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Abstract

It is well known that the stress state at the surface edges of joined bodies can have a significant effect on the strength
of the connection. In this paper, a magnetoactive connection that can be modeled as a piecewise homogeneous two-

dimensional (2D) wedge is assumed, and the magnetoelastic stresses and the magnetic field near the corner point of this
wedge are investigated. By using eigenfunction series expansions, all components of the magnetoelastic stresses and the
perturbed magnetic field near the corner point are analyzed. It is shown that the applied magnetic field has a significant
influence on the stress concentration in the vicinity of the contact surface edge.
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1. Introduction

Recent years have witnessed the proposal of a new
concept of multifunctional materials/structures and the
strong growth of the techniques associated with this

concept. The concept is especially targeted to provide
broader capabilities to the next generation of aerospace
vehicles/spacecraft. The underlying idea of this concept

is to exploit multiphysical and/or multiscale properties
of materials or structures in such a way that besides its
major designated functionality, the same structural
component should accomplish at least one more func-

tion. An example of such a design is a smart load-
carrying structure that can conduct non-destructive
crack diagnosis or health monitoring by itself. This can

lead to truly integrated structures, being able to perform
multiple structural as well as electromagnetic and elec-
tromechanical functions. To implement this concept in

various contexts, such as in aerospace vehicles and
nuclear reactor constructions, a better understanding of
the static and dynamic behaviors of the elastic structures

subjected to the simultaneous action of mechanical,
thermal, electrical, magnetic, and other fields becomes
necessary.

In the past, much research effort has been devoted to,
without considering the interaction of mechanical and

other (e.g. magnetic, electrical) applied fields, the study
of stress concentration near the corner point of joined
linear elastic bodies [1]. In the present work, a body

made of magnetosoft ferromagnetic materials is
assumed to be immersed in a stationary magnetic field.
The governing equations and surface conditions can be

found in the theory of magnetoelasticity of magnetosoft
ferromagnetic bodies [2]. Local solutions are constructed
for the formulated boundary problem. All the compo-
nents of the magnetoelastic stresses and the perturbed

magnetic field near the wedge corner point are analyzed
using eigenfunction series expansions. This leads to a set
of ordinary differential equations. The unknown coeffi-

cients depend on the boundary and contact conditions,
and the local characteristics of the stresses near the
corner point can be predicted by solving an eigenvalue

problem of a system of linear equations.
Depending on the eigenvalues, the stress concentra-

tion near the contact surface edge could be either

increased or decreased by the applied magnetic field, in
comparison with the pure elastic case. The numerical
calculations show that the account of the magnetic field
and the interaction of mechanical and magnetic fields

can essentially change the magnitude of the stress state.
This makes it possible to control stress concentration in
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the vicinity of the contact surface edge of the composite
body by applying an external magnetic field.

2. Modeling the problem

Consider the plane problem of magnetoelasticity for
an isotropic prismatic compound body made of mag-

netosoft ferromagnetic materials and having different
magnetoelastic properties for each constituent compo-
nent. In order to investigate the local stress state and
local magnetic field near the corner point of the body, P,

the cylindrical coordinate system (z, r, 
) is adopted so
that the origin of the polar coordinate system (r, 
) is
located at the point P. The angle 
 is measured coun-

terclockwise from the division line (Fig. 1). To be more
specialized, it is assumed that the compound wedge
associated with the point P consists of two components

perfectly bonded together. The wedge is immersed in an
external stationary magnetic field and the medium sur-
rounding the wedge is assumed to be the vacuum.

We denote, near the corner point P of the wedge, by

u
ðiÞ
r , u

ðiÞ

 (i = 1, 2) the components of the displacement

vector U(i) in the directions r and 
, while ’(i) is the
magnetic potential induced within the wedge. For the

problem being considered herein, with the help of the
field equations of magnetoelasticity of dielectric mag-
netosoft ferromagnetic media [2,3], the following system
of equations can be derived:

Equations in the domain �i (i = 1, 2):
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where H2 	 @2/@r2 + 1/r�@/@r + 1/r2�@2/@
2 is the
Laplace operator in the polar coordinate system; �(i) 	
2�0�i /�i; ki 	 1/(1 � 2�i); �i = �

ðiÞ
r � 1.

The induced magnetic field outside the body can be
written as

r2’ðeÞ ¼ 0: ð2Þ

The boundary conditions on the surfaces 
 = 
1 and

 = �
2 can be expressed as
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Eqs (3a–d) state that the surfaces 
= 
1 and 
= �
2
are free of total stresses.

The contact conditions on the surface 
 = 0 can be
expressed in the following form:
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In Eqs (4b–e), �
ðiÞ
r
 and �

ðiÞ


 are the components of

elastic stresses; �
mðiÞ
r
 , �

mðiÞ


 , �

mðeÞ
r
 and �

mðeÞ


 are the com-

ponents of the Maxwell stress tensor within the wedge
and the vacuum, respectively. It is recalled that in Eq.

(4d), the relation �
ð1Þ
r H

ð1Þ
02 ¼ �

ð2Þ
r H

ð2Þ
02 ¼ H0 is used.

3. Solution of the problem

The displacement field and magnetic potential in each
of the domains �I (I = 1, 2) and the magnetic potential

in the external domain are found by assuming the fol-
lowing form of the solution [1, 5]:

uðiÞr ðr,
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Þ; u
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where �u
ðiÞ
r (
), �u

ðiÞ

 (
), �’(i)(
), and �’(e)(
) are unknown

Fig. 1. Geometry of a compound wedge.
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functions; � is a parameter that needs to defined by the
problem itself.

Substituting Eqs (5a–d) into Eqs (1) and (2) the
unknown functions can be represented as:

�uðiÞr ð
Þ ¼ Ai sin½ð�� 1Þ
� þ Bi cos½ð�� 1Þ
�þ
Ci sin½ð�þ 1Þ
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Þþ
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Þ ð6aÞ

�u
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in which
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In Eqs (6a–d), Ai, Bi, Ci, Di, Ei, Fi (i = 1, 2), Ee, and

Fe are unknown constants, which are to be determined
by imposing the boundary and contact conditions from
Eqs (3) and (4). As a result, a homogeneous system of

linear algebraic equations for the unknown constants is
obtained. The condition of existence of a non-trivial
solution of this algebraic system determines the

unknown parameter �, i.e. � should fulfill the following
transcendental equation:

�ð�,b2c ,
1,
2,�ð1Þr ,�ð2Þr ,�2,�1,�2Þ ¼ 0, ð8Þ

where bc 	 H0/
ffiffiffiffiffiffiffiffiffiffi
�0�2
p

.
As a special case, in the absence of the external

magnetic field, i.e. bc = 0, Eq. (8) splits into two inde-

pendent transcendental equations:

�0y ¼ 0, �0m ¼ 0: ð9a; bÞ

Eq. (9a) has been obtained by Chobanyan [4], and the

characteristics of elastic stresses near the corner point of
a compound body have been investigated. Eq. (9b) has
been obtained by Mittra and Li [5], and the behavior of

the magnetic field on the top of a piecewise homo-
geneous ferromagnetic wedge was studied. It can be
proved that all components of the magnetoelastic
stresses near the corner point of the wedge can assume

the following form:

� ¼ r�Re�1Rðr,
Þ, ð10Þ

where �Re 	 Re(�), and R(r, 
) is bounded in amplitude
and in general does not vanish when r ! 0.

From Eq. (10), it can be seen that the characteristics
of the magnetoelastic stress state near the contact sur-
face edge are determined by �Re. If �Re
 1, then in the

local area of the wedge, we have zero stress state. If
�R<1, then the magnetoelastic stresses increase with-
out bound at point P (i.e. strong concentration of

stresses occurs). It is recalled that due to the finiteness of
the induced magnetoelastic strain energy [4,5], �Re>0.

4. Results and discussion

The secant method for two functions is employed to

obtain the numerical solution of �Re and �Im (	 Im(�))
in Eq. (8). Table 1 and Figs 2 and 3 show some results of
�. It can be seen that:

1. The presence of the magnetic field can not only
increase the level of a stress concentration (see Table
1, columns 3–5, and Fig. 2) but also decrease the

concentration level (see Table 1, columns 1 and 2,
and Fig. 2). In some cases, the imaginary part �Im

vanishes, depending on the presence of magnetic

field (see Table 1, column 2).
2. There are cases when the imaginary part is zero in

the pure elastic case but different from zero in the

Fig. 2. Influence of the applied magnetic field on the stress

concentration at a wedge: Re(�) versus b2
c . Curve 1: �= 0.0625,

�1 = 0.28, �2 = 0.32, �
ð1Þ
r = 102, �

ð2Þ
r = 104, 
1 = 3	/4, 
2 =

	/4. Curve 2: � = 0.0625, �1 = �2 = 0.3, �
ð1Þ
r = 103, �

ð2Þ
r =

102, 
1 = 17	/24, 
2 = 7	/24. Curve 3: �= 0.0625, �1 = 0.32,

�2 = 0.28, �
ð1Þ
r = 10, �

ð2Þ
r = 104, 
1 = 
2 = 	/2.
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presence of a magnetic field (see Table 1, columns 3

and 4).
If a crack is on the boundary of two piecewise homo-
geneous half planes (i.e. 
1! 	, 
2! � 	), then for the

solution of transcendental Eq. (8), we have �Re = 0.5,
while �Im depends on the physicomechanical and geo-
metrical parameters of the problem (the result is in

accordance with the results of Shindo [3], Hasanyan et
al. [6], and Bagdasaryan et al. [7]).

5. Conclusions

From the results obtained we can conclude that the
external magnetic field can change the stress con-
centration level near the corner point of a compound

wedge. Compared with the pure elastic case, it can either
increase or decrease the stress concentration. Depending
on the amplitude of the applied magnetic field and the

geometrical as well as physical characteristics of the
wedge, the change of the amplitude of the stress con-
centration in comparison with the pure elastic case can
reach about 25% (see Table 1 and Figs 2 and 3). Hence,

the applied magnetic field can be instrumental toward
controlling the degree of concentration of magneto-
elastic stresses in the vicinity of the corner point of a

compound wedge.
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