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ABSTRACT 
The flow past a series of spheres moving through a tube is 
computed using axisymmetric and three-dimensional 
spectral-element methods.  For a specific ratio of sphere to 
tube diameter, and sphere spacing, critical Reynolds 
numbers for conditions of both zero flow relative to the 
spheres, and zero net axial forces on the spheres are 
established.  An axisymmetric Hopf transition to unsteady 
flow is identified, and Landau modelling characterizes the 
instability as occurring through a supercritical bifurcation.  
The variation in key flow parameters with changes in 
diameter ratio and sphere spacing are also established. 

NOMENCLATURE 
DR  diameter ratio 
SR  sphere spacing ratio 
Re  Reynolds number 
V  sphere velocity 
D  tube diameter 
d  sphere diameter 
S  distance between spheres 
ν  kinematic viscosity 
Q  flow rate 
Qrel  flow rate relative to spheres 
P  kinematic pressure 
dP/dz axial kinematic pressure gradient 
FD  drag force acting on each sphere 
u  velocity vector 
uz, ur axial and radial velocity components 
ux, uy, uz Cartesian velocity components 

INTRODUCTION 
Owing to the myriad practical applications of the 
fundamental problem of fluid flowing in a tube containing 
suspended solid bodies, there has been an extensive 
history of analytical (Smythe, 1961 & 1964; Lighthill, 
1968; Fitz-Gerald, 1969), and more recently numerical 
(Tözeren & Skalak, 1978 & 1979; Wang & Parker, 1998; 
Ortega, Bristol & Savas, 1998; Secomb, Hsu & Pries, 
1998 & 2001) attempts to investigate these flows systems. 
The primary motivation for this study is driven by an 
interest in bio-fluid dynamics as it pertains to blood flow 
in narrow vessels such as arterioles, where the scale of red 
blood cells is of the same order as the vessel calibre (inner 
diameter).  Other engineering applications also exist, 
though, including the passage of colloidal solutions 
through narrow orifices and tubes, the flushing of 
obstructions from pipes, and annular flows around 
obstacles. 
The earliest theoretical attempts to tackle the problem of 
the flow past a body in a tube were performed by Smythe 

(1961; 1964), who first developed and subsequently 
revised an analytical solution for the potential flow past a 
single sphere in an infinitely long tube, expressing the 
result as an effective increase in tube length caused by the 
increased pressure drop past the obstruction. 
 

 
Figure 1: Schematic diagram of the system. 
 
Lighthill (1968) derived a model incorporating a viscous 
lubricating layer between body and tube wall for the flow 
past deformable axisymmetric pellets driven by a pressure 
gradient through an elastic tube.  He predicted necking 
behind the body similar in appearance to a peristaltic 
driving force, which suggested the potential for 
misinterpretation of experimental observations of such 
flows.  The work of Lighthill was extended by Fitz-Gerald 
(1969), who considered the deformation of red blood cells 
in the type of flow investigated by Lighthill.  A significant 
finding from that study was the prediction that in vessels 
with calibres in the range 5-7 μm, resistances up to 7 times 
higher than predicted using Poiseuille’s Law and the 
viscosity of whole blood (including plasma, red blood 
cells, and other components). 
The work of Tözeren & Skalak (1978; 1979) was the first 
to study a series of bodies rather than a single body in a 
tube, and again axisymmetry in motion was assumed.  
Important in these studies was the demonstration that the 
zero-net-drag condition, corresponding to the condition at 
which a body would maintain constant velocity in a tube, 
was predicted with greater accuracy than by the model of 
Fitz-Gerald (1969).  Beyond the scope of the present 
study, Tözeren (1983) also investigated the non-
axisymmetric motion of bodies in a tube.  Pozrikidis 
(2005) gave numerical evidence suggesting that spherical 
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bodies tended to migrate towards the tube centreline, 
supporting the validity of the axisymmetric assumption of 
the present study.  In Ortega et al. (1998) evidence was 
found that useful data on flow resistance past multiple 
spheres could be obtained without resorting to the 
expensive task of modelling body and tube compliance, 
and possibly even body compressibility. 
Important contributions to the understanding of the motion 
of red blood cells small through vessels were made by 
Secomb et al. (1998; 2001).  They used a numerical model 
incorporating effects such as the presence of an 
endothelial surface layer and the elasticity of the cell 
membrane to accurately reproduce the deformed cell 
shapes observed experimentally. 
The present study seeks to investigate the fundamental 
problem of pressure-driven flow past an equi-spaced 
series of axisymmetrically positioned spheres moving 
through a tube.  Thus with variation in a Reynolds number 

,
ν

VDRe =  

based on the tube diameter (D), sphere velocity (V) and 
fluid kinematic viscosity (ν), geometric parameters 
including a diameter ratio 

,DR Dd=  
based on the sphere diameter (d) and the tube diameter, a 
spacing ratio 

,SR dS=  
incorporating the sphere spacing (S), and also the imposed 
axial pressure gradient dP/dz, a rich parameter space is 
available for investigation. 
A schematic representation of the system under 
investigation is provided in figure 1.  As well as the 
quantities defined previously, this figure also includes the 
fluid flow rate, Q, through the tube. 

NUMERICAL METHODOLOGY 
In this study both axisymmetric and three-dimensional 
spectral-element computations are performed.  The 
axisymmetric computations are performed on a two-
dimensional mesh of nodal quadrilateral spectral elements 
occupying the meridional half-plane of the computational 
domain in cylindrical coordinates (i.e., mesh occupies the 
z—r plane, and zero gradients in the azimuthal θ direction 
are enforced).  The three-dimensional computations are 
performed on a mesh of nodal hexahedral spectral 
elements encompassing the computational domain.  
Three-dimensional computations are performed in 
Cartesian coordinates. 
In vector form, the incompressible Navier—Stokes 
equations can be written 
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where u is the velocity vector, P is the kinematic static 
pressure, and ν is the kinematic viscosity.  The 
axisymmetric form of the vector operators can be found in 
Blackburn & Sherwin (2004), and the three-dimensional 
form is given in Karniadakis & Sherwin (2005). 

 
Both the axisymmetric and three-dimensional 
formulations are implemented through the in-house 
spectral-element software package Viper developed by 

author G.J.S.  The software exclusively employs a nodal-
based spectral-element formulation (Karniadakis & 
Sherwin, 2005) with Gauss—Legendre—Lobatto 
quadrature used to integrate the weak form of the 
equations over each element. 

Boundary conditions 
In this study periodic velocity boundary conditions are 
employed in the axial direction to efficiently simulate an 
infinite series of equi-spaced spheres moving through a 
tube.  To drive the flow past the spheres, unequal Dirichlet 
conditions were prescribed on each of the periodic 
velocity boundaries.  This constraint was based on the 
assumption that no radial variation in pressure exists at the 
mid-plane between each pair of spheres.  Studies 
employing meshes which included multiple spheres have 
verified that this constraint provides errors in flow rate 
and forces on the spheres of less than 2% for Reynolds 
numbers Re < 200.  On the axis, zero radial velocity and 
pressure gradients are enforced, on the tube wall a 
Dirichlet velocity condition uz = -V is imposed to correctly 
describe the moving sphere condition, and on the surface 
of the sphere, zero velocity is enforced. 
Time integration is performed using a three-step splitting 
scheme based on a backwards-multistep formulation 
(Karniadakis, Israeli & Orszag, 1991; Blackburn & 
Sherwin, 2004), with an appropriate high-order Neumann 
boundary condition for pressure imposed where Dirichlet 
pressure values are not specified. 

Mesh and grid independence 
The axisymmetric mesh employed for this study is shown 
in figure 2.  For much of this study, the parameters 
investigated are SR = 1.0 and DR = 0.6, which is reflected 
in this particular mesh.  The concentration of elements 
towards the mesh boundaries was performed to either 
localize errors due to artificial boundaries (i.e., periodic 
boundaries), or to provide added resolution near regions of 
higher shear.  Figure 2 reveals both the distribution of 
spectral elements, and the interpolation points within each 
element (here 6th-order elements are employed).  

 

 
Figure 2: Mesh employed for axisymmetric computations.  
Thick lines denote spectral elements, and feint lines 
indicate location of elemental quadrature points. 
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Figure 3: Convergence of flow quantities with increasing 
element order (p-resolution) for the axisymmetric mesh at 
Reynolds numbers Re = 1 (solid lines and symbols) and 
Re = 100 (dashed lines and open symbols).  Circles, 
squares and triangles denote error in flowrate, pressure 
and viscous drag components, respectively. 
 

 
Figure 4: Percent differences as a function of Reynolds 
number between single-sphere and four-sphere 
computations. Dashed lines are added for guidance, and 
relative flow rate, and pressure and viscous axial force 
components are indicated by circles, squares and triangles, 
respectively. 
 
For the chosen mesh, a grid-independence study was 
performed, with errors in the flow rate relative to the 
spheres, and the pressure and viscous contributions to the 
drag on the spheres being monitored for convergence with 
increasing element order (p-refinement).  The results of 
this analysis are shown in figure 3, where trends showing 
near spectral convergence at moderate resolutions can be 
seen for Reynolds numbers Re = 1 and Re = 100.  The 
convergence is superior at Re = 1, indicating the validity 
of the periodic velocity/uniform pressure boundary 
condition on the boundaries on the axial extremes of the 
mesh. 
To test the validity of the pressure-driven periodic 
boundary treatment further, comparative numerical tests 

were performed on a mesh containing four successive 
spheres, rather than just the one. Therefore the artificial 
boundary was imposed between every fourth sphere, 
instead of between every sphere.  Figure 4 shows a plot of 
the difference in flow quantities between single-sphere 
and four-sphere simulations, and as can be seen, the 
overall discrepancies remain below 1%, even up to 
Re = 200, validating the use of this type of boundary.  
For three-dimensional computations, a hexahedral mesh 
was carefully constructed to incorporate a similar element 
distribution to the axisymmetric mesh.  The plot in figure 
5 shows a cutaway view, exposing the sphere surface, of 
the mesh employed for three-dimensional computations.  
Identical boundary conditions were imposed for three-
dimensional computations, with the exception of the axis 
boundary condition, which was not required in the three-
dimensional case. 
 

 
Figure 5: Cutaway of hexahedral mesh employed for 
three-dimensional computations.  Only the lower half of 
the domain (shaded grey) is shown to reveal the boundary 
defining the sphere (shaded black). 

Parameter space 
While this study is motivated by low-Reynolds-number 
applications such as blood flow in narrow vessels, the goal 
is to explore the parameter space in terms of Reynolds 
number and pressure gradient in such a way that a 
description of the flow dynamics will be made for a wide 
range of parameters, ideally encompassing unsteady and 
three-dimensional flow transitions.  Based on existing 
knowledge of similar transitions in sphere wakes, and the 
understanding that with an increase in blockage 
instabilities tend to occur at higher Reynolds numbers, it 
was decided that for a unit kinematic pressure drop across 
the computational tube unit, Reynolds numbers up to and 
including Re = 1000 will be investigated. 
Predominantly, geometric parameter values in the range 
SR = 1.0 and DR = 0.6 are employed, though this study also 
reports on variation of these values over the ranges 
0.2 ≤ SR ≤ 1.8, and 0.1 ≤ DR ≤ 0.9. 

RESULTS 

Flow dynamics for a single geometry 
For the reference system (with geometric parameters 
SR = 1.0 and DR = 0.6, and a unit pressure drop across the 
repeating tube unit), the flow rate relative to the spheres 
(Qrel) was determined for a wide range of Reynolds 
numbers.  Unsteady flow was identified above Re ≈ 730, 
and for unsteady flows the envelope of the computed flow 
rates was monitored.  A plot of the resulting data is shown 
in figure 6, which reveals notable features including a 
transition point between negative and positive flow 
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relative to each sphere which occurs at Re ≈ 111.5.  It can 
be seen that in the limit as Re → 0, a minimum relative 
flow rate of Qrel ≈ -0.38 is found.  The gradient at 
Reynolds numbers less than Re ≈ 200 is highly linear, but 
at higher Reynolds numbers the slope becomes slightly 
shallower.  Interestingly, beyond the transition to unsteady 
flow, an almost imperceptible oscillation in flow rates is 
recorded, with the maximum and minimum envelope lines 
almost coincident.  
 

 
Figure 6: Flow rate relative to spheres (Qrel) plotted 
against Reynolds number for a geometric configuration 
with SR = 1.0 and DR = 0.6.  Unsteady flow was detected 
in the shaded region, and in this region lines through local 
minima and maxima in the time-varying flow rate is 
plotted. 
 

 
Figure 7: Total drag force (solid lines and “●”) and 
pressure and viscous (dotted lines and “◊” and “Δ”, 
respectively) contributions plotted against Reynolds 
number for a geometric configuration with SR = 1.0 and 
DR = 0.6.  Unsteady flow was detected in the shaded 
region, and in this region lines through local minima and 
maxima in the drag forces are plotted.  FD acts in the axial 
direction. 
 
Important to the motion of spheres free to propagate in a 
pressure-driven flow is the axial force acting on each 

sphere.  If the spheres are exposed to a negative (or drag) 
force, they will decelerate, whereas the opposite is true if 
the net force acts in the direction of flow.  The equilibrium 
position therefore requires that the net axial force is zero.  
Contributions to this axial force were computed from 
surface integrals of axial components of either pressure or 
shear stress on the sphere, and both the components and 
the total force are plotted for a range of Reynolds numbers 
in figure 7. 
The axial force trends reveal that the zero net drag 
condition corresponding to the equilibrium position for 
freely suspended spheres occurs at Re ≈ 26.5.  At this 
point the pressure force is positive, and the viscous force 
is negative.  This is in agreement with the relative flow 
rate trend in figure 6, which shows a negative flow rate 
relative to the spheres at the zero-net-drag condition.  
Despite only small variation in the viscous drag envelope 
beyond the transition to unsteady flow, a large oscillation 
in the pressure contribution emerges rapidly.  Notice also 
that the force components all rapidly approach large 
negative values in the limit of low Reynolds numbers.  
This is in agreement with the theoretical analyses 
discussed earlier, where it was shown (e.g., Fitz-Gerald, 
1969) that for physiologically realistic parameters that the 
presence of an obstruction greatly increased the resistance 
to flow. 
Despite the lack of linearity in the low-Reynolds number 
trend as compared with the flow rate trend in figure 6, the 
axial force data can be found to achieve a linear collapse 
if the data is re-plotted as the product Re FD.  Further 
computations were performed over a range of both axial 
pressure gradients and Reynolds numbers, and it was 
determined that a successful collapse of the data could be 
obtained if it were plotted against the product Re dP/dz.  
These collapses are provided in figure 8, for both the 
relative flow rate and axial force data sets.  In each case 
an excellent collapse is found for small Re dP/dz values, 
though the Qrel data collapse is less successful beyond 
Re dP/dz ≈ 1000. 
 

Flow dynamics with geometry variation 
The previous results were obtained with the geometric 
parameters fixed at SR = 1.0 and DR = 0.6.  A family of 
consistent meshes were generated to extend this study to 
geometric configurations occupying a range of diameter 
and spacing ratios.  In this case it was necessary to 
prescribe unique pressure drops across each mesh as the 
length of the computational tube unit differed between 
each mesh.  A constant pressure gradient of 
dP/dz = 0.8333 was applied in each case, consistent with 
the pressure gradient resulting from the unit pressure drop 
imposed in the earlier computations.  Simulations were 
performed on each mesh for a Reynolds number Re = 1, 
and a comparative set of contour plots was generated to 
compare the flows with variation in each parameter 
independently.  Figure 9 shows the resulting plots, with 
the effect of changing either the diameter ratio or the 
spacing ratio denoted by each column.  It is curious to 
observe that with variation in diameter ratio, there is a 
marked alteration in the vorticity distribution surrounding 
the sphere, whereas with variation in spacing, the vorticity 
distribution remains almost unchanged.  This implies that 
at this Reynolds number, the alteration to the otherwise 
uniform flow through the tube is localized to a region very 
close to the sphere obstructing the flow.  It follows, then, 
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that almost irrespective of the sphere spacing, each sphere 
will cause a consistent added pressure drop to the flow. 
 

 
Figure 8: Plots showing collapse of the flow rate relative 
to the spheres (Qrel) and the product of the Reynolds 
number and the net axial force acting on each sphere 
(Re FD) when plotted against the product of the Reynolds 
number and pressure gradient Re dP/dz.  Symbols “□”, 
“■”, “○”, “●”, “Δ”, “▲”, “◊” and “♦” represent Re = 0.1, 
0.3, 1, 3, 10, 30, 100 and 200, respectively.  The dotted 
lines are added for guidance to indicate the data which fits 
the universal collapse. 
 

 
Figure 9: Contour plots of vorticity in the flow around 
spheres in tubes.  Left: Diameter ratios (top to bottom) 
DR = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8 and 0.9 for a 
constant spacing SR = 1.0.  Right: Spacing ratios (top to 
bottom) SR = 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6 and 1.8 
for a constant diameter ratio DR = 0.6.  In all cased Re = 1 
and dP/dz = 0.8333.  Blue and red regions correspond to 
negative and positive vorticity, respectively. 
 

With increasing diameter ratio a large increase in the 
amount of vorticity surrounding the sphere is created.  
This effect becomes so pronounced that for DR > 0.5 a 
large region of shear is generated along the tube wall, 
becoming stronger as the shear gradients in the fluid layer 
between the wall and the sphere become higher as the gap 
reduces.  
 

Non-axisymmetric flow transition 
The axisymmetric computations reveal that a transition to 
an axisymmetric unsteady flow occurs at Re ≈ 730.  It is 
known, though, that for a single sphere in an otherwise 
undisturbed freestream, the axisymmetric wake bifurcates 
to a non-axisymmetric state through a regular (i.e., steady-
steady) transition at Re = 211 (Ghidersa & Dušek, 2000; 
Thompson, Leweke & Provansal, 2001).  This transition 
occurs far earlier than any theoretical transition of the 
axisymmetric wake to an unsteady state, and significantly 
earlier than the subsequent non-axisymmetric transition to 
unsteady flow found for spheres at Re = 275 (Thompson, 
Leweke & Provansal, 2001; Sheard, Thompson & 
Hourigan, 2003). 
 

 
Figure 10: Iso-surface plot showing the structure of the 
non-axisymmetric flow at Re = 360 with DR = 0.6 and 
SR = 1.0, computed using the three-dimensional solver and 
mesh.  Flow is from top right to bottom left, yellow and 
green contours reveal negative and positive regions of 
streamwise vorticity, respectively.  The sphere is coloured 
blue, and a cutaway of the tube is provided to reveal the 
relevant isosurfaces. 
 
It was hypothesized that a similar bifurcation scenario will 
occur in this system, with non-axisymmetric flow 
predicted to emerge prior to the axisymmetric Hopf 
bifurcation.  A series of three-dimensional computations 
were performed over a range of Reynolds numbers below 
the predicted axisymmetric transition point to test identify 
any non-axisymmetric flow regimes.  In the range 
355 < Re < 360, the axisymmetric wake was found to 
transition to a non-axisymmetric state, producing a steady 
non-axisymmetric flow.  This implies that the first-
occurring non-axisymmetric transition occurs through a 
regular bifurcation.  At slightly higher Reynolds numbers, 
the steady non-axisymmetric wake underwent a 
subsequent transition to unsteady flow.  This second 
transition occurs in the range 360 < Re < 365. 
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The steady and unsteady non-axisymmetric wakes 
differed little in structure – the unsteady flow tended to 
manifest itself as a low-frequency pulsing in the flow, 
rather than adopting the hairpin shedding observed behind 
free spheres (Magarvey & MacLatchy, 1965; Johnson & 
Patel, 1999). 
An isosurface plot of the saturated steady non-
axisymmetric solution at Re = 360 is shown in figure 10.  
In this plot, the pressure gradient decreases from the top 
right to the bottom left of the tube section displayed, and 
relative to the sphere, the tube wall is moving from the 
bottom left to the top right.  A useful comparison between 
the steady non-axisymmetric wake behind a sphere in 
open flow (Thompson et al., 2001) and the non-
axisymmetric flow shown here can be made.  Both are 
characterised by a counter-rotating pair of streamwise 
vortices, which for a free sphere extend far downstream, 
but in this case the downstream presence of the next 
sphere disrupts the flow and dissipates the vortices.  
Notably, this non-axisymmetric flow has a net side force 
associated with it, similar to a sphere in open flow.  Thus 
in the applications where the spheres represent particles or 
bodies free to move through the tube, this state would 
cause the spheres to migrate away from the centreline, 
dramatically changing the flow. 

CONCLUSION 
A numerical study employing axisymmetric and three-
dimensional spectral-element computations has 
investigated the pressure-driven flow past an array of 
equi-spaced spheres positioned axisymmetrically in a 
circular tube.  For a fixed diameter and spacing ratio, 
SR = 1.0 and DR = 0.6, critical Reynolds numbers at which 
the zero-net-flow and zero-net-drag conditions occurred 
were found to be Re ≈ 111.5 and Re ≈ 26.5, respectively.  
In addition, linear collapses to the relative flow rate data 
and the product of axial force on each sphere and 
Reynolds number were established when plotted against 
the product of Reynolds number and axial pressure 
gradient.  Strong linearity was found at Re dP/dz < 1500 
for Qrel, and up to Re dP/dz ≈ 12000 for Re FD. 
Contour plots of vorticity were shown to demonstrate that 
changes in diameter ratio dramatically altered the flow 
surrounding the sphere, whereas for changes in the sphere 
spacing, the effect was barely noticeable.  Finally, a three-
dimensional iso-surface plot of non-axisymmetric 
streamwise vortical structures in the flow local to a single 
repeating tube unit was shown to verify that the 
axisymmetric solution transitioned to a steady non-
axisymmetric flow prior to undergoing an unsteady 
bifurcation of the axisymmetric flow. Importantly, non-
axisymmetry developed at a Reynolds number far in 
excess of the Reynolds numbers experienced by particles 
free to migrate along the centreline, based on the zero-net-
drag condition identified in this study. 
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