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Abstract

We present an immersed interface method for the incompressible Navier–Stokes equations capable of handling rigid
immersed boundaries. The immersed boundary is represented by a set of Lagrangian control points. In order to

guarantee that the no-slip condition on the boundary is satisfied, singular forces are applied on the fluid. These forces
are related to the jumps in pressure and the jumps in the derivatives of both pressure and velocity, and are interpolated
using cubic splines. The strength of the singular forces is determined by solving a small system of equations at each time
step. The Navier–Stokes equations are discretized on a staggered Cartesian grid by a second-order accurate projection

method for pressure and velocity.
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1. Introduction

This paper considers the immersed interface method

(IIM) for the incompressible Navier–Stokes equations in
general domains involving rigid boundaries. In a 2-
dimensional bounded domain � that contains a rigid

interface �, we consider the incompressible Navier–
Stokes equations, written as

ut þ ðu � rÞuþrp ¼ ��uþ F ð1Þ
r � u ¼ 0 ð2Þ

with boundary and initial conditions

u @�j ¼ ub ð3Þ
uðx; 0Þ ¼ u0 ð4Þ

where u is the fluid velocity, p the pressure, and � the
viscosity of the fluid. Here, we simply assume that the
density, � � 1, and the viscosity, �, are constant. The
singular force F has the form

Fðx; tÞ ¼
Z

�

f ðs; tÞ�ðx� Xðs; tÞÞds ð5Þ

where X(s, t) is the arc-length parameterization of �, s is
the arc-length, x = (x, y) is the spatial position, and
f (s,t) is the force density. The Navier–Stokes equations
are discretized using finite differences on a staggered

Cartesian grid. The main features of our method are:
. It is a Cartesian grid method; the method does not

require complex mesh generation.

. It is second-order accurate for velocities.

. The Poisson-like equations resulting at each time
step are solved using a Fast Fourier Transform
algorithm O(NlogN), where N is the number of

degrees of freedom.
Methods utilizing a Cartesian grid for solving inter-

face problems or problems with complex geometry have

become popular in recent years. One of the most suc-
cessful Cartesian grid methods is Peskin’s immersed
boundary (IB) method [1,2,3]. In order to deal with rigid

boundaries, Lai et al. [2] proposed to evaluate the force
density using an expression of the form

f ðs; tÞ ¼ �ðXeðsÞ � Xðs; tÞÞ ð6Þ

where � is a constant, � � 1, and Xe is the arc length
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parametrization of the required boundary position. The
forcing term in Eq. (6) is a particular case of the feed-

back forcing formulation proposed by Goldstein et al.
[4] with 
 = 0. In [4], the force is expressed as

f ðs; tÞ ¼ 	
Z t

0

Uðs; t0Þdt0 þ 
Uðs; tÞ ð7Þ

where U is the velocity of the boundary, and 	 and 
 are
chosen to be negative and large enough so that U will

stay close to zero. Lima E Silva et al. [3] proposed an
alternative model to compute the force density f based
upon the evaluation of the various terms in the
momentum equation (1) at the control points. The force

density f is calculated by computing all the Navier–
Stokes terms at the control points.
Once the force density is obtained at the boundary,

the immersed boundary method uses a discrete delta
function to spread the force density to the nearby Car-
tesian grid points. Since the IB method uses the discrete

delta function approach, it smears out sharp interface to
a thickness of the order of the meshwidth and is only
first-order accurate for problems with non-smooth but
continuous solutions.

In contrast, the immersed interface method (IIM) can
avoid this smearing and maintains second-order accu-
racy by incorporating the known jumps into the finite

difference scheme near the interface. The IIM was ori-
ginally proposed by LeVeque et al. [5] for solving elliptic
equations, and later extended to Stokes flows by Le

Veque et al. [6]. The method was developed further for
the Navier–Stokes equations in Li et al. [7], Lee [8] and
Le et al. [9] for problems with flexible boundaries. The

method was also used by Calhoun [10] and Li et al. [11]
for solving the two-dimensional streamfunction-vorti-
city equations in irregular domains. In [10,11] the no-slip
boundary conditions are imposed directly by determin-

ing the correct jump conditions for streamfunction and
vorticity.
Another Cartesian grid approach has been presented

by Ye et al. [12] and Udaykumar et al. [13] using finite
volume techniques. They reshaped the immersed
boundary cells and use a polynomial interpolating

function to approximate the fluxes and gradients on the
faces of the boundary cells while preserving second-
order accuracy.

In this paper, we extend our earlier work, presented in
Le et al. [9] for problems with deformable boundaries, to
solve problems with rigid immersed boundaries. Our
approach uses the immersed interface method to solve

the incompressible Navier–Stokes formulated in primi-
tive variables. In [9], the singular force f is computed
based on the configuration of the interface, i.e. the

interface is assumed to be governed by either surface

tension, or by an elastic membrane. In the present work,
the singular force at the immersed boundary is deter-

mined to impose the no-slip condition at a rigid
boundary. At each time step, the singular force is com-
puted implicitly by solving a small, dense, linear system

of equations. Having computed the singular force, we
then compute the jump in pressure and jumps in the
derivatives of both pressure and velocity. The jumps in

the solution and its derivatives are incorporated into the
finite difference discretization to obtain sharp interface
resolution. Fast solvers from FISHPACK [14] are used
to solve the resulting discrete systems of equations.

The remainder of the paper is organized as follows. In
section 2, we present the relations that must be satisfied
along the immersed boundary between the singular force

f and the jumps in the velocity and pressure and their
derivatives. In section 3, we describe the generalized
finite difference approximations to the solution deriva-

tives, which incorporate solution jumps. In section 4, we
present details of the numerical algorithm. In section 5,
some numerical examples are presented and, finally,

some conclusions and suggestions for future work are
given in section 6.

2. Jump conditions across the interface

Let n and � be the unit outward normal and tan-

gential vectors to the interface, respectively. The normal,
f1 = f (s, t) � n, and tangential, f2 = f (s,t) � � , compo-
nents of the force density, can be related to the jumps of

pressure and velocity as follows (see [6,7,8] for details):

½u� ¼ 0; ½�u�� ¼ �f2� ; ½un� ¼ 0 ð8Þ

½p� ¼ f1; ½p�� ¼
@f2
@s

; ½p�� ¼
@f1
@s

ð9Þ

½�u��� ¼ �f2� ; ½�u��� ¼ �
@f2
@�
� � �f2n ð10Þ

½�u��� ¼ �½�u��� þ ½p��nþ ½p��� þ ½u��u � n

The jump, [�], denotes the difference between the value of

its argument outside and inside the interface, and (�, �)
are the coordinates associated with the directions of n
and � , respectively. Here, � is the signed valued of the

curvature of the interface (i.e. we assume that n � � = k

� constant, so that n can point either towards, or out-
wards from, the center of curvature). From expressions

(8)–(10) the values of the jumps of the first and second
derivatives of velocity and pressure with respect to the
(x, y) coordinates are easily obtained by a simple coor-

dinate transformation. For instance, we write

½ux� ¼ ½u��n1 þ ½u���1
½uyy� ¼ ½u���n22 þ 2½u���n2�2 þ ½u����22
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where n = (n1, n2) and � = (�1, �2), are the Cartesian
components of the normal and tangential vectors to the

interface at the point considered.

3. Generalized finite difference formulas

From Taylor series expansions, it is possible to show
that if the interface cuts a grid line between two grid
points at x = 	, xi � 	 < xi +1, then the following

approximations hold for a piecewise twice differentiable
function v(x):

vxðxiÞ ¼
viþ1 � vi�1

2h
� 1

2h

X2
m¼0

ðhþÞm

m!
½vðmÞ� þOðh2Þ ð11Þ

vxðxiþ1Þ ¼
viþ2 � vi

2h
� 1

2h

X2
m¼0

ðh�Þm

m!
½vðmÞ� þOðh2Þ ð12Þ

vxxðxiÞ ¼
viþ1 � 2vi þ vi�1

h2
� 1

h2

X2
m¼0

ðhþÞm

m!
½vðmÞ� þOðhÞ

ð13Þ

vxxðxiþ1Þ ¼
viþ2 � 2viþ1 þ vi

h2
þ 1

h2

X2
m¼0

ðh�Þm

m!
½vðmÞ� þOðhÞ

ð14Þ

where v(m), denotes the m-th derivative of v, vi = v(xi),
h+ = xi +1 � 	, h�= xi � 	, and h, is the mesh width

in the x direction. The jumps in v and its derivatives are
defined as

½vðmÞ�	 ¼ lim
x!	þ

vðmÞðxÞ � lim
x!	�

vðmÞ ð15Þ

in short, [�] = [�]	, and v(0) = v. See Wiegmann et al. [15]
for more details.

4. Numerical algorithm

4.1. Projection method

We employ a pressure-increment projection algorithm
for the discretization of the Navier–Stokes equations.

This projection algorithm is analogous to that presented
in Brown et al. [16]. It leads to second order accuracy for
both velocity and pressure provided all the spatial
derivatives are approximated to second-order accuracy.

The spatial discretization is carried out on a standard
MAC staggered grid analogous to that in Kim et al. [17].
The ENO second-order upwind scheme is used for the

advective terms [18]. With the MAC mesh, the pressure
field is defined at the cell center where the continuity
equation is enforced. The velocity fields u and v are

defined at the vertical edges and horizontal edges,

respectively. Given the velocity un, and the pressure pn
�1/2, we compute the velocity un+1 and pressure pn+1/2 in

three steps:
Step 1: Compute an intermediate velocity field u* by

solving

u	 � un

�t
¼ �ðu � ruÞnþ

1
2 �rpn�

1
2 þ �r2unþ

1
2 ð16Þ

u	 @�j ¼ unþ1b

where the advective term is extrapolated using the
formula

ðu � ruÞnþ
1
2 ¼ 3

2
ðu � ruÞn � 1

2
ðu � ruÞn�1 ð17Þ

the diffusion term is approximated implicitly as

r2unþ1=2 ¼ 1

2
ðr2

hu
	 þ r2

hu
nÞ þ C1 ð18Þ

and the pressure gradient term is given by

rpn�
1
2 ¼ GMACpn�

1
2 þ C2 ð19Þ

The MAC gradient operators are defined as

ðGMAC
x pÞ

iþ12;j
¼ piþ1;j � pi;j

�x
; ðGMAC

y pÞ
i;jþ12
¼ pi;jþ1 � pi;j

�y

Step 2: Compute a pressure update øn+1 by solving
the Poisson equation

r2�nþ1 ¼ r � u
	

�t
; n � r�nþ1 @�j ¼ 0 ð20Þ

This is accomplished by solving the discrete system

r2
h�

nþ1 ¼ DMACu	

�t
þ C3 ð21Þ

where the MAC divergence operator is defined as
follows

ðDMACuÞi;j ¼
u
iþ12;j
� u

i�12;j

�x
þ
v
i;jþ12
� v

i;j�12
�y

Step 3: Update the pressure and velocity field
according to

unþ1 ¼ u	 ��tGMAC�nþ1 þ C4 ð22Þ

pnþ1=2 ¼ pn�1=2 þ �nþ1 � �
2
ðDMACu	Þ þ C5 ð23Þ

The operators Hh and H2
h are the standard three-point

central difference operators and Ci, i = 1, . . ., 5, are the

correction terms, which are only non-zero at the points
near the interface and are calculated using generalized
finite difference formulas of the type introduced in the

previous section. This method requires solving two
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Helmholtz equations for u* in Eq. (16) and one Poisson
equation for �n+1 in Eq. (21). Since the correction terms

only affect the right-hand sides of the discrete systems,
we can take advantage of the fast solvers from Fishpack
[14] to solve these equations.

4.2. Singular force evaluation

Having solved for un+1 at the grid points, we now
compute the velocity at the interface. In our method, we
use a set of control points to represent the interface. The

velocity at the control points, Uk, is interpolated from
the velocity at the grid points. Thus, we can write

Uk ¼ UðXkÞ ¼ Bðunþ1Þ ð24Þ

where B is the bilinear interpolation operator, which

includes the appropriate correction terms that are
required to guarantee second-order accuracy when the
derivatives of the velocity are discontinuous.

In summary, the equations that need to be solved in
order to calculate un+1 and Uk, can be written symbo-
lically as

Eqð16Þ ! Hu	 ¼ Cþ B1 f

Eqð21Þ ! L�nþ1 ¼ Du	 þ B2 f

Eqð22Þ ! unþ1 ¼ u	 � G�nþ1 þ B3 f

Eqð24Þ ! Uk ¼Munþ1 þ B4 f

Eliminating u*, �n+1 and un+1 from the above equa-
tions, we can compute the velocity Uk at the control

points, as follows:

Uk ¼MðH�1C� GL�1DH�1CÞ
þ MðH�1B1 � GH�1B1 � GL�1B2 þ B3Þ þ B4

� �
f

ð25Þ

For convenience, we can write Eq. (25) as

Uk ¼ U0
k þ Af ð26Þ

where U0
k is simply the velocity at the control points

obtained by solving Eqs. (16)–(24) with f = 0, given un

and pn�1/2. A is a 2Nb � 2Nb matrix, where Nb is the
number of control points. The vector Af is the velocity at
the control points obtained by solving the following

equations:

u	f
�t
¼ �

2
r2u	f ; u	f @�j ¼ 0 ð27Þ

r2�nþ1f ¼
r � u	f

�t
; n � r�nþ1f @�j ¼ 0 ð28Þ

unþ1f ¼ u	f ��tr�nþ1f ð29Þ

Af ¼ Bðunþ1f Þ ð30Þ

with f being the singular force at the immersed

boundary.
Equation (26) can be used to determine the singular

force if we know the prescribed velocity Up at the

immersed boundary. Thus, the singular force at the
control points can be computed by solving

Af ¼ Up �U0
k ð31Þ

The matrix A is computed once and stored. We solve Eqs.

(27)–(30) 2Nb times, i.e. once for each column. Each time,
the force strength f is set to zero except for the entry in
the column we want to calculate which is set to one. Once
the matrix A has been calculated, only the right hand

side, Up � U0
k, needs to be computed at each timestep.

The resulting small system of equations (31) is then
solved at each timestep for the singular force f. Finally,

we solve Eqs. (16)–(23) to obtain un+1 and pn+1/2.

5. Numerical results

In this section we present the numerical results for

three problems which involve immersed boundaries.

5.1. Rotational flow

In this problem, the interface is a circle with radius

r = 0.3 embedded in a square domain [�1, 1] � [�1, 1].
We prescribe the interface to rotate with angular velo-
city ! = 2. We set � = 0.02 and consider the solution

when t = 10. The velocity field is shown in Fig. 1. We
carried out a grid refinement analysis, using a reference
grid of 512 � 512, to determine the order of convergence

of the algorithm. The results in Table 1 show that the
velocity is second-order accurate and the pressure is
nearly second-order accurate.

5.2. Flow past a circular cylinder

In this example, we simulate an unsteady flow past a
circular cylinder immersed in a rectangular domain � =

[0, 3] � [0, 1.5]. The cylinder has a diameter d = 0.1 and
its center is located at (1.6, 0.75). The fluid density is �=
1.0 and the free stream velocity is set to unity, U1= 1.
The viscosity is determined by the Reynolds number, Re.

Simulations have been performed at Re = 20, 40, 80,
100, 200 and 300 on a 512 � 256 computational mesh.
We use 40 points to represent the circular cylinder. At

the inflow boundary we specify the velocity corre-
sponding to the free-stream velocity, and a
homogeneous Neumann boundary condition is applied

at the top, bottom and exit boundaries. The pressure is
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set to zero at the exit boundary. The pressure field plots

are shown in Fig. 2. These results appear to be in good
agreement with the other numerical simulations and
experimental results.

It is important to note that the matrix A, for a closed
immersed boundary, is singular. This happens because
the pressure inside the closed boundary is not uniquely

determined. We choose the pressure inside the cylinder
such that there is no jump in pressure at one of the
control points, i.e. the normal force at that point is set to
zero. Therefore, we can eliminate the column and row of

the matrix A corresponding to that control point, thus
making the problem solvable.

5.3. Flow past a flat plate

In this example, we simulate an unsteady flow past a

flat plate immersed in a rectangular domain � = [0, 3] �

[�0.75, 0.75]. The flat plate whose length is L = 0.1 is

oriented in the crossflow direction and located at x =
1.40. Simulations have been performed at Re = 20, 50,
100, 1000 and 5000 on a 256 � 128 computational mesh.

We use eight points to represent the flat plate. The same
boundary conditions as for the flow past a cylinder
problem are applied in this problem. The pressure field

plots are shown in Fig. 3.

6. Conclusion

We have presented a formally second-order accurate
immersed interface method for the solution of the

incompressible Navier–Stokes equations in irregular
domains. The implementation has been tested with three
examples involving a rotational flow, and unsteady flows

over a circular cylinder and over a flat plate. Numerical

Fig. 1. Velocity field at time t = 10 with a 64 � 64 grid, �= 0.02, �t = �x/4. The immersed boundary rotates with angular velocity

! = 2; (a) Plot of the x component of velocity field. (b) Plot of velocity vector field.

Table 1

The grid refinement analysis for the rotational flow problem with � = 0.02, �t = �x/4, at t = 10

N Nb kE(u)k1 Order kE(u)k2 Order

64 40 1.8001 � 10�3 1.6528 � 10�4

128 80 5.5145 � 10�4 1.71 3.9239 � 10�5 2.08

256 160 1.2755 � 10�4 2.11 1.0021 � 10�5 1.97

N Nb kE(p)k1 Order kE(p)k2 Order

64 40 6.6995 � 10�3 1.6014 � 10�3

128 80 1.5951 � 10�3 2.07 4.7510 � 10�4 1.75

256 160 5.7996 � 10�4 1.46 1.5854 � 10�4 1.58
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Fig. 2. Pressure field at t = 10, �t = �x/4. (a) Re = 20, (b) Re = 40, (c) Re = 80, (d) Re = 100, (e) Re = 200, (f) Re = 300.

Fig. 3. Pressure field at t = 10, �t = �x/4. (a) Re = 20, (b) Re = 50, (c) Re = 100, (d) Re = 1000, (e) Re = 5000.
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experiments have shown that our method can handle
problems with rigid boundaries. We plan to combine the

current algorithm with our earlier work [9] on problems
involving deformable immersed interfaces. One of the
issues that needs to be resolved is that of contact

between moving deformable immersed interfaces.
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