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Abstract

We investigate the nonlinear electromechanical response of piezoelectric laminated actuators under alternating

current (ac) electric fields both analytically and experimentally. A laminated beam theory solution is developed for the
cantilever piezoelectric/metal/piezoelectric actuator, and the effects of ac electric fields on the deflection are analyzed. A
simple phenomenological model of a vibrating domain wall in electric fields is used, and the macroscopic actuator

response is predicted. A nonlinear three-dimensional finite element model is also developed. Bending tests are used to
validate the predictions using bimorph-type bending actuators made with soft lead zirconate titanate (PZT) layers and a
metal sheet. Theoretical predictions of the dynamic bending behavior are in excellent agreement with measured values.
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1. Introduction

The adaptability properties of piezoelectric ceramics
make them highly desirable materials for use in actua-
tion. The typical piezoelectric actuators include

multilayer stacked actuators, bimorph-type bending
actuators, and composite actuators. When large dis-
placement is required, bimorph-type actuators are

usually used. In some actuator applications, fairly large
electric fields are applied to piezoelectric materials at
relatively low frequencies. Under large electric fields,

material properties provided by manufacturers are no
longer applicable to describe device performance since
they were measured at a weak signal level [1]. Recently,

Shindo et al. [2] studied performance of multilayered
actuators in a wide electric field range, and found that
the electroelastic field concentrations induce the polar-
ization switching near the electrode tip and the strain vs.

electric field curves show the nonlinear behavior. They
also showed that the difference between calculated and
measured strains near the electrode tip becomes larger at

a higher electric field. Similar nonlinear behavior was
observed in piezoelectric disks with circular electrodes
[3].

As we know, the electromechanical properties in fer-

roelectric materials are caused not only by the ionic
displacement (the intrinsic effect), but also by the
movements of domain walls (the extrinsic contribution).
Experimental studies on soft PZT have shown that the

dielectric and piezoelectric coefficients increase with
electric field due to the extrinsic contribution at room
temperature [4,5]. The extrinsic effect is very compli-

cated because it involves interactions of several length
scales, i.e. the interactions between ions, domains, and
even diffirent phases.

There remains a need at present for efficient numerical
models and methods for predicting basic macroscopic
material response while simultaneously accounting for

microscale phenomena, such as domain switching and
domain wall motion. This paper constitutes a continuing
study of the previous work [6] on nonlinear displace-
ment properties of piezoelectric laminated actuators,

and presents theoretical and experimental results on the
nonlinear bending behavior due to domain wall motion
under ac electric fields.
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2. Electroelastic analysis

2.1. Basic equations and domain wall motion

The basic equations for piezoelectric ceramics are:

�ji;j ¼ �ui;tt ð1Þ
Di;i ¼ 0 ð2Þ
"ij ¼ sijkl�kl þ dkijEk ð3Þ
Di ¼ dikl�klþ 2ikEk ð4Þ
"ij ¼ ðuj;i þ ui;jÞ=2 ð5Þ
Ei ¼ ��;i ð6Þ

where �ij, Di, "kl and Ek are the stresses, electric dis-

placements, strains and electric fields, ui and � are the
displacements and electric potential, respectively, � is the
mass density, and a comma followed by an index

denotes partial differentiation with respect to a space
coordinate xi (i = 1, 2, 3) or the time t. We have
employed Cartesian tensor notation and the summation
convention for repeated tensor indices. sijkl, dkij and 2ik
are the corresponding elastic compliances, and piezo-
electric and dielectric constants, which satisfy the
following symmetry relations:

sijkl ¼ sjikl ¼ sijlk ¼ sjilk ¼ sklij; dkij ¼ dkji; 2ij¼2ji ð7Þ

Arlt and Dederichs [7] have developed a phenomen-

ological theory to calculate the contributions of domain
wall motions for ferroelectric ceramics. For simplicity
here, the direction of the applied ac electric field

E0 exp (i!t) is parallel to the direction of spontaneous
polarization Ps in one of the domains as shown in Fig. 1;
! is the input frequency. The induced strain �"ij and the

change of the electric dipole moment �Pi of this basic
unit due to the domain wall displacement �l can be
written as:

�"11 ¼ ��l

l
	s; �"22 ¼ 0; �"33 ¼

�l

l
	s;

�"12 ¼ 0; �"23 ¼ 0; �"31 ¼ 0 ð8Þ

�P1 ¼ ��l

l
Ps; �P2 ¼ 0; �P3 ¼ �

�l

l
Ps ð9Þ

where l is the domain width and 	s is the spontaneous
strain. The equation of domain wall motion may be

written as [7–9]:

mD�l;tt þ 
�l;t þ fD�l ¼ � @W
@�l

l ð10Þ

where mD is the effective mass per unit area of wall, 
 is
the damping constant of the wall motion, fD represents
the force constant for the domain wall motion process,

and W = � (�ij�"ij+Ei�Di)/2 is the induced energy.

Damping may be occasioned by coupling with lattice
vibrations and other causes, but for the present we set

 = 0 purely for convenience [8].

In the following we will analyze only the domain wall
movement under an ac electric field E3 = Eo exp(i!t).
Setting �l = �l0 exp(i!t), the approximate solution for

�l0 is given by

�l0 ¼
PsE0

2fD
ð11Þ

Substituting the solution (11) into Eqs. (8) and (9), the
induced strain �"11 and polarization �P3 by the domain

wall motion may be written in the following form:

�"11 ¼ �d31E3 ð12Þ
�P3 ¼ � 233 E3 ð13Þ

where:

�d31 ¼
	sPs

2lfD
; � 233¼

Ps2

2lfD
ð14Þ

Experimental studies on PZTs have shown that as
much as 45–70% of dielectric and piezoelectric moduli

values may originate from the extrinsic contributions
[4,5]. Li et al. [10] approximately estimated �"33 as two
thirds of the measured value. Here, the extrinsic dielec-

tric constant �233 is described by:

� 233¼233
2E0

3Ec
ð15Þ

where Ec is a coercive electric field.

Fig. 1. Basic unit of a piezoelectric crystallite with a domain

wall.
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2.2. Laminated beam theory

A laminated beam with integrated soft PZT layers is

shown in Fig. 2. Let the coordinate axes x = x1 and y=
x2 be chosen such that they coincide with the middle
plane of the laminated actuator and the z = x3 axis is

perpendicular to this plane. The host material chosen is
a metal. The same thick layers of PZT poled in z-
direction are added to the upper and lower surfaces to

make a three-layered piezoelectric actuator. The total
thickness is 2h and the kth layer has thickness hk = zk �
zk�1 (k = 1,2,3) where z0 = �h and z3 = h. For the
present laminated beam theory, it is assumed that the

electric field resulting from variations in stress (the so-
called direct piezoelectric effect) is insignificant com-
pared with the applied electric field [6].

The lamina constitutive equation for the kth layer of
length a and width b 	 a with respect to the reference
axes of the laminate (x,z) can be expressed as:

ð�xxÞk ¼
1

ðs11Þk
ð"xxÞk �

ðds
31Þk
ðs11Þk

ðEzÞk ð16Þ

where

ðs11Þk ¼ s11; ðds
31Þk ¼ d31 þ�d31 ðk ¼ 1; 3Þ ð17Þ

ðs11Þ2 ¼ sE11; ðds
31Þ2 ¼ 0 ð18Þ

and sE11 is an elastic compliance of the metal. The
bending modulus D and bending moment ME

xx per unit

length are given by:

D ¼
X3
k¼1

Z zk

zk�1

1

ðs11Þk
z2dz ð19Þ

ME
xx ¼

X3
k¼1

Z zk

zk�1

ðds
31Þk
ðs11Þk

ðEzÞkzdz ð20Þ

2.3. Displacement of cantilever laminated beam actuator

Consider the electroelastic response of a cantilever
beam that is fixed at one end (x = 0) and subjected to

an external ac electric field Ez = E0 exp(i!t). The

differential equation of motion for the displacement w
can be expressed as:

Dw;xxxx þ 2h�Lw;tt ¼ 0 ð21Þ

where:

�L ¼
X3
k¼1

�khk
2h

ð22Þ

The boundary conditions are:

w ¼ 0; w;x ¼ 0 ðx ¼ 0Þ
w;xx ¼ �ME

xx

D ;w;xxx ¼ 0 ðx ¼ aÞ

�
ð23Þ

The displacement at x = a is:

w ¼ � sinðkaÞ sinhðkaÞ
fcosðkaÞ coshðkaÞ þ 1gDk2

ME
xx expði!tÞ ð24Þ

where:

k2 ¼ 2h�L

D

� �1=2
! ð25Þ

3. Finite element analysis

We performed three-dimensional finite element cal-

culations to determine the displacement for the
cantilever laminated actuators. We use the commercial
finite element code ANSYS. Eight-node three-dimen-

sional space solid was used in the analysis.

4. Experiment procedure

The present piezoelectric-shim-piezoelectric actuator
was made of soft PZT and metal (Fuji Ceramics Ltd.
Co. Japan). The piezoelectric PZT (C-91) had Ni paste

electrodes on both sides. The metal layer was alloy sheet
(Fe-42% Ni). The material properties of C-91 are listed
in Table 1. The elastic compliance sE11 and Poisson’s ratio

�E of metal sheet are taken to be sE11 = 4.76� 10�12 m2/N

Fig. 2. Three-layered soft-type piezoelectric actuator.
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and �E = 0.3. The specimen had a length, a, of 40mm, a
width, b, of 2mm, and a thickness, 2h, of 0.64mm. The

amplitudes of the dynamic displacements of the canti-
lever actuators were measured with a microscope. A
voltage was applied to the surface of the first piezo-

electric layer.

5. Results and discussion

Figure 3 shows the amplitude of tip displacement wtip

as a function of the amplitude of electric field (Ez)1 = E0

exp (i!t) for (Ez)3 = 0 V/m at 60 Hz. A nonlinear
relationship between tip displacement and electric field is
observed. Agreement between analysis and experiment is

fair.
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Fig. 3. Tip displacement versus electric field at 60 Hz.

Table 1

Material properties of C-91

s11 17.1 6 10�12 (m2/V) s12 �6.3 6 10�12 (m2/V)

s13 �7.36 10�12 (m2/V) s33 18.6 6 10�12 (m2/V)

s44 41.4 6 10�12 (m2/V) d31 �340 6 10�12 (m/V)

d33 645 6 10�12 (m/V) d15 836 6 10�12 (m/V)

211 3.95 6 10�8 (F/m) 233 4.90 6 10�8 (F/m)
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