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Abstract

The paper concerns the development of high-resolution methods for variable density flows and the implementation in
multi-species flow studies in microfluidics. The high-resolution discretisation is obtained by numerically reconstructing

the flow variables using information for the eigenstructure of the system of equations. Three variants of high-resolution
methods are presented and their accuracy is assessed against analytic and experimental results for diffusion broadening
in microfluidics. Results from numerical convergence studies are also presented to demonstrate the relative efficiency of

the three reconstruction variants in conjunction with first-, second and third-order of accuracy in spatial discretisation.
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1. Introduction

The development of advanced computational models
for variable density flows is motivated by several appli-
cation problems spanning from chemical reactors, multi-

material mixing and environmental flows, to combustion
engineering, biological flow and mass transport.
Depending on the application, variable density flows can

feature low or high speeds, and a range of spatial and
time scales, as well as large density and temperature
gradients, which in association with fast chemical reac-

tion rates can result in stiff numerical solutions and slow
convergence rates. None of the existing computational
methods can be considered as a panacea across the
broad spectrum of applications, thus further computa-

tional development and investigation are motivated.
During the last few years, high-resolution methods

have attracted the interest of computational modellers in

a number of applications. A detailed account of the
theory, numerical design practices and computational
implementation of high-resolution methods for incom-

pressible and low-speed flows can be found in [1]. High-
resolution methods essentially constitute advanced
computational models, which are designed to satisfy a

number of numerical properties that are closely asso-
ciated with the fluid mechanics and thermodynamics
laws. Using this solid computational framework, in the
present work we extend a family of high-resolution

methods, known as the characteristics-based scheme
[1,2], to low-speed, multi-material flows and investigate

accuracy and efficiency issues against analytic and
experimental data for the problem of diffusion broad-
ening in microfluidic channels.

2. High-resolution method for variable density flows

We consider a variable density multifluid (N species)

incompressible flow. The partial densities and total
density are denoted by �k, where k = 1 . . . N, and
� ¼ ��

k
, respectively. Coupling of the momentum and

continuity equations is obtained by the artificial com-

pressibility approach [3], which introduces a pseudo-
time pressure derivative, with respect to a pseudo-time � ,
to the continuity equation. The system of equations in

conservative form and generalised curvilinear co-ordi-
nates (�, �, 	) is then written as
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where Up = (p/
, �u, �v, �w, �, �k) and Ur = (0, �u, �v,
�w, �, �k); u, v and w are the velocity components; t and

� are the real and pseudo-time, respectively; and 
 is the
artificial compressibility parameter. The fluxes are given
by
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E ¼ ðu; �u2 þ p; �uv; �uw; �u; �kuÞ
F ¼ ðv; �uv; �v2 þ p; �vw; �v; �kvÞ
G ¼ ðw; �uw; �vw; �w2 þ p; �w; �kwÞ

R ¼ 0; �xx; �xy; �xz; 0;
1
Pe

Xl¼N
l¼1 Dl;k�

@�k=�
@x

� �
S ¼ 0; �yx; �yy; �yz; 0;

1
Pe

Xl¼N
l¼1 Dl;k�

@�k=�
@y

� �
L ¼ 0; �zx; �zy; �zz; 0;

1
Pe

Xl¼N
l¼1 Dl;k�

@�k=�
@z

� �

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:
where the convective bar-fluxes are defined by �" =

J(Ekx + Fky + Gkz), with �" = �E and �F, �G for k = �, �
and 	, respectively. The viscous fluxes are similarly
defined, where �xx, �xy, . . . are the shear stresses. The

terms Pe = UoL/D and Di,k are the Peclet number and
relative diffusion coefficient (dimensionless), respec-
tively, where Uo is a reference velocity and D is a
reference diffusion coefficient.

The numerical framework employed in this paper is
the characteristics-based scheme [2] (see also [1] for more
details) that was originally developed for the solution of

the incompressible flow equations. Here, we present the
extension of the scheme to variable density flows. For
the sake of simplicity, we consider two fluids but the

analysis can be easily extended to an arbitrary number
of materials. We note that the high-resolution recon-
struction concerns the convective fluxes. We present the

numerical reconstruction for the convective flux �E, while
we note that the result is similarly applied to the other
convective flux components. For steady flows, we retain
the pseudo-time derivative on the left-hand side of Eq.

(1) and drop the real time derivative from the right-hand
side. The one-dimensional counterpart of Eq. (1) is then
written

1

 � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�2xþ�2yþ�2z
p p� þ u� ~xþ v� ~yþ w� ~z ¼ 0

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2xþ�2yþ�2z
p ð�uÞ� þ ð�u2 þ pÞ� ~xþ ð�uvÞ� ~yþ ð�uwÞ� ~z ¼ 0

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2xþ�2yþ�2z
p ð�vÞ� þ ð�uvÞ� ~xþ ð�v2 þ pÞ� ~yþ ð�uwÞ� ~z ¼ 0

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2xþ�2yþ�2z
p ð�wÞ� þ ð�uwÞ� ~xþ ð�vwÞ� ~yþ ð�w2 þ pÞ� ~z ¼ 0

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2xþ�2yþ�2z
p ð�Þ� þ ð�uÞ� ~xþ ð�vÞ� ~yþ ð�wÞ� ~z ¼ 0

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2xþ�2yþ�2z
p ð�1Þ� þ ð�1uÞ� ~xþ ð�1vÞ� ~yþ ð�1wÞ� ~z ¼ 0
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where ~k ¼ �k
. ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�2x þ �2y þ �2z
q

; k ¼ x; y; z. This form
does not correspond exactly to the physical form of the
equations in non-conservative form because the equa-

tions for densities contain a velocity divergence part. In
non-conservative form the equations for densities will be
given by

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2xþ�2yþ�2z
p �� þ ��ðu ~xþ v ~yþ w ~zÞ ¼ 0

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2xþ�2yþ�2z
p �1� þ �1�ðu ~xþ v ~yþ w ~zÞ ¼ 0

8<
: ð3Þ

Using Eqs (3), Eqs (2) can be written in three different
formulations:

1. Transport form, which employs the equations for

densities as transport equations (3) and use these to
eliminate the total density from the momentum
equations of the conservative system (2).

2. Hybrid form, which uses the conservative form of the
continuity equation in order to eliminate the total
density from the momentum equations (2) and then

solve the momentum equations coupled with the
transport equations for densities (3).

3. Conservative form, which, directly, solves the con-
servative system of Eqs (2).

The three formulations lead to different variants of

numerical reconstruction, which are briefly presented
below.

2.1. Transport form

Using the same solution procedure as in [1,2], the
transport form leads to a system with distinct eigenva-

lues �0,1,2 = (�0, �0 + s, �0 � s), where s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�20 þ 
=�0

q
is the artificial speed of sound and �0 = u0~x + v0~y +

w0~z. Equation (2) leads to the following reconstruction
for the primitive variables

p ¼ 1
2sð�1p2 � �2p1 � 
 ðR1 � R2ÞÞ

u ¼ u0 þ ~x
2s�0

R3

v ¼ v0 þ ~y
2s�0

R3

w ¼ w0 þ ~z
2s�0

R3

� ¼ �0
�1 ¼ �10

8>>>>>>>>>><
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where the auxiliary functions R1, R2 and R3 are given by

R1 ¼ ~xðu0 � u1Þ þ ~yðv0 � v1Þ þ ~zðw0 � w1Þ
R2 ¼ ~xðu0 � u2Þ þ ~yðv0 � v2Þ þ ~zðw0 � w2Þ
R3 ¼ p1 � p2 þ �2�0R2 � �1�0R1

8<
:
The variables (�, p, u, v, w)0,1,2 are determined from the
previous iteration in pseudo-time according to the sign
of the corresponding eigenvalue.

2.2. Hybrid form

The hybrid form leads to a system with eigenvalues
�0,1,2 = (�0, (�0 + s)/2, (�0 � s)/2) and artificial speed of

sound s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�20 þ 4
=�0

q
. The primitive variables are

given by
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p ¼ 1
sð�1p2 � �2p1 � 
 ðR1 � R2ÞÞ

u ¼ u0 þ ~x
s�0
R3

v ¼ v0 þ ~y
s�0
R3

w ¼ w0 þ ~z
s�0
R3

� ¼ �0
�1 ¼ �10
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2.3. Conservative form

The conservative form yields a system with the same

eigenvalues as in the hybrid form; however, the recon-
structed values for densities include pseudo-
compressibility effects,

p ¼ 1
sð�1p2 � �2p1 � 
 ðR1 � R2ÞÞ

u ¼ u0 þ ~x
s�0
R3

v ¼ v0 þ ~y
s�0
R3

w ¼ v0 þ ~z
s�0
R3

� ¼ �0 þ �0

 p� p0 þ �0

s R3

� �
�1 ¼ �10 þ �0


 p� p0 þ �0
s R3

� �

8>>>>>>>>>>><
>>>>>>>>>>>:
The eigenvalues for the conservative and hybrid forms
correspond to the eigenvalues obtained for a variable-
density flow from the direct analysis of the Jacobi matrix

(see e.g. [4]).
Finally, the intercell values for (�, p, u, v, w)0,1,2 are

computed by polynomial interpolation up to third-order
accuracy [1,2]. For the iteration in pseudo-time we have

used a fourth-order Runge-Kutta scheme. Acceleration
of the numerical convergence has been obtained by
implementing a three-level, full multigrid-full approx-

imation storage algorithm [5].

3. Modelling of diffusion broadening in microfluidic

channels

In the present paper, we present results from the
implementation of the variable density high-resolution

method for the problem of diffusion broadening in a
microfluidic channel. Two fluids with dimensionless
densities 0.8 and 1, respectively, merge through rectan-
gular inlets and flow in a channel with square cross

section. The upstream conditions at the inlets are given
by parabolic velocity profiles and uniform distribution
of densities. The flow domain is illustrated in Fig. 1.

All three numerical reconstruction formulations
exhibited the same grid convergence characteristics and
there was no significant difference in the accuracy of the

obtained results when convergence was achieved: the
position of the diffusion front was predicted with a dif-
ference less than 0.2%.
On the other hand, the efficiency in terms of multigrid

convergence was dependent on the reconstruction

Diffusion Front

U Velocity Contours

Fig. 1. Development of the flow near the entrance region.
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Fig. 2. Multigrid convergence: (a) different high-resolution reconstruction variants; (b) different orders of polynomial interpolation.
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method. Figure 2(a) shows the multigrid convergence
for a flow computed at Re = 25 using first-order poly-
nomial interpolation and different forms of variables

reconstruction. The figure shows the maximum of the
solution variation within a pseudo-time step normalised
by the maximum variation at the first pseudo-iteration.

The results indicate that the best multigrid con-
vergence is obtained using the conservative form of the
variables reconstruction. For example, reduction of the

residual by 3 orders of magnitude requires 76, 90 and
124 multigrid cycles for the conservative, hybrid and
transport formulations, respectively. Higher-order
polynomial interpolation for (�, p, u, v, w)0,1,2 yielded

more accurate results for the flow but required more
multigrid cycles to achieve the same level of convergence
(Fig. 2(b)). Tests performed at different Reynolds

numbers revealed that the numerical convergence is
improved at higher Reynolds numbers for all forms of
variables reconstruction.

Figure 3 illustrates the development of the diffusion
front defined as the point where species density falls
below 20% of its density at the inlet. The results

obtained by the high-resolution, variable density method

for the diffusion broadening slopes were found to be in
satisfactory agreement (Table 1) with analytic [6] and
experimental results [6,7].

4. Concluding remarks

We have presented a high-resolution method for
modelling and simulation of variable density, multi-
material flows, and have applied it to the problem of

diffusion broadening in a microfluidic channel. The
three variants of the method provide similar results in
terms of accuracy but differ with respect to the con-

vergence. The best convergence results were achieved for
the full conservative form. All high-resolution variants
exhibit good accuracy against experimental and analytic

results.
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