially symmetric with respect to the vertical
plane passing through the sphere and wake. Note that the rotation and the presence
of the wall reduces the critical Reynolds number of unsteady flow transition from
Rec ' 212 (Johnson & Patel 1999; Ghidersa & Dušek 2000; Thompson et al. 2001a)
for the isolated sphere wake. Initial experiments and direct simulations indicated that
the wake mirror symmetry is maintained until approximately Re= 200, which was the
highest Reynolds number reported. Stewart et al. (2010a) also examined the reverse-
rolling case. They observed the development of a transverse sinusoidal oscillation
of the wake at Re = 200, and recorded a transverse force as the unsteady wake
advected downstream. In their simulations at Re= 300, initialized from a zero velocity
state, it was found that the wake retained mirror symmetry with respect to the wake
centreline for a long time. The addition of noise was required to initiate the transition
to the asymmetric mode, although this is presumably due to the low growth rate of
the instability. The steady double-threaded wake formed downstream of the sphere
developed a sinusoidal oscillation, which advected with the flow. Similar sinuous
oscillations of the otherwise steady flow were also observed for a translating (sliding)
sphere at Re > 300 in the experiments.
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FIGURE 1. Schematic of the configuration. For a forward-rolling sphere, ω = 2U/D.

A first experimental visualization of the transition to an asymmetric rolling sphere
wake Rec ' 200 was shown in Bolnot et al. (2011). The present paper quantifies
the transition sequence in this flow determining the critical Reynolds numbers and
sub/super-criticality, investigates and characterizes the intriguing high-order resonance
between the modes, and quantifies the rapid progression to fully chaotic flow.

2. Problem definition and methodology
A schematic of the rolling sphere setup is shown in figure 1. A dimensionless

rotation rate of the sphere, α, can be defined by

α = Dω
2U

. (2.1)

Here, the sphere diameter is D, the velocity of the sphere centroid is U and ω is
the angular velocity. For the situation examined in this paper, α is set to +1. This
corresponds to prograde non-slip rolling.

For computational efficiency, the reference frame is attached to the centre of the
sphere. Relative to this moving frame of reference, the fluid and the lower wall move
with the same speed U, directed to the right. The other key governing parameter is
the Reynolds number Re = UD/ν, where ν is the kinematic viscosity of the fluid.
The force on the sphere consists of viscous and pressure contributions and can
be split into streamwise (Fx), vertical (Fy) and lateral (Fz) components. These are
non-dimensionalized in the standard way: Cx,y,z = 8Fx,y,z/(ρU2πD2), with ρ the fluid
density. Finally, the non-dimensional shedding frequency is given by the Strouhal
number St = fD/U, where f is the shedding frequency.

2.1. Numerical formulation and validation
The time-dependent incompressible Navier–Stokes equations are solved in cylindrical
polar coordinates (r, θ, z). The numerical scheme employs a three-step time-splitting
approach (Chorin 1968), with the sub-steps accounting for the advection, diffusion
and pressure terms in the Navier–Stokes equations. Previous studies have shown
that the implementation achieves second-order temporal accuracy. In terms of spatial
discretization, the spectral element method is used for the r–z discretization and a
Galerkin Fourier approach for the azimuthal dependence. The method/implementation
has previously been used to simulate flows past bluff bodies such as cylinders, spheres
and rings both in the free stream (Thompson, Leweke & Williamson 2001b; Sheard,
Thompson & Hourigan 2003; Schouveiler et al. 2004; Ryan, Thompson & Hourigan
2005; Leontini, Thompson & Hourigan 2007) and also close to a surface (Thompson,
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Leweke & Hourigan 2007; Stewart et al. 2010b). Details of the numerical method are
provided in Thompson et al. (2006).

Because quadrilateral elements are used to build the mesh, the sphere is placed
slightly above the wall at a distance G in order to prevent degeneracy of nodes for the
elements directly underneath the sphere. A gap ratio of G/D = 0.005 is typically used
for the simulations. By varying this distance, it was found that the flow structures in
the wake were not affected, although the (lift) force on the sphere does vary slightly
with increasing gap height (Stewart et al. 2010a).

The computational domain consisted of 320 macro-elements in the r–z plane. This
was extended into three dimensions using Nθ Fourier planes in the azimuthal direction.
The origin of the cylindrical polar coordinate system was taken as the point on the
wall directly below the sphere with the polar axis passing through the sphere. Each
quadrilateral (spectral) element employs N × N internal node points. These internal
node points correspond to the Gauss–Legendre–Lobatto quadrature points with the
velocity and pressure fields represented by a tensor product of Lagrangian polynomial
interpolants of order N − 1 within elements. The macro-elements are concentrated
around the sphere and decrease in concentration with increasing distance from it. The
top boundary is located 150D away from the lower wall while the lateral boundaries
are 100D away; thus, blockage is negligible. During resolution testing, the interpolant
order was varied between N−1= 4 and 7, with up to 256 Fourier planes. It was found
that at Re= 300 for N = 6 and Nθ = 128, convergence of the drag force is better than
0.5 %, with the Strouhal number resolved to better than 0.1 %.

2.2. Experimental setup
Previous experiments by Stewart et al. (2010a) were undertaken in a closed circuit
water tunnel with a moving floor and the sphere mounted on a motor-driven axle
parallel to the moving floor. In addition, the upstream boundary layer was sucked off
prior to the moving floor section to improve the quality of the entry flow. This setup
allowed the sphere to be rotated independently of the wall motion. In the current
set of experiments, that extra flexibility was not required and a simpler, less invasive
setup was employed. The experimental apparatus consisted of a water-filled tank, with
an inclined Plexiglas plate used as a false floor. Steel spheres of diameters 4.7 and
6.5 mm were first coated with fluorescein dye, slowly lowered into the water using
a glass pipe and allowed to roll down the incline. The angle between the horizontal
and the plate surface was of the order of 0.5◦ and could be precisely controlled to
obtain the desired terminal velocity of the sphere, and hence set the Reynolds number.
A 1 mm groove in the inclined surface ensured the sphere rolled along a straight path.
The fluid in the tank was illuminated in volume using an argon ion laser, allowing
the wake behind the sphere to be visualized and photographed. One distinct advantage
of the current setup is the removal of the driven axle, which slightly modifies the
flow, and reduced vibration, even though it was necessary to add the groove to ensure
passage along a straight path. With the current setup, it was also easy to coat the
sphere with dye prior to immersing it and beginning the experimental runs. The
velocity of the sphere and thus the Reynolds number was easy to determine accurately
from its position in video images.

Various authors (Chhabra & Ferreira 1999; Verekar & Arakeri 2010) have previously
studied the distance required to effectively reach the terminal velocity for a sphere
rolling down an incline. Chhabra & Ferreira (1999) established an approximate
relationship for Re < 500 in terms of the density ratio. For the case here using
steel spheres, this shows that the terminal velocity is reached within approximately
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13 sphere diameters. For the experiments reported in this paper, data were recorded for
120D after the sphere had travelled 30D from its initial position.

3. Results
3.1. Flow structures

The flow behind the wake of a rolling sphere has been visualized by Stewart et al.
(2010a), both experimentally by dye visualization in a water channel and also
numerically using the method of Jeong & Hussain (1999). In those investigations,
steady flow was observed for Re 6 125. The visualizations of the flow structures
showed the wake is displaced away from the wall at low Reynolds numbers and the
formation of a double threaded wake is observed, similar to that behind a non-rotating
sphere in unbounded flow for 212 < Re < 272 (Johnson & Patel 1999). Similar
structures were observed in our simulations for Re 6 135. However, at Re = 140,
periodic fluctuations in the time histories were observed for the streamwise and wall
normal components of force. The kinking of the double-threaded wake, as described
by Magarvey & Bishop (1961a,b) and Thompson et al. (2001a), was observed, and
hairpin vortices formed behind the sphere advected downstream and moved away
from the wall. On further increasing the Reynolds number, the amplitude of the
fluctuations increased, while no variation was observed in the lateral component
of force, indicating a planar symmetry about the wake centreline. The studies of
Stewart et al. (2010a) show that the symmetry was maintained until Re = 200, with
the shedding frequency remaining approximately constant at St ' 0.125 across the
unsteady range.

In the current study, numerical simulations at Re > 195 showed the growth of the
lateral component of the force Cz, whose frequency of oscillation was approximately
(but not exactly) twice that of the shedding period for the streamwise direction. The
amplitude of the lateral component of force grew with increasing flow speeds beyond
Re = 195. Tracer particles injected into the flow showed small displacements about
the wake centreline at flow speeds near the transition. However, at slightly higher
Reynolds numbers, the vortex cores were displaced alternately on either side. The
injected dye was drawn into these vortex cores, making it easier to visualize them in
the water tank experiments.

Shown in figure 2 are the vortex structures before and after this transition. Figure 2
shows the comparison between the dye visualizations from the experiments (a,b) and
analogous numerical visualizations (c,d) obtained by injecting tracer particles from a
location just above the surface of the sphere. Note that the wake became increasingly
chaotic beyond Re = 220. This is indicated by the force time traces showing irregular
fluctuations, and is discussed in further detail in the following sections.

3.2. Nature of the transitions
The Stuart–Landau model for flow supercritical transitions predicts that, close to the
critical Reynolds number, the square of the amplitude at saturation should vary linearly
with the Reynolds number increment above the critical value (e.g. Provansal, Mathis
& Boyer 1987; Dušek, Le Gal & Fraunié 1994; Le Gal, Nadim & Thompson 2001;
Thompson & Le Gal 2004). Here, the amplitude can be any flow quantity that is
zero prior to transition. For the current flow system, the initial transition is from a
steady two-threaded wake to an unsteady wake. In that case, an appropriate measure
is the amplitude of the oscillatory component of the drag force coefficient. The
second transition corresponds to the breaking of mirror symmetry of the wake as
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(a)

(b)

(c)

(d )

FIGURE 2. Comparison of experimental dye visualizations (a,c, negative image) and
numerically obtained tracer particle images (b,d). (a,b) Re= 190; (c,d) Re= 230.

viewed from above. In that case, the amplitude of the side force coefficient can be
used as a suitable measure. Figure 3 shows plots of the amplitude squared against
Reynolds numbers for both transitions determined using data from direct numerical
simulations. The unsteady transition occurs at Rec1 = 138.9 and the mirror symmetry
breaking transition occurs at Rec2 = 191.6. Previously, the critical Reynolds number
for the first transition had only been determined to lie in the range 125 < Rec1 < 150,
while the second transition was unobserved (Stewart et al. 2010a). Both plots show
that the functional behaviour close to transition is well represented by straight lines,
confirming the supercritical (non-hysteretic) nature of both transitions. In terms of the
mathematics underlying the Landau model, this means that the real component of the
cubic amplitude term in the amplitude evolution equation is negative, meaning that
term is responsible for limiting the initial linear growth once the critical Reynolds
number is exceeded.

3.3. Behaviour of the lateral component
To the knowledge of the authors, the mirror-symmetry breaking transition has not
been seen previously in either experiments or numerical simulations. That transition
can be further analysed by taking a Fourier transform of the time series of the
force coefficients. Power spectra corresponding to the lift and side force components
are shown in figure 4 for a range of Reynolds numbers near the lateral transition.
At Re = 200, just above the transition Reynolds number of Re = 191.6, both spectra
show peaks at the Strouhal numbers corresponding to the shedding of vortex loops
(Stx,y = 0.1167) and the lateral oscillation (Stz = 0.05). These are identified in the
spectra. In addition, nonlinear interaction frequency peaks are clearly seen. Some
of these have also been marked. As the Reynolds number is increased further to
Re = 240, the characteristic shedding or lateral oscillation frequency is still present as
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FIGURE 3. Linear fits of the square of the amplitude against Re using data obtained from
numerical simulations for the first two transitions. The critical values for the transitions are
obtained by extrapolating the straight line fits to zero amplitude. See text for further details.
(a) First transition (steady to unsteady); (b) second transition (loss of planar symmetry).
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FIGURE 4. Power spectra showing the change in frequency content as a function of Reynolds
number. (a) The frequency decomposition for the side force (Cz), (b) the same for the lift
force. Some peaks corresponding to the nonlinear interactions have been labelled.

a broad feature in the Cy and Cz spectra, respectively, but overall the spectra do not
show a set discrete set of peaks, indicating a richer frequency content consistent with
the evolution towards a chaotic state.
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(a)

(b)

(c)

(d)

FIGURE 5. Comparison of experimental dye visualizations (a,c, negative image) and
numerically obtained tracer particle images (b,d), for two higher Reynolds numbers.
(a,b) Re= 328; (c,d) Re= 415.

3.4. Wake behaviour at higher Reynolds number

Experimental visualizations of the wake show irregular shedding at higher Reynolds
numbers. As indicated previously, the wake structures are visualized with dye in
the experiments, and for the computations, visualization is undertaken with massless
tracer particles originating near the surface of the sphere. Figure 5 shows the visual
comparisons in plan view at Reynolds numbers above transition. For the two cases
shown, the wakes are clearly asymmetric about the wake centreline and vortex
shedding is irregular. The cross-stream extent of the wake increases as the Reynolds
number increases. The wake structures obtained appear similar to those in the wake of
a non-rotating sphere placed in a free stream at Re> 650 (Mittal & Najjar 1993).

3.5. Force histories

Sample force histories of the streamwise Cx and lateral Cz components are shown in
figure 6 for Re = 200 and 300. The lower Reynolds number is just above transition,
so the variation of the force components is close to sinusoidal. The Cx component
predominantly shows the wake signal corresponding to the formation and shedding
of the vortex loops. There is a small degree of modulation due to the cross-stream
oscillation. This oscillation in the cross-stream component chiefly corresponds to
the post-transition symmetry-breaking sinuous spanwise oscillation, but in turn it is
modulated by the vortex-loop formation/shedding signal. At Re = 200, the Strouhal
numbers of these dominant components are Stx,y = 0.117 and Stz = 0.050.
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FIGURE 6. Evolution of the drag coefficient Cx (a,b), and the lateral force coefficient Cz (c,d).
(a,c) Re= 200; (b,d) Re= 300.

At the higher Reynolds number of Re = 300, the time signals of the force
coefficients are very irregular, although the underlying signal corresponding to the
shedding of vortex loops is still clearly visible.

Figure 7 shows the variation of the force coefficients with Reynolds numbers. The
streamwise component (Cx) decreases, as does the magnitude of the lift coefficient,
noting that the force is towards the wall. The lateral component (Cz) fluctuates beyond
the transition point. The force coefficients vary smoothly across the transition from the
steady to unsteady state. This figure also shows the Strouhal number variation with
Reynolds number (7d) corresponding to the drag and lateral force components. After
the second transition, there is a sudden shift upwards in the Stx curve. Intriguingly the
Strouhal number ratio, Stx/Stz, appears locked to a 7:3 resonance post-transition for
Rec2 6 Re 6 205. This is seen clearly in figure 7(e), which shows this ratio close to
the transition. A phase space plot (Cx(t) against Cy(t − 1)) is displayed in figure 8(a).
(Note that the time lag is to make the trajectory more circular so that the individual
orbits can be seen more easily.) The boxed region of this subfigure for Re = 200 is
magnified in figure 8(b). This shows that the trajectory repeats after every 7 orbits
for Re = 200. Approximately 100 orbits are plotted in this figure. To investigate
the apparent resonance further, a simulation was performed at Re = 215 with planar
symmetry enforced. This gave a Strouhal number consistent with extrapolating the
sub-critical Stx curve (see figure 7d), which is quite different to the measured Strouhal
number without the restriction. Thus, it does appear that the frequency of the hairpin
shedding alters substantially when the lateral oscillation mode is present in order to
lock onto the 7:3 resonance. If Re is increased to 220, the phase plot shows that the
trajectory is no longer closed with individual orbits broadly following a mean orbit,
but with a significant spread. By Re = 250, the orbits appear to fill a closed region of
phase space, indicating the rapid progression to chaotic behaviour. The broad spectral
content at higher frequencies shown in figure 4 supports this conclusion.

A variant of Poincaré surfaces of section was used to investigate this further. These
maps are obtained by plotting the streamwise (or lateral) force coefficient against its
value one complete lateral (or streamwise) cycle previously, as explained below.

(a) The streamwise and lateral force coefficients were recorded for 400 time units.
This corresponds to approximately 20 cycles in the lateral direction and 50 cycles
in the streamwise direction.
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against Reynolds number near the second critical Reynolds number.

(b) The mean value of the coefficient Cx (or Cz) was subtracted from the values of
each coefficient.

(c) For every complete cycle of Cx (or Cz), the corresponding value of Cz (or Cx) was
recorded.

(d) Cz(n) (or Cx(n)) was plotted against Cz(n−1) (or Cx(n−1)).

These maps are shown in figure 9. The Poincaré maps are first plotted for Re= 200,
which is slightly above the critical value of lateral symmetry-breaking transition and
in the regime where the flow locks onto the 7:3 resonance. From the two Poincaré
maps shown in figure 9(a,b), we observe that the points lie on a discrete set of fixed
points on the surface of section for both the Cx and Cz maps, with the first showing
only 3 nodes and the second showing 7 nodes, as required by the 7:3 resonance.
These fixed points represent the intersection points of the limit cycle. At Re = 210,
(figure 9c,d) the maps show some similarity to those at Re = 200, but with the
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cy

(Close up view)
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FIGURE 8. (a) Qualitative evolution of the phase trajectories of the drag and lift coefficients.
Mean values are adjusted, and Cy is plotted with a lag of one time unit for better visual clarity.
Tick marks are separated by 0.02 on both axes. (b) Close-up of the boxed region for Re= 200,
showing the trajectory in Cx/Cy space.
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FIGURE 9. ‘Poincaré’ maps for Cx and Cz, taken for each cycle of Cz and Cx, respectively, at
Re= 200 (a,b), 210 (c,d) and 220 (e,f ).

intersection points instead now clustered around the fixed points. For the Cx map
(figure 9c) it appears that the points broadly lie in three sets mostly distributed around
the three fixed points. While there are insufficient data to be definitive, it appears
that this clustering provides evidence of (the disruption of) KAM tori centred on the
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(e)

(d)

( f )

(b)

(a)

(c)

FIGURE 10. Predicted vortical structure of the rolling sphere wake, for increasing Re,
visualized using the approach of Jeong & Hussain (1999). The sphere is rolling from right
to left. (a) Re= 125, (b) Re= 150, (c) Re= 175, (d) Re= 200, (e) Re= 230, (f ) Re= 265.

fixed points, on the route to chaos. This is less clear from the Cz map (figure 9d),
although it does appear that the points are not yet space-filling at this stage. A clearer
picture might be obtained from longer time series, but the simulation times required
are very long. At the higher Reynolds number of Re = 220 (figure 9e,f ), the Poincaré
sections show that the intersection points of the orbits are no longer restricted to lie
on or near only fixed points, with the points now appearing randomly distributed over
a large region. This shows that the remnants of the 7:3 resonance have disappeared
and the governing periods are incommensurate. Together with phase portraits and the
frequency spectra, this indicates that the system is undergoing a transition to temporal
chaos.

The wake structures in the different flow regimes are summarized in figure 10 for
125 6 Re 6 265. These images show (a) the double-threaded wake, (b) the initiation
of unsteadiness, (c) formation of strong vortex loops, (d) breaking of planar symmetry,
(e) the development of a lateral oscillation and (f ) the progression towards a chaotic
wake state.

4. Conclusions
The flow around a rolling sphere has been investigated in detail both numerically

and experimentally, including new low background noise level experiments, and a new
symmetry breaking transition has been discovered. After the first transition, from a
steady to unsteady wake at Rec1 ' 139, the wake remains strictly periodic. Above
the second transition at Rec2 ' 192, the two governing frequencies are approximately
St = 0.117 (for the Cx and the Cy force components) and 0.050 (for the Cz force
component). The corresponding oscillations vary in time nearly sinusoidally, each
modulated by the other mode, but with these two quite different frequencies. The
frequency ratio Stx/Stz appears to lock to 7:3 post-transition up to Re = 205, even
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though the natural frequencies need to adjust considerably for this resonance to occur.
By Re = 250, the power spectrum shows broad frequency content, and a plot of Cx

versus Cy shows the trajectory starting to fill a closed region of phase space; both are
consistent with the rapid progression to chaotic flow.

The wake transition sequence matches that for a non-rotating sphere in a free
stream, but not a non-rotating sphere sliding along a wall. In the latter case, the first
transition to the double-threaded wake is the sinusoidal cross-oscillation rather than
the periodic shedding of loops. For the non-rotating sphere on the wall, fluid can
flow freely over the top but not directly underneath. The addition of positive rotation
presumably assists the transport of fluid around the underside of the sphere, which
counteracts the blockage effect and makes the downstream flow closer to that of an
isolated sphere. However, the presence of the wall does reduce the critical Reynolds
numbers considerably: from Rec1 = 272–139 for the unsteady transition, and from
Rec2 = 345–192 for breaking of mirror symmetry. Finally, it is observed that the wake
structure shown in figure 10 for Re = 265 (and higher) resembles closely that of an
isolated non-rotating sphere wake at Re= 650 (figure 2c of Mittal & Najjar 1993).
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DUŠEK, J., LE GAL, P. & FRAUNIÉ, P. 1994 A numerical and theoretical study of the first Hopf
bifurcation in a cylinder wake. J. Fluid Mech. 264, 59–80.
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Chapter 7

Conclusions

7.1 Conclusions

In this study, we have examined the flow dynamics and stability of bluff bodies in

isolation and near a wall by two- and three-dimensional numerical simulations. Exper-

imental visualisations have been used for comparative purposes. The main findings are

summarised below.

The first of these studies explored the onset of three-dimensionality for a spinning

cylinder in freestream for α 6 2.5, Re 6 350, extending the findings of Akoury et al.

(2008) who observed that the onset of the mode A instability was delayed to higher

Reynolds numbers as compared to that of a non-rotating cylinder. Using linear stability

analysis, the onset of the three-dimensional flow was investigated at other rotation

rate. Our studies were found to be consistent with the findings of Akoury et al. (2008),

where the onset of modes A an B showed a monotonic increase in Reynolds number for

α 6 1. At higher rotation rates, the wake no longer retains its symmetry across the

centreline, leading to the possibility of three-dimensional modes other than A and B.

At α = 1.5, mode C was the first three-dimensional mode to become unstable, while

mode A occurred at higher Reynolds numbers, the mode C instability decayed. At

higher rotation rates, mode C was found to persist alongside other three-dimensional

modes. In the unsteady regime, two new modes were found to be unstable at rotation

rates higher than α = 1.8. A long wavelength mode, mode G first became unstable at

α = 1.85, Re & 280, while mode D was observed in the high frequency shedding region

of α ' 1.9. At rotation rates α > 2.1, vortex shedding was suppressed for Re 6 400 in

the parameter space investigated. In this steady regime, two three-dimensional modes

were observed, of which one had an associated spanwise frequency, while the other was

a real mode, similar to the spatio-temporal characteristics of the mode D instability.
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Mode λ/D Nature of µ Base flow Symmetry

A ' 4 Real and positive Unsteady u(x, y, z, t) = u(x, y, z + nλ, t+ T )
B ' 0.8 Real and positive Unsteady u(x, y, z, t) = u(x, y, z + nλ, t+ T )
C ' 1 Real and negative Unsteady u(x, y, z, t) = u(x, y, z + nλ, t+ 2T )
D ' 1.9 Real and positive Unsteady u(x, y, z, t) = u(x, y, z + nλ, t+ T )
E ' 1.8 Real and positive Steady u(x, y, z, t) = u(x, y, z + nλ)
F ' 0.4 Complex Steady u(x, y, z, t) = u(x, y, z + nλ, t+ T3D)
G ' 18 Real and positive Unsteady u(x, y, z, t) = u(x, y, z + nλ, t+ T )

Table 7.1: Summary of the modes showing the characteristic wavelength, nature of the
Floquet multiplier (µ), the periodicity of the two-dimensional base flow and the spatial sym-
metries of these modes with respect to the streamwise velocity, u.

The spatio-temporal symmetries of these modes have been described in table 7.1.

The studies of non-rotating cylinders in freestream occurred in the unsteady regime

of flow, while for bodies near a wall, the flow undergoes transition in the steady regime

at Reynolds numbers lower than the predicted onset of periodic flow (Stewart et al.

2010b). The variation of this transition as the body was brought closer to the wall has

been investigated from G/D =∞ (freestream) to G/D = 0 (near a wall) for Re 6 200.

Over this parameter range, the force coefficients and shedding frequencies have been

quantified. The onset of three-dimensionality has been determined by linear stability

analysis. For G/D > 0.28, the three-dimensional transition occurred in the unsteady

regime, while for G/D < 0.28, flow undergoes transition in the steady regime. Fur-

thermore, the critical values at onset were obtained. Stability analysis for the circular

cylinder near the wall at higher Reynolds numbers indicate multiple modes being un-

stable to the perturbations. Three-dimensional investigations undertaken to study the

non-linear interactions of these modes indicate that the flow rapidly descends into a

chaotic state.

For a circular cylinder near a wall, the influence of the rotation rate parameter on

the flow characteristics was investigated for Re 6 750. On increasing the rotation rate

to positive values of α (forward or prograde rolling), the vortex pairs which resulted

from the combination of the shear layers over the cylinder and the wall were larger and

less oblate, while on decreasing the rotation rate to negative values of α (reverse or

retrograde rolling), vortex shedding was delayed to higher values and suppressed for

α 6 −1.5. The critical Reynolds number for the onset of three-dimensional flow was
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lowered for α > 0, while three-dimensionality was suppressed for α = 2. The critical

spanwise wavelength at the onset was found to decrease monotonically as the rotation

rate was decreased.

These studies were further extended to investigate the influence of an identical

body placed in the wake of the original body. Flow stabilisation was achieved at higher

Reynolds numbers, where steady flow was observed for bodies closely separated. For

spacings of S/D 6 4, the flow remained steady compared to the onset of unsteady

flow for an isolated cylinder near a wall at Re ' 160 (Stewart et al. 2010b). The

drag force on the downstream cylinder was much lower compared to the upstream

cylinder in the steady regime, while in the unsteady regime, the drag force increased

on both bodies. At small and large spacings, three-dimensional onset of flow occurred

at Reynolds numbers lower than that observed at intermediate spacings. For a range

of spacings (4.5 6 S/D 6 6), the two-dimensional flow became unstable to three-

dimensional perturbations and then at higher Reynolds numbers, the flow returned

to a two-dimensional state. At much higher Reynolds numbers, the flow returned

to a three-dimensional state for the second time. Three-dimensional simulations at

Re = 200, over a range of separation distances, showed the flow to be chaotic akin to

the isolated cylinder near a wall.

The wake of a rolling sphere was investigated at higher Reynolds numbers. The

experimental findings of Bolnot et al. (2011) showed the onset of a sinuous mode in

the wake for Re ' 230 from an otherwise laterally symmetric wake which was observed

at lower Reynolds numbers. Previous numerical and experimental investigations by

Stewart et al. (2010a) showed the formation of hairpin vortices at Re = 200 for a

forward rolling sphere. In our investigations, the rolling sphere wake is extended to

Re = 500. The first transition to a periodic state was found to occur at Rec1 '
140, followed by a second transition at Rec2 ' 192, where the hairpin vortices were

displaced alternately across the wake centreline, thereby giving a sinuous structure.

Both transitions were found to be supercritical by Landau modelling. For Reynolds

numbers past the secondary transition, the wake is locked into a 7 : 3 resonance for

Rec2 < Re . 205. Beyond this range, the wake is irregular and at higher values of

Reynolds numbers, the flow was found to be chaotic. The transition to chaotic flow was

investigated by analysing the streamwise and lateral force histories by Fourier analysis,

phase plots and Poincaré maps. At the maximum tested Reynolds number of 500, the
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wake was chaotic and retained its sinuous structure. Furthermore, the numerical tracer

visualisations were in good agreement with the dye visualisation from the experiments.

7.2 Future directions

This thesis investigates several studies where flow control and stabilisation has been

achieved in the low Reynolds number regime by varying control parameters such as α,

G/D and S/D over wide ranges in the parameter space. However, there remains scope

for future work within the current set of parameters and some suggestions are listed

below:

• For the spinning cylinders in freestream, full three-dimensional simulations would

provide a clear picture of the dominant three-dimensional structures at higher

Reynolds numbers. The non-linear interactions in the wake where multiple three-

dimensional modes are unstable could be investigated. Furthermore, the pa-

rameter space could be extended to higher rotation rates, where previous studies

(Mittal 2004; Kumar et al. 2011; Meena et al. 2011) have identified the dominance

of centrifugal instabilities along the span of the cylinder.

• Experimental investigations for a spinning cylinder in freestream have not fo-

cussed on the three-dimensional aspects at low Reynolds numbers. These inves-

tigations could be undertaken to demarcate regions of instability for each mode

identified from the stability analysis.

• For bodies near a wall, three-dimensional simulations indicate the onset of chaotic

flow at higher Reynolds numbers where the flow no longer retains the flow struc-

tures observed in the two-dimensional simulations. Three-dimensional simula-

tions, albeit computationally expensive, will provide a better understanding of

the transition to chaotic flow. This could also be extended to rotating cylinders

and to cylinders sliding in tandem along a wall, where three-dimensionality occurs

at low Reynolds numbers prior to the onset of periodic flow.

• For cylinders sliding in tandem, the studies could be extended to other rotation

rates and their stability to three-dimensional perturbations could be investigated.

• For a forward rolling sphere, the onset of the symmetry breaking transition occurs

at higher Reynolds numbers as the rotation rate is decreased from α = +1 to
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+0.5. This could be extended to other rotation rates. The experimental studies

of Stewart et al. (2010a) showed undulations in the double threaded wake of

a sliding sphere at Re = 330, while the maximum tested Reynolds number in

their numerical simulations was 300, where the steady wake was observed. The

parameter range could be extended to higher Reynolds number to observe this

transition. For the reverse rolling sphere (α < 0), the nature of the transitions can

be investigated by performing simulations in the vicinity of the predicted values.

These studies can further be extended to investigate the flow dynamics of a freely

suspended bluff body near a wall when a flow is impulsively started. The induced forces

and moments would impart body rotation, and/or a possible displacement away from

the wall. This continuous particle-wall interactions could be investigated over a range

of Reynolds numbers using numerical solvers similar to those used here. Furthermore,

the interaction between multiple particles and their associated wake dynamics would

lead to fluid mixing in the vicinity of a wall, which is an important aspect of many

industrial applications. While the current study investigates particle-wall interactions

in various scenarios; several studies have been suggested for further exploration.
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