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Abstract

One of the difficulties with self consistent plate-mantle models capturing multiple physical features, such as elasticity,

non-Newtonian flow properties, and temperature dependence, is that the individual behaviours cannot be considered in
isolation. For instance, if a viscous mantle convection model is generalized idealistically to include hypo-elasticity, then
problems based on Earth-like Rayleigh numbers exhibit almost insurmountable numerical stability issues due to

spurious softening associated with the co-rotational stress terms. These difficulties can be avoided if a stress limiter is
introduced in the form of a power law rheology or yield criterion. A general Eulerian model is discussed and it is shown
that the basic convection modes of a cooling planet are reproduced.
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1. Introduction

We apply a general Eulerian model [1] applicable to a
wide range of existing fluid dynamics problems. The
approach considers combined Newtonian and power

law creep as well as elasticity and temperature depen-
dence of the creep parameters. As the deformations
involved in geological deformation are large, the con-

stitutive relationships must contain geometric terms to
ensure that the tensor properties of the model are con-
served. A model with such properties is described as

being ‘objective’.
A wide range of objective, incompressible, visco-

elastic-plastic models exist that differ in the choice of the

objective stress rate, such as the Jaumann, Oldroyd, or
Truesdell rates (refer to Kolymbas et al. [2] for a recent
discussion). The salient features of these objective stress
rates can be studied with homogeneous simple and pure

shear flows. For simple shear flows, a comparison can be
made between the shear stress–shear strain curves for a
constant applied shear strain rate, assuming infinitesimal

theory (i.e. no co-rotational stress terms) and adopting
Jaumann and Naghdi models respectively.

Viscous deformation is described by a combined

Newtonian and power law creep model. The power law

viscosity includes a contribution from dislocation glide,
a typical power law exponent (n = 3), and a contribu-
tion from plastic deformations with temperature
independent coefficients and a large exponent (n = 15).

The effective viscosity is given by:

	eff ¼ ð
1

	N
þ 1

	Nð ��0Þ
1�n þ

1

	Yð ��YÞ
1�nplÞ

�1 ð1Þ

where 	N is the temperature dependent Newtonian
viscosity, 	Y is a reference viscosity for the plastic

deformation, �0 is the transition stress, �Y is the yield
stress, and � is the second deviatoric stress invariant.
We illustrate the various non-Newtonian effects in

Figs. 1 and 2 by means of results for the relatively

extreme case De = (	N/�) _
 = 1 (e.g. (1025 Pas/1011

Pa)10�14 s�1). The stress response for _
 = const with
and without Jaumann terms is compared. Also shown

for comparison is the response for a Maxwell model
based on Naghdi’s definition of the co-rotational rate
(see [2]).

The responses of the infinitesimal model (no co-rota-
tional terms) and the Naghdi definition (with spin ! =
� _
/2(1 + (
/2)2) are qualitatively similar, whereas the

Jaumann model (with spin ! = � _
/2) exhibits a spur-
ious softening effect. As there is no experimental
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evidence for this kind of purely geometric softening in
rocks and metals, the effect is considered to be an

unwanted side effect. However, does this mean we have
to abandon the Jaumann model, which is computa-
tionally much more efficient and simpler to implement

than the Naghdi model for instance?
Figure 2 shows the results for a combined Newtonian

and power law rheology with n = 3 assuming the same
dimensionless strain rate as in the examples displayed in

Fig. 1. In this case the spurious softening behaviour
disappears as do most of the differences between the
three models. We conclude (see [1]) that the spurious

softening in simple shear disappears if stress limiters in
the form of power law creep or a yield criterion (e.g. [2])
are taken into account.

While the co-rotational terms are insignificant in

simple shear and pure shear they are of crucial impor-
tance in so called geometric instability problems such as

folding (buckling) and necking (boudinage). See Biot [3]
for discussions and analytical solutions of a wide variety
of geometric instability problems.

2. Episodicity

The basic modes of convection applicable to a cooling
planet, such as stagnant lid, episodic resurfacing and
mobile lid convection have been reproduced with the

non-linear viscoelastic approach and are shown in Figs.
3(a), 3(b), and 3(c) respectively. The vertical spikes on
top of the velocity streak-line plot in each of the sub-

figures are representations of the cold boundary
velocities: larger spikes represent lower velocities, and

Fig. 1. The simple shear of a Maxwell model with Newtonian

(linear) rheology and Deborah number De = (	N/�) _
 = 1.

Fig. 2. Simple shear of a Maxwell model with a combined

Newtonian and power law (n = 3) rheology. The dimensionless

strain rate is De = 1 as in the previous case. The transition

stress is �0 = 10�3 �.

Fig. 3. (a) Typical temperature and velocity distributions for

episodic convection at a maximum of the Nusselt number (refer

to Fig. 4). (b) Typical temperature and velocity distributions for

episodic convection at a minimum of the Nusselt number (refer

to Fig. 4). (c) Typical temperature and velocity distributions at

steady state for mobile lid convection. For mobile lid convec-

tion, significant parts of the top layer move like rigid bodies.
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smaller spikes represent higher velocities. A comparison
between the Nusselt numbers for the stagnant, episodic,

and mobile lid cases is shown in Fig. 4.
A slight but noticeable shift in parameter values and

validity fields for cases including elasticity has been

recorded. In addition, the buffering action of elasticity
permits solutions to extreme viscosity variations and
introduces long-range interactions. This results in an

ordering and stabilization of patterns of convection at
high Rayleigh numbers, replacing smaller-scale turbu-
lence by larger planetary-scale re-mobilization.

3. Conclusions

Due to increasing computational power, there has

been a significant break-through in large-scale geody-
namical modeling over recent years [4,5,6,7]. Large-scale
convection models can now reproduce basic modes of

planetary tectonics as self-consistent features of the
same physical planetary heat transfer problem. Yet,
while such unified models have demonstrated significant
detail, a fundamental rheological ingredient has been left

unexplored. To obtain models with Earth-like tectonics,
a further fine-tuning of rheology is required. Thus, the

original motivation for this study was to integrate elas-
ticity into a non-linear convection model to deal with the
important problem of coupling a solid-like lithosphere

to a fluid-like mantle in a self-consistent manner. Pre-
liminary results are discussed in the present study.
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Fig. 4. A comparison of Nusselt numbers for stagnant-lid

(lowest with steady state) episodic and mobile lid convection.

The yield stress, �Y, is three times the transition stress �0 =

0.866 � 102.5 (i.e. the transition from Newtonian power law

creep) and dimensionless shear modulus 104. An Arrhenius

relation describes the temperature dependence of creep with a

viscosity contrast across the layer of 105. The power law

exponents are n = 3 and n = 15 (i.e. dislocation glide and

plastic deformation).
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