
Ninth International Conference on CFD in the Minerals and Process Industries
CSIRO, Melbourne, Australia
10-12 December 2012

SPH Simulation of Packed-beds and Columns
Applied to Heap-leaching

Daniel J. BARKER1* Gopalkrishnan PARAMESWARAN1 and Stephen J. NEETHLING1

1 Rio Tinto Centre for Advanced Mineral Recovery, Department of Earth Science and Engineering, Imperial 
College London, London, SW7 2AZ, UK

*Corresponding author, E-mail address: D.Barker11@imperial.ac.uk

ABSTRACT

Smoothed  Particle  Hydrodynamics  is  fast  becoming  an 
indispensable tool for simulating complex flows such as 
those  encountered  in  Heap-leaching.  Its  meshfree, 
Lagrangian  nature  means  it  is  ideally  suited  to  handle  
multiphase  immiscible  flows,  particularly  with  a 
simulation scale on the order of centimetres. We present  
an overview of the SPH method for simulating such flows 
and present two novel considerations for handling fluid-
solid boundaries in SPH with both geometric objects and 
faceted  meshes.  We show results  of simulations  in  3D 
through packed-beds  of spherical  particles  and  realistic 
rock shapes.

NOMENCLATURE

d spatial dimension
h smoothing length
W smoothing kernel
P pressure
v velocity
ρ density
ρ0 rest density
cs speed of sound
µ dynamic viscosity
γkl surface tension
g acceleration due to gravity
L period length
dx avg. particle spacing
V particle volume
m particle mass
B Bond number

INTRODUCTION

Heap-leaching  (HL),  a  method  for  extracting  valuable 
metals from mined ore, accounts for approximately 20% 
of world  copper  production  (Jergensen,  1999).  HL has 
comparatively low setup  and running costs.  This  means 
that for ore which is of low grade or for small ore bodies 
(which  are  rapidly  depleted)  HL  represents  the  only 
economically viable extraction technique.

In HL a reactive  leaching  solution  is  trickled  over 
ore particles where it percolates down, reacting with the 
metal  sulphides  bringing the copper into solution.  Once 
the  solution  reaches  the  bottom  of  the  ore  pile,  an 
impermeable  leaching  pad  channels  the  flow  into 
drainage  ditches  and  the  copper  is  extracted  using 
solvent-extraction / electro-winning (SX/EW)

The  leaching  process  is  subject  to  many  external 
factors (e.g. rainfall, ambient temperature) and is itself a 
complex  process.  Further,  once  running  only  certain 
parameters  can be controlled,  namely; leaching solution 

flow rate, Eh and pH and gas flow rate. For these reasons 
fully understanding HL provides a massive opportunity to 
maximise  recovery and  minimise  footprints  for  mining 
operations.

Several  past  works  have  been  undertaken  in  this 
direction ranging from computational studies at the whole 
heap-scale  (Cariaga 2005,  Leahy 2003,  McBride  2005), 
theoretical  work  such  as  (Dixon,  1995)  to  experiments 
(Bouffard 2001, Wu 2009).

We use Smoothed Particle Hydrodynamics (SPH) to 
simulate  the  type  of  unsaturated  multiphase  flows 
encountered in HL. The flows are simulated at the scale 
of particles and intra-particle channels which are found in 
typical industrial heaps; the aim of which is to generate a  
better understanding of the interplay between flow, hold-
up and particle properties such as shape, size and contact-
angle.

MODEL DESCRIPTION

Smoothed Particle Hydrodynamics

Originally  developed  to  simulate  astrophysical  flows 
(Lucy,  1977),  SPH  is  a  meshless,  fully  Lagrangian 
numerical method. It can be used to simulate the full 3D 
Navier-Stokes (NS) equations. For a Newtonian fluid and 
in its Lagrangian form the NS equation reads

ρ d v
dt

=−∇ P+μ ∇2 v+g     (1)

and the continuity equation 

d ρ

dt
+∇⋅(ρv)=0       (2)

describes  the  conservation  of  mass  within  the  system. 
SPH works by discretising the system at a set of points or 
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Figure 1: Final state of simulation with B=0.78 showing 
water held between spherical particles of diameter 2mm.



'particles',  but  unlike  some  other  methods  (e.g  FEM) 
there  is  no  pre-defined  topology  between  the  SPH 
particles. Using the value of a quantity at these particles 
we  can  form  an  approximate  interpolation  where  the 
contribution from each particle is weighted based upon its  
distance away:

A(x)=∑
i=1

N

Ai W (∣x−xi∣, h )V i (3)

Where W is the smoothing kernel. Note that this is not a 
true  interpolation  because  A(xi)≠Ai .  It  can  be 
shown, see (Liu, 2010), that the gradient of the estimated 
quantity (3) is given by

∇ A(x )=∑
i=1

N

Ai ∇ W (∣x−xi∣, h)V i (4)

Notice how the gradient is transferred from the quantity 
itself  to the smoothing kernel.  A similar  relation to (4) 
holds for the SPH Laplacian.

Each SPH particle i represents a small volume of the 
fluid and as such has the physical properties of mass – mi, 
density – ρi, pressure – Pi and velocity – vi. Further, since 
we are interested in multiphase flows each fluid particle  
is given a 'colour' indicating to which phase it belongs and 
the colour function is defined as

C i
k={1 i∈k

0 otherwise
(5)

This function indicates whether the particle  i is  in fluid 
phase k.

Using  these  equations  it  is  possible  to  write  SPH 
estimates for the relevant physical quantities we need to 
simulate  the  fluid  flow.  We  follow  closely  the 
formulation of Hu and Adams (2006) beginning with

σ i=∑
j=1

N

W (∣xi−x j∣, h) (6)

where the density is then given by

ρi=mi σ i (7)

and we have approximately σ i=1/V i . The pressure is 
directly  related  to  the  density  through  an  equation  of 
state;  the  Tait  equation  (Becker,  2007).  We  can  then 
write  the  SPH  estimates  of  the  flow  variables.  The 
pressure gradient is given by

−∇ P i=−
1
V i

∑
j=1

N

(
Pi

σi
2 +

P j

σ j
2 )∇ W ij (8)

with

W ij=W (∣x j−xi∣, h) (9)

The viscous term is given by

(μ∇2 v)i =
1
V i

∑
j=1

N 2μkμ l

μ
k
+μ

l ( 1
σ i

2 +
1
σ j

2 )
vij

r ij

∂W ij

∂ r ij

(10)

where the superscripts  k and  l indicate  the fluid phases 
for particles  i and  j respectively. Surface tension can be 
successfully  added  to  SPH  simulations  using  the 
continuum  surface  force  (CSF)  model.  The  colour 
gradient  at  a  particle  i in  phase  k due  to  neighbouring 
particles from phase l is

∇ C i
kl
=

1
V i

∑
j∈l (

C i
l

σ i
2 +

C j
l

σ j
2 )∇ W ij (11)

The interface stress between phases k and l (k ≠ l) is then

Πkl
(i )

=
γkl

∣∇ C i
kl
∣(

I
d
∣∇ C i

kl
∣−∇ Ci

kl
∇ C i

kl ) (12)

and the total  interface stress is the sum over each other 
phase

Πi=∑
k ≠l

Πkl
(i)

(13)

All  simulations  carried  out  in  this  paper  are  with  a 
contact  angle  of  θ=30º between  the  liquid  and  solid 
phases.  To achieve this,  surface tension coefficients  are 
chosen using Young's equation

γsl−γ sg=γlg cos (θ) (14)

With  l,g and  s representing liquid,  gas and solid phases 
respectively. It is worth noting that this SPH formulation 
exactly conserves linear momentum in the absence of any 
fixed boundaries.

Timestepping

In the SPH literature the Leap-frog scheme is commonly 
used for integrating the equations of motion. Here we use 
a predictor-corrector scheme, with adaptive timestepping 
to increase computational efficiency.

Boundaries

The handling of solid-fluid boundaries  in SPH has been 
approached  in  several  different  ways.  The  three  main 
ways are  by simply making  the  walls  repulsive  to  the 
SPH  particles  (Harada  2007,  Müller  2004),  by  using 
ghost SPH particles (Monaghan 2009, Ovaysi 2010) and 
using  semi-analytical  formulations  (Feldman  2010, 
Ferrand 2012). We take the approach of having reflected 
ghost particles.

SPH particles  within  2h  of any walls  are  reflected 
across the wall and their velocities are also reflected, i.e.  
vref = -v. Reflecting the velocities like this is important to 
ensure the no-slip boundary conditions at the wall.

Because of the smoothed nature of the velocity field,  
if the reflected particles have, for instance, zero velocity 
then  the  particles  at  the  wall  do not  see  the  smoothed 
velocity field as being exactly zero at the boundary.

Geometric Objects

As  a  first  step  towards  simulating  realistic  beds  and 
columns we will show some simulations through packed 
beds of spherical particles. By geometric objects we mean 
simple objects such as spheres, circles, torii and cylinders 
whose surface can be represented mathematically. 

Rather than breaking these surfaces up into many flat  
triangular  faces  we  store  in  our  SPH  code  the 
mathematical constants necessary to define them. So for a 
sphere we would store its centre xc and its radius R. This 
has  the  advantage  that  simulations  are  more  robust  to 
changes in resolution (smoothing length).

For example, using the centre and radius of a sphere 
a reflected particle's position is given by

xrefl=
(x−xc )

∣x−xc∣
(2 R−∣x−xc∣) (15)

This is the same for all particles around the sphere.
However  care  must  be taken  when performing this 

reflection operation.  Since the surface in  which we are 
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reflecting  is  curved  the  reflected  particles  necessarily 
occupy a  different  volume  V' to  that  of their  matching 
fluid particle – V.  An example of this effect can be seen 
in  figure  2;  the  fluid  particles  (green)  are  shown 
reflected in the circle (blue) to give the reflected particles  
(red). See how the curved edge of the circle leads to the 
reflected  particles  bunching  closer  together  than  the 
average spacing dx. 

For  a  circle  the  ratio  of the  areas  of the  reflected  and 
original particle is given by 

V fac
circ=

R+d
R−d

(16)

where  d is  the  distance  between  the  particles  and  the 
circle.  It  is  simple  to  show  that  this  is  the  case  by 
considering the geometric construction shown in Figure 3 
in which we work from the fact that on the fluid side of 
the  circle  (here  the  inner  side)  the  spacing  between 
particles is dx.

From equation  (16)  it  is  possible  to  generalise  to 
arbitrary  shapes  in  2D  and  3D.  Consider  an  arbitrary 
shape in 2D, then at  the closest  point  (the point  across 
which we reflect) we have a defined radius of curvature  
which becomes R in equation (16). We can rewrite this in 
terms of the curvature κ = 1/R yielding

V fac
2D=

1+κd
1−κd

(17)

In 3D we have two  principle curvatures  which are 
orthogonal  to  one  and  other  –  κ1 and  κ2.  The  volume 
factor in 3D is the product of the two 2D volume factors 
which  would  be  obtained  by circles  with  curvatures  κ1 

and κ2 respectively:

V fac
3D

=
(1+κ1d )

(1−κ1d )

(1+κ2 d )

(1−κ2 d )
(18)

The volume (area) factor is shown for a number 
of shapes in Table 1. In the table R and d have their usual 
meanings  and  the  torus  is  defined  by the  two radii  R1 

(wheel radius) and R2<R1  (tube radius), with the poloidal 
coordinate being θ where  =0 is defined to be the insideθ  
ring.

Shape Dim. Vfac

Circle 2 (R+d) / (R-d)

Sphere 3 ((R+d) / (R-d))2

Cylinder 3 (R+d) / (R-d)

Torus 3
( R2+d

R2−d )(R1−R2−d

R1−R2+d )cos (θ)

Table 1: Volume factors for reflecting in various shapes.

A modified version of equation (6) is used to ensure 
that σi=1/Vi holds near curved boundaries;

σ i=
1

V fac , i
∑
j=1

N

W ij V fac , j (19)

The representation of solids as mathematical objects 
is practical because it  is  very memory efficient  plus the 
resulting  simulations  tend  to  be  stable.  Spheres  and 
cylinders are good for modelling lab experiments  where 
idealised  geometries  are  sometimes  used  (Bouffard 
2001),  however  if  we  are  to  move  towards  realistic 
geometries we must use faceted geometries.

Faceted Objects

Possibly  the  most  common  way  of  representing  3D 
objects on computers is by breaking the object up into a  
series  of triangles  (and  sometimes  quadrilaterals).  The 
resulting triangles are called the facets of the object. Note 
since the triangles represent a 2D surface of a 3D object  
they  must  be  locally  manifold  meaning  at  each  edge 
exactly two triangles must meet. Additionally the surface 
must be orientable (closed).

Unlike  the  geometric  objects  discussed  above,  the 
triangles  of  a  faceted  geometry  are  flat  meaning  the 
curvature of the individual facets is identically zero; this 
means  we  no  longer  need  to  worry  about  the  volume 
factors  when reflecting particles  in  them.  Unfortunately 
faceted geometries suffer a different issue which must be 
remedied.

Edges

Where  two  triangles  meet  at  an  edge  the  angle 
between them is in general not 180º. If ignored this can 
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Figure 2: Illustration of how particle spacing is affected 
by reflection in a circle. Figure 3: Geometric construction used for calculating the 

volume factor associated with reflecting across an edge 
with radius of curvature R.



cause either  (i)  overlapping regions of reflection or (ii) 
gaps in the reflected particle field, as shown in figure 4. 

Case  (i)  occurs  when  the  angle  between  outward 
normals  n1 and  n2 is  >180º and  will  lead  to 
overestimation of the density near such an edge. Case (ii)  
occurs when the angle  between  n1 and  n2 is  <180º and 
will  cause  an  underestimation  of the  density.  Case  (ii) 
can become a serious issue as an underestimated density 
can  allow  some  particles  to  leak  from  the  simulation 
domain. A similar issue can occur where triangles meet at 
vertices.

To  overcome  these  issues,  our  SPH  code  was 
modified to detect when reflecting a particle near an edge 
and if necessary reflect an additional  particle across the 
edge  into  the  resulting  gap  (case  ii)  or  not  reflect  an 
otherwise  reflected  particle  (case  i).  To  detect  if  a 
reflected particle  would lie  in  the region of interest  we 
can perform a relatively straightforward calculation.

Consider the edge e with endpoints  v1 and v2, and a 
particle at position x. The nearest point to x which lies on 
e is given by

xnp=v1+λ(v2−v1) (20)
with

λ=
−(v 1−x )⋅(v 2−v 1)

∣v2−v1∣
2

(21)

Now  consider  the  cross  product  of  (x-xnp)  and  the 
face  normals;  (x-xnp)xn1 and  (x-xnp)xn2.  Both  of  these 
vectors must be parallel or antiparallel to the edge vector 
(v1-v2).  The  two  face  normals  in  combination  with  the 
edge vector each define two planes. If we are between the 
two planes then only one of (x-xnp)xn1 and (x-xnp)xn2 will 
lie  parallel  to  the  edge  vector,  and  the  other  will  be 
antiparallel.  This  means that  ((x−xnp)×n 1)⋅(v2−v1)

and ((x−xnp)×n2)⋅(v 2−v 1) must have opposite signs. 
If they are either both positive or both negative we do not 
lie in the overlap between the two facets.

If  the edge  is  convex  (from the fluids  perspective) 
then  reflecting  over  both  walls  will  lead  to  an 
overestimated density (case i) therefore we only reflect if 
the original particle is the correct side of the plane formed 

by the vectors (n1+n2) and (v2-v1), i.e. the bisecting plane 
of the edge.

If  the  edge  is  convex  and  we  lie  in  the  region  of 
interest  then  the  particle  is  reflected  according  to  x'  = 
2xnp-x.

Vertices

Treating concave vertices in 3D is more complicated than 
edges  since  we  can  have  an  arbitrary  number  of  faces 
meeting  at  any  vertex  and  in  general  there  will  be  a 
mixture of concave and convex edges.

Each  pair  of  adjoining  faces  that  meet  at  a  vertex 
define a plane in which both normals lie. If all the edges 
were concave then we could simply check that we were 
on  the  correct  side  of  this  plane  for  all  pairs  of  faces 
around a vertex, i.e. that for all pairs ((x−xv)×n1)⋅n2

has the same sign, where xv is the vertex location.
To account for the mixture of concave and convex 

edges we find the plane to which our particle is nearest 
then check if it is on the correct side of it by looking at 
the  sign  of  ((x−xv)×n1)⋅n2 .  Because  of  the  non 
commutativity of the cross product we must always check 
the  pairs  in  the  same  order,  thus  we  loop  around  the 
vertex clockwise as seen from the non-fluid side of the 
surface.

RESULTS

As mentioned previously all simulations here are carried 
out with a liquid-solid contact angle of 30º.

Spherical Packing

The  first  case  we  consider  is  a  regular  periodic 
packing of spherical beads. This idealised situation is use 
in  lab  based  studies  of  leaching  hydrodynamics,  see 
(Bouffard, 2001) or (Ilankoon, 2012).

In  Figure  5  we  show  results  from  an  unsaturated 
simulation of water flowing through the regular packing 
at intervals of 0.1s. In this simulation the spheres have a 
radius of 10mm, the liquid saturation is 8.5% of the void 
space and we use periodic boundary conditions in all  3 
dimensions.

Note that both the water and air phases are simulated 
but  only  the water  is shown. The total  number of SPH 
particles in the domain was ~3.9 million. The simulation 
took  14  days  and  was  carried  out  using  MPI  on  192 
(2.66GHz) cores.

The  surface  is  reconstructed  from  the  particle 
representation by calculating the function

ϕ(x)=∑
i=1

N

W (∣xi−x∣)C i
l

on  a  regular  grid  then  applying  the  marching  cubes 
algorithm  to  extract  the  iso-surface  representing  the 
liquid-gas interface.

A quantity of interest for systems such these is the 
dimensionless  Bond  number;  B  =  ρgL2/γ.  The  Bond 
number is the ratio of inertial force (due to gravity) and 
capillary  force;  it  indicates  whether  the  system's 
behaviour  is  dominated  by  inertia  (B>>1)  or  capillary 
forces (B<1).

The  simulation  is  in  the  transition  region  between 
inertia dominated and capillary dominated regimes; B=78. 
The  system  shows  behaviours  characteristic  of 
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Figure 4: In general there will be either an overlap or a 
gap in reflection where two triangles meet at an edge 
(vertex in 2D).



intermediate Bond numbers. The water's surface is mostly 
held at the points where the spheres meet as can be seen 
in the final still (t=0.3s) but the water itself continues to 
flow  downwards  through  the  voids  leading  to  a  quasi 
stationary state.

Figure 1 (on the first page) shows a still of the final 
state from a simulation with particle radii of 1mm. Again 
both air and water are simulated, and the simulation was 
run on 192 cores. For this simulation the total number of 
SPH particles was 1.2 million. 

When the particle radii are 1mm, the corresponding 
Bond  number  is  0.78  meaning  the  system  is  in  the 
capillary  dominated  regime.  The  water  is  entirely  held 
between the spheres reaching a stationary steady-state in 
which the  shape is dictated by the minimum surface area; 
thereby  minimising the surface energy. For  comparison 
the mean velocity in the direction of gravity at t=0.3s for 
the  B=78  simulation  is  -0.10ms-1 as  opposed  to  just 
-0.01ms-1 at  long  times  for  the  B=0.78  case,  both 
simulations  were  started  with  the  same  initial  fluid 
configuration (up to a scale factor).

The  differing  computational  demands  of  the  two 
simulations are due to the different scales at which they 
are run. The second simulation is a factor of 10 smaller 
meaning the capillary forces are far more dominant and 
the simulation quickly settlesl into its final state, because 
the  shape  of  the  resulting  interface  is  stationary  it  was 
found that a lower resolution can still capture the details 
of the behaviour.

Rock Packing

The next simulation we show is a simulation of flow 
over  a  loose  packing  of  rocks,  this  demonstrates  a 
simulation  which  utilises  faceted  geometries.  The  rock 
geometry  was  obtained  experimentally  from X-ray  CT 
then packed into a 10cm x 10cm x 10cm box using DEM. 
The  simulation  was  run  on 120  cores,  had  1.6  million 
particles and took 5 days to run.

The fluid properties used for this simulation are not 
representative  of  industrial  flows,  the  density  ratio 
between the heaver and lighter phase was set to 4 and the 
viscosity was set to 50μwater, for reasons of computational 
speed.  The  complex  geometry  along  with  the  non-
periodic  nature  of  the  packing  leads  to  complex  flow 
patterns  which  require  impact  the  timestep  of  the 
simulaiton.  Further,  the  timestep  in  interfacial  SPH  is 
limited in part by the density ratio of the fluid phases, a 
realistic  density  difference in this  case was found to be 
prohibitive.

Figure  6  is  a  time  sequence  of  stills  from  this 
simulation, the fluid forms a wetting layer over the rocks 
it contacts and other flow structures such as the Plateu-
Rayleigh instability are observed. This would be expected 
and further validation against experimental results will of 
course  be  necessary  before  strong  conclusions  can  be 
drawn from these simulations.

CONCLUSIONS

Following an introduction of SPH and the handling 
of surface tension using the CSF model we examined the 
handling of boundaries using reflected ghost particles. In 
particular  we  considered  the  novel  aspect  of  reflecting 
across a curving edge or surface; showing an illustrative 
example. We have detailed how to suitably handle this in 
SPH to avoid artefacts near such boundaries through the 
introduction of a new  volume factor  which accounts for 
the curvature in both two and three dimensions.

The spherical packing simulations in both the gravity 
dominated and capillary dominated regimes indicate that 
this SPH formalism is likely capable of handling the sort 
of complex multi-phase flows we are interested in for HL; 
effects of surface tension, hold-up and superficial velocity 
were seen.
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Figure 5: Time series images from simulation of water in 
a packed bed of spherical particles of diameter 20mm. 
The Bond number is 78.



The  handling  of  complex  geometries  has  received 
some attention in the past (Harada, 2007) but most SPH 
simulations are performed with very coarse or simplified 
features  and  make  no  mention  of  how  corners  are 
handled.  We  presented  the  geometric  considerations 
necessary to  avoid under-  or  overestimating  the density 
near  general  edges  and  showed  an  example  of  a 
successful simulation through a packing with a complex 
geometry.
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Figure 6: Sequence of stills from a simulation of flow 
over a rock packing.
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