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Abstract

We briefly review the use of the flow-condition-based interpolation (FCBI) approach for the solution of high Péclet

and high Reynolds number flow problems. The basic idea is presented, formulations for quadrilateral and triangular
elements are briefly described, and the results of some numerical solutions are given.
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1. Introduction

While much research has been expended on the

development of numerical schemes for the solution of
high Péclet (Pe) and high Reynolds (Re) number flow
problems, there is still need to reach more stable and

more accurate procedures. Our approach for the devel-
opment of solution schemes for high Pe and Re flow
problems has been presented in [1,2], and consists of
seeking procedures that, firstly, are stable and give rea-

sonable solutions in laminar flows even when using
rather coarse meshes and, secondly, give optimal accu-
racy in laminar and turbulent flow assumptions. In

practice, it can be effective that laminar flow solutions
are sought first, in which stability and optimal accuracy
are required with rather coarse meshes, after which finer

meshes and appropriate turbulence models are selected.
This approach will be particularly valuable when used
together with goal-oriented error measures, and in the

aim to employ rather coarse meshes in the solution of
fluid–structure interaction problems [3]. Stability and
accuracy are obtained by using a flow-condition-based
interpolation and control volumes in the finite element

solution. Hence, flow-condition-based interpolation
(FCBI) discretization procedures represent hybrid
methods of classical finite element and finite volume

techniques. While FCBI methods are already used in
engineering practice, we aim to improve the schemes.
The objective of this paper is to briefly summarize

some recent experiences with the flow-condition-based
interpolation approach for the solution of high Pe and
high Re number flows. We consider two-dimensional

flow conditions and first present a technique for the
advection–diffusion problem, using quadrilateral ele-
ments, and then a technique for the incompressible

Navier–Stokes equations, using triangular elements. The
use of triangular elements in unstructured meshes is of
much interest but, in particular, still needs to be further
developed, and the FCBI approach described here has

considerable potential.

2. FCBI methods for the advection–diffusion problem

In this section we consider steady-state incompressible
flow advection–diffusion problems to be solved using
quadrilateral grids. We assume that the problems are

well-posed in the Hilbert space �. For the finite element
solution, we use a Petrov-Galerkin variational for-
mulation with subspaces �h, �h and Wh of �. The non-

dimensional finite element formulation is [1,4]:
Find the temperature � 2 �h, � 2 �h such that, for all

w 2Wh,Z
�

wr � v�� 1

Pe
r�

� �
d� ¼ 0 ð1Þ

where v is the prescribed velocity, Pe is the Péclet
number and � 2 <2 is a domain with the boundary S =
�S�. For the notation used, see [1,4,5].

Figure 1(a) shows a mesh of elements, and an element
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in its natural coordinate system. Here, both velocity and
temperature are defined at each node of the four-node

elements. The weight functions in the space Wh are step
functions. While the trial functions in �h are the bilinear
interpolation functions, the trial functions in �h are, in
the original FCBI scheme [1], defined considering the

flow conditions along each side of the element in order
to reach a stable solution. The functions are for the flux
through ab in Fig. 1(b),

h�1 h�4
h�2 h�3

" #
¼ h x1

� �
; h x2
� �	 


h �ð ÞhT �ð Þ ð2Þ

with

xk ¼ eq
k� � 1

eq
k � 1

; qk ¼ Pe �vk ��xk
� �

ð3Þ

where hT (y) = [1 � y, y] (y= x1,x2 with 0 � �,� � 1), �vk

is the average velocity evaluated at the center of the sides
considered (� = 1/2 and � = 0, 1 for k = 1, 2,

respectively) and is calculated using the nodal velocity
variables vi. Similarly, the functions for the flux through
bc are obtained by using the flow conditions along the

corresponding sides.
For some applications, more effective trial functions

in �h can be established by considering directly two-

dimensional flow conditions in the interpolations. The
proposed functions are written as follows:

h�1 h�4
h�2 h�3

" #
¼ h 	ð ÞhT 
ð Þ ð4Þ

Equation (4) corresponds to a two-dimensional general

solution in a rectangular element when we choose the
one-dimensional exact solution based interpolations in

the � and � directions for h(	) and h(
), respectively. As
an alternative, link-cutting bubbles [6] can be introduced

to obtain h(	) and h(
) in a similar way [4]. Note that in
all above methods, the bilinear interpolation functions
are obtained when the element Péclet numbers approach
zero.

3. FCBI scheme for triangular grids

In this section we present an FCBI method using

triangular grids for the steady-state analysis of incom-
pressible flows. We assume that the problem is well-
posed in the Hilbert spaces V and P. As in the advec-

tion–diffusion problem, we use a Petrov-Galerkin
variational formulation; the subspaces are now Uh, Vh

and Wh of V, and Ph and Qh of P for the finite element
solution of the Navier–Stokes equations. The non-

dimensional finite element formulation used is:
Find the velocity u 2 Uh, v 2 Vh and p 2 Ph such that

for all w 2 Wh and q 2 QhZ
�

wr � uvþ pI� 1

Re
ruþ ruð ÞT
n o� �

d� ¼ 0 ð5Þ
Z

�

qr � ud� ¼ 0 ð6Þ

where p is the pressure, I is the identity tensor, Re is the

Reynolds number and � 2 <2 is a domain with the
boundary S = �Sv [ Sf (Sv \ Sf = 0=). The trial functions
in Uh and Ph are the usual functions of finite element
interpolations for velocity and pressure, respectively.

These are selected to satisfy the inf-sup condition of
incompressible analysis [7]. The trial functions in Vh are
defined using the flow conditions. The weight functions

in the spaces Wh and Qh are step functions, which

Fig. 1. Control volume on the four-node element: (a) four-node element; (b) section ab.
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enforce the local conservation of momentum and mass,
respectively.

The proposed procedure employs the MINI element
shown in Fig. 2, in which the velocity is interpolated
using all four nodes, the local node numbers 1 to 4, while

the pressure is calculated by linear interpolation using
only the three corner nodes, the local node numbers 1 to
3. The velocity u is interpolated with the linear functions
plus a bubble function [5], and the velocity v in the

advection term is interpolated using the analytical
solution of the one-dimensional flow equation along the
sides of the element. The functions for v in the domain

!1 are indicated in Fig. 2. The important feature of the
trial functions is that the flow conditions are used on all
three sides of the element. Consequently, an interpolated

value at a specific point does not depend on the node
numbering. Of course, as the element Reynolds numbers
become small, the trial functions in Vh approach the

functions in Uh. More details regarding the scheme are
given in [8].

4. Numerical examples

4.1. Temperature solution in flow across a square domain

In order to test the proposed FCBI schemes for
advection–diffusion problems, we consider the tem-

perature solution in a flow with a skew advective

velocity. Figure 3(a) shows the definition of the problem
including the Dirichlet boundary conditions. The con-

stant unit advective velocity is prescribed over the
complete domain. A rather coarse mesh of 12 � 12
square elements is used for the solution of the tem-

perature when Pe = 106. Figures 3(b) and 3(c) show the
results obtained with the FCBI methods based on a
general solution and link-cutting bubbles, respectively.
The results indicate the stability and accuracy of the

schemes.

4.2. Solution of the driven cavity flow problem

The capability of the FCBI method using triangular
grids is illustrated by solving the lid-driven cavity flow
problem, in which the no-slip boundary condition is

imposed on the left, lower and right boundaries of the
square domain, while a unit velocity is prescribed on the
upper boundary. Figure 4(a) gives the mesh of 20 � 20 �
2 elements used for the solution of the flow when Re =

1000. As shown in Fig. 4, for this rather coarse mesh, a
reasonably accurate solution is obtained with the pro-
posed method. In Fig. 4(c) the obtained results are

compared with the solution of Ghia et al. [9]. We also
note that the velocity profiles become close to those of
Ghia et al. when the number of elements per side is

doubled, i.e. a mesh of 40 � 40 � 2 elements is used.

Fig. 2. Illustration of the interpolation of velocity v (see [8]).
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5. Conclusions

The objective in the FCBI solution approach is to
have solution schemes that are stable at high Pe and Re
numbers, and give reasonable solutions, even when

using rather coarse meshes. Using such schemes together
with error measures, rather coarse meshes can be
employed to solve certain fluid flow problems in engi-
neering practice, and notably fluid-flow structural

interaction problems.
We summarized in this paper some recent experiences

and developments with the FCBI solution approach in

two-dimensional analyses; but of course, three-dimen-
sional analyses can and are already widely performed
based on this approach [2,10]. While there is such use

with first- and second-order FCBI schemes, we still
continue to seek more effective FCBI procedures.
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