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Abstract

The extended differential quadrature has been used to develop discrete element analysis methods and direct time

integration schemes for solving continuum mechanics problems having arbitrary domain configuration. The concepts
are stated briefly. Certain numerical results are presented.
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1. Introduction

The method of differential quadrature (DQ) defines a
set of nodes in a problem domain. Then a derivative or

partial derivative of a variable function at a node with
respect to a coordinate is approximated as a weighted
linear sum of all the function values at all nodes along
that coordinate direction [1]. The original DQ can be

used only to solve problems having a regular domain.
Consequently, its application is very limited.

The author has generalized the DQ, which leads to the

generic differential quadrature (GDQ) [2]. The weighting
coefficients for a grid model defined by a coordinate
system having arbitrary dimensions can also be gener-

ated. The configuration of a grid model can be arbitrary.
In the GDQ, a certain-order derivative or partial deri-
vative of the variable function with respect to the

coordinate variables at a node is expressed as the
weighted linear sum of the values of function and/or its
possible derivatives or partial derivatives at all nodes.

The DQ and GDQ have been extended by the author,

resulting in the extended differential quadrature (EDQ)
[3]. In solving a problem, a discrete fundamental relation
can be defined at a point that is not a node. The points

for defining fundamental relations are discrete points. A
node can also be a discrete point. Then, a certain-order
derivative or partial derivative, of the variable function

existing in a fundamental relation, with respect to the

coordinate variables at an arbitrary discrete point can be
expressed as the weighted linear sum of the values of
function and/or its possible derivatives or partial deri-

vatives at all nodes. Thus, in solving a problem, a
discrete fundamental relation can be defined at a discrete
point that is not a node. If a point used for defining
discrete fundamental relations is also a node, then it is

not necessary that the number of discrete fundamental
relations at that node equals the number of degrees of
freedom attached to it. This concept has been used to

construct the discrete inter-element transition conditions
and boundary conditions in the differential quadrature
element analyses of the beam-bending problem, frame

problem, and warping torsion bar problem [4–6]. In the
EDQ discretization, the number of total degrees of
freedom attached to the nodes is the same as the number

of total discrete fundamental relations required. Some
EDQ models can also be generated by using the DQ
model through a transformation operation. They are
DQ-generated EDQ models. The author has used DQ,

GDQ, and EDQ to develop the differential quadrature
element method (DQEM) [4,7], the generalized differ-
ential quadrature element method (GDQEM) [8], the

differential quadrature finite element method (DQFEM)
[9], and the differential quadrature finite difference
method (DQFDM) [10].

In DQEM and GDQEM, the problem domain is
separated into a finite number of subdomains or ele-
ments. The DQ, GDQ, and EDQ techniques are used to
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discretize the differential or partial differential governing
equations defined in all elements, the transition condi-

tions defined on the inter-element boundaries of two
adjacent elements, and the boundary conditions of the
problem. The DQEM adopts the mapping technique to

develop irregular elements, while the GDQEM develops
irregular elements without introducing this mathema-
tical technique.

In using the DQEM, GDQEM, and DQFDM to the
spacial discretization to solve generic engineering or
scientific problems, the interior elements can be regular.
However, in order to solve a problem having an arbi-

trary analysis domain configuration, elements connected
to or near the analysis domain boundary might need to
be irregular. The theoretical basis of DQEM, GDQEM,

and DQFDM is rigorous, since all fundamental rela-
tions are satisfied locally.
The EDQ also has been used to develop direct time

integration schemes for the transient analysis [11]. The
developed special discretization techniques and the
temporal discretization method can be used to effectively

solve generic continuum mechanics problems. Numer-
ical results of some sample problems solved by using
these methods are presented. They demonstrate these
novel numerical methods.

2. Extended differential quadrature

In using the EDQ to solve a problem, the number of

total degrees of freedom attached to the nodes is the
same as the number of total discrete fundamental rela-
tions required for solving the problem. A discrete
fundamental relation can be defined at a point that is

not a node. Then, a certain order of derivative or partial
derivative, of the variable function existing in a funda-
mental relation, at an arbitrary point with respect to the

coordinate variables can be expressed as the weighted
linear sum of the values of variable function and/or its
possible derivatives at all nodes [3]. Thus, in solving a

problem, a discrete fundamental relation can be defined
at a point that is not a node. If a point used for defining
discrete fundamental relations is also a node, then it is

not necessary that the number of discrete fundamental
relations at that node equals the number of degrees of
freedom attached to it. This concept has been used to
construct the discrete inter-element transition conditions

and boundary conditions in the differential quadrature
element analyses of the beam-bending problem, and the
warping torsion bar problem.

Let �(�) denote the variable function associated with a
one-dimensional problem with � the space coordinate or
time variable. The EDQ discretization for a derivative of

order m at discrete point � can be expressed by

dm��
d�m

¼ D�m

�i ~�i, i ¼ 1,2, . . . , �N ð1Þ

where �N is the number of degrees of freedom and ~��� is

the values of variable function and/or its possible deri-
vatives at the N nodes. The variable function can be a set
of appropriate analytical functions denoted by �p(�).
The substitution of �p(�) in Eq. (1) leads to a linear

algebraic system for determining the weighting coeffi-
cients D�m

�i . The variable function can also be
approximated by

�ð�Þ ¼  pð�Þ ~�p, p ¼ 1,2, . . . , �N ð2Þ

where  p(�) are the corresponding interpolation func-
tions of ~�p. Adopting  p(�) as the variable function �(�)
and substituting it into Eq. (1), a linear algebraic system
for determining D�m

�i can be obtained. The mth-order

differentiation of Eq. (2) at discrete point � also leads to
the EDQ discretization in Eq. (1) in which D�m

�i is
expressed by

D�m

�i ¼
dm i

d�m
j� ð3Þ

Using this equation, the weighting coefficients can be
obtained easily by simple algebraic calculations.

The variable function can also be approximated by

�ð�Þ ¼ 	pð�Þcp, p ¼ 1,2, . . . , �N ð4Þ

where �p(�) are appropriate analytical functions and cp
are unknown coefficients. The constraint conditions at
all nodes can be expressed as

~�p ¼ Xp �pc �p ð5Þ

where �p�p are composed of the values of �p(�) and/or
their possible derivatives at all nodes. Solving Eq. (5) for
c�p and then substituting it in Eq. (4), the variable func-
tion can be rewritten as

�ð�Þ ¼ 	pð�ÞX�1�pp ~� �p ð6Þ

Using this equation, the weighting coefficients can also

be obtained:

D�m

�i ¼
@m	�p

@�m
�j X�1i �p ð7Þ

Various analytical functions, such as sinc functions,
Lagrange polynomials, Hermite polynomials, Cheby-

shev polynomials, Bernoulli polynomials, Euler
polynomials, rational functions, etc., can be used to
define the weighting coefficients. To solve problems

having singularity properties, certain singular functions
can be used for the EDQ discretization. The problems
having infinite domains can also be treated. Hermite

polynomials have been used to solve certain structural
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problems with the convergence assured [3]. The con-
vergence characteristics of EDQ adopting Chebyshev

polynomials, Bernoulli polynomials, and Euler poly-
nomials also has been carried out [12].

Consider the one-dimensional discretization using

only one degree of freedom (DOF) of the variable
function at the node to define the DQ. Lagrange inter-
polation functions can be used to explicitly express the

weighting coefficients. For the Lagrange DQ model, the
number of DOF �N is equal to the number of nodes N.
Lagrange interpolation functions L̂�(�) can be expressed
by

L̂�ð�Þ ¼
Mð�Þ

ð� � ��ÞMð1Þð��Þ
ð8Þ

where

Mð�Þ ¼
YN
�¼1
ð� � ��Þ, Mð1Þð��Þ ¼

YN
�¼1,� 6¼�

ð�� � ��Þ

Then, the weighting coefficients can be derived

D�
�� ¼ dL̂B

d� �j

¼ ð�����ÞM
ð1Þð��ÞMð1Þð��Þ�Mð��ÞMð1Þð��Þ
½ð�����ÞMð1Þð��Þ�2

ð9Þ

Mð1Þð��Þ
ð����ÞMð1Þð��Þ�; for � 6¼ �

¼
(
�
XN

�¼1;� 6¼�D��; for � ¼ �

When the uniform grid is used, Eq. (9) is reduced to

D�
�� ¼ ð�1Þ

�þ� ð�� 1Þ!ðN� �Þ!
��ð�� �Þð� � 1Þ!ðN� �Þ! for � 6¼ �

ð10Þ

where �� = �� � ��. The mth higher-order weighting
coefficients D�m

�� can be calculated by using the first-order

weighting coefficients D�
��

D�2

�� ¼
XN
�¼1

D�
��D

�
��,

D�3

�� ¼
XN
�¼1

D�2

��D
�
��,

�
�
�

D�m

�� ¼
XN
�¼1

D�m�1

�� D�
�� ð11Þ

3. Generation of extended differential quadrature using

differential quadrature

Some EDQ models can be generated by using DQ
through the establishment of a transformation relation

between the set of discrete function variables �� of the
equivalent DQ element and the set of discrete EDQ
parameters ~��. The weighting coefficients of these EDQ

models are calculated by using the related transforma-
tion matrices and the weighting coefficients of the
equivalent DQ model. For illustration, the C1–C0–C1

and C2–C0–C2 EDQ models used in the spacial dis-

cretization of DQEM analysis, and the C1–C0 EDQ
model used in the temporal discretization of EDQ-based
direct time integration method for structural dynamic

problems, are stated.

3.1 C1–C0–C1 extended differential quadrature model

Consider the C1–C0–C1 EDQ model with each of the
two boundary nodes having two DOF of the function

variable and its first-order physical derivative, and each
of the interior nodes having only one DOF of the
function variable. This EDQ model is compatible and
conformable and can automatically set the kinematic

transition conditions on the inter-element boundary of
two adjacent elements and the kinematic boundary
conditions for the DQEM analysis of flexural deforma-

tion problems of structures.
Let D�m

�i denote the weighting coefficients for the
equivalent DQ model defined on the natural space,

which is a C0–C0–C0 model. For the DQEM analysis of
flexural deformation problems of structures using the
DQ model, the DOF assigned to the first two and last

two nodes are used to define either the transition con-
ditions at the inter-element boundary of two adjacent
real physical elements or boundary conditions at the real
physical domain boundary. One of the two nodes at or

next to one boundary node of the equivalent DQ ele-
ment is at the inter-element boundary of two real
physical elements used to separate the analysis domain

or at the real physical domain boundary, while the other
one can be either outside or inside the real physical
elements and next to the element boundary of the real

physical element. If the two extra nodes are inside the
real physical element, then the equivalent DQ element
coincides with the real physical element. If the two extra

nodes are outside the real physical element, then the
equivalent DQ element extends over the two element
boundary points of the real physical element. Conse-
quently, for the DQEM analysis of flexural deformation

problems using DQ elements, the two adjacent equiva-
lent DQ elements are overlapped partially and the
equivalent DQ element containing the domain boundary

is extended over the physical domain boundary.
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Let N̂ denote the number of the two boundary nodes
of the C1–C0–C1 EDQ element plus the other �N � 4

interior nodes with �N = N. Also, let �l and l denote the
physical element lengths of the equivalent physical DQ
element and the physical C1–C0–C1 EDQ element. �l = l

for the transformation model with the physical EDQ
element coinciding the physical DQ element, while �l > l
for the transformation model with the two extra nodes

of the equivalent physical DQ element outside the phy-
sical EDQ element.
For the DQEM analysis of flexural deformation

problems using EDQ elements, the DOF assigned to an

auxiliary node of the equivalent DQ element can be
transformed to obtain one rotational DOF assigned to
the related element boundary node of the EDQ element.

Fig. 1 shows the C1–C0–C1 EDQ model generated by
using the equivalent DQ model with the two auxiliary
nodes inside the physical EDQ element. Assume that � is
a natural coordinate having one unit length for both the
C1–C0–C1 EDQ model and the equivalent DQ model
defined on the natural space. The transformation rela-

tion between the C1–C0–C1 EDQ model and the
equivalent DQ model can be represented by the fol-
lowing equation

f ~�g ¼ ½T�f�g ð12Þ

where

f�g ¼ �1 �2 �3 � � � �N�2 �N�1 �N½ �T ð13Þ

For this transformation, {~�} and [T] in Eq. (12) are
expressed by

f ~�g ¼ �1
d�1
d� �3 � � � �N�2 �N

d�N
d�

h iT
ð14Þ

and

½T� ¼

1 0 0 � � � 0 0 0
�D�
11

�D�
12

�D�
13 � � � �D�

1ðN�2Þ
�D�
1ðN�1Þ

�D�
1N

0 0 1 � � � 0 0 0
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
0 0 0 � � � 1 0 0
0 0 0 � � � 0 0 1

�D�
N1

�D�
N2

�D�
N3 � � � �D�

NðN�2Þ
�D�
NðN�1Þ

�D�
NN

26666666666664

37777777777775
ð15Þ

Fig. 2 shows the C1–C0–C1 EDQ model generated by

using the equivalent DQ model with the two auxiliary
nodes outside the physical EDQ element. For this
transformation, {~�} and [T] in Eq. (12) are expressed by

f ~�g ¼ �2
d�2
ld� �3 � � � �N�2 �N�1

d�N�1
d�

h iT
ð16Þ

and

½T� ¼

0 1 0 � � � 0 0 0
�D
�
21

�D
�
22

�D
�
23 � � � �D

�
2ðN�2Þ

�D
�
2ðN�1Þ

�D
�
2N

0 0 1 � � � 0 0 0
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
0 0 0 � � � 1 0 0
0 0 0 � � � 0 1 0

�D�
ðN�1Þ1

�D�
ðN�1Þ2

�D�
ðN�1Þ3 � � � �D�

ðN�1ÞðN�2Þ
�D�
ðN�1ÞðN�1Þ

�D�
ðN�1ÞN

26666666666664

37777777777775
ð17Þ

Assume that D�m

�i are weighting coefficients for the C1–

C0–C1 EDQ model defined on the natural space. By
using the fact that the derivatives with respect to the
local element-based physical coordinates at the N̂ grid
nodes are the same for both the C1–C0–C1 EDQ model

and the DQ model, then the following relation can be
obtained

�D�m

�i �i ¼ D�m

�i ~�i, � ¼ 1,2, . . . ,N̂; i ¼ 1,2, . . . , �N ð18Þ

The introduction of Eq. (12) into Eq. 18 leads to the

Fig. 2. Close boundary nodes of the C1–C0–C1 EDQ model

generated by using the equivalent DQ model with two auxiliary

nodes outside the physical EDQ model.

Fig. 1. Close boundary nodes of the C1–C0–C1 EDQ model

generated by using the equivalent DQ model with two auxiliary

nodes inside the physical EDQ model.
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following transformation equation for calculating the
weighting coefficients for the C1–C0–C1 EDQ model

D�m

�i ¼ �D�m

�j T
�1
ji , � ¼ 1,2, . . . ,N̂; i ¼ 1,2, . . . , �N ð19Þ

D�m

�i is an N � �N matrix with N = �N � 2. For applying
the C1–C0–C1 EDQ model to the DQEM analysis, the

physical first-order derivatives at the two EDQ element
boundary nodes are discrete EDQ parameters. Conse-
quently, the elements of the second and last columns of

the related EDQ weighting coefficient matrix D�m

�i need
to be multiplied by l.

3.2. C2–C0–C2 extended differential quadrature model

Consider the C2–C0–C2 EDQ model with each of the
two boundary nodes having three DOF of the function
variable and its first- and second-order derivatives, and

each of the interior nodes having only one DOF of the
function variable. This EDQ model can automatically
set the kinematic transition conditions and the con-

tinuity of the second-order derivatives of displacements
on the inter-element boundary of two adjacent elements
and the kinematic boundary conditions and the bend-

ing-moment-related natural boundary condition for the
DQEM analysis of flexural deformation problems of
structures.

To obtain the C2–C0–C2 EDQ model, two DOF of

two nodes of the equivalent DQ model close to a
boundary node of the physical C2–C0–C2 EDQ model
have to be transformed to the two DOF representing the

first-order and second-order derivatives at the related
EDQ element boundary node. These two nodes can be
either inside or outside the physical C2–C0–C2 EDQ

model. For illustration, the one of transforming four
DOF assigned to four equivalent physical DQ nodes
inside the related physical C2–C0–C2 EDQ model is
stated. Fig. 3 shows the C2–C0–C2 EDQ model gener-

ated by using the equivalent DQ model with the four
auxiliary nodes inside the physical EDQ element. The

transformation relation between the C2–C0–C2 EDQ
model and the equivalent DQ model is also represented

by Eq. (12) with

f ~�g ¼ �1
d�1
d�

d2�1
d�2

�4 � � � �N�3 �N
d�N
d�

d2�N
d�2

h iT
ð20Þ

and

½T� ¼

1 0 0 0 � � � 0 0 0 0
�D�
11

�D�
12

�D�
13

�D�
14 � � � �D�

1ðN�3Þ
�D�
1ðN�2Þ

�D�
1ðN�1Þ

�D�
1N

�D�2

11
�D�2

12
�D�2

13
�D�2

14 � � � �D�2

1ðN�3Þ
�D�2

1ðN�2Þ
�D�2

1ðN�1Þ
�D�2

1N

0 0 0 0 � � � 0 0 0 0
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
0 0 0 0 � � � 0 0 0 0
0 0 0 0 � � � 0 0 0 1

�D
�
N1

�D
�
N2

�D
�
N3

�D
�
N4 � � � �D

�
NðN�3Þ

�D
�
NðN�2Þ

�D
�
NðN�1Þ

�D
�
NN

�D
�2

N1
�D
�2

N2
�D
�2

N3
�D
�2

N4 � � � �D
�2

NðN�3Þ
�D
�2

NðN�2Þ
�D
�2

NðN�1Þ
�D
�2

NN

26666666666666666664

37777777777777777775
ð21Þ

Using [T] in Eq. (19), the weighting coefficients for the

C2–C0–C2 EDQ model can be obtained with N̂= �N � 4.
For applying the C2–C0–C2 EDQ model to the DQEM
analysis, the physical first- and second-order derivatives
at the two EDQ element boundary nodes are discrete

EDQ parameters. Consequently, the elements of the
second and ( �N � 1)th columns of the related EDQ
weighting coefficient matrix D�m

�i need to be multiplied by

l, and the elements of the third and last columns need to
be multiplied by l2.

3.3. C1–C0 extended differential quadrature model

Consider the C1–C0 EDQ model with the first node
having two DOF of the function variable and its first
derivative, and each of the other nodes having only one

DOF of the function variable. This EDQ model can
automatically set the initial conditions of each integra-
tion step for the EDQ-based step-by-step direct time

integration method for solving transient structural
problems.
To obtain the C1–C0 EDQ model, one DOF of one

node of the equivalent physical DQ model close to the
first node of the related physical EDQ model has to be
transformed to the DOF representing the first-order

derivative at the first node of the physical C1–C0 EDQ
element. For illustration, the one of transforming one
DOF assigned to one equivalent physical DQ model
outside the physical C1–C0 EDQ model is stated. Fig. 4

shows the C1–C0 EDQ node with the related location
outside the related C2–C0–C2 EDQ model is stated. The
transformation relation between the C1–C0 EDQ model

and the DQ model is also represented by Eq. (12) withFig. 3. Close boundary nodes of the C2–C0–C2 EDQ model

generated by using the equivalent DQ model with four auxiliary

nodes inside the physical EDQ model.
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f ~�g ¼ �2
d�2
d� �3 � � � �N�1 �N

h iT
ð22Þ

and

½T� ¼

0 1 0 � � � 0 0
�D�
N21

�D�
N22

�D�
N23 � � � �D�

2ðN�1Þ
�D�
2N

0 0 1 � � � 0 0
� � � � � � � �
� � � � � � � �
� � � � � � � �
0 0 0 � � � 1 0
0 0 0 � � � 0 1

266666666664

377777777775
ð23Þ

Using [T] in Eq. (19), the weighting coefficients for the
C1–C0 EDQ model can be obtained with N̂ = �N � 1.

For applying the C1–C0 EDQ model to the transient
structural analysis, the physical first-order derivative at

the first EDQ element boundary node is a discrete EDQ
parameter. Consequently, the elements of the second
column of the related EDQ weighting coefficient matrix

D�m

�i need to be multiplied by l.

4. Numerical examples

The free vibration of the clamped square plate was

analyzed by using one DQEM element. The problem
was solved by using the C1–C0–C1 EDQ model gener-
ated by using both of the equivalent DQ models with

equally spaced nodes and with the two auxiliary nodes
inside and outside the physical EDQ model. Let a, �, D,
and � denote the edge length, thickness, flexural rigidity,
and mass density, respectively, of a square plate. Also,
let the natural frequency !n of the nth vibration mode be

expressed by !n ¼ Cn

a2

ffiffiffiffi
D
��

q
, with Cn being the frequency

factor. The first four frequency factors obtained by the

two DQEM models are listed in Tables 1 and 2, sepa-
rately. They are compared with the results obtained by
Leissa [13]. They all show excellent convergence property.
The analysis of buckling of a simply supported beam

resting on a Winkler elastic foundation and subjected to
a compressive force was also carried out. The Young’s
modulus E, second moment of inertia I, and beam

length L are all equal to 1. The foundation constant k is

Table 1

The first four frequency factors of a clamped square plate solved by the DQEM using the C1–C0–C1 EDQ model generated by using the

equivalent DQ model with two auxiliary nodes inside the physical EDQ model

Order of

approximation

C1 C2 C3 C4

6 0.368344�102 0.650341�102 0.650341�102 0.901151�102
8 0.360286�102 0.796985�102 0.796985�102
10 0.359929�102 0.730596�102 0.730596�102 0.105345�103
Leissa’s solutions 0.35992�102 0.73413�102 0.73413�102 0.10827�103

Fig. 4. Close boundary nodes of the C1–C0 EDQ model gen-

erated by using the equivalent DQ model with the auxiliary

node outside the physical EDQ model.

Table 2

The first four frequency factors of a clamped square plate solved by the DQEM using the C1–C0–C1 EDQ model generated by using the

equivalent DQ model with two auxiliary nodes outside the physical EDQ model

Order of

approximation

C1 C2 C3 C4

4 0.3475629�102
6 0.3630833�102 0.7160144�102 0.7160144�102 0.1022950�103
8 0.3600669�102 0.7433538�102 0.7433538�102 0.1097962�103
10 0.3599020�102 0.7335022�102 0.7335022�102 0.1082930�103
Leissa’s solutions 0.35992�102 0.73413�102 0.73413�102 0.10827�103
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equal to 0.5. The C2–C0–C2 EDQ model generated by

using the equivalent DQ model with equally spaced
nodes and with the four auxiliary nodes inside the
physical EDQ model is used to model the beam struc-

ture. Let Pcr,n denote the critical loads. Numerical
results of the first three critical loads are summarized
and listed in Table 3. The DQEM results are compared

with the analytical solutions [14].
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Table 3

The first three critical loads of a simply supported beam resting on a Winkler foundation subjected to a compressive force, solved by

the DQEM using the C2–C0–C2 EDQ model generated by using the equivalent DQ model with four auxiliary nodes inside the physical

EDQ model

Number of elements Order of

approximations

Pcr,1 Pcr,2 Pcr,3

1 9 0.852698524�101 0.272684597�102
11 0.902698246�101 0.356982561�102 0.855320102�102
13 0.979825438�101 0.377536249�102 0.852650326�102
15 0.980216983�101 0.390026895�102 0.880869515�102

3 9 0.992172463�101 0.395073043�102 0.888569559�102
11 0.992035566�101 0.394968576�102 0.888342912�102
13 0.992030431�101 0.394968036�102 0.888338560�102
15 0.992028329�101 0.394967956�102 0.888336930�102

5 9 0.992034204�101 0.395267305�102 0.888340231�102
11 0.992027013�101 0.394939899�102 0.888336810�102
13 0.992026889�101 0.394939052�102 0.888330992�102
15 0.992026512�101 0.394917598�102 0.888320693�102

Analytical solutions 0.992026499�101 0.394910827�102 0.888320685�102

C.N. Chen / Third MIT Conference on Computational Fluid and Solid Mechanics1068


