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Abstract

In this paper we analyse the problem of computing eigenvalues and eigenfunotions of the Laplace operator and of the
grad-div operator by discontinuous Galerkin (DG) methods. Conditions under which DG methods provide spectrally
correct approximations are given in both cases.
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1. Introduction

In this paper we address the question of whether
discontinuous Galerkin (DG) methods can be used for
spectral computations. We consider the cases of the

Laplace operator (with compact inverse), and of the
grad-div operator (with non-compact inverse), which
describe the vibration frequencies of a prestressed
membrane and of a fluid in a cavity, respectively. We

show that, in both cases, the answer to this question is
affirmative for a wide class of (stable) DG methods. Our
spectral approximation analysis takes inspiration from

previous works on conforming discretizations as, e.g.,
[1,2,3,4]. The results presented in this paper are devel-
oped in [5] and [6].

2. The Laplace eigenproblem

Consider the eigenvalue problem

��u ¼ �u in �, u ¼ 0 on @� ð1Þ

where � is a bounded Lipschitz polygonal domain in R
2.

Set V = H1
0(�) and kukv = krukL2(�)2. From here

on, we denote by (�,�) the standard inner product in

L2(�)n, n = 1, 2. The variational form of problem (1)
consists in finding (0 6¼ u, �) 2 V � R such that

aðu; vÞ :¼ ðru,rvÞ ¼ �ðu,vÞ 8v 2 V

Consider any DG method (see, e.g., [7]) defined on
regular and shape-regular meshes Th, with DG bilinear

from ah (.,.) defined on the DG space:

Vh :¼ fv 2 L2ð�Þ : v jK 2 P‘ðKÞ 8K 2 T hg

where P‘(K) is the space of polynomials of degree at
most ‘ � 1 on K. The discrete problem is then defined as:
find (0 6¼ uh, �h) 2 Vh � R such that

ahðuh; vÞ ¼ �hðuh; vÞ 8v 2 Vh

Introduce V(h) := V + Vh, endowed with the following
norm:

vk k2VðhÞ¼
X
K2T h

rvk k 2
L2ðKÞ2 þ

X
E2Eh

h�
1
2 v½ �½ �

���� ���� 2
L2ðEÞ

where "h is the set of all edges of Th and ½½v�� is the jump

of v across E. The following Poincaré-type inequality
holds true [7]: for all f 2 V(h), kfkL2(�) � CkfkV(h), where
the constant C depends only on � but not on the mesh.
The essential condition a DG method has to satisfy to

ensure spectral correct ness is the following property:
Property 1 (quasi-optimality) Let f 2 L2(�) and us 2 V be
the solution of ��us = f in �. The DG method for the

source problem: find uh 2 Vh such that ah(uh, �h) = (f,
�h) for all �h 2 Vh defines a unique discrete solution and
the following quasi-optimal error estimate holds true:

us � uhk kVðhÞ� Cht usk kHtþ1ð�Þ t ¼ minf‘; �g

where � is the elliptic regularity exponent of the source
problem (i.e. for any given f 2 L2(�), the solution us 2 V
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of ��us = f in � satisfies us 2 H�+1(�) and kuskH�þ1ð�Þ
� CkfkL2�Þ).
From now on we assume that Property 1 holds true.
We define the following continuous and discrete

solution operators:

T : L2ð�Þ ! V aðTf,vÞ ¼ ðf,vÞ 8v 2 V

TDG
h : L2ð�Þ ! Vh ahðTDG

h f,vÞ ¼ ðf,vÞ 8v 2 Vh

and denote by �(T) and �(TDG
h ) the spectrum of T and

TDG
h , respectively.

Theorem 1 (non-pollution of the spectrum) Let A 	 C be

an open set containing �(T). Then, for h small enough,
�(TDG

h ) 	 A.
Introduce the following notion of ‘distance’ (see [8]):

for any Y and Z closed subspaces of V(h),


hðY,ZÞ :¼ sup
y2Y

yk k
VðhÞ¼1

inf
z2Z

y� zk kvðhÞ,


̂hðY,ZÞ :¼ maxf
hðY,ZÞ, 
hðZ,YÞg

Theorem 2 (Completness of the spectrum and con-

vergence) Let � be an eigenvalue of T with algebraic
multiplicity n. Then, for h small enough, there exist
exactly n eigenvalues {�1,h, . . ., �n, h} of TDG

h (repeated

with their multiplicities) which converge to � and

sup
1�i�n

�� �i,h
�� �� � Cð
hðEð�Þ,VhÞÞ2

where E (�) is the eigenspace associated with �. More-

over, let Eh(�) be the sum of the eigenspaces associated
with �1, h, . . ., �n, h. Then:


̂hðEð�Þ,Ehð�ÞÞ � C
hðEð�Þ,VhÞ

Note that 
h(E(�), Vh) is the approximation error for

eigenfunctions in Vh.

3. The grad-div eigenproblem

Consider the eigenvalue problem

�rðr � uÞ ¼ !2u in �

rot u ¼ 0 in � ð2Þ
u � n ¼ 0 on @�

where � is a bounded Lipschitz polygonal domain in R
2,

and n is the outward normal unit vector to @�. We recall
that the 2D rotational operators rot and rot are defined
by rot v= @1v2 � @2v1 and rot w= (@2w, � @2w, � @1w),
respectively.
One of the standard ways to discretize the eigenpro-

blem (2) consists in neglecting the constraint rot u = 0

and add a zero frequency corresponding to the infinite-

dimensional kernel of the grad-div operator. In varia-
tional formulation: find (0 6¼ u, �) 2 V � R, with V :=

H0(div;�), such that

aðu,vÞ :¼ ðr � u, r � vÞ ¼ �ðu,vÞ 8v 2 V ð3Þ

Following this approach, denoting by ah(�,�) the DG-

bilinear form obtained by discretizing the grad-div
operator by any DG method with DG method with DG
space Vh := (Vh)

2, the discrete problem to be solved

reads: find (0 6¼ uh, �h) 2 Vh � R such that

ahðuh,vÞ ¼ �hðuh,vÞ 8v 2 Vh

Let V(h) = V+ Vh be endowed with the semi-norm and

norm:

vj j 2VðhÞ :¼
X
K2T h

r � vk k 2L2ðKÞ þ
X
E2Eh

h�
1
2 v½ �½ �N

���� ���� 2
L2ðEÞ,

vk k 2VðhÞ ¼ vk k 2
L2ð�Þ2 þ vj j 2VðhÞ,

where ½½u��N is the jump of the normal component of v
across E.

The analysis essentially follows [2] and [4], plus
treatment of non-conformity. It can be proved that a
DG discretization of (3) is spectrally correct in the sense
made precise in [2] (see also [4]), if the following prop-

erties are verified:
Property 2 (Coercivity in seminorm) For all v 2 Vh, ah(v,
v) � Cjvj2VðhÞ, with the constant C independent of the

mesh size.
Property 3 (Compatibility of the discrete kernel) Let Qc

h

:= {q 2 H1
0(�): qjK 2 P

‘+1(K) 8K 2 Th}, and denote by

Kh the discrete kernel of ah(�,�) in Vh. Then, rot Q
c
h 
 Kh.

Property 4 (Quasi-optimality) Let f 2 L2(�)2 and us 2 V

be the solution of �r(r � us) + us) = f in �. The
corresponding DG method: find uh 2 Vh such that ah (uh,

v) + (uh, v) = (f, v) for all v 2 Vh defines a unique
discrete solution. Moreover, whenever rot f = 0, the
following quasioptimal error estimate holds true:

us � uhk kVðhÞ� Cht usk kHtð�Þ2þ r � usk kHtð�Þ

	 

t ¼ minf‘,�g

where � is the regularity exponent of the source problem
(i.e. for any given f 2 L2(�)2, the solution us 2 V of

�r(r � us) + us = f in � satisfies us 2 H�(�)2, r � us 2
H�(�) and kuskH�(�)2 + kr � uskH�(�) � CkfkL2(�)2).

4. Conclusions

We have addressed the problem of spectral correct-
ness of DG methods as nonconforming approximations

of problems (1) and (2). The theory presented in Section
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2 can be extended to three dimensions and to meshes
with hanging nodes, whereas possible extensions of the

results announced in Section 3 are under investigation.
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[1] Babuška I, Osborn J. Eigenvalue problems. In PG Ciarlet

and J.L Lions, editors, Handbook of numerical analysis,

Vol. II, Finite element methods (Part 1). North-Holland:

Elsevier Science Publishers, 1991.

[2] Descloux J, Nassif N, Rappaz J. On spectral approxima-

tion Part 1. The problem of convergence. RAIRO Modél

Math Anal Numér 1978;12:97–112.

[3] Boffi D. Fortin operator and discrete compactness for

edge elements. Numer Math 2000;87:229–246.

[4] Caorsi S, Fernandes P, Raffetto M. On the convergence of

Galerkin finite element approximations of electromagnetic

eigenproblems. SIAM J Numer Anal 2000;38:580–607.

[5] Antonietti P, Buffa A, Perugia I. Discontinuous Galerkin

approximation of the Laplace eigenproblem. Technical

Report PV-23, IMATI-CNR, Pavia, Italy, 2004.

[6] Buffa A, Perugia I. Discontinuous Galerkin approxima-

tion of the Maxwell eigenproblem. In preparation.

[7] Arnold DN, Brezzi F, Cockburn B, Marini LD. Unified

analysis of discontinuous Galerkin methods for elliptic

problems. SIAM J Numer Anal 2001;39:1749–1779.

[8] Kato T. Perturbation theory of linear operators. Springer-

Verlag, Berlin, Heidelberg, 1966.

A. Buffa, I. Perugia / Third MIT Conference on Computational Fluid and Solid Mechanics1054


