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Abstract. The origin of the onset of three dimensionality on a flat plateseparated flow is discussed thanks
to a parametric analysis from Falkner-Skan profiles. The study is aimed to illustrate the strong dependance
of the bubble shape on the temporal growth rate and the centrifugal nature of the instability thanks to a
comparison of the Rayleigh discriminant value and the global temporal growth rate.
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1. Introduction.

Influence of three dimensional perturbations on separated flows has been studied in many
configurations as well as on backward facing steps (experimentally by Beaudoinet al. [3]
and numerically by Barkleyet al. [1]) that on a flat plate (Theofiliset al. [7] and Wilson
& Pauley [5]). However the 3D structure of the unstable separated flow seems to be very
similar and quite independent of the geometry. Indeed the analysis realized by Barkley
et al. [1] shows that the first intrinsic linear instability of the steady two-dimensional
flow is a stationnary three-dimensional bifurcation whose the flat roll structure with a
characteristic spanwise wavelength is very similar as the experimental visualization of
Beaudoinet al. [3]. Moreover Wilson & Pauley [5] in their L.E.S study of a transitional
separation bubble on flat plate identify the generation of stationary Goertler vortices in
the spanwise direction and Theofiliset al. [7] thanks to a two dimensional linear stability
analysis found that the most unstable eigenmode of a separated flow subjected to a 3D
perturbation had an imaginary part equal to zero. All these results lead us to examine
more precisely the influence of a 3D perturbation on a separated flow model and the
nature of the instability. The paper is thus organized as follows. At first the basic flow
is presented as well as the BiGlobal stability numerical method. Then the topological
structure of the global unstable mode is presented. Finallya discussion on the instability
mechanism and the nature of the instability is provided thanks to a parametric analysis.

2. Basic flow.

A family of Falkner Skan profiles was used to construct the separated flow (see Hammond
& Redekopp [2]). In order to analyze more particularly the 3D transition phenomenon this
kind of separated flows allows us to realize a parametric study.

f ′′′ + ff ′′ + γ(1 − f ′2) = 0, f(0) = f ′(0) = 0 et f(η → ∞) = 1, (1)
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with Ue a dimensionless velocityU/Uref = xm, wherem = γ/(2− γ). A specific profile
for the reduced pressure gradientγ(x) provides a well defined separated flow on the flat
plate (separation line is shown on figure 1).

3. BiGlobal stability numerical method.

3.1. GENERAL METHOD.

The instantaneous flow is taken asQ(x, y, z, t) = Q(x, y) + εq(x, y, z, t) + cc, ε ≪ 1
whereQ is the steady two dimensional basic flow andq the perturbation which have the
wave form:q(x, y, z, t) = q̂(x, y, z)e−iΩt with q̂ = (û, v̂, ŵ, p̂)T . Then the linearized 3D
incompressible Navier-Stokes equations defined the following eigenvalue problem:

(u.∇)U + (U.∇)u −∇p̂+
1

Re
∆u − iΩu = 0, ∇.u = 0 (3)

with u = (û, v̂, ŵ)T andU = (U, V )T and iΩ the eigenvalue. Directionz is taken as
homogeneous:̂q(x, y, z) = q̃(x, y)eiβz with β the spanwise wavenumber. Hereafter the
system (3) is noted as :

Lq̃ = 0 (4)

3.2. MULTI -DOMAIN SPECTRAL COLLOCATION.

Considering global mode developping inside separated flow a multi-domain spectral col-
location method is used to cluster points inside the bubble ([4]). The domain is decom-
posed into three domains I, II and III. The governing equations is thus written:

LI q̃I = 0, LII q̃II = 0, LIII q̃III = 0 (5)

whereLI , LII andLIII denote operators and̃qI , q̃II and q̃III eigenvectors defined in
domain I, II and III respectively. A Chebyshev/Chebyshev collocation spectral method is
used to discretize (5). Boundary conditions on domain I and III and interface conditions
(6, 7) complete the system (x1 andx2 denoting interfaces position).

q̃I |x=x1
− q̃II |x=x1

= 0, q̃II |x=x2
− q̃III |x=x2

= 0 (6)

dq̃I
dx

|x=x1
−
dq̃II
dx

|x=x1
= 0,

dq̃II
dx

|x=x2
−
dq̃III
dx

|x=x2
= 0 (7)

Finally the eigenvalue problem defined by system (5), (6) and(7) is solved thanks to a
Shift and Invert Arnoldi algorithm.

4. Structure of the most unstable eigenmode and Multi-Domainperformance.

Figure 1 illustrates the structure of the unstable global mode at Reynolds number18000
which is stationnary. The influence of the global mode is principally localized in the
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Figure 1. Perturbation obtained at Reynolds number equal to30000 andβ = 22.
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Figure 2. (a) Grid used with125 points in the streamwise direction. (b) Temporal amplification
rate evolution with Nx, the number of points in the streamwise direction for Reynolds number
equal to18000. 50 points is used in the normal direction.∆ characterizes the single-domain,⋄
the multi-domain.

separated flow area. In order to improve the global mode’s convergence, the grid on
figure 2(a) is used for all calculation. A comparaison with single-domain is shown on
figure 2(b).
From iso-vorticity contours of the disturbance on figure 1(b) the structure of the 3D per-
turbation takes the form of spanwise flat roll which appears around the separation line.
This particular shape is caused by the transverse componentof the perturbation (figure
1(a)) which injects fluid in eachz direction which is rolled up around the separation line.
Furthermore it is interesting to see that perturbation (figure 1) follows the streamline’s
curvature. Consequently a parametric study on Reynolds number and on bubble shape is
provided in the following parts to clarify the nature of thisinstability.

5. Discussions on the nature of the instability.

5.1. INFLUENCE OF THE REYNOLDS NUMBER, INVISCID NATURE OF THE INSTA-
BILITY .

In order to study the inviscid nature of the instability, seven base flows are constructed
thanks to Falkner-Skan profile with a same gradient pressurereduced imposed: Re=
14000, 18000, 30000, 40000, 50000, 60000, 70000 (which correspond to a Rex = 0.05 ×
Re). The neutral curve is represented on fig. 3(a). Temporal amplification rate levels
Ωi illustrate the global unstable area in a plane (β, Re), the transverse wave number and
the Reynolds number respectively. Then the neutral curve shape is typical of an inviscid
instability and more particularly a critical Reynolds number appears at15000.
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Figure 3. (a) Neutral curve of the separated flow from the Falkner-Skan profiles.Ωi represents the
global temporal amplification rate. (b) Global temporal amplification rateΩi with the transverse
wave numberβ . Four bubble sizes are studied at Reynolds number:30000.

5.2. BUBBLE SHAPE ANALYSIS.

To analyse more particularly only the influence of the bubbleshape on the instability
the Reynolds number is fixed at Re= 30000 and a variation of separated zone is pre-
scribed thanks to a change on the reduced pressure gradient profile without modifying
the Falkner-Skan family (notably the reverse flow intensity). Four different profiles are
used. Thereafter base flows1, 2, 3 and4 will denote separated flow of size:0.588, 0.525,
0.45 and0.4 respectively. Figure 3(b) shows the temporal amplificationrate evolution of
the perturbation with the transverse wave number for base flows 1, 2, 3 and4. Then it is
clear there is a strong influence of the temporal amplification rate with the shape of the
separated zone. Furthermore more concentrated the vortex is and stronger the instability
is.

5.3. INSTABILITY MECHANISM .

From the previous analysis it has been seen that a global intrinsic mode can be unstable
in a separated flow model. Furthermore the inviscid nature and the strong dependance of
the temporal growth rate with the bubble shape was illustrated. In particular the reduc-
tion of the bubble’s size in keeping the same Falkner-Skan profiles allowed to increase
the temporal amplification rate. However the global mode is an intrinsic phenomenon
and consequently don’t have to be excited continuously to exist. The Goertler nature of
the instability can thus be excluded. Indeed as it refereed in the article [5], the Goertler
instability is an extrinsic phenomenon of convective nature and consequently can not ap-
pear as globally unstable. Then a hypothesis can be argue on the nature of the instability.
From the eigenfunction’s transverse component the disturbance is principally localized in
the separated flow and divides closed streamlines of the recirculation area into two zones
where the perturbation exchanges fluid (figure 1). Moreover the steadiness of the distur-
bance allow the perturbation to always remain and amplify inside the closed streamlines.
This kind of three dimensional phenomenon is a typical feature of centrifugal instability.
A sufficient centrifugal condition based on a generalized Rayleigh criterion lead to an
identification on unstable closed streamlines [6]:

∆(x) = 2

(

V (x)

̺(x)

)

̟(x) (8)

with x defining point of streamline considered,̺ is the local radius of curvature,V the
norm of the velocity and̟ the vorticity. The flow is unstable if there exist a closed
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(a) Maximum temporal amplification rate:Ωi = 0.0494.
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(b) Maximum temporal amplification rate:Ωi = 0.0627.
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(c) Maximum temporal amplification rate:Ωi = 0.1089.
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(d) Maximum temporal amplification rate:Ωi = 0.1497.

Figure 4. Centrifugal zones where the relation (8) is negative inside closed streamlines. Reynolds
number is30000.

streamlineϕ where:
max

ϕ
(∆(x)) ≤ 0 (9)

Consequently a similar study of the Rayleigh criterion’s intensity as the Barkleyet al. [1]
confined backward facing step analysis is performed along closed streamlines for each
bubble sizes. This analysis will aim to explain that closed streamlines shape inside bubble
is a determining factor on the temporal amplification rate.

From the figure 4 a study of the Rayleigh
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Figure 5. Evolution of temporal amplification rate
Ωi with the Rayleigh discriminant value (8) at
Reynolds number equal to30000.

criterion evolution on the different bub-
ble shape is performed. Even if the re-
lation (9) is not verified on closed stream-
lines, fluid particles travel along stream-
lines into two large regions where (8) is
negative. Otherwise the criterion (9) is
only sufficient and the intensity of the
relation (8) can allow to arise these in-
stability. Furthermore from figures 4 it
can be observed that Rayleigh discrim-

inant intensity increases with the reduction of the bubble shape. Then fluid particles feel
more the influence of the centrifugal instability which willbe concordant with the fact the
temporal amplification rate increases (figure 5).

6. Conclusions and perspective.

A parametric study of the onset of three-dimensional globalstationary instability on a
separated flow was studied. A similar three dimensional behavior as the Barkley stability
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analysis [1] over a backward facing step was identify. Furthermore it was clearly illus-
trated the inviscid nature and the strong dependance on the temporal growth rate with
streamlines shape. More particularly the evolution of the Rayleigh discriminant with the
global growth rate seems to corroborate the centrifugal nature of the instability. A per-
spective can thus be expected on the competition between strong convective instabilities
from the shear layer and this global mode, especially at higher Reynolds number.
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