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Abstract

A state feedback boundary control law that stabilizes fluid flow in a 2D thermal convection loop is presented. The
fluid is enclosed between two cylinders, heated from above and cooled from below, which makes its motion unstable for
a large enough Rayleigh number. This system is widely known for its ‘Lorenz system’ approximation, being potentially

chaotic. The actuation is at the boundary through rotation (direct velocity actuation) and heat flux (heating or cooling)
of the outer boundary. The design is a new approach for this kind of coupled PDE problem, based on a combination of
singular perturbation theory and the backstepping method for infinite dimensional linear systems. Stability is proved by

the Lyapunov method. Though only a linearized version of the plant is considered in the design, an extensive closed
loop simulation study of the nonlinear PDE model shows that the result holds for reasonably large initial conditions. A
highly accurate approximation to the control law is found in closed form.
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1. Introduction

A feedback boundary control law is designed for a
thermal fluid confined in a closed convection loop, cre-
ated by heating the lower half of the loop and cooling

the upper half. The temperature gradient induces density
differences, creating a motion opposed by viscosity and
thermal diffusivity. For a large Rayleigh number, the

plant develops an instability (and could even go chao-
tic). The control law is able to suppress this behavior.

Previous efforts include an LQG controller by Burns
et al. [1], and a nonlinear backstepping design for a

discretized version of the plant [2]. The present design is
simpler than the former and more rigorous than the
latter.

Our controller is designed for the linearized plant
using a combination of singular perturbation theory [3]
and the backstepping method for infinite dimensional

linear systems [4]. Combining both methods, a feedback
boundary control law is found which stabilizes the
closed loop for a large enough Prandtl number, whose

inverse plays the role of the singular perturbation
parameter.

2. Problem statement

We employ the model derived in [1], with the geo-
metry shown in Fig. 1; it consists of fluid confined
between two concentric cylinders standing in a vertical

plane. The main assumptions are a narrow gap between

Fig. 1. Convection loop.
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the cylinders, i.e. R2 � R1 
 R1 < R2, and negligible
azimuthal velocity. Introducing the Boussinesq approx-

imation, and integrating the momentum equation along
circles of fixed radius r, the plant equations are
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where v stands for the axial velocity, which only
depends, by assumption of the narrow gap, on the radius

r; T is the temperature, � the kinematic viscosity, � the
thermal diffusivity, and 
 = g�, with g the acceleration
of gravity and � the coefficient of thermal expansion.

The assumptions imply absence of the secondary circu-
lation in the model.
The boundary conditions are Dirichlet for velocity,

and Neumann in temperature, namely Tr(t, R1, �) =

Tr(t, R2, �) = K sin �, with K a constant representing the
heating and cooling.
Defining � = T � Kr sin � we shift the equilibrium to

the origin. We also define r0= r/d, t0= t�/d2, v0= vd/�,
� 0= �/4T, Ra = (1/C)
4d3/2��, P = �/�, where d =
R2 � R1, 4T = � (4/�)K(R1 + R2/2), C is a normal-

izing constant, and Ra and P are respectively the
Rayleigh and Prandtl numbers. Then the nondimen-
sional equations are, dropping primes:
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The boundary conditions are:

vðt,R1Þ ¼ 0 ð5Þ
vðt,R2Þ ¼ VðtÞ ð6Þ
�rðt,R1,�Þ ¼ 0 ð7Þ
�rðt,R2,�Þ ¼ Uðt,�Þ ð8Þ

where V and U are the nondimensional velocity and
temperature control.
Defining �= P�1, A1 = RaC/�, A2 = d�/2(R1 + R2)

and linearizing:
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We will stabilize this linearized plant around its equili-
brium at zero.

3. Reduced model

Setting E = 0 and solving Eq. (10) we obtain the

quasi-steady-state, which, substituted into Eq. (10),
gives the reduced system. Setting the velocity actuation:

V ¼ �A1
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the expression for the quasi-steady-state is
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rendering the following reduced system:
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where A12 = A1A2/2, with boundary conditions (7)–(8).

4. Backstepping controller for temperature

For stabilization of the reduced system we apply the

backstepping technique for parabolic PDEs [4].
The target system is going to be:

wt ¼
w��
r2
þ wr

r
þ wrr; ð14Þ

with boundary conditions wr(R1) = 0, wr(R2) = qw(R2).
For transforming Eq. (13) into Eq. (14) we define:

wðr,�Þ ¼ �ðr,�Þ �
Zr
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The kernel k verifies a ultra-hyperbolic PDE, which can
be simplified assuming

kðr,�,s,�Þ ¼ cos � cos�

ffiffi
s

r

r
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Then k̂ verifies a hyperbolic PIDE:
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with boundary conditions:
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2R1

ð18Þ
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The equation can be solved numerically or reformulated
into an integral equation. A first estimate of the kernel is
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The control law will be
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Introducing the approximation (20), we can get explicit
control laws (21) and (11).

5. Singular pertubation analysis for the entire system

Dropping the assumption that E = 0, the following

result holds:
Theorem 1 For a sufficiently small �, the system (9)–(10)
with boundary conditions (5)–(8), where the actuations V
and U are specified by control laws (11) and (21)

respectively, has unique classical solutions and is expo-
nentially stable at the origin in the L2 sense.

6. Simulation study

For numerical computations, a spectral decomposi-
tion and a Crank-Nicholson method have been used,

using the values R1 = 0.365 m, R2 = 0.395 m, P= 8.06,
Ra = 50, C = 7.8962 � 103, K = 9.113 C/m. Note that
we do not get chaos with these values but on the other
hand it is well known that the parameter values that lead

to chaos in Lorenz’s equations (which are approximated
by our plant) are not physical, see for example [5].
Figure 2 is a plot of kernels k̂(R2, s) and G0(R2 + s,

R2 � s), showing an excellent agreement. Figure 3 is an
unstable open loop simulation of temperature. In Fig. 4
closed loop simulations are shown, in which the plant is

stabilized, along with control effort.
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Fig. 2. Exact (solid) and approximate (dashed) control kernels at R2.
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Fig. 3. Open loop evolution of temperature at radius r = 0.37 m.
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Fig. 4. Closed loop simulation. (a) temperature at radius r = 0.37 m, (b) temperature at radius r = 0.38 m, (c) velocity, (d)

temperature control effort.

R. Vazquez, M. Krstic / Third MIT Conference on Computational Fluid and Solid Mechanics 921



feedbacks for a class of partial integro-differential equa-

tions. IEEE Transactions on Automatic Control

2004;49(12):2185–2202.

[5] Guckenheimer J, Holmes P. Nonlinear Oscillations,

Dynamical Systems, and Bifurcations of Vector Fields,

3rd edn. New York: Springer-Verlag, 1997.

R. Vazquez, M. Krstic / Third MIT Conference on Computational Fluid and Solid Mechanics922


