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ABSTRACT 
Linear flow stability analysis is concerned with the long 
time-limit behaviour of a fluid-dynamical system, namely 
the system’s tendency to find a steady state, or make a 
transition to a turbulent one.  It is known that steady 
laminar flow in pipes (Hagen–Poiseuille flow) is linearly 
stable to general perturbations at finite Reynolds numbers, 
and that single-harmonic oscillatory flow is stable to 
axisymmetric perturbations.  We extend the analysis to 
demonstrate that the pure oscillatory flow is also stable to 
general perturbations.  We explain how this implies that 
all laminar steady and periodic circular pipe flows of this 
type are linearly stable.  The least stable modes identified 
in this study are axially invariant. 

NOMENCLATURE 
Kn axial pressure gradient at frequency harmonic n 
D pipe diameter 
J0 Bessel function of order 0. 
k (integer) azimuthal wavenumber 
Lz axial domain length 
n (integer) frequency harmonic 
p pressure 
r radial position in pipe 
ℜ  Real component 
R pipe radius 
Re Reynolds number 
t time 
T pulse period 
u  velocity vector 
u axial velocity component 
u  area-average flow speed 
Ured reduced velocity 
Wo Womersley number 
α axial wavenumber 
ρ fluid density 
ν fluid kinematic viscosity 

INTRODUCTION 
Oscillatory (zero-mean) and pulsatile (non-zero mean) 
incompressible flows in a straight, rigid, circular tube are 
canonical phenomena of classical fluid mechanics.  In 
addition they serve as models of a variety of flows of 
engineering and physiological application, for example 
peristaltic pumping and arterial flows. 
 
As is well known, steady laminar flow in a circular tube 
(Hagen–Poiseuille flow) is linearly stable to general 
infinitesimal disturbances for all Reynolds numbers yet 
studied (e.g. Drazin and Reid, 1981; Schmid and 
Henningson 1994) but is observed to become turbulent at 
bulk flow Reynolds numbers of order 2000–3000 in 

moderately careful experiments.  There is still debate 
about the precise mechanism that leads to transition. 
 
For single-harmonic oscillatory pipe flow, linear stability 
analysis for axisymmetric perturbations by Yang and Yih 
(1977) also suggests linear stability to perturbations of this 
kind for all Reynolds numbers and periods of oscillation.  
As for steady pipe flow however, experiments (e.g. 
Eckmann and Grotberg 1991) show that transition to 
turbulence can occur, often in the form of bursts during 
each oscillation. 
 
In the case of pulsatile pipe flow (when an oscillation is 
superimposed on a steady mean flow), experiments, e.g. 
by Stettler and Fazle Hussain (1986), also demonstrate the 
presence of burst-type transition.  However in this case, 
there is presently no published study of linear stability, a 
deficiency that our present work aims to remedy.  As we 
explain below, it is however sufficient to study the 
problem of linear stability of oscillatory flows, since the 
stability of the steady flow component is well established. 
 
Potentially the pulsatile pipe-flow transition region (as 
parameterised either by a Womersley or Reynolds 
number) can be used to define the operational limits of 
peristaltic devices in biological applications where low 
shear stresses are advantageous.  Here, high throughput is 
required, although turbulent transition presents a problem 
as suspensions, colloids and blood may be damaged.  
Transition to turbulence also is of interest in arterial flows 
as turbulence can induce high spatio-temporal gradients of 
wall shear stress, leading to changes in morphology of 
endothelial cells and disturbing normal regulation of 
transport of blood-borne chemicals to and from the arterial 
walls. 

BASE FLOWS AND PROBLEM PARAMETERS 
All axisymmetric laminar steady and time-periodic 
laminar flows of Newtonian fluids in straight circular 
pipes driven by an axially constant pressure gradient can 
be decomposed into a sum of Bessel–Fourier solutions.  
We examine the linear stability of axisymmetric and 
axially uniform oscillatory and pulsatile flow of fluid with 
density ρ and kinematic viscosity ν in a circular pipe of 
diameter D.  These base flows are obtained in closed form 
as analytical Bessel–Fourier solutions first published by 
Sexl (1930) and later by Womersley (1955): 
 

un (r,t) = ℜ
KniT
ρ2πn

J0(i3 2Wo2 r D)
J0(i3 2Wo)

−1
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ exp2πin t T

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ ,   (1) 

 
where Wo = (2π/Τν)1/2D/2 is a dimensionless frequency 
parameter known as the Womersley number, n is a 
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frequency harmonic, J0 is a complex Bessel function and 
Kn is an associated complex axial pressure gradient 
amplitude.  In the limit as T grows without bound, this 
analytical solution asymptotes to the standard parabolic 
Hagen–Poiseuille solution for steady laminar flow in a 
circular pipe. 
 
An important point to be made about the base flows under 
consideration is that any temporally periodic 
axisymmetric laminar pipe flow (including steady flow, 
the infinite-period case) can be expressed as a linear sum 
of terms of type (1).  Since all the flows have the same 
boundary conditions, we can consider their linear stability 
on a term-by-term basis, one term for each temporal 
Fourier harmonic.  Again exploiting linearity, we can deal 
with general spatial perturbations at each temporal period 
as a linear sum of axial and azimuthal Fourier modes, with 
wavenumbers α = 2πD /Lx

 and k respectively.  One 
implication is that we do not here need to examine the 
linear stability of the steady flow, since that has been 
comprehensively dealt with in previous works – it suffices 
to examine the stability of the oscillatory components, and 
these can be dealt with one temporal harmonic at a time. 
 
The area-average or bulk flow speed is a function of time: 
 

u (t) = 8 /D2( ) u(r, t)rdr
0

D / 2∫ .                   (2) 

 
Without loss of generality we can ignore the pressure 
gradient Kn as a parameter and adjust the phases and 
amplitudes of the solutions (1) such that at each temporal 
harmonic n, we have 

 
u n (t) = An cos(2πnt /T) + Bn sin(2πnt /T).        (3) 

 
The n=0 case corresponds to the standard Hagen–
Poiseuille solution u(r) =A02[1-(r/R)2], and as stated 
above, is also a solution to (1).   
 
In the present application it is useful to define the peak 
bulk flow speed as 

u p = max
0< t≤T

u (t). 

Dimensionless parameters 
The flows in question generally have two dimensionless 
parameters that describe the pulse period and some 
measure of the flow speed.  Taking u p  as a velocity scale 
and diameter D as a length scale, the time scale is D /u p .  
This leads to one choice of the two dimensionless 
parameters as a Reynolds number and reduced velocity, 
respectively 
 

Re =
u pD
ν

      and    Ured =
u pT
D

. 

 
In the steady flow case, the only parameter is the 
Reynolds number, Re.  Alternatively, for the oscillatory 
components, the viscosity can be confined to the 
Womersley number  
 

Wo =
πD2

2νT
, 

 

and the mean flow velocity scale can again appear through 
the reduced velocity.  This pairing is a sensible choice for 
the oscillatory cases in that the Womersley number 
appears in the analytical solution for the base flows.  We 
note that the oscillatory components of the base flow have 
(via eq. 1) radial velocity profiles that are only a function 
of Wo, r/D, and t.  The reduced velocity is then a 
premultiplying kinematic factor that describes how far the 
bulk flow oscillates along the pipe, expressed in pipe 
diameters, but does not alter the velocity profile.  For 
oscillatory flows we nonetheless would expect a priori 
that their stability could be a function of the two 
dimensionless flow parameters, Wo and Ured, as well as 
axial and azimuthal wavenumbers. 
 
In Figure 1 we show radial profiles of axial velocity at ten 
phase-points in the base flow cycle and the bulk flow 
speed as a function of time for two Womersley numbers.  
With increasing Wo, the velocity profile becomes more 
like plug flow but with small overshoots near the pipe 
wall.   This behaviour was first noted by Richardson in 
1929 and studied analytically by Sexl (1930). 
 
 
 
(a)
 

(b)
 

Figure 1: Shows radial velocity profiles at different base-
flow phases – note the reversed flow lags in the near-wall 
region by up to 90o. The area-average flow speed ( )u t  is 
shown as a function of time for oscillatory base flows with 
(a) Wo=10.23; (b) Wo=35.5. 
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NUMERICAL METHODS 

Stability analysis 
The stability analysis problem is solved in primitive 
variables.  Starting from the incompressible Navier–
Stokes equations 
 

∂tu = −u•∇u − ∇p + ν∇2u, 0u∇ • = , 
 
where p is the kinematic or modified pressure, it is 
proposed that u=U+u’ where U is the base flow whose 
stability is examined and u’ is an infinitesimal 
perturbation.  Upon substitution and retaining terms linear 
in u’, the linearized Navier–Stokes equations are obtained: 
 

∂t ′ u = − ′ u •∇U −U •∇ ′ u − ∇ ′ p + ν∇2 ′ u        (4) 
 
We note that in the present problem, the base flow is T-
periodic, i.e. U(t+T)=U(t).  Because in incompressible 
flows the pressure is not an independent variable, and all 
terms are linear in u’, we can write this evolution equation 
in symbolic form 
 

∂t ′ u = L( ′ u )  
 
where L is a linear operator with T-periodic coefficients 
through the influence of the base flow.  Correspondingly 
the stability analysis of this equation is a linear temporal 
Floquet problem (Iooss & Joseph 1990).  Writing the state 
evolution of u’ over one period as  
 

′ u (t + T) = A(T) ′ u (t)                   (5) 
 
where A(T) is the system monomodry matrix, we obtain a 
Floquet eigenproblem  
 

A(T) ′ ′ u j (t) = μ j ′ ′ u j (t), 
 
where ( )ju t′′  are phase-specific Floquet modes and μj are 
Floquet multipliers (which in general occur in complex-
conjugate pairs).  Stability of the problem is assessed from 
the Floquet multipliers: unstable modes have multipliers 
that lie outside the unit circle in the complex plane (i.e. |μ| 
> 1), while stable modes lie inside (i.e. |μ| < 1).  
 
We use a time-stepping based methodology outlined in 
Tuckerman and Barkley (2000), given detailed 
explanation in Barkley, Blackburn and Sherwin (2008), 
and previously used in studies of various oscillatory flows 
(e.g. Blackburn 2002; Blackburn et al. 2005; Blackburn 
and Sherwin 2007) in order to solve the Floquet 
eigenproblem.  A key point about the approach is that a 
system monomodry matrix A(T) is not explicitly 
constructed; rather, a Krylov method is used that is based 
on repeated application of the state transition operator (5) 
whose action is obtained by integrating the linearised 
Navier–Stokes equations forward in time over interval T.  
By varying the Krylov dimension and ensuring sufficient 
resolution we are typically able to resolve a moderate 
number (e.g. four) of the leading (least stable) Floquet 
modes.  Here we have in the main concentrated on the 
dominant mode.  All the multipliers for the leading modes 
found here are real, and positive. 
 

As noted above, time-periodic base flows enter the 
problem through the linearised advection terms in 
equation (4) – the base flows are precomputed at a 
moderate number of phase points or time-slices and then 
may be accurately reconstructed during timestepping via 
Fourier interpolation in time.  Since the base flows in the 
present problem are analytically defined, this 
reconstruction could be avoided, however it is fast, cheap 
and accurate when enough time-slices are used – in the 
present work we have found 64 time-slices are typically 
sufficient for accuracy.  A small number of leading 
Floquet multipliers and eigenmodes are obtained via 
Krylov subspace projection. This is followed by Ritz 
reconstruction of modes on the full solution space.  The 
reader is directed to the references supplied above for 
further detail. 

Discretization 
Spatial discretization and time integration is handled using 
a cylindrical coordinate spectral element method with 
mixed explicit/implicit time stepping, as outlined in 
Blackburn and Sherwin (2004).  The domain is discretized 
into spectral elements in the meridional semi-plane that 
runs from the pipe axis to the outer radius in the radial 
direction and a finite length of pipe Lz in the axial 
direction, as shown for example in Figure 2. 
 
Fourier modal structure is assumed in the azimuthal 
direction with integer wavenumbers k, and as a result of 
linearization, each azimuthal mode can be dealt with 
independently.  In the axial direction we use real 
wavenumbers α = 2πD/Lz.  Because of the approach taken 
to spatial discretization in the axial direction, the Floquet 
eigensolution for any domain length can contain modes 
for both α = 0 (i.e. modes that are axially invariant) and 
α=m2πD/Lz (where m is an integer).  Typically, there are a 
number of multipliers for α=0 that are larger in magnitude 
than the first axially variant mode and we compute 
sufficient modes to be assured that we obtain the leading 
mode for α=2πD/Lz as well. 
 

 
Figure 2: An example of a spectral element mesh in the 
meridional semi-plane for the cylindrical-coordinate 
formulation used here.  Internal node points are drawn in 
selected elements for a tensor-product polynomial shape 
function order N=6.  The axial domain length corresponds 
to an axial wavenumber α = 2π/0.5 = 12.57. 
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RESULTS 

Comparison to data of Yang & Yih (1977) 
We first examine stability to axisymmetric perturbations 
(k = 0), as dealt with previously by Yang & Yih (1977).  
Yang & Yih found that axially invariant modes (α = 0) 
were the least stable, and provided results for a range of 
Reynolds numbers, dimensionless frequencies, and axial 
wavenumbers.  We have re-interpreted their dimensionless 
groups as Womersley number and reduced velocity.  A 
comparison between their results and ours for α = 0, 
k = 0 is shown in Figure 3.  In all cases, the flow is stable 
(μ < 1), but only marginally so at large Wo. 
 

 
Figure 3.  Floquet multiplier data derived from Yang & 
Yih (1977) figure 1, for the dominant axially invariant 
axisymmetric modes.  Compilation of comparable results 
obtained from present computations shown as a solid line 
(α = 0, k = 0). 

Our data compare well with those from Yang & Yih, but 
also consideration of this figure brings out a significant 
point that has previously been unremarked.  Through not 
adopting Womersley number as a dimensionless group 
with which to represent their data, Yang & Yih apparently 
did not notice that for axially invariant modes, it becomes 
the only active parameter and collapses three sets of their 
data around a single curve (the slight discrepancies seen 
are attributable noise in our digitization of their figures).  
We have confirmed this by running analyses at a wide 
range of the two dimensionless parameters, and find that 
all our leading multiplier data for α = 0, k = 0, fall on a 
single curve when plotted against Womersley number. 
 

 
Figure 4.  Yang & Yih (1977) dominant Floquet 
multiplier data for axisymmetric modes (k = 0) with α = 4.  
Note that here (as opposed to Figure 3) there is no 
collapse with Womersley number. 

We note that this collapse is not seen in their data for non-
axially invariant modes, i.e. α > 0.  This may be observed 
in Figure 4, where no collapse of data with Womersley 
number is found.  Our results, to be discussed below, also 
show that for α > 0, there are (as expected a priori) again 
two dimensionless groups.  We can explain this effect 
using the following physical reasoning.  Axially invariant 
modes do not see the influence of the kinematic parameter 
Ured, which as we previously noted describes how far the 
oscillatory flow moves back and forth along the pipe.  
This leaves only Wo as a parameter.  However, for α > 0, 
the modes also have a finite axial dimension and this 
allows an interaction so that stability is characterized both 
by Wo and Ured.   
 
For purposes of comparison, we show in Figure 5 
illustrative examples of both axially invariant and axially 
variant (but axisymmetric) Floquet mode shapes These are 
drawn for one phase point in the base flow cycle.  Both 
mode shapes are obtained at Wo = 97, Ured = 2.5.  We note 
that for k = 0, α = 0, continuity requires Floquet modes in 
which only axial velocity components can be non-zero.  
 

  
(a) k = 0, α = 0. (b) k = 0, α = 16. 

Figure 5  Comparison of axisymmetric (k = 0) Floquet 
mode shapes; (a) axially invariant, α = 0; (b) with axial 
wavenumber α = 16.  Visualized as isosurfaces of  
positive/negative axial velocity component. 

 

Stability of axially invariant modes (α = 0) 

Yang & Yih (1977) dealt only with the stability of 
axisymmetric modes, k  = 0.  Since there is no known 
equivalent to Squire’s theorem (Squire 1933) in 
cylindrical coordinates, there is no reason to expect a 
priori that axisymmetric modes are the least stable.  We 
commence examination of results for general modes by 
studying the effect of azimuthal wavenumber k on axially 
invariant modes, α = 0; as explained above. The only 
remaining parameter in these cases is the Womersley 
number.  
 
Figure 6 shows that axisymmetric modes are in fact the 
least stable, since Floquet multipliers reduce 
monotonically in magnitude with increasing azimuthal 
wavenumber at all values of Wo.  This shows that all 
axially invariant modes are stable. 
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Figure 6  Dominant Floquet multipliers for axially 
invariant modes, α = 0, both axisymmetric (k  = 0) and 
non-axisymmetric (k  > 0) as functions of Womersley 
number. 

Figure 7 illustrates the distinction between axisymmetric 
and non-axisymmetric Floquet modes, but where both are 
axially invariant, α = 0.  Again we note that since these 
modes are axially invariant, the only non-zero velocity 
component must be in the axial direction. 
 

  
(a) k = 0, α = 0. (b) k = 1, α = 0. 

Figure 7  Comparison of (a) axisymmetric (k = 0) and (b) 
non-axisymmetric (k = 1) Floquet mode shapes, both 
axially invariant, α = 0.  Visualized as isosurfaces of 
positive/negative axial velocity component.  Computed at 
Wo = 97. 

To demonstrate that the dominant axially invariant, 
axisymmetric mode is significantly less stable than the 
subdominant modes, we show in Figure 8 the Floquet 
multipliers of the three leading modes for α  = 0, k = 0.   
 

 
Figure 8   Floquet multipliers for the leading three (a, b, 
c) axially invariant and axisymmetric modes (α  = 0, k = 
0).  Curve a is the same as the curve labelled k = 0 in 
Figure 6. 

Stability of axially variant modes (α > 0) 

Next we turn to examine the question of whether modes 
with axial structure are more, or less, stable than those 
without.  Recall that in these cases, we expect both 
Womersley number and reduced velocity as control 
parameters.  We note that Yang and Yih’s results suggest 
that for axisymmetric modes, axially invariant cases (α = 
0) are the least stable for a fixed value of reduced velocity.  
As shown in Figure 9, our results also support this 
conclusion.  At fixed Womersley number, Floquet 
multipliers decrease monotonically as axial wavenumber 
is increased (axial wavelength is decreased).  A 
comparison of typical mode shapes for axisymmetric 
axially invariant and axially variant modes was shown in 
Figure 5. 
 

 
Figure 9  Dominant Floquet multipliers for axisymmetric 
modes (k = 0) at Ured = 2.5, showing the effect of axial 
wavenumber. 

 
In order to demonstrate that there are in fact two control 
parameters when mode shapes are axially variant, we 
show in Figure 10 the leading Floquet multipliers for 
axisymmetric modes (k  = 0) at a fixed axial wavenumber 
α = 16.  For axially invariant modes, we re-iterate that all 
results would collapse to a single function of Womersley 
number.  Here, two distinct curves are obtained, one for 
each reduced velocity. 
 

 
Figure 10  Dominant Floquet multipliers for axially 
variant but axisymmetric modes, with two values of 
reduced velocity.  These values are computed at fixed α = 
16. 
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CONCLUSION 
The present study extends the work of Yang & Yih 
(1977), who examined the linear stability of axisymmetric 
disturbances to oscillatory pipe flows.  Our new 
contribution here is the extension to non-axisymmetric 
disturbances, however these are generally more stable 
than equivalent axisymmetric cases.  In agreement with 
Yang & Yih we have found that the least stable 
disturbances are provided by axially invariant modes. 
 
A significant new result, not recognised in past work, is 
that the stability of these axially invariant modes is 
dependent only upon a single control parameter, the 
Womersley number, which is also the only parameter 
needed to describe the radial velocity profiles of the base 
flows.  When modes with axial variation are considered, a 
second control parameter comes into effect.  We have 
used the reduced velocity as this second control parameter 
– this can be interpreted as a measure of the number of 
pipe diameters that the oscillatory bulk flow travels in one 
oscillation period.  Modes without axial variation (thus, 
without an axial length scale) do not respond to changes in 
reduced velocity.  Base flows with larger reduced 
velocities are more stable than those with smaller reduced 
velocities.   
 
Our study suggests that all single-harmonic oscillatory 
pipe flows are linearly stable, but approach instability 
asymptotically with increasing Womersley number.  This 
is analogous to the behaviour of steady pipe flows, which 
are observed to be linearly stable at all finite Reynolds 
numbers, but less stable at high Reynolds number. 
 
Finally, we note (apparently for the first time) that since 
all periodic laminar pulsatile flows can be described as the 
superposition of steady flow and oscillations at different 
temporal harmonics, it suffices to study separately the 
linear stability of each of the temporal harmonics.  Since 
steady pipe flow is well-known to be linearly stable at all 
finite Reynolds numbers, and our results show that single-
harmonic oscillatory pipe flows are stable to both 
axisymmetric and non-axisymmetric disturbances at all 
finite values of the two control parameters, we have the 
general result that all time-periodic laminar pulsatile flows 
in circular pipes are linearly stable. 
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