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Abstract

The applicability of three numerical approximation methods of solving the Navier-Stokes equations (local stagnation

streamline approximation, ‘parabolized’ equations, and the thin-viscous-shock-layer approach) have been analyzed to
study nonequilibrium hypersonic viscous flows near blunt bodies. These approximations allow reducing the calculation
time by factor of 10 in comparison with the time needed to solve the full Navier-Stokes equations. The study

demonstrates a significant influence of regularization procedures on the approximate solutions.
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1. Introduction

Numerous methods [1,2] that require significant

computational resources have been developed to study
flowfield parameters around hypersonic vehicles. In the
present study, fast computational approximation meth-
ods (local stagnation streamline approximation [3,4],

‘parabolized’ Navier-Stokes equations [4,5], and the
thin-viscous-shock-layer approach [6,7]) are analyzed in
the cases of hypersonic flows around a sphere and a

blunt plate at angles of attack. Numerical approximate
solutions are compared with the solutions of the full
Navier-Stokes equations [8,9], experimental data [10,11]

and the results of the direct simulation Monte-Carlo
technique [12] at moderate Reynolds numbers 1000 >
Re0 > 10. Effective regularization algorithms [3,4,5,6,7]

were developed.

2. Numerical solutions of the Navier-Stokes equations

The Navier-Stokes equations [9], relaxation equation,
and expressions for heat and energy diffusion fluxes [13]
are used here to describe the airflow with rotational

relaxation. The undisturbed upstream flow and ‘free
flow’ conditions [8] at the distances far from the body

were used. The slip, temperature jump, rotational energy
jump, and the diffusion velocity slip were specified on
the body surface [3]. The conservative finite-difference

scheme [8] and Seidel’s implicit method [9] were used in
the study.
The numerical solutions for translational (Tt) and

equilibrium (Teq) temperatures, and nonequilibrium

rotational energy (Er) at Reynolds number
Reo ¼ �1U1a=
ðToÞ ¼ 14:4, Mach number M1 = 6.5,
and temperature factor tw = 0.3 are shown in Fig. 1

(dashed lines). The numerical results for Er correlate well
with experimental data [10].
The Stanton numbers St at the spherical stagnation

point were calculated at M1 = 15, tw = 0.15, and
various Reynolds numbers. The solutions of the Navier-
Stokes equations with slip and non-slip boundary con-

ditions are shown in Fig. 2. The results correlate well
with experimental data [11], numerical DSMC data [12]
and boundary-layer solution. The slip conditions must
be included at Re� < 20.

3. Local approximate solutions of the Navier-Stokes

equations

A local similitude character of flow near the stagna-
tion streamline is used for transforming the Navier-
Stokes equations into the system of ordinary differential

equations [4]. This simplification drastically decreases
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the amount of computational time. The applicability of
such approach [3] is studied here by comparing the
approximate solutions with the calculations of the full

Navier-Stokes equations for nonequilibrium viscous
flows.

The Navier-Stokes equations [9] written in coordi-

nates s, n (s is the coordinate measured along the body

generatrix and n is the normal to the body surface) were
modified by the following expressions [4]:

� ¼ �1ðnÞ; � ¼ �1ðnÞ cosðsÞ ð1Þ
u ¼ u1ðnÞ sinðsÞ ð2Þ
T ¼ T1ðnÞ þ 0:5T2ðnÞ sin2ðsÞ ð3Þ

Fig. 1. Rotational energy Er, translational Tt and equilibrium Teq temperatures at critical stagnation line of the sphere. Experimental

data from [10].

Fig. 2. Stanton numbers St on a sphere vs. Reynolds numbers Reo for different medium models at various wind-tunnel conditions [11].
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E ¼ E1ðnÞ þ 0:5E2ðnÞ sin2ðsÞ ð4Þ
p ¼ p1ðnÞ þ 0:5p2ðnÞ sin2ðsÞ ð5Þ
p1 ¼ �1AT1; p2 ¼ �1AT2 ð6Þ

 ¼ 
1ðnÞ þ 0:5
2ðnÞ sin2ðsÞ ð7Þ

1 ¼ T!1 ; 
2 ¼ !
1T2=T1 ð8Þ

Substituting Eqs. (1)–(8) in the Navier-Stokes equa-
tions [9] at s = 0, we get the equations for �1, �1, T1, E1

[3]. The equation terms should be considered as func-
tions of the variable s and differentiated. Then
substituting Eqs. (1)–(8) in the arrived equations, we get

the equations for u1, T2, E2 [3].
The one-dimensional implicit scheme [9] was used for

solving the ‘local’ differential equations. The results

calculated by approximation method (solid lines) and
the Navier-Stokes equations (dashed lines) for stream-
lining a sphere by nitrogen at Re� = 14.4, M1 = 6.5,
and tw = 0.3 are shown in Fig. 1. The comparison

demonstrates that the local approximation technique,
based on transformation (1)–(8), is applicable for the
description of the nonequilibrium viscous flow.

4. Approximation of the thin viscous shock layer

The thin-viscous-shock-layer (TVSL) approximation

[6] is used for analyzing nonequilibrium flows near a

blunt body. The TVSL equations are found from
asymptotic analysis of the Navier-Stokes equations [9] at

" ! 0, Reo ! 1, and "Reo = const, where " = (�-1)/
(2�) and � is a specific heat ratio. The generalized
Rankine-Hugoniot boundary conditions were for-

mulated in [6,7]. The two-point matrix box-scheme [6]
and Newton-Raphson method [7] were used for solving
the grid equations.

The Stanton numbers St at the spherical stagnation
point were calculated under wind-tunnel conditions at
M1 = 15, tw = 0.15, and various Reynolds numbers.
The TVSL-model results (line) and solutions of the

Navier-Stokes equations with slip boundary conditions
(filled triangles) are shown in Fig. 2. At Re� > 10, the
results correlate well with experimental data [11] and

numerical DSMC data [12].

5. Applications of ‘parabolized’ Navier-Stokes equations

Another marching method of solving simplified

Navier-Stokes equations [1,4,5] allows economic usage
of the computer resources. The ‘parabolized’ equations
are found from the Navier-Stokes equations by exclud-

ing derivatives from viscous terms in the marching
direction [5]. The regularization procedure [5] introduces
the vector Ep as the portion of the streamwise flux [9]
responsible for preserving ellipticity in the equations

through the subsonic layer. Two approximations for

Fig. 3. Pressure P, heat flux Q, and friction Cf coefficients on sphere as the solutions of ‘parabolized’ (markers) and full (solid lines)

Navier-Stokes equations.
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@Ep/@s are considered: (A) it is equal zero, and (B) it is
downstream extrapolated. Seidel’s method [9] was used

for solving the ‘parabolized’ Navier-Stokes equations.
The problem of streamlining of the sphere by air at

Reo = 14.4, M1 = 6.6, and tw = 0.34 was tested. The

distributions of pressure P = p/�1 u1
2, heat flux Q =

q/�1 u1
3, and friction coefficient Cf along the spherical

surface are presented in Fig. 3. The numerical solutions

of the Navier-Stokes equations (solid lines) are com-
pared with the solutions of the ‘parabolized’ equations
that are presented by open markers (case A) and filled
markers (case B). The comparison demonstrates that

data obtained from different models favorably agree
with each other. The usage of pressure-gradient down-
stream extrapolation (case B) offers the results that are

the closest to the solutions of the Navier-Stokes equa-
tions. The calculation time for ‘parabolized’ equations is
approximately five times less than that for the Navier-

Stokes equations.
The ‘parabolized’ equations were used in computa-

tions of the flow near the plate with cylindrical blunt at

the upstream flow parameters mentioned above. The
zone of blunting was calculated using the Navier-Stokes
equations, and the flowfield below the conjugate point
was calculated using the simplified method. The results

of calculating heat flux Q along the plate with cylindrical
blunt at angles of attack � = 08, 188, and 368 are pre-
sented in Fig. 4 for the flat forward surface by filled

triangles (case A) and open symbols (case B). The results
for the leeward side at � = 188 are presented by invert
triangles. The selection of the regularization methods

has insignificant influence on the heat flux values.

6. Conclusions

The study confirms the hypothesis of applicability of
the Navier-Stokes equations, local approximation
equations, ‘parabolized’ equations, and the thin-viscous-

shock-layer approximation for the description of none-
quilibrium flows near the simple-shaped bodies at
Reynolds numbers Re0 > 10. The regularization pro-

cedures influence significantly the approximate
solutions.
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