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Abstract

In the present paper the nonlinear dynamic stability of circular cylindrical shells subjected to dynamic axial loads is
investigated. Both Donnell’s nonlinear shallow shell and Sanders’ theories have been applied in order to evaluate their
accuracy. The effect of a contained fluid on the dynamic stability and the postcritical behaviour is analysed in detail.

Chaotic dynamics of compressed shells are investigated by means of nonlinear time series techniques, extracting
correlation dimension and Lyapunov exponents.
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1. Introduction

The development of aerospace vehicles requires deep

studies of lightweight, thin-walled structures. A wide
branch of the technical literature in the past century was
focalized on the analysis of thin-walled structures and
tried to investigate their behaviour in many different

operating conditions; i.e. under static and dynamic
loads, either in presence or absence of fluid-structure
interaction.

The pioneer work on the stability of thin circular
cylindrical shells date back to the middle of the previous
century [1], and a nonlinear theory was applied in order

to explain big discrepancies between linear theories and
experiments. One of the first studies on parametrically
excited shells can be found in [2]. In [3] it was observed
that the classical membrane approach is inaccurate when

the vibration contribution of the axisymmetric modes is
not negligible. Recently, parametric instability of an
infinitely long circular cylindrical shell was analysed

[4,5,6].
The presence of geometric imperfections is an

important factor to be considered in the development of

a dynamical model of actual structures in operating
conditions; such topic was considered in [7]. A review of
studies on nonlinear dynamic stability and nonlinear

vibrations of circular cylindrical shells is provided in [8].
Reference [9] is a report of a NATO project related to

shells dynamics and stability with fluid structure inter-
action with several contributions.
In this work the static and dynamic behaviour of thin

circular cylindrical shells subjected to axial dynamic
load is considered. The Donnell’s nonlinear shallow
shell and Sanders’ theories have been used. The dis-
placement fields are expanded in series of linear

eigenfunctions including asymmetric and axisymmetric
modes. Geometric imperfections are included in the
model and are normalized with respect to the shell

thickness. The response of the shell subjected to static
and periodic axial loads is investigated; a numerical
solution of the governing equations is obtained by using

a continuation technique. The dynamic analysis is
concerned with the shell vibrations due to harmonic
axial load at the ends, superimposed to a static axial
preload.

2. Mathematical model and numerical results

In this section a short description of the mathematical
models used to analyse the problem is provided. For the

sake of brevity, the mathematical details are dropped
and suitable references are provided.
Two shell theories are considered: Sanders’ and

Donnell’s nonlinear shallow shell.

The Sanders’ theory consists of a set of hyperbolic
nonlinear partial differential equations in terms of the
radial and in-plane displacement fields, w, u, v of the

shell, see Fig. 1. This theory is based on Love’s first
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approximation: (i) h<<R, h and R are the shell thickness
and radius respectively; (ii) strains are small; (iii) trans-
verse normal stress is small; and (iv) the normal to the

undeformed middle surface remains straight and normal
to the midsurface after deformation and undergoes no
thickness stretching (Kirchhoff–Love kinematic

hypothesis); rotary inertia and shear deformations are
neglected [10].

The Donnell’s nonlinear shallow shell theory consists

of two nonlinear partial differential equations in terms
of the radial displacement w and a stress function;
indeed, the second partial differential equation is
obtained from a static condensation of the in-plane

equilibrium equations. In this theory the kinematics is
simplified; moreover, the in-plane inertia is neglected.
Therefore, the theory is accurate under the following

additional hypotheses: the radial displacement is of the
order of the shell thickness; the number of nodal dia-
meters n � 4 [8,9].

In the case of a contained fluid the potential flow
theory is considered; this allows to obtain the inertial
fluid contribution in a closed form [9].

In the present work a benchmark problem, widely
studied in the past, has been considered: h= 2 � 10�3m,
R = 0.2m, L = 0.4m, E = 2.1 � 1011N/m2. For this
shell the fundamental buckling and the fundamental

vibration modes have 5 nodal diameters and one long-
itudinal half wave (m = 1, n = 5).

When the shell is axially compressed it initially

undergoes to an axial symmetric deformation, see Fig. 2;
then, beyond P/Pcl = 0.947 Pcl ¼ 2�Eh2

. ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð1� �2Þ

p
),

the shell loses stability; this load is the actual critical

load (or bifurcation load).

A first analysis is performed on a perfect shell by

considering a purely harmonic axial load, i.e. no static
preload is present: !/!1,5(0) = 1.9 (!1,5(0) = 2 � �
484.223 rad/s is the fundamental frequency of the shell
without initial compression), the static axial load is P =

0, modal damping ratio � = 0.089 on all modes; the
dynamic axial load PD is increased starting from zero
excitation up to the onset of instability. Periodic solu-

tions, their stability and bifurcations are studied by
means of continuation techniques. When the amplitude
of excitation is small, the shell vibrates axial-symme-

trically with small amplitude, the response is periodic, as
shown in Fig. 3. When PD/Pcl = 0.424 (Sanders’ theory)
a period doubling bifurcation is found; increasing the
dynamic load the solution becomes unstable. From the

Fig. 1. Shell geometry, coordinate system and dimensions.

Fig. 2. Shell buckling: comparison between [6] ‘--’ and the

present theory (Sanders).

Fig. 3. Dynamic instability. ‘—’ Sanders, ‘--’ Donnell. Thick

line: stable; thin line: unstable.
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bifurcation point a new solution takes place; it is slightly

sub-critical and initially unstable; the response is no
more axial symmetric, indeed, both asymmetric and
axisymmetric modes are excited. In Fig. 3 results
obtained by Donnell’s nonlinear shallow shell theory are

also shown; the bifurcation point is: PD/Pcl = 0.448.
The post-critical behaviour for both theories is in good
agreement.

In Fig. 4 the principal instability region is presented
for � = 0.0008 and P/Pcl = 0: regions obtained with
Donnell’s nonlinear shallow shell and Sanders theories

are very close; the effect of imperfection (modal imper-
fection w

ð0Þ
1;5;c/h = 0.15) is a translation of the instability

boundary, without changing the minimum value of PD.
A general conclusion is that small geometric imperfec-

tions, that give strong effects on the static buckling, are
not effective on the parametric instability onset. In the
following the symbol PDcr indicates the smallest

dynamic amplitude for which one can obtain dynamic
instability.

In Table 1 the effect of different imperfections is
summarized: the general comment is that geometric

imperfections are not quite effective on the parametric
instability. The only case where the influence is evident
regards a big imperfection (50% h) that gives rise to a

growing of the critical dynamic load, which is mainly
due to axial symmetric outward imperfections, that
make the shell stiffer.

In the case of combined static and dynamic loads,
chaotic dynamics can appear; for example for: P/Pcl =
0.6, PD/Pcl = 0.04, !/!1,5(0) = 1.075. By using embed-

ding techniques and the Grassberger–Procaccia
algorithm a correlation dimension equal to 3.5 is found;
moreover, two positive Lyapunov exponents appear and
the K–Y dimension is equal to 3.7.

In presence of fluid the scenario is changed; all natural
frequencies are reduced and the dynamic critical load is
increased, as shown in Table 2. The presence of fluid

gives a safety effect.

3. Conclusions

The response of the shell structure under harmonic

axial load shows a complex dynamics. Varying the fre-
quency of the dynamic excitation, a direct resonance
with softening behaviour and a parametric resonance
appear. The critical dynamic load that causes the loss of

stability of the shell with static preload is weakly affected
by geometric imperfections; conversely, the imperfections

Fig. 4. Principal instability region: comparison of the two

theories and effect of imperfections (on first mode).

Table 1

Dynamic buckling: effect of imperfections (Sanders’ theory if not indicated)

!1,5/!1,5(0) w
ð0Þ
1;5;c/h w

ð0Þ
1;15;c/h w

ð0Þ
3;5;c/h w

ð0Þ
1;0/h w

ð0Þ
3;0/h PDcr/Pcl

1 0 0 0 0 0 0.0038 (Donnell)

1 0 0 0 0 0 0.0035

0.99091 0.1 0 0 0.1 0.1 0.0033

1.02912 0.1 0.1 0.1 0.1 0.1 0.0036

0.999748 0.1 0 0 0 0 0.0035

0.99117 0 0 0 0.1 0.1 0.0033

1.03715 0.1 0.1 0.1 0 0 0.0038

1.7001 0.5 0.5 0.5 0.5 0.5 0.0077

1.04611 �0.1 �0.1 �0.1 �0.1 �0.1 0.004

1.00975 0 0 0 �0.1 �0.1 0.0037

Table 2

Critical dynamic buckling: effect of fluid and comparison the-

ories. P/Pcl = 0, damping ratio 0.089

!/!1,5(0) PDcr/Pcl

(S–K theory)

PDcr/Pcl

(Donnell)

Presence of

water

2 0.704 0.722 yes

2 0.387 0.416 no
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enlarge the frequency range in which the shell is dyna-
mically unstable.

The presence of a contained fluid reduces the
instability regions, i.e. gives a safety effect.
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