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Abstract

Combining the variational multiscale (VMS) method for large-eddy simulation with a discontinuous Galerkin (DG)
spatial discretization leads to a synergistic approach to turbulence simulation that we call the local variational multi-
scale (‘VMS) method. In ‘VMS the flexibility of DG enables the large and small-scale spaces to be set on each element

independently. In this paper, preliminary results using ‘VMS are presented for turbulent channel flow that demonstrate
the flexibility and efficacy of the method.
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1. Introduction

Continuing our study of discontinuous Galerkin (DG)

methods for simulating turbulent flows, the current
paper builds upon several recent publications that
document our progress to date [1,2,3,4]. The focus of
this paper is to present preliminary results for the

combination of DG and the variational multiscale
(VMS) method for large eddy simulation (LES) [5,6,7] –
a synergistic combination we call the local variational

multiscale (‘VMS) method that is promising for LES in
complex geometries.
We begin with a brief discussion of the formulation

and implementation of ‘VMS for turbulence simulation.
Although ‘VMS is particularly attractive for flows in
complex geometries [1,2], as a first step, this paper pre-
sents ‘VMS results for planar turbulent channel flow to

demonstrate the validity of the approach. The paper
concludes with a summary of our findings and a dis-
cussion of future research directions.

2. Formulation

Consider the compressible Navier–Stokes equations

in strong form

U;t þ Fi;i � Fv
i;i ¼ S in � � ð0;TÞ ð1aÞ

Uðx; 0Þ ¼ U0ðxÞ in � ð1bÞ

where U = {�, �u, �e}T is the vector of conserved
variables, � is the fluid density, u is the fluid velocity

vector, and e is the total energy per unit mass. The
inviscid and viscous flux vectors in the ith coordinate
direction are Fi(U) and Fv

i (U), and S is a source term.

Equation (1a) is solved subject to appropriate boundary
conditions that must be specified for each problem of
interest; a state equation, such as the ideal gas equation;
and constitutive laws that define fluid properties such as

viscosity and thermal conductivity as functions of the
conserved variables. Due to space limitations, we do not
explicitly define the flux vectors, state equation, or

constitutive relations, but instead refer the reader to
standard texts (see, e.g., [8]).
The fixed spatial domain for the problem is denoted

by �, which is an open, connected, bounded subset of
R
3, with boundary @�. Let Ph be a partition of the

domain � into N subdomains �e where

�� ¼
[N
e¼1

��e and �e \�f ¼6 0 for e 6¼ f ð2Þ

Starting from the strong form of the compressible
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Navier–Stokes equations (1a), we consider a single
subdomain, �e, multiply by a weighting function W that

is continuous in �e, and integrate the flux terms by partsZ
�e

WTU;t þWT
;i ðFv

i � FiÞ
� �

dxþ

Z
@�e

WTðFn � Fv
nÞ ds ¼

Z
�e

WTSds ð3Þ

where Fn = Fini. In discontinuous Galerkin, one allows
the solution and weighting functions to be discontinuous
across element interfaces and the solutions on each ele-

ment are coupled using appropriate numerical fluxes for
both inviscid FnðUÞ ! F̂nðU�;UþÞ and viscous fluxes,
Fv
i ðU;U;jÞ ! F̂v

i ðU�;U�;j ;Uþ;Uþ;j Þ. Introducing numer-

ical fluxes and summing over all elements yields

XN
e¼1

Z
�e

WTU;t þWT
;i ðFv

i � FiÞ
� �

dxþ

XN
e¼1

Z
@�e

WT F̂nðU�;UþÞ
� �

ds�

XN
e¼1

Z
@�e

WT F̂v
nðU�;U;�j ;Uþ;U;þj Þ

� �
ds ¼

XN
e¼1

Z
�e

WTS ds

ð4Þ

where U+ and U� are the adjacent and local states,

respectively. For an element edge on the physical
boundary @�, U+ = Ubc. Likewise, for inter-element
boundaries, U+ comes from the neighboring element.
Thus, all interface and boundary conditions are set

through the numerical fluxes. We use the Lax–Friedrichs
flux for the inviscid numerical flux and the method of
Bassi et al. [9] for the viscous numerical flux. For a more

thorough discussion of our approach, including
boundary conditions, the interested reader is referred to
[4].

For LES, we utilize the variational multiscale (VMS)
method introduced by Hughes et al. [6] and recast in a
form more consistent with traditional turbulence mod-

eling by Collis [5]. This method bypasses several of the
limitations of filter-based LES – such as filter-derivative
commutation and filter design on inhomogeneous grids
– by using variational projection to effect scale separa-

tion, thereby making extension to complex geometries
easier.

The VMS methodology, involves a priori partitioning

of the solution U = �U + ~U + Û where �U are the large
scales, ~U are the small scales, and Û are the unresolved
scales [5]. Subsequently, equations for each scale range

can be derived and the influence of the unresolved scales

(through Reynolds and cross stresses) on the resolved
scales can be isolated (see Collis [5] for details). There-

after, a subgrid scale model confined to act just on the
small scales, such as a constant coefficient Smagorinsky
model, is introduced to model the influence of the

unresolved scales on the resolved scales. This approach
to modeling, where no explicit model is applied on the
large scales, is responsible for the success of VMS, when

using a constant coefficient Smagorinsky model on the
small scales, in both equilibrium and non-equilibrium
flows [7,10,11].
The discontinuous Galerkin method permits the use

of unstructured grids with high-order, hierarchical
representations used on each element that provides a
convenient setting for VMS turbulence modeling. This

makes the combination of DG and VMS (i.e. ‘VMS)
particularly attractive for turbulence simulations in
complex geometries and the reader is referred to [1,4,12]

for more details regarding ‘VMS.

3. Numerical results

Consider fully-developed turbulent flow in a planar
channel with streamwise x, wall-normal y, and spanwise

z directions. The flow is assumed to be periodic in x and
z where the box size is selected so that the turbulence is
adequately decorrelated.

In Ramakrishnan et al. [4], DNS using DG dis-
cretizations highlighted the capabilities of DG in terms
of local hp-refinement and weak boundary-conditions

for efficiently simulating near-wall turbulence. The cur-
rent paper, extends this work to include VMS consisting
of a Smagorinsky model [6] applied only to small scales.
As an initial demonstration of ‘VMS, simulations are

presented at Re� = 100 and 395 using a centerline Mach
number of Mc = 0.3 so that comparisons can be made
to prior incompressible results (see e.g. [13,14]). Fol-

lowing Coleman et al. [15], we use a cold, isothermal
wall so that internal energy created by molecular dis-
sipation is removed from the domain via heat transfer

across the walls, allowing a statistically steady state to be
achieved. The bulk mass flow is held constant by the
addition of an x-momentum source on the right-hand

side of Eq. (1a).
The computational parameters for each simulation

are shown in Table 1 where Li and Ni denote the domain
size and the number of elements in the ith direction,

respectively. The parameter p is the local polynomial
order on each element which, for simplicity is taken to
be uniform for the simulations presented here (see [4] for

DNS using variable polynomial order elements). Typi-
cally, we use a stretched wall-normal mesh with
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yj ¼
tanhðcsð2j=Ny � 1ÞÞ

tanh cs
þ 1; j ¼ 0; 1; . . . ;Ny ð5Þ

where cs is the stretching factor in the range 1.75 < cs <
2.0. Table 1 also lists the element spacings in the
streamwise and spanwise directions (�x+ and �z+) as

well as the distance of the first collocation point from the
wall, �yþw, all in wall-units. In all cases, we use third-
order TVD-RK time advancement with �t = 0.0001.

This time step is a factor of 10 smaller than that typically
used in our prior incompressible simulations [16]
because the incompressible code treats wall-normal vis-

cous terms implicitly. We are currently enhancing our
DG code to support implicit time-advancement.
We use a constant coefficient Smagorinsky variant of

the VMS model applied to the small-scales. The Sma-
gorinsky coefficient is 0.1 and the length-scale in the
eddy viscosity is computed using

��2 ¼ LxLz

NxNzðpþ 1Þ2
ð6Þ

which is designed to account both for element size as
well as polynomial order. For all cases presented here,

the ‘large-scales’ are represented by the first two-

polynomial modes on each element (i.e. the constant and
linear modes). This choice is made so that typical near-
wall structures are well represented in the large-scale

space [11]. The remaining modes on each element are
taken as the ‘small-scales’ where the small-small variant
of the Smagorinsky model is applied [6]. To help control

aliasing errors in these high-order simulations, we use a
Boyd-Vandeven spectral filter with a spectral shift of 4
(see [17]). We have also successfully employed over-

integration [18] to de-alias our solutions and these
results will be available in [12].
Mean and rms profiles for Re� = 100 are shown in

Fig. 1 using both a uniform and stretched mesh in the
wall-normal direction. Even on the uniform mesh with
the coarse near-wall resolution, �yþw = 4.3, the results
are in reasonable agreement with DNS. The rms velo-

cities clearly show the influence of the weak wall-
boundary conditions in the streamwise direction with
noticeable slip near the wall. As first presented in the

context of DNS using DG [4], this is effectively a
‘boundary layer capturing’ method where the viscous
sub-layer is captured by a discontinuity at the wall. This

results in accurate mean and rms results without the
need to resolve the viscous sublayer.
Figure 2 shows that mean and rms profiles for ‘VMS

Table 1.

Run parameters for ‘VMS simulations.

Re� Lx, Ly, Lz Nx � Ny � Nz p cs �yþw �x+ �z+ d.o.f.

100 4�, 2, 4�/3 4 � 4 � 4 5 7/4 2.2 314 105 13,824

100 4�, 2, 4�/3 4 � 4 � 4 5 uniform 4.3 314 105 13,824

395 �, 2, �/2 4 � 6 � 9 5 7/4 2.3 310 103 46,656

Fig. 1. Mean and rms velocity profiles for Re� = 100 on 4 � 4 � 4 mesh using p = 5: —— incompressible DNS; ---- ‘VMS with

uniform wall-normal mesh; — - — ‘VMS with stretched wall-normal mesh.
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at Re� = 395 are also in good agreement with DNS. We
emphasize that these results were obtained without

tuning of any parameters. All that is required is to use
the same relative resolution (see Table 1). We conclude
by presenting streamwise and spanwise velocity spectra

taken at y+ = 20 (Fig. 3) for Re� = 395 which show
remarkably good agreement with DNS in the large-
scales. Similar to prior VMS computations using global

spectral-methods [11], energy in the small-scales is
noticeably less than that of DNS. In VMS methods, the
small-scales play the role of a buffer that protect the
large-scales from modeling and truncation errors. This

indeed appears to be the case in the current ‘VMS
simulations, which, with an appropriately selected large-
scale space and sufficiently large small-scale space (see

[11]), result in excellent mean, rms, and large-scale
spectra.

4. Conclusions

As a first-step toward ‘VMS simulations of turbulent
flows, this paper presents ‘VMS results for planar
channel flows that demonstrate excellent mean and

second-order statistics. These results are obtained using
a constant coefficient Smagorinsky model applied only
to small-scales where the small-scales are defined local to

each element. Similar to our experiences with global
spectral methods and VMS, the main requirements are
that the large-scale space be sufficient to represent the
dynamically important scales, while the small-scale

space is sufficiently large to provide an adequate buffer
to protect the large-scales. The reader is referred to
[11,12] for additional details. Specific to ‘VMS, we find

that the weak imposition of wall-boundary conditions
prevents the need to resolve the viscous sublayer both
for DNS (as shown in [4]) and in ‘VMS. These initial

results provide guidance for the use of ‘VMS for more

Fig. 2. Mean and rms velocity profiles for Re� = 395 on 4 � 6 � 9 mesh using p = 5: —— incompressible DNS [14]; ---- ‘VMS

Fig. 3. Streamwise and spanwise velocity spectra for Re� = 395 on 4 � 6 � 9 mesh using p = 5: —— incompressible DNS [14]; ----

‘VMS
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complex turbulent flows, and this is the direction of our
future research.
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