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Abstract

The purpose of this paper is to explore a time-split hybrid Galerkin scheme for the atmospheric shallow water
equations. A nonlinear variant of operator integration factor splitting is employed as the time-stepping scheme. The

hyperbolic system representing slow modes is discretized using the discontinuous Galerkin method. An implicit second-
order backward differentiation formula is applied to Coriolis and gravity wave terms. The implicit system is then
discretized using a spectral element or continuous Galerkin method. The advantages of such an approach include

improved mass and energy conservation properties. A TVD Runge-Kutta scheme is used for sub-stepping.
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1. Introduction

Semi-implicit time-stepping is often applied to the
terms responsible for fast waves in atmospheric general
circulation models to remove the time step restrictions

associated with these waves. Both the phase and
amplitude of the fastest gravity waves are distorted in
such numerical models. Because these waves carry very

little energy, this does not significantly impact the large-
scale flow. In meteorology, the semi-implicit method was
first introduced by Kwizak et al. [1]. Staniforth et al. [2]

analyzed the stability of the second-order accurate
Crank-Nicholson leapfrog (CNLF) semi-implicit scheme
in the context of a finite element shallow water model.

The seminal work of Robert [3] led to a six-fold

increase over the explicit time step for atmospheric
general circulation models. To achieve such dramatic
gains without recourse to a fully implicit integrator, a

semi-Lagrangian treatment of advection was combined
with a semi-implicit scheme for the stiff terms respon-
sible for gravity waves. Initially, semi-implicit semi-

Lagrangian time-stepping was applied to hyperbolic
problems, discretized using low-order finite-differences
and finite elements. The traditional semi-Lagrangian

algorithm implemented in atmospheric models relies on
backward trajectory integration and upstream inter-
polation [4]. A mass-conservative cell-integrated variant
of the algorithm was recently developed by Nair et al.

[5]. A potentially lower cost alternative is the operator
integrating factor splitting (OIFS) method of Maday et

al. [6] which relies on Eulerian sub-stepping of the
advection equation. In contrast with semi-Lagrangian
advection, there are no dissipation or dispersion errors

associated with upstream interpolation or trajectory
integration and the scheme maintains the high-order
accuracy of the discrete spatial operators.

A discontinuous Galerkin shallow water model
employing a nodal basis and explicit time-stepping is
described in Giraldo et al. [7]. Sherwin [8] demonstrated

the advantages of a hybrid Galerkin approach in the
context of the incompressible Navier-Stokes equations.
Eskilsson et al. [9] describe a discontinuous Galerkin
formulation of the shallow water equations using third-

order TVD Runge-Kutta time-stepping. Here, we
investigate a time-split scheme applied to the global
shallow water equations in curvilinear coordinates on

the cubed-sphere. A second-order backward differ-
entiation formula (BDF-2) is combined with TVD-RK
sub-stepping of a hyperbolic system. Because the

incompressibility constraint has been removed, the fully
nonlinear OIFS scheme of St-Cyr et al.[10] is employed.
When compared to spectral elements, the hybrid scheme

results in improved mass and energy conservation
properties. For smooth solutions, there is no need to
stabilize the time-stepping scheme with filters or limiters.
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2. Shallow water equations

The shallow water equations have been used as a
vehicle for testing promising numerical methods for
many years by the atmospheric modeling community.

They contain the essential wave propagation mechan-
isms found in atmospheric general circulation models.
These are the fast-moving gravity waves and nonlinear

Rossby waves. The latter are important for correctly
capturing nonlinear atmospheric dynamics. The gov-
erning equations of motion for the inviscid flow of a free
surface are
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h is the height above sea level, v is the horizontal velocity
and � = gh the geopotential height. f is the Coriolis

parameter and k a unit vector in the vertical direction.
The geopotential height is decomposed into a pertur-
bation about a constant base state, �0. To exploit the
potential of operator integration factor splitting for

systems of time-dependent partial differential equations,
St-Cyr et al.[10] show that a fully nonlinear form of the
algorithm is more appropriate. Sub-stepping is applied

to
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with initial conditions ~v(x,tn�q) = v(x,tn�q), ~�(x,tn�q) =
�(x,tn�q). The integration factor Qt�

S ðtÞ is applied to the
remaining de-coupled system of equations containing

the Coriolis and linear gravity wave terms
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An accurate representation of fast-moving gravity waves
is not required for large scale atmospheric dynamics and
the corresponding terms can be treated implicitly. For

an implicit second-order BDF-2 scheme, sub-stepping of
the right-hand-side terms is not required because
Qtn

S ðtnÞ ¼ I. The resulting time discretization of Eq. (5) is
given by
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The values of the fields ~v and ~� at time levels n � 1 and
n � 2 are computed by sub-stepping Eqs. (3) and (4) on
the intervals [tn�1, tn] and [tn�2, tn]. An implicit equation

for �n is obtained after space discretization and appli-
cation of block Gaussian elimination, resulting in a
modified Helmholtz problem. The coefficient matrix of

this linear system of equations is non-symmetric due to
the implicit treatment of the Coriolis terms and is solved
using an iterative conjugate-gradient squared (CGS)

algorithm.
For spectral elements, the linear advection operator is

skew-symmetric with purely imaginary eigenvalues.

Therefore, an efficient time integration scheme for sub-
stepping should have a stability region that includes a
portion of the imaginary axis. Numerical quadrature
can shift some of these eigenvalues into the right-half

plane and a filter is required to stabilize the time-step-
ping scheme [11]. A discontinuous Galerkin space
discretization, in combination with a total variation

diminishing (TVD) Runge-Kutta integrator, preserves
strong stability [12]. For smooth solutions, a filter or
limiter is not required to stabilize the time-stepping

scheme. In the next section we describe the cube-sphere
computational domain, discontinuous Galerkin
approximations and TVD-RK sub-stepping.

3. High-order Galerkin approximations

The flux form shallow-water equations in curvilinear
coordinates are described in Sadourny [13]. Let a1 and a2
be the covariant base vectors of the transformation
between inscribed cube and spherical surface. The metric
tensor of the transformation is defined as Gij � ai�aj.
Covariant and contravariant vectors are related through
the metric tensor by ui = Giju

j, ui = Gijuj, where Gij =
(Gij)

�1 and G = det(Gij). The six local coordinate sys-
tems (x1, x2) are based on equiangular central

projection, ��/4 � x1, x2 � �/4. The metric tensor for all
six faces of the cube is

Gij ¼
1

r4 cos2 x1 cos2 x2
1þ tan2 x1 � tanx1 tanx2

� tan x1 tan x2 1þ tan2 x2

� �
ð9Þ

where r ¼ ð1þ tan2x1 þ tan2x2Þ1=2 and
ffiffiffiffi
G
p

= 1/r3

cos2 x1 cos2 x2.

In curvilinear coordinates, the time-split hyperbolic
system (3)–(4) becomes
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The hyperbolic system (10)–(12) may be expressed in the
general flux form,

@

@t
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@
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Consider a scalar component of Eq. (13)

@U

@t
þr � FðUÞ ¼ SðUÞ, in �� ð0,TÞ ð14Þ

The computational domain � is partitioned into non-
overlapping elements �k. An approximate solution Uh

belongs to the finite dimensional space Vh(�). Multi-
plication of Eq. (14) by a test function ’h 2 Vh and

integration over the element �k results in a weak
Galerkin formulation of the problem.
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For a discontinuous Galerkin approximation, a nodal
basis for Vh is employed, consisting of the Legendre

cardinal functions. The solutions Uh are expanded in
terms of tensor-product basis functions on a Gauss-
Lobatto grid.

The flux function F (Uh) � n̂ is approximated by a Lax-
Friedrichs numerical flux

F̂ ðU�h ,Uþh Þ ¼
1

2
ðFðU�h Þ þ FðUþh ÞÞ � n̂� �ðUþh �U�h Þ
� �

ð16Þ

Boundary integrals are computed using higher-order
Gaussian quadrature. � is the upper bound for the

absolute value of eigenvalues of the flux Jacobian F0(U)
in the direction n̂. For the cubed-sphere, Nair et al. [14]
derived

�1 ¼ max u1
�� ��þ ffiffiffiffiffiffiffiffiffiffiffi

�G11
p	 


, �2 ¼ max u2
�� ��þ ffiffiffiffiffiffiffiffiffiffiffi

�G22
p	 

ð17Þ

Equations (10–12) can be written in the semi-discrete
form

d

dt
U ¼ LðUÞ in ð0,TÞ ð18Þ

A third-order total variation diminishing Runge-

Kutta (TVD-RK) scheme is applied to sub-step the
above system of ordinary differential equations [15]. The
implicit system (6)–(7) is discretized using the PN – PN�2
spectral element method.

4. Numerical experiments

Our numerical experiments are based on the shallow
water test suite of Williamson et al. [16]. Test case 5 is a
zonal flow impinging on an isolated mountain. The
center of the mountain is located at (3�/2, �/6) with

height hs = 2000 (1 � r/R) meters, where R = �/9 and
r2 = min[R2, (� � 3�/2)2 + (� � �/6)2]. Initial wind and
height fields are

u ¼ u0ðcos�0 cos �þ sin�0 cos� sin �Þ
v ¼ �u0 sin�0 sin�

g h ¼ g h0 �
u0
2
ð2a�þ u0Þ

ðsin � cos�0 � cos� cos � sin�0Þ2

where a is the earth’s radius, � the rotation rate, �0 = 0,

gh0 = 5960 m2/s2 and u0 = 20 m/s.
The geopotential height field after 15 days of inte-

gration is plotted in Fig. 1. The solution is smooth and

does not exhibit spurious oscillations. Conservation of
integral invariants is monitored with the normalized
integral defined in Williamson et al.[16],

� ðtÞ ¼ Ig½ ð�,�,tÞ� � Ig½ ð�,�,0Þ�
Ig½ ð�,�,0Þ�

ð19Þ

Normalized discrete mass, energy and potential enstro-
phy are plotted as a function of time in Fig. 2. The top
panel shows that mass lost during the integration is far

less than observed in Thomas et al. [17] and St-Cyr et al.
[10] for the same test using a spectral element dis-
cretization. There is a gradual degradation in total

energy, and total potential enstrophy remains nearly
constant.

5. Conclusions

Despite the more restrictive time step associated with
the third-order TVD-RK scheme, the efficiency of the
time-split hybrid Galerkin scheme is comparable to the

pure spectral element discretization. This is partially due
to the fact that the computation time is dominated by an
increasing number of CGS solver iterations with the

time step length. Improved preconditioning strategies

S.J. Thomas et al. / Third MIT Conference on Computational Fluid and Solid Mechanics878



Fig. 2. Time traces of normalized integral invariants for SW test case 5. Top panel is total mass, central panel total energy and the

bottom panel is potential enstrophy. 4 � 4 Gauss-Legendre Lobatto points per element. 864 elements.

Fig. 1. Shallow water test case 5: flow impinging on a mountain. Geopotential height field h at fifteen days produced by hybrid scheme.

150 spectral elements, 8 � 8 Gauss-Legendre Lobatto points per element.
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would no doubt have an impact on the overall efficiency.
For parallel computation, a clear advantage of the

hybrid Galerkin scheme is the reduced communication
overhead. In addition, filters or limiters are not required
to stabilize the time-stepping scheme for smooth solu-

tions. Although the proposed hybrid scheme is not
strictly conservative, the mass loss is significantly less
than in the case of a spectral element model.
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