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Abstract

In this paper we simulate 1D quench propagation in superconducting magnets using cable-in-conduit conductors
(CICC) by a discontinuous Galerkin (DG) spectral element method (SEM) and explicit Runge-Kutta time integration.

The work seeks an algorithm exhibiting both high accuracy and efficiency. The supercritical helium flow is considered in
the modeling of quench propagation in CICC, which can be expressed by the Euler equations with additional friction
and coupled heat transfer between helium and conductor and conduit. Roe’s approximate Riemann solver for a real

gas/fluid is used to compute numerical flux and non-reflecting boundary condition is introduced in the algorithm. The
method used here is highly parallelizable. Some numerical results are given and compared with those obtained by other
simulation methods and experimental data.
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1. Introduction

In large-scale superconducting magnets systems,
thermal stability is a key issue, and quench propagation
is always an important consideration. Superconductors

are designed to operate at very high current density, so
when an external perturbation is strong enough, the
superconductor will go from the superconducting state
to the normal state (resistive conductor), this transition

constitutes a quench. When the magnet quenches, the
normal zone evolves and expands with time, it will
encompass regions at liquid helium temperature at its

periphery to a maximum at the quench initiating point.
We focus on cable-in-conduit conductors (CICC) which
are commonly used in large-scale magnets and as the

name implies, consist of a superconducting cable inside a
metal pipe containing the liquid helium coolant. The
liquid helium is under supercritical regime. The fluid
flow in the tube of the CICC is very complicated, and is

governed by the unsteady convection-diffusion

equations in the regime of high Reynolds number and
low Mach number. One difficulty is the complicated

coupling heat transfer between fluid and conductors,
and the conduit wall. Another difficulty relates to the
highly non-linear physical properties of solid materials

and liquid helium [1].
Many methods have been considered for quench

simulation in superconducting magnets, for example,
finite element, finite volume, and finite difference meth-

ods [2,3,4,5,6,7,8,9]. However, most of them are first-
order or second-order methods. For long time wave
traveling problems, large dissipation and dispersion will

add to the numerical solutions by using low-order
methods. The main goal of our research is to seek an
algorithm exhibiting both high accuracy and efficiency in

solving this particular problem. In this paper we focus
on 1D discontinuous Galerkin (DG) spectral element
method (SEM) and explicit Runge-Kutta time integra-
tion method [10]. The SEM is a weighted-residual

technique for the solution of partial differential equa-
tions that combines the geometric flexibility of low-order
finite element methods with the rapid convergence rate

of spectral methods. Roe’s approximate Riemann solver

*Corresponding author. Tel.: +1 (850) 644 1540; Fax: +1

(850) 644 7456; E-mail: mao@magnet.fsu.edu

755

# 2005 Elsevier Ltd. All rights reserved.

Computational Fluid and Solid Mechanics 2005

K.J. Bathe (Editor)



is used to treat the numerical flux generated in the weak
form of the governing system of equations [11,12], which

is highly efficient without adding numerical viscosities.
This method is highly parallelizable.

2. Modeling of quench propagation in CICC

The typical CICC has a large ratio of length-to-dia-
meter, up to 105, the compressible helium flow can be
simplified by considering it only along the longitudinal

direction of the channel [13]. The cable of the CICCs can
be assumed to be at uniform temperature across the
conductor. The helium exchanges heat with conductors

and conduit wall. Friction also plays an important role
in the helium flow. The basic governing equations con-
sist of continuity, momentum and energy for the helium,

and the coupled heat balance equations for conductors
and conduit. We can write down the system in the
conservative form:
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is the Joule heating in the

conductors. T, Tst, Tjk are the temperature of helium,

conductors and the conduit, respectively. pst, pjk are the
wet perimeters of conductors and conduit, respectively.
hst, hjk are the heat transfer coefficients between helium
with conductors and with the conduit, respectively. �st,
�jk, �e are the density of conductors and the conduit, and
the resistivity of copper, respectively. cst, cjk are the
specific heat of conductors and conduit, respectively. k is

the thermal conductivity, � is the external heat source
beside the Joule heating. f is the Darcy friction factor for

internal channel flow. The equation of state of helium is
added to close the system:

p ¼ p �,Tð Þ ð4Þ

Equations (1)–(4) with well-defined boundary conditions
and initial condition, consist of the governing system of

1D quench propagation problems.
The left-hand side of Eq. (1) is the Euler equation, so

it is reasonable to analyze helium flow by characteristics

methods. Three Riemann variables are obtained by
integration of the Euler equations. The integral in the
Riemann variables is approximated by curve fitting to

the helium data output from HEPAK [14]. An approx-
imate polynomial is used based on a carefully chosen
equilibrium state (p0,T0) at each time step to solve the

Riemann integral with global second order [15]:
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This is very important to successfully implement DG

spectral element methods.

3. Discontinuous Galerkin spectral element methods

We can discretize the system of Eqs. (1)–(3) by using
discontinuous Galerkin spectral element methods. In
one spatial dimension, the region under consideration is
divided into non-overlapping elements. Each element is

mapped individually onto the [�1,1] domain by an iso-
parametric transformation:

x ¼ xk�1 þ
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2
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dk

The system of Eq. (1) becomes:

@

@t
�Q �,tð Þ þ @

@�
�F �,tð Þ ¼ �S �,tð Þ

where �Q(�,t) = Q(xk(�),t), similarly for �F(�,t) and �S(�,t).
The discontinuous Galerkin version of the spectral ele-

ment method approximates the solution and the fluxes
by the Nth-order polynomials that are defined at the
Legendre-Gauss quadrature points [16]:
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No assumptions are made about the continuity of the

solutions, and the residual is required to be orthogonal
to the approximation space within each element with
collocation form. Transform the system (1) to the weak

form, integrate by part, replace the integral by Gauss
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quadratures, and, after some algebraic manipulation, we
have the final approximation in 1D quench propagation

problems with the collation form,

d �Qi

dt
þ �F 1ð Þ ‘i 1ð Þ

wi
� �F �1ð Þ ‘i �1ð Þ

wi
�
X
j

�Fj

‘0i,‘j
� �

N

wi

" #
¼ �Si

ð6Þ

where the discrete inner product is the Gauss quadrature
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Similarly, the DG spectral element discretization can be
given to the heat balance equations by the additional
equation to apply the second order term, i.e.
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Roe’s approximate Riemann solver is chosen to com-
pute the numerical flux at the interface [12]. Since no
analytic formulae are available for the equation of state

(EOS) for helium, the first derivatives in the transform
Jacobian are solved by cubic spline techniques [17].

The use of the Riemann solver at the element faces
makes the imposition of boundary conditions simple.

Boundary conditions are implemented by specifying the
external state as the input for the Riemann solver.
The semi-discrete approximation system (6) and (8)

can be integrated by explicit schemes. We apply the
fourth-order Runge-Kutta method to integrate the lin-
ear system obtained. The coefficients for the fourth-

order Runge-Kutta method can be found in [17].
For unsteady problems the time step is restricted by

the CFL condition and by the second order derivatives
in the heat balance equations in the conductors and

conduit. So to keep the calculation stable and reason-
ably accurate in time, the time step may not surpass the
stability region of the explicit fourth-order Runge-Kutta

method.

4. Numerical results and discussion

This method is tested on two cases. The first one was

reported by Arp [2], in which a short NbTi super-
conductor coil was used with a large external heat pulse
to quench it. In this case we assumed subsonic velocity

at the exit and symmetric condition in the middle point.
A Gaussian heat pulse (for numerical stability reasons)
is imposed in the middle to initiate the quench simula-
tion. Figures 1 and 2 show helium induced-flow velocity

obtained by using DG-spectral element methods and a
commercial FEM code (GANDALF). DG-SEM got a
better resolution and higher stability than GANDALF.

Because DG-spectral element methods applied con-
servative form of the governing equations, imposed the

Fig. 1. Distribution of helium induced-flow velocity using DG-SEM with an external heat pulse 8 � 103W/m in 1m zone for 0.001 s.
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numerical flux balance across the interfaces of each
element, the numerical solution is very stable against
large non-linear disturbances.

The second benchmark experiment was chosen from

Ando et al. [18], also consisting of a short NbTi super-
conductor coil with a much larger sharp heat pulse to
lead to quench. The numerical results by DG-SEM and

GANDALF code were compared against the same
experimental data [18]. The evolution and distribution
of quench pressures are shown in Figs. 3–4. There is very

good agreement between the two numerical methods.
The difference in maximum quench pressure is about

3�5% between DG-SEM and GANDALF. The pre-
dicted exit velocity of helium is about the same for both
codes. However, the simulation results obtained by
GANDALF code exhibited obvious oscillations that do

not exist in DG-SEM.
Figure 5 illustrates very good agreement for the

simulation of normal zone propagation. Considering the

factors in experimental measurement and the correction
formulae approximation used in the mathematical
models, these results are quite good, and acceptable for

engineering purposes.

Fig. 2. Distribution of helium induced-flow velocity using GANDALF code with an external heat pulse 8 � 103W/m in 1m zone for

0.001 s.

Fig. 3. Evolution and distribution of quench pressure in CICC using DG-SEM with I=1.5 kA in Ando’s case.
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5. Conclusions

Discontinuous Galerkin spectral element methods
were successfully used to track a special moving front
problem, quench propagation in CICCs. Special effort

was placed into dealing with the real gas/fluid properties
(supercritical fluid). DG-SEM has the advantage of high
resolution in a large gradient region of solution. DG-

SEM is designed for parallel computation without
introducing extra expense. Parallelization of the scheme
is the natural next step in this research.
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