
Filtering and regularization techniques in shape optimization with

CAD-free parametrization

F. Daoud, N. Camprubi, K.-U. Bletzinger*

Lehrstuhl für Statik, TU München, Germany

Abstract

In this contribution an innovative method for shape optimization with FE-parametrization is proposed. The major

shortcomings of CAD-free parametrization are discussed and filter techniques are presented in this context. A global
filter for shape optimization with FE-parametrization is developed and applied to numerical examples of basic struc-
tures. Finally, some further regularization techniques depending on curvature terms are mentioned.
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1. Introduction

Parametrization of the design for shape optimization
can be based on CAD models or directly on the FE mesh

(CAD-free parametrization).
In CAD-based design optimization, design variables

are chosen among the parameters related to the under-
lying CAD model. During the optimization process,

update of the finite element mesh is due to changes of the
CAD model.
In FE-based design optimization, nodal coordinates

are taken as design variables. This parametrization gives
more freedom to the optimization process, since the
result of the optimization problem is not restricted to the

preselected CAD design space. However, there are many
technical facts that in the past made this natural choice
of optimization appear prohibitive, as there are a large

number of design variables, and the wiggly shape and
the inherent problems of FE discretization (e.g. locking)
that may lead to mechanically wrong answers. This
contribution presents an innovative approach to over-

coming these shortcomings by a combination of several
techniques which results in a powerful and flexible tool
for the preliminary design of free-form shells. The pro-

blem of the large number of variables is overcome by the
use of adjoint sensitivity analysis. From the mechanical
point of view, locking-free elements (shell elements) are

indispensable. Not only does the correct system response

depend on such element formulation, but also the fea-
sible domain of the optimization problem is severely
affected by locking phenomena, cf. Camprubi et al. [7],

Bischoff et al. [4].
The main problem of the FE-based design is that

wiggly shapes may be obtained as optimal designs.
These wiggles are mesh dependent and obviously it is

not desirable that the optimum design depends on the
coarseness of the mesh used. Therefore, the aim of this
research is to provide a tool to control the smoothness of

the designs obtained as a result of shape optimization
and to avoid mesh dependency. To control the shape,
different approaches are considered.

Based on the filter proposed by Sigmund in [9] to
overcome checkerboard and mesh dependency problems
in topology optimization, a filter for shape optimization

is proposed. Through this sensitivity filter, not only are
high-frequency waves dependent on the mesh smoothed,
but also the global wave length of the final design can be
controlled by adjusting the filter radius or the filter

weights.
Focusing the problem from the mathematical point of

view, wiggles in designs may be due to the ill-posedness

of the minimization problem or to the presence of local
optima. To overcome this problem, regularization
techniques are applied. In some engineering problems, it

occurs that the solution to a problem is difficult to
handle because of its discontinuities or singularities. In
those cases, regularization is applied to the problem
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obtaining smooth and regularized solutions, cf.
Betytschko et al. [2]. The theory of regularization of

functionals has been widely studied and some interesting
applications in the optimization field have been pre-
sented over recent years. In acoustics, regularization has

already been successfully used in Bängtsson et al. [1] for
shape optimization of curves. There are also other suc-
cessful applications in aerodynamics. In our

contribution, regularization is applied for shape opti-
mization of shells minimizing strain energy.

2. Filter techniques

In general, a shape can be understood as the super-

position of several principal shape functions each of
which is characterized by a certain wave length. The
shortest is represented by the element mesh. Results of

shape optimization – often of local nature – are gener-
ated by arbitrary combinations of principal shape
functions. As a consequence, successful optimization

methods must be able to keep control of the desired
mesh independent wave lengths of the resulting shapes
by means of filter techniques. Nowadays filter techni-
ques are well established procedures both in shape and

topology optimization and in many other disciplines, cf.
Bendsoe and Sigmund [3], Bängtsson et al. [1]. These
methods are by far more than just pragmatic tools,

which do a good job in practice. The research in the last
two decades especially in mathematics gives us many
technically mature methods (for more details see

Tikhonov et al. [10]).
The above-mentioned problem of high-frequency

waves in the optimization results arise from the many

possible scales of the analyzed problem. On the one
hand there exist many local minima, on the other hand
during the optimization process long waves of possible
solutions compete with diverse short waves or wiggles

(of other scales). Exactly at this point the filter techni-
ques are engaged to selectively affect the desired wave
length and to filter it out. The aim is to develop a pro-

cedure, by which smoothness and curvature of the
optimized structures are controlled, involving some
user-defined geometrical measurement of the modeled

structure. The influence of the high-frequency waves,
also called disturbance or noise, can be demonstrated on
the basis of the one-dimensional case. A cut-out (Fig. 1)

shows a long wave as well as other superposed short
ones.

If the oscillating part of the solution is undesirable,
then it is obvious that the wiggles (the superposed short

waves) influence the sensitivity severely, e.g. at point P in
Fig. 1 we even notice a change of sign. It is obvious that
the sensitivity of the undisturbed curve deviates from the

value of the disturbed one, which definitely affects the

whole optimization procedure, exceedingly in gradient
based algorithms. The task now is to get rid of the noisy

wiggles systematically.
Similar problems are faced in signal technology,

where the waves, before transmission, are transformed

by means of Fourier transformation or wavelet trans-
formation. It is a common technique to approximate a
function f by superposing periodical or compact shape
functions Ni(x) and the corresponding amplitudes or

function values fi, respectively

~fðxÞ ¼
X
i

NiðxÞ : fi ð1Þ

Besides the shape functions, there are also the dual
functions Di(x) that filter out the fi values. The dual

function is defined as follows:

1

�k k

Z
�ðxÞ

Nið�Þ � Djð�Þd� ¼ �ij ð2Þ

The integration domain � depends on the used shape

and dual functions. It usually represents the smallest
wave length described in the approximation. If we adopt
the dual function on the approximation ~f (x), the eva-

luations of the original function at the sampling points fi
are exactly filtered out. On the other hand, if the dual
function is adopted on the original (noisy) function f(x),

the oscillations, which cannot be represented by the
shape functions, will be eliminated, as their wave length
is smaller than the radius of �. A smoothed function
evaluation fm is produced.

1

�k k

Z
�ðxÞ

fð�Þ � Dð�Þd� ¼ fmðxÞ ð3Þ

The integration, Eq. (3), over the domain � can be
interpreted as a way to determine the weighted mean

value at each sampling point. This issue motivates a

Fig. 1. Influence of high-frequency waves on gradients.
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smoothing method for shape optimization. The choice
of a suitable dual function and the discretization of Eq.

(3), where the sensitivities are filtered instead of the
function itself, yields to

@fm
@xe
¼

Pnode
i¼1

Di
: @f
@xiPnode

i¼1
Di

ð4Þ

Di = R � Rei weighting function concerning spatial and
topological distance

R smoothing radius representing �
Rei distance between sampling point e and node i.
This approach is applied in a similar manner in topology

optimization, cf. Bendsoe and Sigmund [5].
The radius of � controls the smallest desired wave

length (size of wiggles) in the optimized structure. An

additional difficulty in shape optimization concerns the
fast evaluation of distances on the curved surfaces, as
the spatial distance ‘only’ is not enough to determine the

sphere of influence of the filter radius. This fact can be
demonstrated by means of an intersection curve on a
curved surface (Fig. 2). Taking point A as a sampling
point (point at which the sensitivity is filtered), we notice

that node 1, from the topological point of view, is closer
to node A than node 2, and accordingly node 1 should
possess a greater weighting factor. However, if only the

direct distance is considered, then node 2 will get the
bigger weight.

One possibility is to measure the distances on the
curved surface, which is difficult to perform, particularly
for discretized structures. To avoid measuring on the

curved surface, we introduce a hierarchical weighting
system. The FE nodes around the sampling point are
classified in levels. Each level gets a special topological

weighting factor, as depicted in Fig. 3. The final
weighting factor is a combination including both infor-
mation on the topological distance and the spatial one.
In this way we keep the algorithmic effort low, by

scanning the a priori created node map (in the input
phase) within the filter radius. Moreover, the smallest
(shortest) waves in the optimized structures are con-

trolled by user defined measurements not by
discretization parameters, namely the size of the finite
elements.

3. Regularization techniques

A whole set of problem classes in structural and fluid
mechanics suffer from numerical instabilities. This
manifests itself in singularities e.g. formfinding of

membranes (Bletzinger and Wüchner [7]), or in terms of
badly conditioned or unstable sets of equations e.g. in
fluid mechanics.

In shape optimization of free-form shell structures, we
are confronted with most of those difficulties, where
additionally many local minima occur as solutions of

optimization. One method of resolution with the filter
techniques was proposed in section 2. Another mathe-
matically established approach is based on
regularization techniques, cf. Tikhonov et al. [8].

Because of their high efficiency these methods are often
applied in shape optimization.
Most numerical instabilities in shape optimization are

traced back to the high-frequency waves appearing
during optimization. Therefore it is obvious to for-
mulate the stabilization terms in the form of curvature

information to get smoother surfaces. A successful
implementation for the one-dimensional case can be
found in Bängtsson et al. [6]. The expansion for two

dimensions (shell surface) is more complicated. An
important step towards generalization for multi-
dimensional problems is the determination of the
curvature tensor at each FE node of the discrete geo-

metry (more details in Camprubi and Bletzinger [9]).
Based on the curvature tensor the objective function
(e.g. strain energy) can be modified as follows:

Objmod ¼ Objþ 

Z
�

�2d� ð5Þ

Fig. 2. Spatial (geometrical) and topological distance.

Fig. 3. Element and node levels.
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where � is the mean curvature at each node. The stabi-
lizing term 


R
� �

2d� in Eq. (5) competes with the high-
frequency solutions (local minima) and enforces a

smoother solution.
The next step, using gradient algorithms, is to adapt

the derivatives of the sensitivity analysis. The derivative

of the stabilizing term in Eq. (5) with respect to the
design variables s is illustrated in Camprubi and Blet-
zinger [9]. First results show a significant improvement
in smoothness of optimal structures.

4. Numerical examples

The effects of the presented filter will be demonstrated
on several exemplary but meaningful benchmarks of
minimizing strain energy (compliance). The examples

deal with some basic shapes to show the shortcomings of

CAD-free shape optimization without filter techniques
or stabilizing terms. The comparison with the results

after adopting the proposed filter shows the benefits of
the method, Figs. 4–6. The following examples are
restricted to the static and linear case.

In the first example, a Navier-supported circular plate
under self-weight is optimized. As the whole energy is
produced in terms of bending, some disturbance in the

form of start deflection is necessary. The problem
involves 294 design variables which are the Z-coordi-
nates (vertical movement) of all nodes except for the
supported ones. As the state of minimal strain energy is

reached when the load is carried by membrane forces,
we expect a shape which has a tendency towards mini-
mal surfaces. Locking-free DSG linear shell elements are

used, cf. Bletzinger et al. [10]. The sensitivity analysis is
performed by an adjoint method which reduces the
calculation cost severely. In the second example a

Navier-supported square plate under point loading in

Fig. 4. Start geometry.

Fig. 5. Optimization results without filter.

Fig. 6. Optimization results with filter radius equal half the span length.
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the center is optimized. The same remark about start
geometry applies in this case. For parametrization of the

geometry 436 design variables are used. In the third
example the start geometry is a rectangular container
under internal pressure, where we expect a cylindrical

shape as a solution of optimization. In this example 438
design variables are used.
The optimization results in Fig. 6 show the perfor-

mance of the proposed method. The wiggles of wave
lengths smaller than the filter radius (half the span
length) are eliminated, as they cannot be represented by
the chosen shape functions. The smoothness of the

resulting structures is controlled by means of a user-
defined parameter derived from the optimized model
(filter radius) and is mesh independent which is the main

aim of this approach.
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