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Abstract

We describe an abstract interface for surrogate-model based optimization in the PLATON framework. The abstract

interface encapsulates data structure and ensures easy integration of various third party implementation of surrogate
methods. Kriging, a statistical method originating from the field of geostatistics, is used here to replace the expensive
simulation code. The paper concentrates on the software development issues related to the integration of surrogate

modeling in PLATON. In particular, PLATON’s flexible structure for easy incorporation of third-party imple-
mentations is portrayed. At the end, a numerical experiment is provided for justifying the realization of the PLATON-
Surrogate framework.

Keywords: Component-based software engineering; Numerical optimization; Abstract interface; PLATON; Surrogate
modeling; Kriging

1. Introduction

Computer-based simulation and analysis are used
extensively in engineering design and multidisciplinary
design optimization (MDO). There exists a distinct dis-

crepancy between the computational cost of complex
high-fidelity engineering simulations and the growth of
computing power and speed. One way to address this

challenge is to use the approximation methods. The
basic idea is to construct a simplified mathematical
approximation of the computationally expensive simu-

lation and analysis code, which is then used in place of
the original code. Since the approximation model acts as
a surrogate for the original code, it is often referred to as

a surrogate model or a meta model (i.e. a model of a
model).

In this paper, we explore one of the approximation
methods called kriging. The use of an abstract interface

in the PLATON [1] framework helps to build robust and
easily extensible codes. Also PLATON ensures compu-
tational steering of the optimization processes. The

central focus of this paper lies on the development of an
appropriate interface for surrogate optimization in
PLATON. The paper is organized as follows: the next

section describes the PLATON system. Section 3 ela-

borates the surrogate modeling and kriging. In section 4,
we describe the abstract interface for kriging in PLA-
TON. Finally, we finish with a numerical example and
conclusions.

2. The PLATON framework

In component-based software engineering (CBSE),

units of software are encapsulated as ‘components’,
which interact with other components only through
well-defined interfaces, see Larson et al. [2]. This

approach allows the internal implementation of the
component to remain opaque to the rest of the world,
and presumably hides much of the complexity of the
software. The PLATON framework is inspired by the

CBSE principle. PLATON is developed for distributed
numerical optimization. Figure 1 shows a schematic
view of the PLATON framework. Here the optimizers

and simulators are coupled through the communication
middleware CTL (Communication Template Library).
PLATON has an abstract view of the function that is to

be minimized by determining the appropriate para-
meters. For further details on PLATON, we refer to
Krosche et al. [1].
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3. Numerical optimization using surrogate models

The basic approach to construct a simplified mathe-

matical approximation of the computationally expensive
simulation and analysis code is to approximate the ori-
ginal code with a reliable surrogate model. A variety of
approximation methods exist (e.g. polynomial response

surfaces, kriging models, radial basis functions, neural
networks, multivariate adaptive regression spline, etc.).
Mathematically, the general optimization problem

can be stated as the following:

minimize fðxÞ
subject to x 2 B � Rd

where f : Rd ! R [ {1}. In the present case, it is
assumed that the evaluation of the objective function

f(x) requires running expensive analysis code(s). And
hence, the inexpensive surrogate objective functions f̂(x)
shall be used to accelerate for a solution without sacri-

ficing theoretical guarantees of asymptotic convergence,
see Booker et al. [4]. Two of the most important surro-
gate models are response surface modeling (RSM) and
kriging. The availability of a third-party implementation

has prompted us to use kriging in this work.

3.1. Construction of surrogates using kriging

Kriging [5] is a weighted average of known function

values, where weights are chosen based on the locations
of known function values, in order to minimize the error
of prediction. The mathematical model of kriging is
based on a stationary random function. Let us consider

the case of n sampled points x1, x2, . . ., xn in a d-
dimensional design space at which the system behavior
y(x) has been evaluated. The corresponding responses at

the sample points are denoted by Y = (y1, . . . , yn)
T.

Following the approach of Schonlau [6], the kriging
approximation expresses the response as a function of

the independent design variables. The kriging approx-
imation is expressed as the linear combination of a
number of selected known functions (i.e. regression

models) and a stochastic process:

YðxÞ ¼
Xk
j¼1

�j fj ðxÞ þ ZðxÞ ð1Þ

where fj (x) are k known regression models, �j are the
corresponding parameters, and Z (x) is a stochastic

process with mean zero and variance �2. Here Z(x)
creates a localized deviation so that the kriging model
interpolates the n sampled data points. In many kriging

Fig. 1. PLATON software framework [3].
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applications, including this work, a simpler model is
used,

YðxÞ ¼ � þ Z ðxÞ ð2Þ

The covariance between the Z’s at two design points x1

and x2 is given by:

Cov ½Z ðxiÞ, Z ðxjÞ� ¼ �2Rð½Rðxi, xjÞ�Þ ð3Þ

In the above formulation R is the correlation matrix and

R(xi, xj) is the correlation function between any two of
the n sampled data points xi and xj.

A variety of correlation functions exist and here we

use the Gauss correlation function:

Rðxi, xjÞ ¼ exp �
Xd
k¼1

�kjxki � xk
jjpk

" #
ð4Þ

where �k and pk are the unknown correlation parameters
used to fit the model, xk

i and xk
j are the k th components

of sample points. Here �k � 0 and 0 < pk � 2. The
parameter pk can be interpreted as an indicator of

increasing the smoothness of the response surface, while
larger �k indicates greater nonlinearity.
The kriging method solves an optimization problem

through the application of nonlinear mathematical
programming to an estimated solution space, see Sakata
et al. [7]. A flowchart of this design process is shown in

Fig. 2. For details on the kriging method, especially the
computation of the parameters pk and �k which is known
as the maximum likelihood estimation, we refer to
Fahimuddin [3].

4. Concepts of abstract interfaces

Component-based software engineering (CBSE) is
concerned with the assembly of pre-existing software

components into larger pieces of software. Underlying
this process is the notion that software components are

Fig. 2. Optimization using kriging solution space, see Sakata et al. [7].
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written in such a way that they provide functions com-
mon to many different systems. Ideally, a component is

a black box; its services are only accessible through a
well-defined interface. Figure 3(a) shows how we can use
various optimizers in PLATON through interfaces.
Because of the Optimizer interface, the user can choose

among the available optimizers, e.g. GAlib, OPT++,
NMSimplex, etc. The application scientists can use the
desired optimizer with minimum programming effort.

Because of its abstract nature, it is very easy to modify
or add new optimizers by simply manipulating the
interface.

4.1. PLATON–Surrogate abstract interface

PLATON provides a flexible architecture to insert
abstract interfaces for optimization and simulation and
hence it is chosen as the platform to implement the

surrogate interface. Figure 3(b) shows the proposed
Surrogate interface for kriging and response surface
modeling. Once the abstract interface is declared, we are
in a position to choose among the available meta mod-

els. In the present case, we use kriging as the desired
surrogate method. In order to be consistent with the
philosophy of third party software usage in PLATON,

we have decided to use the kriging subroutines

developed by Padula et al. [8]. The object orientation
features, i.e. polymorphism, inheritance, etc., of the

original code enable us to easily integrate it in PLA-
TON. This kriging routine is accessed through the
surrogate interface in PLATON, see Fig. 1.

4.2. Implementation of the PLATON–Surrogate
interface

In designing the abstract interface for surrogate
models, we must follow the coding styles and appro-
priate function calling methods of PLATON. In the

following listing, a glimpse of the interface for the kri-
ging model is given. The important feature of this code
segment is its abstract nature, i.e. it is independent of the

type of surrogate method used. The methods used in this
interface are the minimum for constructing any meta
model. The init() method initializes the whole optimi-

zation process in PLATON, while the setEvaluator() is
the simulation component inside PLATON. The core
method buildModel() calls the third party implementa-
tion of kriging. The evaluate() function evaluates the

objective function on the estimated kriging surface;
setProperty() implements the specific properties of the
meta model. The specification of model parameters are

performed through XML files. As a result of this

Fig. 3. Data structure encapsulation with abstract interfaces in PLATON. (a) Abstract interface for optimizers in PLATON. (b)

Abstract interface for surrogate models in PLATON.
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abstract nature of integration, this interface can easily be
extended for other meta models, e.g. response surface
modeling. The dotted rectangle in Fig. 1 portrays the

whole idea of this surrogate modeling.

5. Numerical example and performance analysis

In order to clarify the concept of the previously

described surrogate based optimization in the PLATON
framework, we have used Rosenbrock’s function as a
benchmark problem. It is a function of two variables,

g(x, y) = (1 � x)2 + 105(y � x2)2 which has multiple
minima and a global minimum of 0 at the point (1,1).

We used the proposed PLATON-Surrogate frame-

work to implement a kriging approximation of
Rosenbrock’s function which is used as the objective
function. Figure 4 portrays the consecutive kriging
approximations of the original Rosenbrock function.

We compute the global minimum of this approximated
surface. In this case, according to Padula et al. [8], a
simple search has been employed to find this minimum.

After a few steps, we obtain the minimum at the point
(1,1). At this stage, we have identified the design para-
meters of the minimum, but the model does not

reproduce the correct function value (it predicts
�3.43382 instead of 0).

The accuracy of the meta models like kriging depends

on the validation tests, e.g. cross validation. In this
example, no additional efforts have been made for
determining the accuracy of the kriging model as this is
not the goal of this work. Also the Gaussian isotropic

correlation function is used here; we could use some
other functions, e.g. a cubic correlation function on the
unit cube or the Matérn correlation function. For

maximum likelihood estimation, the Direct Search
algorithm has been used; we could replace this with
other optimization methods. The later version of the

PLATON-Surrogate framework will incorporate the

above mentioned features for fine tuning of the kriging
model parameters.

6. Conclusion

In this paper, we have demonstrated the use of the
concepts of an abstract interface for surrogate modeling

in the PLATON framework. The main focus has been
put on the integration of a third party kriging imple-
mentation into PLATON. The numerical results are

promising, but a further investigation is necessary for
the kriging modeling itself to improve the overall opti-
mization process.
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Fig. 4. Approximated solution space by kriging in the PLATON–Surrogate framework. (a) Estimated surface: phase 1; (b) estimated

surface: phase 2; (c) estimated surface: phase 3; (d) estimated surface: phase 4.
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