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ABSTRACT 
In this paper a simulation model is presented for the Direct 
Numerical Simulation (DNS) of complex multi-fluid 
flows in which simultaneously (moving) deformable 
(drops or bubbles) and non-deformable (moving) elements 
(particles) are present, possibly with the additional 
presence of free surfaces. Our model combines the VOF 
model developed by van Sint Annaland et al. (2005) and 
the Immersed Boundary (IB) model The Volume of Fluid 
(VOF) part features i) an interface reconstruction 
technique based on piecewise linear interface 
representation ii) a three-dimensional version of the CSF 
model of Brackbill et al. (1992). The Immersed Boundary 
(IB) part incorporates both particle-fluid and particle-
particle interaction via a Direct Forcing Method (DFM) 
and a hard sphere Discrete Particle (DP) approach. In our 
model a fixed (Eulerian) grid is utilized to solve the 
Navier-Stokes equations for the entire computational 
domain. The no-slip condition at the surface of the moving 
particles is enforced via a momentum source term which 
only acts in the vicinity of the particle surface. 
Specifically Lagrangian force points are used which are 
distributed evenly over the surface of the particle. 
Dissipative particle-particle and/or particle-wall collisions 
are accounted via a hard sphere DP approach using a 
three-parameter particle-particle interaction model 
accounting for normal and tangential restitution and 
tangential friction. The capabilities of the hybrid VOF-IB 
model are demonstrated with a number of examples in 
which complex topological changes in the interface are 
encountered. 

NOMENCLATURE 
dp Particle diameter (-) 
d Plane constant for interface segment cutting 

through Eulerian cell (-) 
D Distribution or smoothing function (-) 
F Fractional amount of liquid (-) 
F%  Smoothed colour function (-) 
h Smoothing function stencil width (m) 
 Measure for Eulerian grid size (m) 
Ip Moment of inertia (kg.m2) 
k Spring stiffness (N/m) 
mp  Particle mass (kg) 
Np Number of force points per particle (-) 
ni ith component of the unit normal vector (-) 
p Pressure (N/m2) 
t Time (s) 
xi ith co-ordinate direction (m) 
x x co-ordinate (m) 
y y-co-ordinate (m) 

z z-co-ordinate (m)  

Greek letters 

κ Curvature (m-1) 
μ Dynamic viscosity (kg/(m.s)) 
ρ Density (kg/m3) 
Δρ Density difference (kg/m3) 
Δxi Grid spacing in ith co-ordinate direction (m) 
ΔV Volume of computational cell (m3) 
σ Surface tension (N/m) 
Δt Time step (s) 

mAΔ  Area of range of influence of force point m (m2) 

mVΔ  Volume of range of influence of force point m 
(m3) 

Vectors 

fσ  Volumetric surface tension force (N/m3) 

f sf
→

 Eulerian force density (N/m3) 

f sF
→

 Total force exerted by the fluid on the particle (N) 

mF  Lagrangian force density (N/m3)  

g  Gravitational acceleration (m/s2) 
m  Normal vector 
n  Unit normal vector 
r  Position vector (m) 

f sT
→

 Torque exerted by fluid on the particle (N.m) 

u  Velocity (m/s) 

pw  Particle translational velocity (m/s) 

mW  Velocity at Lagrangian force point m (m/s) 

pω  Particle rotational velocity (s-1) 

Subscripts and superscripts 
1,2 Phase number 
m Marker 
x x-direction 
y y-direction 
z z-direction 

Operators 

/ t∂ ∂  Partial time derivative (s-1) 
/D Dt  Substantial derivative (s-1) 

∇  Gradient operator (m-1) 
∇ ⋅  Divergence operator (m-1) 
T Transpose of a tensor 
⊗  Cross vector product  
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INTRODUCTION 
Multi-fluid flows in which a sharp interface exists are 
frequently encountered in a variety of industrial processes. 
It has proven particularly difficult to accurately simulate 
these flows which can be attributed to i) the fact that the 
interface separating the fluids needs to be tracked 
accurately without introducing excessive computational 
smearing ii) the necessity to account for surface tension in 
case of (highly) curved interfaces iii) the incorporation of 
the no-slip boundary condition at the surface of (moving) 
solid bodies (particles). Roughly three differing 
approaches are possible which differ in the degree of 
sophistication. In the Eulerian approach the multi-fluid 
system is treated as interpenetrating continua with 
specified interactions between the phases whereas in the 
Lagrangian approach the dispersed elements (particles, 
drops or bubbles) are tracked individually taking into 
account the interactions with the continuous phase and 
other dispersed elements. This leads to the well-known 
and difficult closure problem in multiphase flows. In the 
DNS approach, of which the present VOF-IB method 
constitutes an example, all the relevant length and time 
scales are resolved and consequently these models can be 
helpful in testing and developing closure models which 
are required for the Eulerian and Lagrangian approach. 
This line of thought can in principle be used for any 
multiphase flow system and has been adopted by the 
authors for gas-solid (van der Hoef et al., 2004, 2006) and 
gas-liquid (Deen et al., 2004) dispersed two-phase flows.  
The main emphasis in this paper is on the most 
fundamental level of modeling, namely the Direct 
Numerical Simulation (DNS) of multi-fluid flows, a field 
which has advanced considerably in the past decade due to 
the advances in numerical simulation techniques and 
computer hardware. The simulation model presented in 
this paper combines the salient features of the VOF model 
developed by van Sint Annaland et al. (2005) and the 
combined Immersed Boundary Discrete Particle (IB-DP) 
model. The Volume of Fluid (VOF) part features i) an 
interface reconstruction technique based on piecewise 
linear interface representation ii) a three-dimensional 
version of the CSF model of Brackbill et al. (1992). The 
Immersed Boundary (IB) part incorporates both particle-
fluid and particle-particle interaction via a Direct Forcing 
Method (DFM) and a hard sphere Discrete Particle (DP) 
approach. Subsequently a brief review will be presented 
for the two main parts (i.e. the VOF model and the 
combined IB-DP model) of the present model. 
Volume of Fluid (VOF) methods (Hirt and Nichols, 1981; 
Youngs, 1982; Rudman, 1997, 1998; Rider and Kothe, 
1998; Scardovelli and Zaleski, 1999; Popinet and Zaleski, 
1999; Bussman et al., 1999) employ a colour function 
F(x,y,z,t) that indicates the fractional amount of fluid 
present at a certain position (x,y,z) at time t. The evolution 
equation for F is usually solved using special advection 
schemes (such as geometrical advection, a pseudo 
Lagrangian technique), in order to minimize numerical 
diffusion. In addition to the value of the colour function 
the interface orientation needs to be determined, which 
follows from the gradient of the colour function. Roughly 
two important classes of VOF methods can be 
distinguished with respect to the representation of the 
interface, namely Simple Line Interface Calculation 
(SLIC) and Piecewise Linear Interface Calculation 
(PLIC). Earlier work is generally typified by the SLIC 
algorithm due to Noh and Woodward (1976) and the 

Donor-Acceptor algorithm published by Hirt and Nichols 
(1981). Modern VOF techniques include the PLIC method 
due to Youngs (1982). The accuracy and capabilities of 
the modern PLIC VOF algorithms greatly exceeds that of 
the older VOF algorithms such as the Hirt and Nichols 
VOF method (Rudman, 1997). A drawback of VOF 
methods is the so-called artificial (or numerical) 
coalescence of gas bubbles which occurs when their 
mutual distances is less than the size of the computational 
cell. In this study we have adopted the Volume of Fluid 
(VOF) method based on a piecewise linear interface 
representation (PLIC VOF). Our model is based on 
Youngs’ VOF method which gave the best overall 
performance in standard (two-dimensional) advection tests 
and simulations of (two-dimensional) Rayleigh-Taylor 
instability as reported by Rudman (1997). In our model 
relatively high values for the density and viscosity ratio 
(typically one hundred) can be used without an adverse 
effect on the stability and the required computational 
effort. Traditionally systems with a high density and 
viscosity ration have proven difficult to simulate as 
reported by Scardovelli and Zaleski (1999) and Sabisch et 
al. (2001).  
Immersed Boundary (IB) methods (Peskin, 1977; Saiki 
and Birlingen, 1996; Peskin, 2002; Mittal and Iaccarino, 
2005) make use of a fixed Eulerian grid to solve for the 
flow field of the continuous phase and Lagrangian 
markers associated with the motion of the immersed body 
which can be of flexibile or rigid nature. The IB method 
has been widely used to study fluid-structure interaction 
and was pioneered by Peskin (1977) to cardiac flow 
problems. In recent years the range of applications of this 
powerful computational method has expanded 
considerably. For excellent reviews the interested reader is 
referred to Peskin (2002) and Mittal and Iaccarino (2005). 
The advantages of the IB method are its flexibility with 
respect to incorporation of differing degree of rigidity 
(from elastic to rigid) of the bodies. Moreover, this 
method is relatively easy to implement. Disadvantages 
include the explicit treatment of the fluid-solid interaction 
which leads to stiffnes problems for rigid particles. In 
addition appropriate values for the fluid-solid interaction 
parameters (such as the spring stiffness) need to be 
determined for each particular class of problems. The IB-
DP part of our technique embeds a Direct Forcing Method 
(DFM), to enforce the fluid-solid coupling and a Discrete 
Particle (DP) method to account for the possible 
dissipative collisions between the suspended particles and 
confining walls.  
Our fluid-solid coupling technique is similar in concept to 
the IB method developed by Feng and Michaelides (2005) 
and Uhlmann (2005). Contrary to Feng and Michaelides 
we use a finite difference technique to compute the flow 
field and contrary to Uhlmann we have incorporated a 
collision model to account for dissipative particle-particle 
and/or particle-wall collisions. The organisation of this 
paper is as follows: first the description of the model and 
the numerical solution method is given. Subsequently the 
verification of the method will be addressed. Then the 
results are presented and discussed and finally the 
conclusions are presented. 
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GOVERNING EQUATIONS AND NUMERICAL 
SOLUTION METHOD 
Our model consists of two main parts: one part deals with 
the presence of deformable interfaces (VOF model) 
whereas the other part accounts for the presence of the 
solid particles taking into account the possible non-ideal 
collisions between the particles themselves and/or 
confining walls (IB-DP model). First, the main 
conservation equations will be presented along with the 
incorporation of surface tension and the advection of the 
deformable interfaces. The fluid-solid coupling and the 
particle motion and (possible) collisional interaction will 
subsequently be described. 

Conservation equations 
For incompressible multi-material flows the Navier-Stokes 
equations can be combined into a single equation for the 
fluid velocity u  in the entire domain (including the 
interior of the solid particles) of interest taking into 
account i) surface tension through a local volumetric 
surface tension force fσ (with dimension N/m3) 
accounting for the presence of curved deformable 
interfaces and ii) fluid-solid coupling through a 
momentum source term f sf

→
 (with dimension N/m3) 

accounting for the presence of the suspended solid 
particles and chosen in such a manner that the no-slip 
condition at the surface of the (moving) solid bodies 
(particles) is enforced. The governing conservation 
equations for unsteady, incompressible, Newtonian, multi-
fluid flows are given by the following expressions:  
 
 ( )u∇ ⋅ = 0   (1) 

[ ( )]

( [( ) ( ) ])T

f s

u
uu p g

t

u u f f
σ

ρ ρ

μ
→

∂
+ ∇ ⋅ = −∇ +

∂

+ ∇ ⋅ ∇ + ∇ + −

 (2) 

 
where the local averaged density ρ and viscosity μ are 
evaluated from the local distribution of the phase indicator 
or colour function function F which is governed for by: 
 

 ( )
DF F

u F
Dt t

∂
= + ⋅ ∇ =

∂
0

2

 (3)

  
expressing that the interface property is advected with the 
local fluid velocity. For the local average density ρ linear 
weighing of the densities of the continuous (2) and 
dispersed phase (1) is used:  
 
 

1 (1 )F Fρ ρ= + − ρ  (4) 
 
Similarly, the local average dynamic viscosity can also be 
obtained via linear averaging of the dynamic viscosities of 
the continuous (2) and dispersed phase (1). As an 
alternative, more fundamental approach recently proposed 
by Prosperetti (2001), the local average viscosity can be 
calculated via harmonic averaging of the kinematic 
viscosities of the involved phases according to the 
following expression: 
 

 1

1 2

(1 )F F 2ρ ρρ

μ μ μ
= + −   (5) 

 

In all computations reported in this paper Eq. 5 was used 
to compute the local average viscosity. The volumetric 
surface tension force appearing in the momentum Eq. 2 
acts only in the vicinity of the interface 

Surface tension 
In the CSF model (Brackbill et al., 1992) the surface 
tension force acts via a source term fσ  in the momentum 
equation which only acts in the vicinity of the interface. 
The expression for fσ  is given by 
 
 2f F mσ σκ=  (6) 
 
where the expression for the curvature is obtained from 
the divergence of the unit normal vector to the interface: 

 1
( ) ( )

m
n m

m m
κ = − ∇ ⋅ = ⋅ ∇ − ∇ ⋅ m

⎡ ⎤
⎢ ⎥⎣ ⎦

 (7) 

 
 
The normal to the interface is computed from the gradient 
of the smoothed colour function. The smoothing technique 
used in this paper will be discussed later. 

Advection of deformable interfaces 
The integration of the hyperbolic F-advection equation is 
the most critical part of the VOF model and is based on 
geometrical advection which can be viewed as a pseudo-
Lagrangian advection step. The advantage of the 
geometrical advection is given by the fact that a very 
sharp interface is maintained during the simulations. First 
for each Eulerian cell containing an interface the unit 
normal vector to the interface is estimated from the 
gradient of the colour function F: 
 

 F
n

F

∇
=

∇
 (8) 

 
The number of possible interface configurations can be 
minimised from sixty four to five generic ones which are 
schematically shown in Fig. 1. From these five generic 
interface types the particular type prevailing in a certain 
Eulerian cell needs to be determined on basis of the 
known interface orientation (i.e. the normal vector to the 
interface) and the F-value of the interface cell. For the 
computation of the fluxes through the cell faces the 
equation for the planar interface segment cutting through 
the Eulerian cell needs to be considered. This equation is 
given by: 
 
 

1 1 2 2 3 3n n n dξ ξ ξ+ + =  (9) 
 
where ξi (i = 1..3) represents the dimensionless co-
ordinate in direction i given by: 
 

type 1type 1 type 2type 2 type 3type 3 type 4type 4 type 5type 5

Figure 1: Five generic types of interface configurations 
considered in the computation of the fluxes through the 
cell faces. 
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ξ =

Δ
  (10) 

 
where Δxi represents the grid-spacing in co-ordinate 
direction xi (i = 1..3). The value of the plane constant d 
can be determined by equating the expression for the 
dimensionless liquid volume (volume below the planar 
interface segments shown in Fig. 1) to the known 
fractional amount of liquid or the F-value in the interface 
cell. The value of d can be obtained readily from the root 
of these non-linear equations using the Newton-Raphson 
method which needs however to be done with care in 
order to find the correct root of the cubic equations. As an 
alternative the Regula Falsi method can be used, which 
requires however an interval in which the root can be 
found. This interval can be obtained on basis of the known 
interface orientation (i.e. components of the normal to the 
interface) and the fractional amount of liquid in the 
interface cell (i.e. the F-value) using simple geometrical 
considerations. One should keep in mind here that the 
solution of the non-linear equation needs to be carried out 
only for the interface cells. 
Once the aforementioned steps have been taken, finally 
the amount of liquid fluxed through each of the faces of 
the Eulerian cells during a time step Δt can be computed. 
The F-advection equation is discretised with an explicit 
treatment of the convections terms, where a 
straightforward generalisation of the 2D geometrical 
advection method given by Delnoij (1999) is used (also 
see Scardovelli and Zaleski, 1999). In our implementation 
of this method we have adopted the split advection 
scheme. Because the expressions for the fluxes through 
the cell faces are quite lengthy they are not given here. 
Finally the computed new F-values are corrected for 
(small) non-zero divergence of the velocity field due to 
the iterative solution of the Pressure Poisson Equation 
(PPE). 

Smoothing of the colour function F 
As indicated before the interface orientation (i.e. the 
normal to the interface) is computed from the gradient of 
the color function F according to Eq. 8. Basically this 
involves numerical differentiation of a discontinuous 
function leading in practice to (small) inaccuracies. This 
problem can be overcome however by making use of a 
smoothed color function  for the computation of the unit 
normal to the interface using Eq. 8 with F replaced by  
obtained from: 

F%

F%

 
 ( ) ( ) ( ) ( ) ( )m m m

m

F x D x x D y y D z z F x= − − −∑%
m

 (11) 

 
where the smoothing function D is given by the function 
proposed by Peskin (1977): 
 

 1
( ) (1 cos( ))

2

x
D x

h h
π= +  (12) 

 
or as an alternative by a suitable polynomial expression as 
the one proposed by Deen et al. (2004): 
 

 4 215 1
( ) ( ) 2( ) 1

16

x x
D x

h h h
= −⎡

⎢⎣ ⎦
+ ⎤

⎥  (13) 

 

where h represents the width of the computational stencil 
used for the smoothing. The summation in Eq. 11 only 
involves the grid points with distance (in each separate co-
ordinate direction) equal or less then the smoothing or 
filter width h. We typically use h = 2Δ where Δ represents 
the Eulerian grid size and, unless otherwise stated. The 
width of the computational stencil for the smoothing 
should be selected carefully. When the width is too small 
numerical instabilities may arise, especially in case the 
coefficient of surface tension is high. On the other hand 
when the width of the computational stencil is chosen too 
large, excessive smoothing (“thickening” of the interface) 
is obtained which is undesirable. For the simulations 
reported in this paper we used Eq. 13 and additionally we 
used the smoothed colour function  instead of F in Eq. 
6. It should be stressed here that this smoothed colour 
function is only used in conjunction with the estimation of 
the unit normal to the interface and not in the computation 
of the material fluxes through the faces of the 
computational cells for which the unsmoothed colour 
function was used. 

F%

Fluid-solid coupling 

The momentum source term f sf
→

 (with dimension N/m3) 
accounts for the presence of the suspended solid particles 
and is chosen such that the no-slip condition at the surface 
of the (moving) particles is accounted for. The 
computation of f sf

→
 constitutes an important element of 

the model and requires first the calculation of the Eulerian 

momentum density *n

uρ  from the available data at the 
old time level n. 
 

 
* [ ( )

(( ) ( ) ]

n n n n n n n

n n n T n

u u t g u u

u u fσ

ρ ρ ρ ρ

μ

np= + Δ − ∇ ⋅ − ∇

+∇ ⋅ ∇ + ∇ +
  (14) 

 
The Eulerian momentum density is subsequently mapped 
to the Lagrangian force point m using a distribution 
function D to obtain the Lagrangian momentum density 

*n

mUρ : 
 
 * ( ) (n

m k m
k

U D r r uρ = − * )n

krρ∑  (15) 

  
where kr  and 

mr  represent respectively the Eulerian 
velocity node k and the Lagrangian force point m residing 
on the surface of the particle. Unlike the traditional IB 
method, the Lagrangian force points reside at the surface 
of the particles and are moved with the particle velocities 
and not with the interpolated fluid velocity. The 
Lagrangian points are distributed in an uniform manner 
over the surface of the particles. For the distribution 
function D we use again volume-weighing. It should be 
added here that, due to the staggered grid used for the 
flow computation, the mapping given by Eq. 15 should be 
carried out separately for each component of the 
momentum density. Subsequently the velocity of the 
Lagrangian force point m is computed from the combined 
effect of particle translation and particle rotation: 
 
 ( (m p p m pW w r rω= + ⊗ − ))  (16) 
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where mr  and pr  respectively denote the position vector 

of Lagrangian force point m and the position vector of the 
center of particle p, whereas the translational and 
rotational velocities are respectively given by pw  and ω . 
The force density at the Lagrangian force point m is then 
obtained from: 
 

 
*n n

m
m

W U
F

t

ρ ρ−
=

Δ
m  (17) 

 
Finally the Eulerian force density is obtained by mapping 

the Lagrangian force density *

mF , related to mF  by the 
following equations: 
 

 
2

*

3
12 1

3
m

m m

p

V R
mF F

h N h

πΔ
= = +

⎡ ⎡ ⎤⎛ ⎞
⎜ ⎟⎢ ⎢ ⎥⎝ ⎠⎣ ⎦⎣ ⎦

F
⎤
⎥  (18) 

 
for a sphere, to the Eulerian mesh. Again this mapping 
needs to be carried out for each component of the force 
density separately and needs to be summed over all Np 
Lagrangian force points within a the range of influence of 
this point: 
 
 *( ) ( ) ( )f s m m m

m

f r D r r F r
→

= −∑  (19) 

 
At this point we have at our disposal the spatial 
distribution of the Eulerian force density and we turn to 
the calculation of a tentative velocity field which accounts 
for the convective and diffusive momentum transport and 
all source terms excluding the pressure gradient: 
 

 
**

** **

[ ( )

(( ) ( ) ) ]

n n n n n n n

n T n

f s

u u t g u u

u u f fσ

ρ ρ ρ ρ

μ
→

= + Δ − ∇ ⋅ +

∇ ⋅ ∇ + ∇ + −
 (20) 

 
Eq. 20 is solved with a standard finite difference 
technique where the diffusion operator is approximated 
with standard central second order finite difference 
representations (mixed derivatives are evaluated 
explicitely) whereas the convection terms are computed 
with a second order flux delimited Barton-scheme 
(Centrella and Wilson (1984)). We use a robust and very 
efficient Incomplete Cholesky Conjugate Gradient (ICCG) 
algorithm to solve the resulting sparse matrix equation for 
each velocity component. The velocity field at the new 
time level n+1 is related to the tentative velocity field as 
follows: 
 

 1 **n

n

t
u u p

ρ
+ Δ

= − ∇ 1n +   (21) 

 
Since 1nu +  needs to satisfy the incompressibility 
constraint, upon taking the divergence of Eq. 21 the 
pressure Poisson equation is obtained: 
 

 11 1
( ) (n

n

** )p u
tρ

+∇ ⋅ ∇ = ∇ ⋅
Δ

 (22) 

 

which again is solved with a robust and efficient ICCG 
algorithm to obtain the pressure at the new time level. 
From Eq. 21 finally the velocity field at the new time level 
is obtained which completes the computation of the fluid 
flow and the fluid-solid coupling. 

Particle motion and collisional interaction 
The translational and rotational motion of the suspended 
solid particles is given by the Newtonian equations of 
motion respectively given by: 
 

 p

p p

dw
m m g F

dt →
= + f s

 (23)    

 p

p f

d
sI T a

dt

ω
→

=  (24) 

 
where mp and Ip represent respectively the mass and the 
moment of inertia of the particle. The final term on the 
right-hand side in Eq. 23 accounts for the drag force 
exerted by the fluid on the particle and is computed from: 
 

 
1

pN

f s m
m

F F
→

=
mV= Δ∑   (25) 

 
whereas the torque appearing at the right hand side of Eq. 
24 is computed according to the following expression: 
 

 
1

( )
pN

f s m p m
m

T r r F
→

=
mV= − × Δ∑   (26) 

 
where mF  and mVΔ  respectively denote the force density 
at Lagrangian force point m given by Eq. 6 and the 
volume of the range of influence of this force point given 
by the following expression: 
 

 
23

12 1
3m

p

h R
V

N h

π
Δ = +

⎡ ⎤⎛ ⎞
⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

 (27) 

 
 
where h is the average Eulerian grid size and R the radius 
of the particle. The summation in Eqs. (25) and (26) is 
extended over all force points Np distributed over the 
surface of the particle.  
The source terms appearing in the Newtonian equations of 
motion are treated as known (explicit) terms and therefore 
the integration of these equations can be conducted in 
principle with any integration technique for ordinary 
differential equations. For the simulations reported in this 
paper we have used a second order trapezoidal rule 
producing translational and rotational velocities at the new 
time level computed respectively as follows: 
 

 1

2
n n n n

p p f s f s

p

t
w w g t F F

m
+

→ →

Δ
= + Δ + + 1+⎡ ⎤⎣ ⎦  (28) 

 1

2
n n n n

p p f s f s

p

t
T T

I
ω ω+

→ →

Δ
= + + 1+⎡ ⎤⎣ ⎦  (29) 

 
 

5  



 
 

  
Figure 2: Snapshots at different times of the impact of a spherical particle (red) of 0.02 m diameter released on a flat surface 
of an initially quiescent liquid, using a 100x100x200 grid and a time step of 5.10-5 s. From left to right: t = 0.05 s, t = 0.10 s, 
t = 0.15 s and t  = 0.20 s after release of the particle. Additional data are given in Table 3. 
 
Once these new velocities are obtained an event driven 
hard sphere collision model is invoked. In this model it is 
assumed that the interaction forces are impulsive and 
therefore all other finite forces are negligible during 
collision. The closure of this collision model involves 
three micro-mechanical parameters: the coefficients for 
normal and tangential restitution and the tangential 
friction coefficient, which in principle can be obtained 
from impact experiments. 

VERIFICATION 
The combined VOF-IB model was systematically tested to 
verify the correctness of the computer implementation. 
Van Sint Annaland et al. (2005) performed extensive 
calculations using their VOF-model for gas bubbles rising 
in quiescent viscous liquids and demonstrated that the 
computed terminal rise velocities and shapes of the 
bubbles agreed very well with those obtained from the 
Grace diagram over a very wide range of Eötvös and 
Morton numbers, while using a high density and viscosity 
ratio characteristic for gas-liquid systems. They also 
applied their model successfully to a case were the 
interface experiences substantial changes, i.e. co-axial and 
oblique coalescence of two gas bubbles rising in a viscous 
liquid and obtained good agreement with results published 
in literature. The IB-model was tested extensively by 
computing the terminal velocity of single spheres and the 
drag coefficient for static arrays of particles. In each case 
good agreement with data reported in literature was found. 

RESULTS 
The technique presented in this paper can in principle be 
used for a broad range of complex multi-fluid flows such 
as gas-liquid two-phase flows through a (dense) packing 
of solid spheres encountered in for instance trickle flow 
reactors. In addition this technique can be used to study 
the microscopic phenomena relevant for fluid bed 
granulation. In this paper we report a number of test cases 
in which substantial changes in interface topology prevail, 
namely i) impact of a spherical particle on a flat liquid 
surface and ii) impact of a falling drop on a single 
spherical particle kept stationary iii) impact of a drop on a 
stationary array of spherical particles. 

 
Computational grid 

100x100x200 (-) 

Grid size 0.0005 m 
Time step 0.00005 s 
Particle radius 0.01 m 
Particle density 2000 kg/m3 
Initial particle position (x0,y0,z0) = (0.025,0.025,0.075) m 
Liquid density 1000 kg/m3 
Liquid viscosity 0.1 kg/(m.s) 
Gas density 100 kg/m3 
Gas viscosity 0.01 kg/(m.s) 
Surface tension 0.1 N/m 
Table 1: Parameters used for the impact simulation of 
a spherical particle on a flat liquid surface. 

 
Computational grid 100x100x200 (-) 
Grid size 0.0005 m 
Time step 0.00005 s 
Particle radius 0.005 m 
Particle position (x0,y0,z0) = (0.025,0.025,0.025) m 
Drop radius 0.01 m 
Drop position (x0,y0,z0) = (0.025,0.025,0.075) m 
Liquid density 1000 kg/m3 
Liquid viscosity 0.1 kg/(m.s) 
Gas density 100 kg/m3 
Gas viscosity 0.01 kg/(m.s) 
Surface tension 0.1 N/m 
Table 2: Parameters used for the impact simulation of 
a drop on a stationary spherical particle. 

 
Computational grid 80x80x160 (-) 
Grid size 0.0005 m 
Time step 0.00005 s 
Particle radius 0.003 m 
Particle array cubic latice of 5x5x5 particles (-) 
Drop radius 0.01 m 
Drop position (x0,y0,z0) = (0.02,0.02,0.06) m 
Liquid density 1000 kg/m3 
Liquid viscosity 0.1 kg/(m.s) 
Gas density 100 kg/m3 
Gas viscosity 0.01 kg/(m.s) 
Surface tension 0.1 N/m 
Table 3: Parameters used for the impact simulation of 
a drop on a stationary array of particles. 
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Figure 3: Velocity of the particle as a function of time 
showing acceleration in the gas phase (0-0.06 s) 
deceleration in the liquid phase (0.06-0.16 s) and inelastic 
collision with the bottom wall (t = 0.17 s) followed by 
secondary collisions. 
 

Impact of a spherical particle on a flat liquid surface 
The impact of spherical particles on liquid surfaces has 
been studied experimentally by various researchers and 
constitutes a challenging test case for our hybrid VOF-IB 
method. For this simulation a system was considered in 
which the initially quiescent liquid phase occupies the 
bottom half of the computational domain. Initially the 
particle is at its rest position in the center of the gas cap 
present above the liquid surface and is released at t = 0 s. 
For the simulation no-slip boundary conditions were 
imposed at the confining domain walls whereas the no-slip 
condition at the surface of the particle was imposed with 
the IB method. The data used for the simulation are 
detailed in Table 1. 
In Fig. 2 a series of snapshots of the impact simulation are 
shown whereas in Fig. 3 the vertical velocity of the 
particle is given as a function of time. In Fig. 2 the 
interface is visualized with a surface mesh defined by the 
corner points of the polygons representing the interface 
segments at the level of the computational cells (see Fig. 
1). Initially the particle accelerates in the gas phase and at 
t = 0.060 s the bottom side of the particle impacts on the 
liquid surface causing its deformation. In the second frame 
(t = 0.100 s) given in Fig. 2 the particle has moved 
completely below the surface of the liquid and a big open 
cavity has been formed behind the particle. Subsequently 
the particle descends through the viscous liquid while the 
cavity behind the particle closes rather slowly leading to 
the formation of a gas neck which is pinched off between t 
= 0.150 and t = 0.155 s. This phenomenon initiates the 
formation of an inverse (i.e. upward) motion of the liquid 
in the center leading to the formation of a mild jet. At the 
top of the remaining gas neck small bubbles are released 
which subsequently rise through the jet region. As long as 
the particle moves in the gas phase (see Fig. 3) it 
accelerates (terminal velocity in gas phase equals ~ 3 
m/s), however as soon as the particle contacts the liquid 
surface it decelerates due to the tenfold increase in density 
and viscosity in the liquid phase (terminal velocity in 
liquid phase equals ~ 0.5 m/s). The particle finally hits the 
bottom wall of the container and comes to rest after a few 
inelastic collisions with the bottom wall. 

 

 
Figure 4: Snapshots at different times of the impact of a 
drop of 0.020 m diameter released on a spherical particle 
of 0.01 m kept at its original position. Computational grid: 
100x100x200; time step: 5.10-5 s. Additional data are 
given in Table 4. Top (from left to right): t = 0.050 s, t = 
0.075 s and t = 0.100 s; Bottom (from left to right): t = 
0.125 s, t = 0.150 s and t = 0.175 s. 

Impact of a drop on a single spherical particle 
In the second example we simulate the impact of a large 
drop on a single stationary spherical particle. The drop 
was released from its initial position in the top part of the 
domain whereas the particle was kept at its stationary 
position in the bottom part of the domain (gas phase 
initially quiescent). For the simulation again no-slip 
boundary conditions were imposed at the domain walls, 
additional data used for the simulation are detailed in 
Table 2. In Fig. 4 a series of snapshots of the droplet 
impact on the stationary particle are shown. Upon impact 
of the drop a considerable shape deformation occurs 
where the drop attains a disk type shape with a central 
hole. During passage of this disk drop fragmentation 
commences where the main body of liquid moves around 
the particle whereas a residual amount of liquid initially 
adheres to the particle. Subsequently ring shaped liquid 
filaments are shed from the residual liquid which 
eventually start (see snapshot at t = 0.175 s in Fig. 4) to 
break up into small liquid drops. 

Impact of a drop on a stationary array of spherical 
particles 
In the last example we simulate the impact of a large drop 
on a stationary array of spherical particles arranged in a 
simple cubic packing configuration. The drop was 
released from its initial position in the top part of the 
domain whereas the particle array was kept at its 
stationary position in the bottom part of the domain (gas 
phase initially quiescent). For the simulation again no-slip 
boundary conditions were imposed at the domain walls, 
additional data used for the simulation are detailed in 
Table 3. In Fig. 5 a series of snapshots of the droplet 
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impact on the array of particles are show. As evident from 
this figure the big drop upon impact on the array of 
particles considerable stretches in the lateral direction 
followed by percolation of the liquid through the voids in 
the packing. 

CONCLUSIONS AND OUTLOOK 
In this paper a simulation model has been presented for 
the Direct Numerical Simulation (DNS) of complex multi-
fluid flows in which simultaneously (moving) deformable 
(drops or bubbles) and non-deformable (moving) elements 
(particles) are present, possibly with the additional 
presence of free surfaces. Our model combines the VOF 
model developed by van Sint Annaland et al. (2005) and 
the Immersed Boundary (IB) model and has been applied 
to the simulation of a number of cases in which substantial 
changes of the interface topology prevail. Our simulations 
qualitatively reproduce the observed phenomena but 
clearly extension and refinement of the model is required 
to incorporate for instance an accurate representation of 
the wetting properties of three-phase systems. In addition 
detailed experimental validation using well-defined 
experiments is still required. Once these steps have been 
taken, the model can be used to study for example liquid 
spreading in (structured) packings in a very detailed way. 
In this connection it should be stressed that the IB method 
offers considerable flexibility in representing 
geometrically complex structures. 
 

 

 
Figure 5: Snapshots at different times of the impact of a 
drop of 0.02 m diameter released on a stationary array of 
spherical particles kept at its original position. 
Computational grid: 80x80x160; time step: 5.10-5 s. 
Additional data are given in Table 5. Top (from left to 
right): t = 0.025 s, t = 0.050 s and t = 0.075 s; Bottom 
(from left to right): t = 0.100 s, t = 0.125 s and t = 0.150 s. 
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