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Abstract

Direct time integration is used widely for the solution of large deformation problems in solid and structural
mechanics. Direct integration schemes that are unconditionally stable for linear dynamic problems are also used for

nonlinear problems. However, unconditional stability may be lost in the nonlinear regime. The Newmark method
(trapezoidal rule) is used widely but may become unstable when large deformations and long time durations are
considered. A composite scheme is proposed for such analysis cases, and the results obtained using the trapezoidal rule

and the composite formula in a test problem are given. These results indicate the value of the composite scheme.
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1. Introduction

Direct time integration is used widely for the analysis
of nonlinear dynamic problems in structural mechanics.
A procedure is applied to solve the following equations

of equilibrium

M €U ¼ R� F ð1Þ

where for simplicity we are not considering velocity-

dependent damping.
Either explicit or implicit integration can be used,

depending on the nature of the problem to be solved. In

explicit integration, Eq. (1) is satisfied at time t; based on
that, the solution at time t + �t is obtained. The
solution marches through time without ever having to
solve a system of equations, with relatively little com-

putational cost per time step. Explicit schemes are
conditionally stable, though, and may need a time-step
size that is much smaller than that demanded by accu-

racy. These methods are therefore better suited to
problems such as wave propagation and crash condi-
tions, in which higher modes are excited and a fine

resolution of the solution is required.
Implicit methods require the solution of a system of

equations at each time step. Use of unconditionally

stable implicit schemes in linear analysis enables the use

of relatively large time steps, the size of which is dictated
only by accuracy considerations [1]. However, in non-

linear analyses, such schemes can cease to be stable, and
for time-step sizes that should be small enough for the
required accuracy, the solution may blow up. This is

exhibited by a lack of energy and momentum con-
servation in the solution for conservative problems.
Much research has been expended to overcome this

lack of stability in the nonlinear regime. Energy
momentum methods are shown by Simo and Tarnow [2]
to numerically conserve the energy and angular

momenta exactly for conservative problems. These
algorithms have been shown to remain stable for long
time simulations, where the more traditional algorithms
such as the trapezoidal rule have failed to produce a

solution. However, as shown by Laursen and Meng [3],
for general nonlinear material models these methods
require solution of a scalar variable either at the inte-

gration points or over the element in an averaged sense.
Also, a nonsymmetric tangent stiffness matrix may be
obtained, all making the algorithms computationally

considerably more expensive.
We are proposing in this paper an algorithm that

operates only on global vectors, uses only the usual

symmetric matrices, and retains good stability and
accuracy characteristics.
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2. A composite trapezoidal-backward-difference

procedure

In general, backward-difference expressions, when
used to approximate time derivatives in the equation of

dynamic equilibrium, result in algorithms that are dis-
sipative, i.e. a certain amount of numerical damping is
introduced in the solution. The Houbolt method is one

such example that uses a four-point backward-difference
approximation but introduces too much error even in
lower modes [1].
A composite integration scheme for solving first-order

equations arising in the simulation of silicon devices and
circuits was presented by Bank et al. [4]. This composite
scheme is being used in the ADINA program for fluid-

flow structural interaction problems. The first-order
fluid-flow equations and second-order structural equa-
tions are solved fully coupled in time using this

procedure [5,6]. In this paper, we present the time inte-
gration scheme for the equations of solids and
structures, i.e. Eq. (1), and give the solution of a test

problem to compare the scheme with the usual trape-
zoidal rule integration. For details on the notation used,
see Bathe [1].
Assume that the solution is known completely at time

t; based on that, the solution at time t + �t is to be
computed. Let t + ��t be an instant in time between
times t and t + �t, i.e. � 2 (0, 1). Then, using the

trapezoidal rule over the time interval ��t, we have the
following assumptions on velocity and displacement:

tþ��t _U ¼ t _Uþ
t €Uþtþ��t €U

2
��t ð2Þ

and

tþ��tU ¼ tUþ
t _Uþtþ��t _U

2
��t ð3Þ

or after simplification,

tþ��tU ¼ tUþt _U��tþ ðt €Uþtþ��t €UÞ ��t

2

� �2

ð4Þ

Solving for tþ��t €U

tþ��t €U ¼ ðtþ��t
U� tU� t _U��tÞ 4

�2�t2
� t €U ð5Þ

The equilibrium equation, Eq. (1), at time t + ��t can
be written as

Mtþ��t €U ¼ tþ��tR�tþ��tF ð6Þ

Substituting for t+��t€U in the above equation, and lin-
earizing the equation about the most recent

configuration, the following expression is obtained [1]:

tþ��tKði�1Þ þM
4

�2�t2

� �
�UðiÞ ¼ tþ��tR�tþ��tFði�1Þ

�M 4

�2�t2
ðtþ��t

Uði�1Þ � tUÞ
�

ð7Þ

� 4

��t
t _U� t €U

�
Once the displacements have been computed, the

velocities and accelerations are obtained from the rela-
tions given above.
Let the derivative of a function at time t + �t be

written in terms of the function values at times t, t +
��t, and t + �t as

tþ�t _f ¼ c1
tfþ c2

tþ��tfþ c3
tþ�tf ð8Þ

where

c1 ¼
ð1� �Þ

�t�
ð9Þ

c2 ¼
�1

ð1� �Þ��t
ð10Þ

c3 ¼
ð2� �Þ
ð1� �Þ�t

ð11Þ

Therefore, writing velocities in terms of displacements
and accelerations in terms of velocities, we have

tþ�t _U ¼ c1
tUþ c2

tþ��tUþ c3
tþ�tU ð12Þ

tþ�t €U ¼ c1
t _Uþ c2

tþ��t _Uþ c3
tþ�t _U ð13Þ

Now, writing Eq. (1) at time t + �t and making use
of the above expressions gives

Mtþ�t €U ¼tþ�tR�tþ�tF ð14Þ

which, on linearizing, results in

ðc3c3Mþtþ�tKði�1ÞÞ�UðiÞ ¼ tþ�tR�tþ�tFði�1Þ

�Mðc1t _Uþ c2
tþ��t _Uþ c3c1

tU ð15Þ

þc3c2tþ��tUþ c3c3
tþ�tUði�1ÞÞ

The solution for t+�tU and the calculation of the

velocities and accelerations from the backward differ-
ence approximations in Eqs (12) and (13) gives the
complete response at time t + �t.

3. Numerical example

To test the stability of the proposed algorithm we

choose a problem in elastodynamics, very similar to the
one used by Laursen and Meng [3]. A plate in plane
stress conditions is subjected to loading, as shown in

Fig. 1. The load is applied only for 10 s to give the plate
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a reasonable angular velocity and is then taken off to
produce a conservative system from that instant
onwards.

The problem is first solved using the trapezoidal rule
with �t = 0.02 s. The velocity and acceleration in the z-
direction of the initially top right corner of the plate are

plotted along with the angular momentum in Fig. 2. The
response of the structure under the specified loading is
contained mainly within the rigid body rotational mode.

The period of rigid body rotation is about 12.5 s and,
therefore, the time step chosen should be small enough
to capture the response very accurately. Even with such

a small time step, the trapezoidal rule fails to produce
the correct solution after a number of revolutions. In
fact, the errors begin to show up in the acceleration
response, which of course contributes to the deteriora-

tion in the quality of the velocity response, resulting in
an eventual blow-up in the displacements. Conse-
quently, the angular momentum is not conserved as well,

and a point is reached at which the solution can not
proceed any further.

The same problem is next solved using the proposed

composite formula with � = 0.5 and �t = 0.4 s. It is

seen in Fig. 3 that the quality of response remains
excellent. Actually, there is a negligible decay in the
angular momentum of the plate. This decay is less than

0.06% per revolution for the time step chosen. This
problem solution illustrates the superior and more
robust performance of the composite procedure because
the solution remains stable and accurate for a very long

duration.

4. Conclusions

We have presented a composite time integration

scheme based on a combination of the trapezoidal rule

Fig. 2. The rotating plate problem. Results using the trape-

zoidal rule; �t = 0.02 s.

Fig. 1. The rotating plate problem.
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and a three-point backward-difference approximation.
The composite scheme is used in the ADINA program

for the solution of fluid-flow structural interaction pro-
blems, where first- and second-order system equations
are fully coupled. The method is typically used in

ADINA for the analysis of fluid-flow-induced vibrations
of structures.
In this paper, we presented the scheme for structural

analyses and demonstrated the performance in a test
problem. For a given time step size, the scheme is about
twice as expensive computationally as the usual trape-
zoidal rule and, hence, the method is of interest only for

analysis cases where the composite scheme provides
much more stability and accuracy than the trapezoidal
rule. A typical case was presented in this paper and

involves large displacements and rotations over long
periods of time. Further details and experiences with the
algorithm are given in Baig and Bathe [7].
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Fig. 3. The rotating plate problem. Results using the composite

scheme; �t = 0.4 s.
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