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ABSTRACT 
Granular flows in shear cells have been extensively 
studied using the Discrete Element Method (DEM) over 
the last two decades. These studies have typically been 
performed using the soft-sphere approach where 
deformation is assumed elastic and small relative to the 
characteristic grain scale. Consequently internal stresses 
and strains are not able to be modelled. As a first step 
towards addressing these limitations, we introduce a 
variant of DEM, the Distributed Contact DEM (DCDEM). 
This method models distributed normal and frictional 
contacts. In this initial implementation plastic deformation 
is not simulated and elastic deformation is simulated by 
permitting overlap as in traditional DEM. The method is 
compared against standard DEM for an oblique and 
normal impact and a granular shear cell in the small 
deformation limit.  

NOMENCLATURE 
C damping coefficient (Ns/m) 
ds segment length (m) 
dx overlap (m) 
F force (N) 
J moment of inertia (kg m2) 
k spring stiffness (N/m) 
m mass (kg) 
Mo moment (N m) 
Ng number of grains 
Np number of points per grain 
R grain radius (m) 
t time (s) 
μ dynamic friction coefficient 
ν Poisson’s ratio 
wz spin (rad/s)  

INTRODUCTION 
The Discrete Element Method (DEM) (Cundall and Strack 
1979) is used extensively to model industrial and 
environmental granular flows (see for example Tsuji et. al, 
1993, Mishra and Rajamani 1992, Xu and Yu 1997 and 
Cleary and Sawley, 2002). These examples employ a ‘soft 
sphere’ approach where grain overlaps are permitted and 
used in the contact force calculation. In these approaches, 
the local deformation is assumed small and any geometric 
change in shape of the grain does not need to be modelled. 
Typically elastic deformations must be restricted to 1.0% 
of a characteristic grain length scale in order to satisfy this 
small deformation limit. Contact forces are most 
commonly calculated using the linear spring-dashpot 
model (Walton 1983) with non-linear variants 
implemented by among others Zhou (Zhou et. al. 1999) 
and DiRenzo (DiRenzo et. al. 2004). 

There are many granular flow problems we are motivated 
to model that traditional DEM cannot accurately model. 
An example is in tablet compression (Swarbrick and 
Boylan) and metal compaction (Cubberley et. al. 1983) 
under low pressures where the plastic deformation of 
individual particles (powders) represents the most 
important mechanism of densification. In these 
compaction applications cumulative grain deformation 
occurs due to successive inelastic collisions with other 
grains. The resulting shape change then alters further 
collisions. Traditional DEM assumes grain deformations 
are small and therefore does not incorporate the effect of 
geometric shape changes on the contact forces. Another 
example application that traditional DEM cannot model is 
in chemical mechanical polishing (Zhang, 1998). In this 
application the polishing pressure leads to plastic 
deformation of the surface. This in turn changes the 
contact area between the surface and the abrasive grains 
leading to altered frictional and adhesive forces. Similar 
issues arise in micro powder injection moulding 
(Schneider et. al. 2005) where the wear resistance of the 
mould inserts is important and dependant on the plastic 
deformation of the mould surface as well as the powder in 
the feed. Traditional DEM cannot capture such surface 
variations in the contact force calculations.  
In this study we extend the DEM method to resolve the 
grain surface so that contact forces are calculated at 
discretised points along the grain surface. The method will 
in future be extended to allow for the calculation of finite 
grain deformations (such that the geometry of the grain 
alters). The scope of this paper, however, will be restricted 
to comparing the method in the low deformation limit 
where the traditional DEM approach is accurate. 
Various numerical techniques have been extended to 
model contact between deformable bodies. In the finite 
element method (FEM) (Bandeira et. al 2004 and Kim et. 
al. 2008.), the contact constraint is formulated as a 
variational equation and solved using augmented 
Lagrangian or penalty methods. Additional elements are 
inserted at the contact surface to model finite deformation. 
In the boundary element method (BEM) (Simunovic and 
Saigal 1995 and Zhenan and Junping 2001), the boundary 
element equations are solved with a conforming 
discretisation of the surface to simulate moving contact of 
elastic bodies. In the smoothed particle hydrodynamics 
method (SPH) (Campbell et. al. 2000 and Seo et al 2008) 
elasto-plastic contact between spheres is modelled by 
solving a variational equation using a penalty method. 
Penetration between bodies is checked by calculating a 
penetration rate and the contact force is applied based on 
this penetration rate. In the material point method (MPM) 
(Bardenhagen et. al 2000) grains are modelled using a 
Lagrangian description in conjunction with an underlying 
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Eulerian grid to calculate interactions between them. 
Inter-granular contact is computed using an immersed 
boundary method which prevents interpenetration but 
allows sliding and separation.  
The distributed contact DEM (DCDEM) presented here 
has similarities to the BEM in that only the grain surface 
is discretised (rather than the entire grain). Instead of 
solving the stress-strain equations at the discretisation 
points, a standard DEM contact force model is applied 
between interacting points on different grains. A given 
point on a given grain then has force contributions from 
nearby points on the other grain. In the following sections, 
the DCDEM method will be introduced and compared to 
traditional DEM for a 2D elastic oblique impact problem 
and a dense frictional granular flow under shear.  

DEM METHOD 
In the DEM method grains are allowed to overlap, the 
amount of overlap, dx, normal vn and tangential vt relative 
velocities determine the collisional forces. For an inelastic 
collision, a linear spring-dashpot model is used to provide 
the normal force 

nnnn vCdxkF +−=      (1) 

and the tangential force is given by 

( )∫ += ttttnt vCdtvkFF ,min μ   (2) 

with the Coulomb limit being applied, dx is calculated 
using the known (unchanging) particle geometry and 
locations of the interacting grains.  

DISTRIBUTED CONTACT DEM MODEL 
In DCDEM, pairs of interacting grains are first located 
using the standard DEM search algorithm. For a given pair 
of interacting grains, A, B we discretise the surface of each 
grain with a set of equi-spaced points. In this study, 2D 
simulations are employed and the grains are assumed to be 
circular. After the discretisation, grain A now has Np equi-
spaced points pi

A located at ri
A=(xi

A,yi
A) on its surface. 

Each of these points is separated by a segment length dsA. 
An analogous discretisation occurs for grain B. Refer to 
Figure 1. In this study we assume no change in 
connectivity of points on the grain.  

 
Figure 1: Discretisation of the grain surface with Np points 
per grain.  

For each point pi
A store a set of neighbouring points H iA. 

These neighbouring points are required in order to define 
a surface normal at pi

A.. For the 2D simulations in this 
study we choose   

[ ]11 ,, +−= i
A

i
A

i
AA

i pppH . 

Repeat this process for grain B.  
Consider now calculating the distributed forces for grain 
A. For each point pi

A find points pj
B on grain B such that 

AB
j

A
i

AB
ij dsrrdr <−=

rr . 

If this condition is true a contact calculation may need to 
be performed between points pi

A and pj
B. Store all such pj

B 
points in a list LB. Refer to Figure 2.  

 
Figure 2: Checking for potential contacts between point 
pi

A on grain A and nearby points on grain B. In this figure 
pi

A has 2 potential contacts on grain B, LB=[ pj-1
B ,pj

B]. 
 
If point pi

A is involved in a potential contact, we need to 
calculate the outward surface normal at pi

A in order to 
calculate contact forces. Rather than assuming knowledge 
of the surface shape in the region near pi

A we instead use 
the neighbouring points of pi

A  to calculate an approximate 
normal, 
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where the gradient of the grain surface at pi
A is 
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For each point in LB , calculate the normal in a similar 
way to Equation (3). For example, referring to the case in 
Figure 2, LB = [ pj-1

B ,pj
B] therefore the following normals 

need to be calculated 
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For point pi
A we now have a list of potential contacting 

points associated with grain B stored in LB. For each of 
these potential contacting points pm

B in LB we know the 
position and the normal vector. Calculate the overlap 
between points pi

A and pm
B  

( ) A
i

B
m

A
i

AB
im nrrdx rrr

•−= . 

A contact between pi
A and pm

B will occur only when 

   0>AB
imdx . 

In Figure 2 no contact occurs between pi
A and pj

B as the 
overlap dxim

AB < 0. 
For all points pm

B  in LB with overlap dxim
AB > 0 calculate a 

distributed contact force and moment at point pi
A using 
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Here the weighting function αim
AB is a function of the 

angle between the normals at pi
A and pm

B and the overlap 
( )AB

imm
B

i
AAB

im dxnn || rr
•= λα   

so that points aligned along the normal at pi
A make a 

higher contribution to A
iF
r

 and A
iMo . In this study we 

employ 
4)( qq =λ        (4) 

so that contributions to the forces from points not aligned 
with the normal at pi

A decay smoothly away. As the 
exponent increases the weighting function approaches a 
delta function and the results converge to DEM for small 
overlaps. Future work will involve investigating the nature 
and sensitivity of this weighting function to the results as 
grain geometry alters. αim

AB is an overlap measure at point 
pi

A due to point pm
B. We can define an overlap metric at 

point pi
A as  

∑∑=
B m

AB
im

A
i αα .     (5) 

Figure 3 shows the normal force contributions to point pi
A 

from points in LB=[pj-1
B,pj

B]. These normal force 
contributions are denoted as ABn

ijF ,
1−  and ABn

ijF ,  
respectively. The contribution from pj-1

B is weighted by 
the scalar αij-1

AB. The contribution from pj
B is weighted by 

the scalar αij
AB. In this figure αij-1

AB < αij
AB as 

.||  || 11
AB

ijj
B

i
AAB

ij-j
B

i
A dxnndxnn rrrr

•<• −  

 
Figure 3: Normal force contributions to point pi

A from 
nearby points pj-1

B and pj
B  

Each force contribution AB
imF
r

 is calculated using the 
DEM contact equations (1) and (2)  

( )., ,, ABt
im

ABn
im

AB
im FFF =
r

    (6) 
Each moment contribution is calculated using the 
tangential force ABt

imF ,
r

and the grain radius RA, 

  .,ABt
im

AAB
im FRMo =      (7) 

We repeat the same process to find forces on all other 
points pi

A on grain A and repeat for all other points on 
grain B. We then repeat for all other pair-wise grain 
interactions. 
The forces on the grain vary along the grain surface, 
allowing for complex patterns of slip and no-slip as the 
Coulomb friction limit alters at every point. As the 
overlap increases (and the contact area increases) the 
DCDEM and DEM methods will diverge. This difference 
occurs because in two-dimensional DEM grains deform 
and contact along a line. Traditional DEM accounts for 

this deformation so that the normal force is analytically 
correct. In DCDEM the surface force varies across a 
curved contact area that does not (currently) deform. 
Therefore, the normal force in DCDEM will only be 
analytically correct when a single contact point occurs in 
the collision.  This rigid grain assumption is a limitation of 
the current DCDEM method and will be addressed in 
further development.  
To model the grains as rigid bodies, the points on grain A 
translate with a uniform grain velocity, vA and have a 
uniform spin wA around the center of the grain. This 
velocity is found by summing the forces A

iF
r

on the points 
belonging to grain A and dividing through by the grain 
mass mA  

  ( ) ( ) ∑+=+
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i

i
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A
AA F

m
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Similarly, the rigid spin is calculated by summing the 
moments A

iMo  on the points on grain A and dividing 
through by the grain’s moment of inertia JA 

( ) ( ) ∑+=+
pN

i
A

i

A
AA Mo

J
dttwdttw rr . 

OBLIQUE IMPACT 
For the first comparison of DCDEM, we examine the 
frictional oblique impact of two elastic steel grains. This 
problem has been studied extensively in the literature, see 
for example Wu (2001), Thornton et. al (2001) and Di 
Renzo et.al (2004). Figure 4 displays the configuration. In 
this study μ = 0.1, R = 50 mm. We study two impact 
angles, θ =10o and θ = 0o. The material properties of the 
steel points are given in Table 1. A spring stiffness of kn = 
8 MN/m is used to ensure overlaps in the traditional DEM 
are very small. The time step is chosen such that the 
collision takes 200 time steps. The simulation is run for 
0.008 s to model the complete collision. In the DCDEM 
simulation each grain has Np = 150 points.  

 
Figure 4: Configuration for the oblique impact problem. 

E ν ρ 

70 GPa 0.3 7850 kg/m3 

Table 1: Material properties of steel grains used in the 
oblique impact problem. 
 

OBLIQUE IMPACT, ��10o 
Figure 5 and Figure 6 show snapshots of the collision 
using the DCDEM and DEM methods at 5 ms and 8 ms 
respectively. We denote the blue grain as grain 1 and the 
grey grain as grain 2.   
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Figure 5:  Grain positions at t = 5 ms for (a) DCDEM and 
(b) DEM methods. 

  

  
       
Figure 6:  Grain positions at t = 8 ms for (a) DCDEM and 
(b) DEM methods. 

 
Figure 7: Force variation (in Newtons) along the 
contacting surfaces at t = 4 ms for the DCDEM method. 

 

Figure 8:  Force variation at the contacting points along 
the surface of grain 2 at t = 4 ms for DCDEM and DEM 
methods. The value along the horizontal axis represents 
the radian value at each contacting point on grain 2 as 
shown in the schematic diagram on the right. 

Figures 7 and 8 show the spatial variation in the force 
along the contacting surfaces at 4 ms for DCDEM and 
DEM. They highlight the difference between the two 
methods. In DCDEM the force varies along the curved 
contacting surface (as the overlap, tangential displacement 
and Coulomb friction limit vary) while in DEM the force 
is applied along a linear contact line and assumed constant 
along this line. The spring stiffness is relatively large 
leading to a small overlap. As a result a maximum of 7 
points on grain 2 are in contact with grain 1 during the 
collision. We found the shape of the DCDEM surface 

force graph in Figure 8 is dependant on the choice of 
weighting function in Equation (4). As the exponent in 
Equation (4) increases, the maximum surface force 
decreases (as points on grain A are influenced by fewer 
points on grain B) and the results approach traditional 
DEM.   
We compare the contact forces during the collision for the 
two methods. Specifically, we measure normal force 
versus tangential force throughout the collision. For the 
DCDEM, we integrate the normal and tangential forces 
along the contacting surface area. The contacting surface 
will contain points with a non-zero overlap measure αi

A  
(defined in Equation 5). Therefore the forces are weighted 
by αi

A in the integration. The resulting volume integral 
approximates the work done on grain A. This volume 
integral is then normalised to obtain the collision forces. 
For grain A these collision forces are  

( )
∫

∫
==

i
A

i
A

i
A

i
A

i
A

tAnAA ds

dsF
FFF

α

α
r

r
, .  (5) 

Figure 9 shows plots of the normal force versus tangential 
force using the DEM and DCDEM methods for grain 2 
(the grey grain shown in Figures 5 and 6). Results are 
shown for Np = 30 (Figure 9a), Np = 150 (Figure 9b) and 
Np = 300 points (Figure 9c). Grain 2 first begins in the 
sliding regime with an increasingly negative tangential 
force. When the normal force increases to  Fn ~ 10000 N 
and the tangential force Ft ~ -1000 N, the Coulomb 
friction limit is no longer reached and the grain stops 
sliding. During this phase, the normal force decreases as 
the grain unloads and the tangential force changes sign. 
When the normal force reduces to Fn ~ 6000 N, the 
Coulomb limit is once again satisfied and sliding resumes 
during the remainder of the collision. The collision can 
therefore be characterised as having an initial sliding 
phase, an unloading phase and a final sliding phase.  
Figure 9 shows that as the number of points increase the 
results do not converge toward the traditional DEM results 
for this particular spring stiffness. At Np = 30, the 
comparison is excellent because only 2 contacting points 
on grain 2 occur in the collision. The contact region is 
close to linear as is the case in traditional DEM. As the 
resolution increases and more points are involved in the 
collision, differences are noted in the normal force at the 
end of the loading phase. The DCDEM results suggest an 
effective spring stiffness less than DEM. The differences 
occur because the contact area is now a curved surface 
(see Figure 7) and the forces vary along this surface, in 
contrast to traditional DEM.  

 

(a) DCDEM (b) DEM 

(b) DEM (a) DCDEM 

(a) Np=30 
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Figure 9: Normal versus tangential forces on grain 2 
during the oblique impact using DCDEM (red) and DEM 
(green) for (a) Np=30, (b) Np=150 and (c) Np=300 points. 
 

NORMAL IMPACT, θ = 0o 
To quantify the errors in DCDEM we investigate a normal 
impact (θ =0o). For a two-dimensional elastic normal 
impact, the normal force varies linearly with grain 
overlap. In this problem grain overlap is defined as  

( ) ( )BABAAB RRXcomXcomdx +−−=  

where XcomA is the x coordinate of the centre-of-mass 
position of grain A. We ran the DCDEM simulations using  
Np=50, Np=300 and Np=900. Figure 10 shows the results. 
Traditional DEM exhibits a linear contact force law and 
reproduces the correct spring stiffness. DCDEM shows a 
linear law up to Np=300. The correct spring stiffness is 
reproduced using Np=50. This is not surprising since at 
this low resolution only a single contact point is involved 
in the collision. As the resolution increases to Np=300 the 
spring stiffness is less than the analytical result by 
approximately 9%. At Np=900 the error remains at 
approximately 9%. However the results deviate from the 
linear law with small jumps in the force occurring due to 
additional contact points intermittently entering the 
support of the weighting function. At these higher 
resolutions more points are involved in the calculation of a 
given point’s contact force. Further work is required in the 
numerical algorithm to ensure forces vary smoothly as the 
region of influence on a given contact point alters. In 
addition errors result because the contact area is a curved 
surface and the force varies along this surface (rather than 
being constant along a straight contact line as is 
analytically correct). 

These two impact problems highlight a limitation in 
verifying DCDEM when the contact area in DCDEM 
contains multiple points and the grains are assumed rigid. 
For artificially soft springs, the overlaps and the contact 
areas increase producing differences regardless of the 
numerical resolution. Grain deformation needs to be 

incorporated in DCDEM in order to perform validation for 
softer springs.  

 

Figure 10: Normal force versus grain overlap for 
DCDEM using Np=50, Np=300 and Np=900 points 
compared against traditional DEM. 

2D SHEAR CELL 
Granular shear flows have been well investigated with 
studies on the effect of boundary conditions (Campbell 
1987, 1993), particle size and shape (Cleary, 2008). For 
the second verification, we simulate such an inelastic 
granular shear flow using both DEM and DCDEM, using  
a coefficient of restitution en = 0.8 and friction coefficient 
μ = 0.5. A spring stiffness of kn=0.5 MN/m is used. In 
traditional DEM this spring stiffness is large enough to 
ensure overlaps are small. Given the results from the 
previous section, we expect this artificially soft spring will 
produce differences in the collisional forces between 
DCDEM and DEM. We are motivated then to compare 
how such differences influence the flow characteristics in 
the shear cell. 

Figure 11 shows the computational configuration. The 
shear cell is a unit square with top and bottom walls 
moving at v = 0.5 m/s and v = -0.5 m/s respectively. 
Periodic boundaries are applied at the left and right edges. 
A grain radius R = 0.02 m is used and an initial volume 
fraction Vf = 0.5 is chosen (which has 357 grains). In the 
DCDEM simulation we use Np=90. The time step was 
chosen such that a minimum of 15 time steps are used to 
resolve each collision. Table 2 provides the material 
properties of the grains. 

 
Figure 11: Configuration for the 2D shear cell problem. 

E ν ρ 
70 GPa 0.3 1000 kg/m3 

Table 2: Material properties of the grains used in the 
shear cell problem. 

(b) Np=150 

(c) Np=300 
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The simulation was run until a steady state was reached at 
time t = 400 s. Figure 12 shows the grain distribution 
coloured by stream-wise velocity at t = 400 s for DCDEM 
(Figure 12a) and DEM (Figure 12b).  

 

  

Figure 12 Grain positions in the shear cell at time t = 400 
s for (a) DCDEM and (b) DEM. 

Figure 13 shows the average flow characteristics at t = 
400 s for DCDEM (left column in Figure 13) and DEM 
(right column in Figure 13). The characteristics are 
averaged spatially (Cleary, 2008). Stream-wise velocity 
(Vx), granular temperature, volume fraction and spin are 
shown for both methods. As expected the flow 
characteristics differ between the two methods. Use of the 
distributed contacts causes larger stream-wise velocities, 
granular temperatures and spins near the walls. It has a 
minor impact on the volume fraction.   

 

 

 
Figure 13 Flow characteristics in the shear cell at time t = 
400 s for DCDEM (left column) and DEM (right column). 

We suspect the differences in these flow characteristics 
are due to the artificially soft spring stiffness kn=0.5 
MN/m which lead to significant contact areas in the 
DCDEM simulation. To test this we modelled an oblique 
impact with the same numerical parameters used in this 
shear cell and measured collisional forces. Figure 14 
shows the normal and tangential force comparisons during 
the collision using kn=0.5 MN/m. The figure also shows 
the grain positions in DCDEM at the time of highest 
overlap. The normal force comparisons between DCDEM 
and DEM are within 1%. However the tangential force 
comparisons show approximately 30% difference in the 
peak, with DCDEM predicting a smaller tangential force. 
The grain overlap is significant too leading to 
approximately 10% of the grain surface in contact.  

 

 
Figure 14 Normal (Fn) and tangential (Ft) forces for 
DCDEM and DEM during an oblique impact test for 
impact angle θ = 20o with kn = 0.5 MN/m. The grain 
positions at maximum overlap are shown on the right. 

Figure 14 highlights that DCDEM cannot be used with an 
artificially soft spring when the grains are assumed rigid. 
The contacting surface deviates significantly from the 
linear surface in traditional DEM which changes the 
collisional forces and dynamics producing the differences 
seen in the shear cell. At this spring stiffness it is 
imperative to model grain deformation with DCDEM.   

(a) DCDEM 

(b) DEM 
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CONCLUSION 
The DCDEM method is an extension of the traditional 
DEM method involving calculation of contact forces at 
discretised points along the surface of a grain. By 
resolving the grain surface, the method has the potential to 
model surface force variation during the collision. A 
current limitation of the method is that grain deformation 
is not simulated. This has meant that verification of 
DCDEM is currently restricted to comparisons against 
traditional DEM for stiff springs where the contact area is 
small. This study has shown that the use of artificially soft 
springs with rigid grains produce curved contact areas in 
DCDEM. For these soft springs, results for the DCDEM 
deviated from theory and from traditional DEM. These 
differences were noted in the shear cell simulation. 
Further testing of the model needs to be performed to 
ascertain if it is the nature of the contact area which alters 
the collisional forces and grain dynamics and/or an 
algorithmic issue associated with how the forces are 
calculated at each contact point.  
Combining the DCDEM method with grain deformation is 
the next developmental step. This will allow for the 
modelling of inter-granular collisions undergoing plastic 
deformation, broadening the range of granular flow 
problems that can be simulated as well as allowing for 
further validation. 
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