
Improving productivity for parallel finite element codes through

software engineering

D.R. Shires*, B.J. Henz

US Army Research Laboratory, Aberdeen Proving Ground, MD 21005, USA

Abstract

Software development remains a central problem for large-scale parallel computing systems and as a result pro-

ductivity for these systems is continuously hampered. Developing the codes to run on these systems requires new
approaches. This paper discusses a software development environment that is focused on the domain of computational
engineering problems that employ the finite element method. The Simple, Parallel, Object-Oriented Computing

Environment for the Finite Element Method (SPOOCEFEM) is an active development environment designed to
achieve the goals of a productive library while delivering required parallel performance. It incorporates all the benefits
of object-oriented design and has proven utility in several applications. This paper describes the design and imple-

mentation of SPOOCEFEM, provides metrics on its utility, and discusses how the system is used in practice.

Keywords: Object-oriented design; Finite element method; Parallel programming

1. Introduction

Today’s large-scale computing systems are complex
architectures. A myriad of parallel computing archi-
tectures exist with each subsequent release being

somewhat faster than the one before. However, while
hardware continues to improve, software development
for these complex machines has continued to lag. While

a petaflop system may not be too far in the future, a
serious concern is whether or not the software will be in
place to actually use such a powerful machine. Without

a concerted effort to address this issue, it is quite prob-
able that only the most trivially parallel applications
could be developed for such a machine in a short period

of time.
Revolutionary software engineering practices and

techniques will only become reality through a concerted
effort to incorporate more complex and intelligent com-

piling environments coupled with adaptable code that
can learn from its runtime implementation. While this is
some way off, the object-oriented design (OOD) para-

digm has matured to the point where computational
science needs to embrace its concepts to provide the
required functionality in current productive software

systems. Our first-hand experiences in software develop-

ment for parallel computers have shown how beneficial a
change in mindset can be to efficient code development.
The remainder of this paper discusses our efforts to

construct an object-oriented development library that

brings parallelism to the field of finite element analysis.
The Simple, Parallel, Object-Oriented Computing
Environment for the Finite Element Method (SPOO-

CEFEM) was constructed to facilitate code development
for scientific engineering applications that use the finite
element method. Object-oriented programming (OOP) is

not widespread in computational science but it has been
successfully used. Following is a discussion of our OOP
methodology for this class of problem and how we were

able to successfully increase our productivity through
this approach.

2. The SPOOCEFEM goals and structure

SPOOCEFEM had several goals. First and foremost
it had to balance overall code execution speed with
development time. Since we had past experience with

programming parallel finite element codes, we had a
good understanding of how to adequately manage this.
Other goals were to create a system that would promote

code reuse, limit testing, and incorporate parallelism
*Corresponding author. Tel.: +1 410 278 5006; Fax: +1 410

278 4983; E-mail: dale.shires@us.army.mil

1179

2005 Elsevier Ltd. All rights reserved.

Computational Fluid and Solid Mechanics 2005

K.J. Bathe (Editor)

with the library managing and controlling all inter-
processor communication.

SPOOCEFEM is written mainly in ANSI-standard
C++ and is built from many different components, as
shown in Fig. 1. The most basic components are located

at the bottom of the stack with each subsequent layer
representing additional functionality. The SPOOCE-
FEM library has standardized around the eXtensible

Data Model and Format (XDMF) for all data storage
[1]. This format provides the required large-scale binary
storage needed for large data sets, contains the func-
tionality required to represent finite element data,

provides for communication with interdisciplinary
applications, and is supported by the open source
Paraview scientific visualization package from Kitware.

A general-purpose customizable graphical user interface
(GUI) is provided that supports geometry rendering
along with dialog boxes to set various model para-

meters. Parallelism is realized by a domain
decomposition approach for the finite element meshes
coupled with the message-passing interface (MPI).

3. SPOOCEFEM in practice

SPOOCEFEM development began in the early part of
2002. It has continued to mature as applications are
constructed within its framework. Not including all of

the packages that it incorporates, SPOOCEFEM cur-
rently stands at roughly 20 000 lines of code. About 17%
of this includes the code to implement the SPOOCE-

FEM GUI.
SPOOCEFEM has successfully been used in three

applications. The first is a composite manufacturing

process model known as the Composite Manufacturing

Process Simulation Environment (COMPOSE) [2].
COMPOSE uses unstructured finite element meshes to

simulate resin flow in various composite manufacturing
processes. COMPOSE uses SPOOCEFEM by extending
the base classes through inheritance (additional element

capabilities required by COMPOSE are implemented
this way). All of the mesh partitioning for multi-
processor execution is handled by SPOOCEFEM.

Two additional codes were also written using SPOO-
CEFEM following the success of the COMPOSE
developmental effort. PhoenixFlow is a multidisciplinary
application encompassing fluid flow, heat transfer, and

resin cure. PhoenixFlow utilizes OOD to inherit the fluid
flow model from COMPOSE and expand it. Finally, a
multi-scale residual thermal stress analysis code

(MSStress) has been written using SPOOCEFEM. While
no direct inheritance is used, it is constructed in this
framework to utilize the GUI and for parallelization.

4. SPOOCEFEM benefits

In the circles of scientific computing, the mention of
OOD and OOP are often met with disdain. The belief

that poor performance will result from class member
data layout causing poor cache performance or from the
runtime overhead for pointer chasing arising from
polymorphism is well known [3]. However, we feel that

belief to be a bit too far reaching. Since most of the time
spent in scientific codes is on number crunching or sol-
ving systems of equations, careful choices and design

can be made to still provide for good performance.
Table 1 shows the time required for the optimized
Fortran 90 version of COMPOSE versus the optimized

SPOOCEFEM version of COMPOSE. The three

Fig. 1. The SPOOCEFEM building block framework.

Key

*Optional

**Optional, required by PSPASES

D.R. Shires, B.J. Henz / Third MIT Conference on Computational Fluid and Solid Mechanics1180

routines listed comprise over 96% of the total execution
time of the code. While the update and pressure routines
do require more time to complete due to the OOD, the

combined runtime of these two modules is only a small
fraction of the overall time.
Since we initially constructed the COMPOSE code in

Fortran 90, we have some idea about the amount of time
required to complete the code development comparing
the two different approaches. It took approximately 4

man years of development time from the start to com-
pletion of testing for the Fortran 90 parallel version of
COMPOSE. In contrast, the SPOOCEFEM version of
PhoenixFlow (which incorporates the functionality of

COMPOSE), required only 2.5 man years of develop-
ment time and is inclusive of the growing capabilities of
SPOOCEFEM during the code development (a savings

of roughly 38%).
Also, we have noted a marked decrease in the number

of source lines of code (SLOCs) required to achieve the

same results. The initial Fortran 90 COMPOSE code
that provided support for three different element types
required about 5700 SLOCs. In contrast, the SPOO-

CEFEM COMPOSE version took only 2300 SLOCs to
provide the same functionality. In the older version of
the code, roughly 7000 SLOCs were required to provide
the mesh reading, converting, and partitioning tasks.

This functionality is now part of the SPOOCEFEM
library and included in the 16 000 lines of SPOOCEFEM
implementation. The SPOOCEFEM implementation

has expanded the number of supported element types,
increased the number of solvers available, and can be
used again and again. In contrast, the earlier develop-

ments, due to the nature of the Fortran 90 environment,
are more-or-less limited to a one-time use.
By factoring out as much as possible into libraries,

developers are also saved the trouble and effort of
repeatedly testing and debugging. The testing process is
often overlooked or given a low priority by computa-
tional scientists but, in fact, can take considerable time.

Software validation will constantly be changing as it

usually involves testing against known experimental
values. However, software verification, which usually

means checking serial and parallel runs against them-
selves or analytical solutions, can be greatly reduced
through the use of a library that has been thoroughly

tested. Furthermore, problems such as memory leaks
and un-optimized code can be corrected once and never
have to be touched again.

5. Conclusions

Only through maximizing productivity can large-scale
parallel computers truly address the scientific computing
problems of today and the future. The computer hard-

ware provides the tool to arrive at a solution but the
software still has to be constructed. That process still
takes time, and will likely continue to be outpaced by

hardware developments for some time. However,
approaches like OOD, while not new, are now proving
their worth to the scientific programming community.

We have shown the application of these approaches for
the finite element methodology. As hopefully demon-
strated by this paper, the results can be dramatic and
help position software development teams for continued

success as the parallel computing landscape continues to
expand into the future.

Acknowledgments

This research was supported in part by a grant of
computer time and resource by the Department of
Defense High Performance Computing Modernization
Program. Additional support was provided by the US

Army Research Laboratory’s Major Shared Resource
Center.

References

[1] Clarke JA, Namburu RR. A distributed computing

environment for interdisciplinary applications. Con-

currency and Computation: Practice and Experience

2002;14:11161–1174.

[2] Henz BJ, Mohan RV, Shires DR. Large-scale integrated

process modeling simulations enabling composite material

developments and applications. Proceedings of the 2004

National Space and Missile Materials Symposium, Seattle,

WA, 2004.

[3] Todd I, Veldhuizen TL, Jernigan ME. Will C++ be faster

than Fortran? Lecture notes in computer science, vol.

1343, Springer-Verlag, London, 1997, 49–56.

Table 1

COMPOSE breakdown of subroutine runtimes for Fortran 90

and C++ versions

Operation Fortran

90

C++

(SPOOCEFEM)

Linear solver 2766 2694

Calculate pressure 114 128

Update 22 71

Core total time 2902 2893

D.R. Shires, B.J. Henz / Third MIT Conference on Computational Fluid and Solid Mechanics 1181

