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Abstract

We present a generalized treatment of wall boundary conditions for RANS computation of turbulent flows and heat
transfer, which combines the integration up to the wall with generalized wall functions that include non-equilibrium

effects. Wall boundary conditions can thus be defined irrespective of whether the grid point nearest to the wall lies
within the viscous sublayer, in the buffer zone, or in the fully turbulent region. The computations with fine and coarse
meshes of flows in a plane channel, behind a backward-facing step and in a round impinging jet using the proposed

compound wall treatment are in satisfactory agreement with the available experiments and DNS data.
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1. Introduction

Integration of governing equations up to the wall
(ItW) with exact wall boundary conditions (BC) has

never appealed to industrial CFD. Such an approach
requires models that account for wall-vicinity and vis-
cous effects (low-Re-number models), and a very dense

computational grid with the first near-wall cell-center
located at y+O(1). In addition to excessive computa-
tional costs, in complex flows and especially with
automatic gridding it is difficult to fulfill this prerequisite

in all flow regions. The more popular wall function
approach (WF) tolerates much coarser grids, but here
the first cell-center ought to lie outside the viscosity

affected region, roughly at y+ � 30, which is also diffi-
cult to ensure in all regions of complex flows. Besides,
the conventional wall functions are often inadequate for

complex problems of industrial relevance, because they
have been derived for simple wall-attached near-equili-
brium flows.

The continuous increase in computing power has

resulted – among others – in a trend towards using
denser computational grids for computing industrial
flows. However, because of prohibitive costs, in most

cases such grids are still too coarse to satisfy the

prerequisites for the ItW. Instead, often the first grid

point appears in the buffer layer (5 � y+ < 30), making
neither ItW nor WF applicable. Esch et al. [1] proposed
for such grids a quadratic blending of a near-wall k–!
model with the wall functions.
We propose here a compound wall treatment (CWT),

which reduces either to ItW when the first near-wall cell

is in the viscous sublayer, or to WF when it lies in the
fully turbulent region. When the first grid point is in the
buffer region, BCs are provided from blending the vis-
cous and fully turbulent limits using exponential

blending functions. This blending is based on a gen-
eralization of the approach of Kader [2]. It makes the
model insensitive to the precise positioning of the first

grid point and – within reasonable limits – to the quality
of the mesh in the near-wall region. The CWT can be
applied in conjunction with any turbulence model with

the integration to the wall, but here we will use the
robust elliptic relaxation �-fmodel proposed by Hanjalic
and Popovac [3].

2. The �-f model

The �-f model [3] is a variant of Durbin’s ��2-f model
[4] in which the eddy viscosity is defined as �t = C
�k

2/",
with C
 = 0.22. A transport equation is solved for the

time-scale ratio � = ��2/k instead for ��2:
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in conjunction with an equation for the elliptic relaxa-

tion function (using the quasilinear pressure-strain
model of Speziale et al. [5] (SSG)):

L2r2f� f ¼ 1

	
C1 � 1þ C02

P
"
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3
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and with equations for the kinetic energy k and its dis-
sipation rate ".
The �-f model is aimed at integration up to the wall

and thus contains the necessary near-wall modifications:

the non-viscous wall blocking via the elliptic-relaxation
equation (2), and viscous effects through the viscous
diffusion and Kolmogorof time and length scales as

lower scale bounds [4]. Because of more convenient BCs
for f, the �-f model proved to be more robust and less
sensitive to near-wall gridding than its parent ��2-f
model, tolerating the first grid point at y+ < 
 3. It is
noted that in the limit of isotropic turbulence � ! 2/3
and the �-fmodel reduces to the conventional k-"model.

More details on the model and its performances are
provided in [3].

3. Wall functions for fully turbulent flows

When the first grid point is in the fully turbulent

region, it is inevitable to use wall functions to provide
the wall shear stress and other variables in the first near-
wall cell, and the CWT should automatically ensure this.
However, the standard WF are known to fail in non-

equilibrium flows. We followed the arguments of Craft
et al. [6] and derived more general wall functions for the
velocity and temperature, based on a single assumption

that the non-dimensional eddy viscosity varies linearly
with the distance from the wall (though, unlike Craft et
al., without including explicitly the viscous sub-layer

thickness). This makes it possible to integrate the sim-
plified momentum equation, which after some
transformations yields the following expression for the
wall shear stress in the fully turbulent region:

	 tw ¼
��c1=4
 k1=2p Up

ln ðEyþp Þ
 p ð3Þ

where  p ¼ 1þ Ctanyp

��c
1=4

 k

1=2
p Up

yþp ¼
c1=4
 k1=2p yp

�

ð4Þ

c
= 0.07, ‘p’ denotes the wall nearest cell-center, and  p

includes via Ctan the tangential pressure gradient and
convection, thus accounting for local non-equilibrium

effects.

4. Compound wall treatment (CWT)

The quantities for which the boundary conditions
ought to be specified in the CWT for the �-f model are:
wall shear stress 	w, wall heat flux qw, production P and

dissipation " of the turbulence kinetic energy k, and the
elliptic function f. The blending of the wall-limiting
values and their fully turbulent counterparts can be

accomplished by taking a quadratic mean as proposed
by Esch et al.[1]:

�p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2v þ �2t

q
ð5Þ

where � denotes the variable considered, ‘v’ the viscous
and ‘t’ the fully turbulent value of that variable. This
expression has no physical justification, and produces

inaccurate values for � in the buffer region. One can
generalize Eq. (5) by using �p ¼ ð�nv þ �nt Þ

1=n to obtain
better approximation in the buffer layer, but our

experience with n = 4 produced only marginal
improvement. One can use even a simpler expression:

�p ¼ max ð�v; �tÞ ð6Þ

In all cases, good approximation was obtained when the
first grid point is very close to the wall, where effectively
the ItW is in play. When the first point is in the fully

turbulent region, typical WF quality of results are
obtained. However, all the above models fail when the
first grid point is in the buffer region. This is illustrated

in Fig. 1(a) for the wall shear stress in a plane channel
flow at Re	 = 800, using the DNS data of [7]. In the
region 5 < y+ < 80 both expressions show a large
departure from the constant 	þw = 1, which should be

insured irrespective of the location of the first grid point.
We considered the blending of the wall-limiting and fully
turbulent properties in the manner of Kader [2], who

proposed unique temperature profile throughout the
whole wall boundary layer:

�þ ¼ Pr yþe�� þ ½�ln ðyþÞ þ � ðPrÞ� e�1=� ð7Þ

where � = 2.12 and �(Pr) = (3.85Pr1/3 � 1.3)2 +
2.12ln(Pr), and the coefficient � is a function of the

normalized distance to the wall y+:

� ¼ 0:01 ðPr yþÞ4

1þ 5Pr3yþ
ð8Þ

Although Kader [2] offered no physical justification for
Eq. (7), one can argue that e�� represents a solution of a
simplified 1-D elliptic blending equation. For the mean

velocity we can adopt the same expressions (Eqs. (7) and
(8)) by putting Pr = 1. We now expand the same
blending principle to other properties for which con-

tinuous boundary conditions are required:
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�p ¼ �ve�� þ �te�1=� ð9Þ

Figure 1(a) shows �þw for a plane channel obtained from
Eq. (9) with �� ¼ �ð@U=@yÞ and � t from Eq. (3) eval-
uated in the same way as from the standard WF for

various distances from the wall y and the corresponding
velocity U. Apart from a small deviation for 4 < y+ <
7 (due to a minor deficiency in Eq. (9)), the resulting �þw
is in very good agreement with the DNS data and
superior to Eqs. (5) and (6).

4.1. Kinetic energy production

The common practice in standard WF is to impose the
value of P from the local equilibrium conditions (loga-

rithmic velocity profile and constant shear stress), i.e.
P = u3� =ð�yÞ. This is correct only in the fully turbulent
region in equilibrium flows, as shown Fig. 1(b) for the

plane channel flow (DNS Re� = 800, [7]). We can derive
an expression for P by feeding in the analytical ð@U=@yÞ
derived from Eq. (7) (for Pr = 1) in combination with
the near-wall and fully turbulent expressions for the

turbulent stress. Alternatively, we can simply apply Eq.
(9) to blend the ItW and WF values of P:

Pp ¼ �
@U

@y
¼ C��p

k2p
"p

@U

@y

� �2

p

e�� þ
c3=4� k3=2p

 p�yp
e�1=�

ð10Þ

uv

Note that C� = 0.22 and C� = 0.07. Figure 1(b) shows
P from Eq. (10), compared with the ItW and WF
approaches.

4.2. Energy dissipation rate

Likewise, we can derive the blended expression for the

dissipation rate:

"p ¼
2�kp
y2p

e��0 þ
c3=4� k3=2p

�yp
e�1=�

0 ð11Þ

Because of a specific and strong variation of " in the
near-wall region, we modified the exponent of the

damping function into �0 = 0.001y+4/(1 + y+). It is
noted, however, that for the turbulent region "t is tied to
Pt and that even the simpler model (6) performs rea-

sonably well.

4.3. Elliptic relaxation function

For this function, none of the blending formulations
(5), (6) or (9) is adequate for the CWT, for two
reasons. First, the wall-limit (‘viscous’) value of

f ðf� ¼ �2��p=y2pÞ and its homogeneous value
ðfh ¼ ðC1 � 1þ C02P="Þð� � 2=3Þ=�Þ have opposite signs.
Second, while fv ranges from its wall (negative) value to

zero, fh ranges from (positive) infinity to its homo-
geneous value (tends to zero). Thus there is a huge
difference between them in the buffer region, and no

blending (except the full elliptic solution) can give a
realistic solution there.
Therefore, the simplest CWT for f is to manage its

boundary condition in the same manner as for the

standard �-f model with integration to the wall, i.e. to
impose the wall value fw obtained from the budget of Eq.
(1):

fw ¼
�2��p
y2p

ð12Þ

This definition is correct if the near-wall cell is in the

viscous sublayer, and it gives zero value for fw (it drops
fast to zero, because of the power two in the denomi-
nator) away from the wall, which is incorrect. But since

Eq. (12) sets only BC at the wall, the f equation (2) will

Fig. 1. Blended expressions for �w (a) and the adopted blended model of P, Eq. (10) (b). Symbols: DNS of Tanahashi et al. [7].
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Fig. 2. Channel flow computations with different grids with the first near-wall y+ from 0.05 to 40, Re	 = 800 [7], Velocity profiles U+

(a); Turbulent shear stress uv+ (b) Symbols: DNS data of Tanahashi et al. [7].

Fig. 3. Friction factor Cf (a) and Nusselt number Nu (b) in a round impinging jet, Re = 23,000, computed on a fine and coarse grid

with maximum wall-nearest y+ = 1,5 (ItW) and 20 (CWT), respectively. Symbols: experiments of Baughn et al. [8,9].

Fig. 4. Friction factor Cf (a) and Nusselt number Nu (b) behind a backward-facing step, Re = 28,000, computed on a fine and coarse

grid with maximum wall-nearest y+ = 1,2 (ItW) and 25 (CWT), respectively. Symbols: experiments of Vogel et al. [10].
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produce some approximate solution for the near-wall
cell center, due to in-domain flow conditions. This is

acceptable because the wall blocking effect (which f
should describe) fades away in the far-field.

5. Some illustrations

As an illustration of the CWT performance, we pre-
sent some results of the computations of several generic
flows including heat transfer with computational grids
that place the wall-nearest grid in the buffer region,

compared fine-grid ItW solutions. Figures 2 to 4 show
respectively some results for a plane channel flow, a
round impinging jet and a separating flow behind a

backward facing step. In all cases the CWT approach
agreed reasonably well with the ItW approach
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