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Abstract

The symmetric crack problem in an elastic half-space subjected to a time-harmonic crack-surface loading is inves-
tigated. For this purpose, a boundary element method (BEM) is developed, which contains only a boundary integral

over the crack surface. The traction-free conditions on the half-space boundary are satisfied identically in the method.
Numerical results for the mode-I dynamic stress intensity factor of a penny-shaped crack are presented to analyze the
effects of the frequency, the crack location, and the reflected waves by the half-space boundary.
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1. Introduction

Elastic wave propagation in cracked solids is of par-
ticular interest to fracture mechanics and ultrasonic non-
destructive material testing [1,2]. Among the many

numerical methods the boundary integral equation
method (BIEM) or the boundary element method
(BEM) provides an accurate and efficient numerical tool

for wave propagation simulation in cracked elastic
solids. In this paper a frequency-domain BEM is pro-
posed and applied to a symmetric crack problem in a
three-dimensional elastic half-space. The method con-

tains only a boundary integral over the crack surface,
while the traction-free conditions on the half-space
boundary are satisfied automatically. A brief discussion

on the computation of hypersingular and weakly sin-
gular integrals is given. Numerical results for the mode-I
dynamic stress intensity factor are presented. Special

attention of the analysis is devoted to the investigation
of the effects of the frequency, the crack location and the
reflected elastic waves on the mode-I dynamic stress

intensity factor.

2. Problem statement and boundary integral equation

Let us consider a homogeneous, isotropic and linear
elastic half-space x2 � 0 containing a crack Sc located in
the plane x3 = 0 and perpendicular to the boundary of

the half-space S as depicted in Fig. 1. The crack is
subjected to a tensile time-harmonic crack-surface
loading ��33 (x,t) = N(x)exp(�i!t), where N(x) is the

loading amplitude, ! is the circular frequency, and t is
the time. Throughout the analysis, the common factor
exp(�i!t) is suppressed. The half-space surface S is
traction-free.

The total displacement wave field in such a solid can
be written as:

utoti xð Þ ¼ ui xð Þ þ u0i xð Þ ð1Þ

where ui(x) denotes the primary wave field caused by the
crack-surface loading and u0i (x) represents the reflected
wave field by the half-space boundary. The boundary

conditions on S and Sc can be stated as:

�j2 xð Þ ¼ ��0j2 xð Þ; for x 2 S ð2Þ

�33 xð Þ ¼ �N xð Þ � �033 xð Þ; ��3 xð Þ ¼ ��0�3 xð Þ
for x 2 Sc ð3Þ
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The boundary value problem, as stated above, can be
solved by using a boundary integral equation formula-

tion. For this purpose the following integral represen-
tations for the displacement components are used:
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where Hk and Hkj are the Helmholtz’s potentials

H� xð Þ ¼
Z

Sc

Z
�u3 yð Þ exp ik�rð Þ

r
dSy

Hj� xð Þ ¼
Z

S

Z
fj yð Þ

exp ik�rð Þ
r

dSy ð5Þ

In Eq. (5), r = jx�yj, k� = !/c�, are the wave numbers,
c1 and c2 are the longitudinal and the transverse wave

velocities, �u3 is the unknown normal crack-opening-
displacement, and fj are the unknown boundary den-
sities on S. Note here that the tangential crack-opening
displacements vanish because of the symmetry of the

problem.

By substituting Eq. (4) into Hooke’s law and invoking
the boundary conditions Eq. (2), the potentials of

reflected waves Hjk can be established analytically. A
subsequent use of Fourier transform technique with
respect to the variables x1 and x2 in Eq. (2) yields,

finally, the following integral relations between the
boundary densities fj and the crack-opening-displace-
ment �u3 (implicitly contained in the stress components

�j2):
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where G is the shear modulus, J0(�) is the Bessel function
of the first kind and zeroth order, and

R �ð Þ ¼ �2 � k22
�
2

� �2��2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 � k21

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 � k22

q
is the Ray-

leigh function. The expressions for the differential
operators U

�,�
jn are given by Mykhas’kiv et al. [3].

After substituting Eqs. (4)–(6) into Hooke’s law and
then invoking the boundary conditions in Eq. (3), the
following BIE is obtained for �u3:

Z
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Z
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k22
4G
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ð7Þ

Note here that the BIE (7) contains only an integral over
the crack surface, which is efficient for the numerical
solution. The Helmholtz’s potential singularities are

contained in the kernel Linf, which is the same as for a
crack in an infinite solid:
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The kernel Lint considering the interaction between the
crack and the half-space boundary is given by:

Lint x; yð Þ ¼ Linf �x� yj jð Þ þ 2

Z1

0

�

R �ð Þ� x,y,�ð Þd� ,

�x ¼ x1,� x2ð Þ ð9Þ

where � is a known regular function (see [3]).

Fig. 1. A planar crack in an elastic half-space subjected to a

crack-surface loading.
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3. Numerical solution of the boundary integral equation

To isolate the singularities explicitly in the kernel Linf,
the singularity subtraction technique is applied to Eq.
(7) by using static potentials with a hypersingularity and

a weak singularity. This results in:
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where � is Poisson’s ratio. To describe the local behavior

of the crack-opening displacement at the crack-front
correctly, the following ansatz is used in the case of a
penny-shaped crack with the radius a and the center at

O(0,�d).

� u3 xð Þ ¼
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q
� xð Þ, x 2 Sc ð11Þ

where �(x) is a new unknown smooth function. The
hypersingular and weakly singular integrals of Eq. (10)
can be regularized by using the following identities:
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For the evaluation of the kernel Lint by Eq. (9), the pole
of the integrand due to the existence of the real root of
the function R at � = !/cR should be considered, where

cR is the Rayleigh wave velocity (cR < c2 < c1). To
calculate the integral with this pole the following iden-
tical transform is applied:
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Here:
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By collocating Eq. (10) at discrete points, a system of
linear algebraic equations is obtained. For the dis-

cretization of the crack surface, a boundary element
mesh with a uniform division in the polar coordinate
direction is used.

The mode-I dynamic stress intensity factor KI (’,t) is
determined by using the following relation:

KI ’,tð Þ ¼ � 2G�
ffiffiffiffiffiffi
�a
p

1� � � xð Þjx1¼a sin’
x2¼�dþa cos’

exp �i!tð Þ ð15Þ

4. Numerical results

Numerical calculations have been carried out for a
penny-shaped crack subjected to a uniform crack-sur-
face loading N(x) = N0 = const. One hundred and

sixty-one constant elements have been used, and
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Poisson’s ratio has been taken as � = 0.3. For con-
venience, the normalized amplitude of the mode-I
dynamic stress intensity factor �KI = jKIj/Kst

I is intro-
duced, where Kst

I = 2N0

ffiffiffiffiffiffiffiffi
a=�

p
. Figure 2 shows that at

the crack-front nearest to the half-space boundary, �KI

exceeds the corresponding value for a crack in an infinite
solid. This conclusion is also valid for all points at the

crack front in the low-frequency regime as can be seen in
Fig. 3(a). At high frequencies, however, the existence of
the half-space boundary may increase or decrease the

mode-I dynamic stress intensity factor �KI, depending on
the considered position at the crack-front, see Fig. 3(b).

5. Conclusions

An improved BIE method for time-harmonic crack

analysis in an elastic half-space is presented. The method
requires only the discretization of the crack-surface and
is efficient for treating symmetric crack problems in an

elastic half-space. Numerical results are presented to
show the effects of the frequency, the crack location, and
the reflected waves by the free boundary of the half-
space on the stress intensity factor.
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Fig. 3 �KI -factor versus the polar angle along the crack-front,

(a): k2a = 0.6; (b) k2a = 1.5. (1 � d/a = 1.15; 2 � d/a = 1.2; 3

� d/a = 1.3; 4 � d/a = 1.4; 5 � d/a = 1.5; 6 – infinite cracked

solid)

Fig. 2. �KI -factor versus dimensionless wave number for a penny-

shaped crack at ’ = 08. (1 � d/a = 1.15; 2 � d/a = 1.2; 3 � d/

a = 1.3; 4 � d/a = 1.4; 5 � d/a = 1.5; 6 – infinite cracked solid)
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