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ABSTRACT

This article is focused on the effect of damping on
local and global stability of fluid-conveying pipes.
Local stability is first considered through the anal-
ysis of the dispersion relation for two systems :
the fluid conveying pipe on elastic foundation and
the tensionned fluid-conveying pipe. The effect of
damping is then predicted by calculating the en-
ergy of the neutral waves in the system and pre-
dictions are drawn regarding stability of the pipe
when boundaries are present (finite pipes). Next,
numerical computations are presented for finite-
length systems and results are compared with pre-
dictions. It is finally found that a comparison of
lengthscales is enough to know which criterion is
able to predict the global stabilty when the non-
dimensionnal length l ≫ 1.

1. INTRODUCTION

The fluid conveying pipe is often considered as
a model problem for numerous physical systems
where the dynamics of a structure is coupled
to an axial flow. This system is known to be-
come unstable at a critical velocity (Päıdoussis,
1998), by flutter or buckling, depending on var-
ious mechanical parameters and boundary con-
ditions. Two different approaches are used to
describe the properties of such one-dimensional
systems. When the system is sought infinite, the
waves propagating in the medium are considered
through the analysis of the local wave equation. If
temporally or spatially amplified waves are iden-
tified the system is said to be locally unstable.
When the same medium is of finite length, the
modes are studied, through the analysis of the
same local wave equation, associated with bound-
ary conditions. If a temporally amplified mode
is found, the system is said to be globally unsta-
ble. The comparison of local and global stability
properties has been done on various systems by
several authors, and one main result is that when
the length of the system is increased, the criti-
cal velocity for global instability tends to a limit
that corresponds to a local criterion. However,

no unique local criterion can predict the global
instability of these long systems. Depending on
the medium and boundary conditions character-
istics, various authors found that it can be that
of absolute instability (Kulikovskii, 1966), local
instability (Doaré and de Langre, 2006) or that
of existence of static or dynamic neutral waves
(Doaré and de Langre, 2002). This last criterion
has for unusual consequence that it is possible to
exhibit a system that is locally stable but glob-
ally unstable.

This paper if focused on the influence of dissi-
pation on these local and global criteria of stabil-
ity. Regarding wave propagation, some authors
have identified that dissipation can have a stabi-
lizing or -more surprinsingly- a destabilizing ef-
fect. Indeed, it is known after Briggs (1964) that
neutral waves can be destabilized or stabilized
by the addition of damping, depending on the
sign of their energy. These authors considered
the energy being the work done in building up
the wave from rest at time t = −∞. It has been
found that elastic plates loaded with mean flow
also display negative energy waves (Peake, 2001).
Althrough it is expected that the same appens in
fluid conveying pipes, no information is available
at present time. Conversely, regarding pipes of
finite length, destabilization by dampig has been
observed (Päıdoussis, 1998).

Three points of view will be used in this pa-
per : The infinite case (wave propagation), the
finite case, and the finite case, but long enough
that a local criterion can predict stability. Two
particular systems will be studied, the fluid con-
veying pipe resting on an elastic foundation, and
the fluid-conveying pipe subjected to tension.

Equations of motion will be described in sec-
tion 2. The section 3 of the article will be devoted
to the wave propagation properties in these two
media. In absence of dissipation, it will essen-
tially consist in recalling previous results. The
addition of damping addition will be then stud-
ied through the analysis of neutral waves energy.
In section 4, computation results of global stabil-
ity of these pipes will be presented and analysed



through the light of the local stability properties.
Finally, some conclusion will be drawn.

2. EQUATIONS

The linearized equation of motion governing the
lateral in-plane deflection Y (X,T ) of a fluid-
conveying pipe is (Bourrières, 1939),
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where EI is the flexural rigidity of the pipe, M
the fluid mass per unit length, m the pipe mass
per unit length, U the plug flow velocity, S the
elastic foundation modulus, τe the external ten-
sion applied and F (X,T ) the external force per
unit length. We only consider here the onset
of instabilities and nonlinear effects are therefore
neglected in the dynamics of the pipe.

In the following, elastic foundation and exter-
nal tension will be studied separately. Two dif-
ferent sets of non-dimensionnal numbers, based
on two different sets of characteristic length and
time will be used. The first set wil be used
to study the pipe resting on an elastic founda-
tion, without tension (τe = 0). Introducing the

non dimensional length η = EI/S1/4, and time

τ = η2
√

M+m
EI , non dimensional variables and

parameters read,
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Local wave equation finally reads,
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(3)
The second set of parameters concern the ten-
sionned pipe. Here, using the characteristic
length, η =

√

EI/τe, the characteristic time τ
based on this new characteristic length, and the
same parameters as in equations (2), the local
non-dimensional wave equation now reads,
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(4)
For both systems, the length is L so that x ∈
[0, l], with l = L/η. The particular case of a can-
tilevered fluid-conveying pipe will be considered

through the whole paper, so that boundary con-
ditions are,
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3. LOCAL STABILIY

3.1. Pipe on elastic foundation

Looking for solutions in the form of normal
modes,

y(x, t) = ei(kx−ωt), (6)

the local equation (3) takes the form of a disper-
sion relation,

D(k, ω) = k4 − v2k2 + 2
√

βvkω
−ifω − ω2 + 1

= 0.
(7)

Local stability is ensured if Im(ω) ≤ 0 for any
value of k ∈ R. When dissipation is absent, the
medium is found to stable if (Roth, 1964),

v <

√

2

1 − β
. (8)

In the local instability domain of the parameters,
absolute and convective instabilities may be dis-
tinguished. It has been shown (de Langre, 1999)
that for fluid-structure interaction systems with-
out dissipation the transition between absolute
and convective instabilities arises when the dis-
persion relation has a triple root. In the insta-
bility domain of the parameters, the medium is
absolutely unstable if,

v >

(

12β

8/9 − β

)1/4

. (9)

In the local stability domain of the parameters,
this last criterion is also the criterion of existence
of te dynamic neutral range (Doaré and de Lan-
gre, 2002). Moreover, a second value of the ve-
locity v =

√
2 give rise to a triple root in the

local stability domain. As this root appears at
ω = 0, the range of neutral waves that is gener-
ated has been referred to as static. The criterion
of existence of the static range is hence,

v >
√

2. (10)

The different domains of stability are plotted on
Figure 1a.

As shown by Roth (1964), as soon as dissi-
pation is added in the system, the criterion of
stability becomes v >

√
2.
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Figure 1: Infinite pipe without dissipation,
schematic view of the different domains of wave
properties in the (β, v) space; AI, absolute in-
stability; CI, convective instability; SN, stabil-
ity with existence of the static range of neutral
waves; E, no neutral waves range exists, there are
evanescent waves at any real frequency; (a), with
elastic foundation; (b), with tension.

3.2. Tensionned pipe

The dispersion relation is here,

D(k, ω) = k4 + (1 − v2)k2 + 2
√

βvkω
−ifω − ω2

= 0.
(11)

Using similar analysis as in section 3.1, the fol-
lowing criteria apply when dissipation is absent
[see de Langre (1999)] :

• Criterion of stability :

v <

√

1

1 − β
(12)

• Criterion for the existence of the static neu-
tral range :

v > 1 (13)

• Criterion for absolute instability :

v >
2
√

2√
8 − 9β

. (14)

There is no crossing of stability transition and
convective to absolute instability transition cri-
teria. So a dynamic range cannot be observed
here.

The presence of dissipation modifies the stabil-
ity criterion. An analysis of the dispersion rela-
tion, not presented here allows to show that as
soon as f > 0, the medium is unstable if,

v > 1. (15)

These criteria are all plotted on Figure 1b. The
main difference between this case and the pre-
vious case - pipe on elastic foundation - is that
here, no region of existence of the dynamic range
exists in the parameter space.

3.3. Effect of dissipation on neutral waves
ranges

The concept of wave energy, introduced by Briggs
(1964), allows to predict de the effect of damp-
ing on the stability. Wave energy is calculated
on neutral waves, i.e. k ∈ R, ω ∈ R and corre-
sponds to the work done in slowly building up
the wave starting from rest at time t = −∞. It
is predicted that a wave for which this energy
is negative will be destabilized by the addition
of damping. Cairns (1979) showed that the wave

energy E of a neutral wave y = Aei(kx−ωt) is given
by,

E = e|A|2 =
ω

4

∂D

∂ω
|A|2. (16)

For both pipes (tensionned and resting on an
elastic foundation), the wave energy reads,

e =
ω

2

(

√

βkv − ω
)

. (17)

This energy is plotted for two typical cases.
On Figure 2a, it is plotted in the case of the
pipe on elastic foundation, at β = 0.15, v = 1.2,
ω ∈ [0, 1.5]. This set of parameters is chosen to
display both static and dynamic neutral ranges.
It appears on this figure that, for two waves in the
static range, the energy defined in equation (17)
is negative. Conversely, waves in the dynamic
range are all positive. Hence, neutral waves in the
dynamic range are stabilized by damping while
two waves in the static range are destabilized.
The criterion of instability of the infinite, damped
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Figure 2: Wave energies of waves as function of
real frequency; (a) pipe on elastic foundation;
(b), tensionned pipe.

fluid-conveying pipe on an elastic foundation is
thus v >

√
2.

On figure 2b, the energy is plotted in the case
of the tensionned pipe for β = 0.5, v = 1.1 and
ω ∈ [0, 0.22]. As in the previous case, the static
range displays two negative energy waves and the
medium is destabilized by disspation. No dy-
namic range exists in the case of tensionned pipe.
The infinite, damped, tensionned fluid conveying
pipe is hence unstable when v > 1.

These two criteria confirm the results given in
the previous section and show that the instability
caused by damping originates from the destabi-
lization of waves in the static range.

4. GLOBAL STABILITY

A Galerkin numerical method is used to com-
pute the eigenfrequencies of the system. Up to

100 modes have been used to compute the eigen-
frequencies of the longuest pipes. Instability is
predicted when an eigenfrequency has a positive
imaginary part.

4.1. Pipe on elastic foundation

Figure 3 shows the evolution of the marginal
stability curve in the (β, v) plane as the non-
dimensional length l is increased. This last pa-
rameter can be sought as a measure of the length
compared to the wavelengths of waves propagat-
ing in the system. When l ≫ 1 the global riterion
of stability can be well approximated by a local
criterion. As shown in a previous paper (Doaré
and de Langre, 2002), the long system limit is
the criterion of existence of the dynamic neutral
range. When dissipation is added, the marginal
stability curve approaches a different limit when
the length is increased. This limit is the local sta-
bility transition, v =

√
2. As shown in the previ-

ous section, this criterion is that of existence of
the static neutral range, which exists when there
is no damping.

4.2. Tensionned pipe

Figure 4 shows the evolution of the marginal sta-
bility curve as the length is increased. As no
dynamic range exists in this medium, the limit
for long system is the local stability transition
criterion. When damping is added, the marginal
stability curve tends to a different criterion when
length is increased. This limit is again the local
stability criterion of the damped medium, v = 1.
Again, this criterion corresponds to the criterion
of existence of the static neutral range, appearing
when there is no damping.

4.3. Length scales

It appears on Figure 3b that before tending to the
local criterion of stability with dissipation, the
curve approaches the local criterion without dis-
sipation. This indicates that there exists an in-
termediate length where the local criterion with-
out damping still dominates the global behavior
of the system. To analyze this phenomenon, let
us define a characteristic length of dissipation ef-
fects,

ηf =

(

EI(M + m)

c2

)1/4

. (18)

A non dimensional length can then be defined as,

lf =
L

ηf
= lf1/2. (19)
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Figure 3: Fluid-conveying pipe on elastic founda-
tion, global stability curves for different values of
the non dimensional length l and of the damping
parameter f . (a), f = 0; (b) f = 0.01.

When f1/2 ≫ 1, lf ≫ l, dissipation effects are
dominant in the pipe and the critical velocity is
only determined by the local stability criterion
of the pipe with dissipation. Conversely, when
f1/2 ≪ 1, lf ≪ l, two situations arise :

• l ≫ 1 ≫ lf , the pipe is long enough to let
the local conservative instability to developp
but not enough to let dissipation to affect the
system. The global criterion of instability is
hence that of the undamped system.

• l ≫ lf ≫ 1, the pipe is long enough to let
the dissipation affect the system. The global
criterion of instability is that of the dissipa-
tive system.

The critical velocity of global instability is plot-
ted in Figure 5 for two values of the mass
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Figure 4: Tensionned fluid-conveying pipe, global
stability curves for different values of the non di-
mensional length l and of the damping parameter
f ; (a), f = 0; (b) f = 0.01.

ratio β and for typical values of the ratio
ηf/η :∞, 60, 30, 10 and 0.5. When ηf/η = ∞,
f = 0, the asymptotic criterion of global insta-
bility is v > vac, the criterion of existence of the
dynamic range of neutral waves. For the other
cases presented on Figure 5, damping is present
and the asymptotic criterion of global instabil-
ity is v > vn the criterion of instability of the
damped medium, which is also the criterion of
existence of the static neutral range when there
is no dissipation in the medium. However, as pre-
dicted above, when ηf/η 6= ∞, the critical veloc-
ity approaches a different limit for intermediate
lengths, that is when 1 ≪ l < ηf/ηs. This limit
is the global instability criterion of the system
without damping.
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Figure 5: Fluid conveying pipe on elastic foun-
dation with dissipation : non dimensional crit-
ical velocity for global instability as function of
the non dimensional length l for different values
of the ratio ηf/ηs; (a), β=0.01; (b), β = 0.5;
(- -) criterion of existence of the dynamic neu-
tral range; (- .) criterion of existence of the static
neutral range which is also the criterion of local
instability for the pipe with dissipation.

5. CONCLUSION

In this article, the effect of damping on local and
global stability of two systems has been analysed,
the cantilevered fluid-conveying pipe on elastic
foundation and the cantilevered fluid-conveying
pipe subjected to tension. Regarding local sta-
bility, in the elastic foundation case, it has been
found that dissipation can have a stabilizing or
destabilizing effect, depending on the mass ratio
β. In the tensionned pipe case, damping has a
destabilizing effect for any value of β. These re-
sults have been found to affect the global stability
of the pipe as its length reaches infinity while for
intermediate lengths, the criteria with or without
damping can predict the global stability, depend-
ing on the respective values of non dimensionnal

lengths l and lf . These results are expected to
be applicable in other systems where a slender
structure interacts with an axial flow.
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