
In-time implicit–explicit algorithm for nonlinear finite element

analysis

J.L. Curiel Sosa*, E. de Souza Neto, D.R.J. Owen

Civil and Computational Engineering Centre, University of Wales–Swansea, Singleton Park, Swansea SA2 8PP, UK

Abstract

A scheme to solve finite element problems with certain nonlinearities has been developed. It consists of a combination

of the two general strategies – explicit and implicit – in such a manner that when the implicit process starts to diverge,
the explicit one is activated and executed until proper convergence is reached. Partitioning of the mesh into parts or
groups of nodes for separate implicit or explicit treatment of solution is not considered in this work. The formulation is

presented initially and its implementation is validated by the analysis of a key numerical example.
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1. Introduction

Some problems in finite element analysis may not be
solved readily by implicit methods, such as a sharp

pointed edge contacting a concave surface, and for such
cases direct integration of the momentum equations
(explicit) offers an alternative scheme of solution. In this
paper, the idea of executing an implicit method until

divergence arises and at that point continuing to solve
with an explicit method is highlighted. Processing flow is
returned to the implicit scheme (IMP) when the diver-

gency condition has passed.
The aim of this article is to illustrate the implicit/

explicit (IMP/EXP) algorithm without considering

contact problems at this time. A connection between the
Newton–Raphson method (NRM) (implicit) and the
central difference method (CDM) (explicit) has been

elected. A description of the implicit and explicit
schemes, their coded form, and their connection is pre-
sented. Finally, a numerical geometrically nonlinear
example of arch buckling is presented.

2. Implicit formulation

A solution of the weak form of the momentum
equations by the NRM is used. The implicit algorithm

includes large deformations and is based upon a pseudo-

time discretization [1] considering the transition of
deformation between two time points. Thus, if a time
increment [tn, tn + 1] and set of internal variables � n at tn
are given, then the deformation gradient Fn+1 (at the
end of interval [tn, tn+1]) determines stresses �(tn+1) and
internal variables only through the integration algorithm
�nþ1 ¼ �̂ð�n;Fnþ1Þ:

Rðunþ1Þ ¼ fintðunþ1Þ � fextnþ1 ¼ 0 ð1Þ

fintðunþ1Þ ¼
n̂elem

e¼1

Z
’nþ1ð�ðeÞÞ

BT�ð� n;Fðunþ1ÞÞdv
( )

ð2Þ

fextnþ1 ¼
n̂elem

e¼1

Z
’nþ1ð�ðeÞÞ

NTbnþ1dvþ
Z
@’nþ1ð�ðeÞÞ

NTqnþ1ds

( )
ð3Þ

where ’n+1 (�(e)) is the current deformed domain. For
details of linearization of Eq. (1) to obtain Eq. (4), see de
Souza et al. [2]. A generic iteration of the NRM to solve

the standard linear system involves the following
computations:

KT�u
ðkÞ ¼ �Rðk�1Þ ð4Þ

where KT is obtained through G (discrete (full) spatial
gradient operator) [2] and is of the form
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Fig. 1. Combined implicit/explicit algorithm.
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KT ¼
^nelem
e¼1

Z
’nþ1ð�ðeÞÞ

GTaGdv

( )
ð5Þ

The fourth-order tensor a is the consistent spatial tan-

gent modulus and, in cartesian components, is defined
by Eq. (6) at the end of iteration:

aijkl ¼
1

J

@�ij
@Fkm

Flm � �il�jk ð6Þ

The computation of the consistent spatial tangent

moduli is given by

âijkl ¼
1

J

@�̂ij
@Fkm

Flm � �il�jk ð7Þ

Assembling of the element stiffness matrices:

k
ðeÞ
T ¼

Xngaus
i¼1

!ijiG
T
i âiGi ð8Þ

Solving the linearized equilibrium Eq. (4):

u
ðkÞ
nþ1 ¼ u

ðk�1Þ
nþ1 þ �uðkÞ ð9Þ

"
ðkÞ
nþ1 ¼ Bu

ðkÞ
nþ1 ð10Þ

Updating the deformation gradient:

F
ðkÞ
nþ1 ¼ ðI�rxu

ðkÞ
nþ1Þ

�1 ð11Þ

Use of the constitutive integration algorithm to
update the stress and other state variables:

�
ðkÞ
nþ1 ¼ �̂ð� n;F

ðkÞ
nþ1Þ ð12Þ

�
ðkÞ
nþ1 ¼ �̂ð� n;F

ðkÞ
nþ1Þ ð13Þ

Internal forces for each element:

f intðeÞ ¼
Xngaus
j¼1

�jJjB
T
j �
ðkÞ
nþ1; j ð14Þ

Gathering of element internal forces vector and

updating the residual. If iterations diverge, then go to
the EXP scheme (see Fig. 1) or else check the stop
criterium

f ext�f intk k
f extk k � �

Then the solution for the current external load is

reached and values for this load are taken from the last
iteration (*)n+1 = (*)

ðkÞ
nþ1

3. Explicit formulation

The EXP sub-algorithm is activated in case of diver-

gency of IMP. Once the solution is reached, flow is

returned back to IMP execution if the external load has
not been totally applied (Fig. 1).

The central differences method (CDM) consists of
integrating directly the spatially discretized dynamic
equilibrium equation at time tn:

M€uðtnÞ þ C_uðtnÞ þ f intðunÞ ¼ f ext ð15Þ

_uðtn�1=2Þ ¼
uðtnÞ � uðtn�1Þ

�tn
ð16Þ

_ui;nþ1=2 ¼
Mii

�tn
þ Cii

2

� ��1
� Mii

�tn
� Cii

2

� �
_ui;n�1=2 þ fexti � finti ðunÞ

� �
ð17Þ

uðtnþ1Þ ¼ uðtnÞ þ _unþ1=2�tnþ1 ð18Þ

A lumped mass matrix is elected such that

M ¼
n̂elem

e¼1

Z
�ðeÞ

	0N
T
ðeÞNðeÞd! ð19Þ

The damping matrix is chosen to be mass-propor-
tional as

C ¼ 
M ð20Þ

The time step is elected as

�tðtnþ1Þ � �tcðtnþ1Þ ¼
2

maxif!iðtnÞg
ð21Þ

where the natural frequencies are determined from the

homogeneous problem [3]. Its analytical solution is in
the form u(t) = ~ue�j!t ðj ¼

ffiffiffiffiffiffiffi
�1
p

Þ. Substituting in Eq.
(22), an eigenvalue problem is obtained:

M€uþ Ku ¼ 0 ð22Þ

Introducing the analytical solution form leads to

�!2Mþ K
�� �� ¼ 0 ð23Þ

An approximation of the stiffness is taken as

KiiðtnÞ ’
finti ðunÞ � finti ðun�1Þ

_u
n�1=2
i �tn

ð24Þ

and of the frequencies as

!iðtnÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
KiiðtnÞ
Mii

s
ð25Þ

4. Transition implicit/explicit

The last converged iteration at IMP (displacement ~u)
is transferred to EXP as initial conditions. Thus, the

final internal forces and displacements, from IMP, are
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used to determine initial accelerations and velocities for

EXP:

f intð~uÞ ! f intð0Þ
~u ! uð0Þ

The initial velocities for EXP are approximated as

follows:

€uið0Þ ¼
fexti � finti ð0Þ

Mii

_uið0Þ ¼ €uið0Þ�tð0Þ þ _u�i ð0Þ
_u�i ð0Þ ¼ 0:0

where �t(0) is the initial time step. After the first itera-

tion, an adaptive step in time is carried out. A

flowchart of the IMP/EXP algorithm is represented in

Fig. 1.

5. Numerical example

The buckling of an aluminium alloy (Young modulus
E = 6.895� 104 MPa, poisson ratio � = 0.34, and

density 	 = 2700 kg/m3) arch is presented. An external
point load (up to a magnitude 4000N that causes the
snap-through of the arch) is applied in the center of the
arch. Other geometric values are cross-sectional area

A = 25 806� 10�4m2, inertia moment I =
5.54� 10�7m4, thickness t= 0.0508m, arch radius R =
5.08m, and arch angle 60 8. Calhoun and DaDeppo [4]

simulated its pre-buckling behavior and a further

Fig. 2. Vertical nodal forces versus displacement in absolute value at the top central node.

Fig. 3. Absolute value of deflection at the central node. Plot starts when EXP is initiated after three IMP iterations (see Fig. 2).
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development was performed by Pi and Trahair [5], car-
rying out simulations after the buckling point. The
NRM started to diverge at a deflection j�critj= 0.076m

(which corresponds to an internal nodal force at vertical
direction jf intcentral node;yj= 2781.917N, and, hence, EXP is
initialized (with the last converged solution of NRM

indicated in Fig. 2 at point 3). The final deformation
may be observed in Fig. 3. Convergency to solution
j�solj= 1.17m (absolute value of deflection at the central
node) is reached (see Fig. 4).

6. Concluding remarks

An algorithm that considers the combination in time
of the two general strategies of solution (implicit and

explicit) has been presented, in particular for the analysis
of large deformations where geometrically nonlinear
buckling results in divergency of the NRM. Practical

application of this algorithm might also include the
solution of contact problems in which sharp pointed
edges and curved concave surfaces are involved.
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Fig. 4. Vertical displacement at the midpoint (jf intcentral node;yj = 4000N).
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