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Abstract

Recent developments in a higher-order approximation to both classical finite difference (FD) and meshless finite
difference methods (MFDM [1]) are discussed, as well as validation of this approach through the analysis of 1D

boundary value problems. The higher-order approximation concept has been introduced in [2] and developed further in
[3]. It is based on expansion of the FD operators into Taylor series. The same mesh, as in the case of the lower-order
approximation, is used, but selected higher-order terms are included. For boundary value problems of the m-th order,

the approach provides results that do not depend on the quality of the FD operator used. They are exact within the 2n-
th order Taylor series. In the present study not only smooth solutions, but also jumps of a searched function and its
derivatives may be accounted for. Preliminary 1D tests done so far provided very encouraging results.
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1. Introduction

An approach to apply a higher-order approximation

in finite difference analysis of boundary value problems
is considered. This approach has been introduced for the
first time in [2] and preliminarily developed in [3]. Its

further development, with special emphasis laid upon
including jumps of the searched function and/or its
derivatives, is considered here. Presented also is analysis

of a variety of 1D boundary value problems testing the
higher-order FD approach proposed. It may be applied
in both classical and meshless FD formulations.
The main concept of the higher-order FD formulation

is based on the local expansion of FD (MFD) operators
into the truncated Taylor series. In the case of an n-th
order FD operator the 0 
 m-th order terms of the

Taylor series expansion are used to express this FD
operator; the terms of 2n-th order and higher are
neglected, while the terms of the m + 1 
 2m-th order

are used as a higher-order correction term. Such an
approach provides a solution exact within the Taylor
series of the 2m-th order, and does not depend on the

quality of a FD operator used.

2. Formulation of the boundary value problem

The approach considered is general and, regardless of

the formulation type, may be used to analyse boundary
value problems where calculation of derivatives is
involved. However, for the sake of simplicity, only the

strong (local) formulation is discussed here:

Lu ¼ f in the domain �, and

Gu ¼ g on the boundary @�, u ¼ uðPÞ ð11Þ

3. Higher-order FD discretization

Having introduced nodes Pi, i = 1, . . ., n in the
domain �[ @�, and having selected appropriate FD

stars, the given operator L is discretized introducing, at
first, a low-order difference operator L(L) at a point Pi:

Lui � LðLÞui ð2Þ

Expanding this operator into the Taylor series at every

collocation point Pi, as mentioned above, one gets from
Eqs (1) and (2):

LðLÞui ¼ Lui þ�i þ Ri ¼ fi þ�i þ Ri � fi þ�i ð3Þ

after retaining m + 1 
 2m-th order correction terms

denoted as �i, and neglecting higher-order ones denoted
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as Ri. The correction term �i includes also jump terms
J(k) of the function itself and its derivatives up to 2n-th

order (k = 0, . . . , 2n) i.e.

�i ¼ �ðuðnþ1Þi ,:::,u
ð2nÞ
i ; Jð0Þ,:::,J

ð2nÞ
i Þ ð4Þ

In general, higher-order derivatives u
ðnþ1Þ
i , . . . , u

ð2nÞ
i

may be evaluated, e.g., by an appropriate composition

of the lower-order (u
ð1Þ
i , . . ., u

ðnÞ
i ) derivatives, values of

which may be found using the already known lower-
order solution u

ðLÞ
i of the boundary value problem

considered:

LðLÞu
ðLÞ
i ¼ fi, i ¼ 1,:::,n ð5Þ

In order to obtain in this way the FD solution of the
boundary value problem in question, based on the
higher-order approximation, one needs to solve again

the same (lowest-order) FD equation (3), though with a
modified right-hand side. As mentioned before, such a
solution does not depend on the quality of the L(L) FD

operator used. Its precision depends only on the trun-
cation error of the Taylor series applied.

It is worth stressing that:
. only the right-hand side of the FD equations

changes;

. the final FD solution is obtained in only two steps;

. the final solution will suffer only from the truncation
error of the Taylor series and does not depend on the

quality of the FD operator used.

4. Higher-order discretization of the boundary conditions

Let G be a differential operator given on the bound-

ary. In the general case a separate 2n-th order
polynomial approximation is considered for MFD dis-
cretization of the boundary conditions. The approach

consists of the following steps:

(i) MFD discretization Gui � Gui of the boundary

operator G, followed by the Taylor series expansion

Gu0 ¼ g0 þ�ðu00, u000, :::, uðnÞ0 ,u
ðnþ1Þ
0 ,:::u

ð2nÞ
0 Þ þ R

ð6Þ

at boundary node P0.
(ii) Elimination of the lower-order (1, . . ., n) derivatives

of u0 using the boundary condition and the equation
given in the considered domain but specified on its

boundary.
(iii)Replacement of the HO derivatives (n + 1, . . ., 2n)

of u0 at boundary nodes by the ones defined at the

closest internal nodes in the domain (using the
Taylor series expansion).

(iv)Generation of MFD formulas for these HO deriva-

tives, usually by the formula composition approach.

5. Solution of the 1D benchmarks problem: higher-order

FDM analysis of beam deflection

Although the benchmark problems presented here are
based on the classical FDM, using regular meshes, the

whole approach may be applied in the same way to the
meshless FDM solution procedure [1] as well. Full
automation of this approach is provided in [1]. The

approach proposed here has been preliminarily tested on
various 1D boundary benchmark problems, including
analysis of beam deflection:

LwðxÞ ¼ d2w

dx2
� fðxÞ, fðxÞ ¼ �MðxÞ

EJ
for x 2 ½0;L�

ð7Þ
GwðxÞ ¼ gðxÞ, Gw ¼ w,w0f g for x 2 B ð8Þ

The following solution algorithm is proposed:

. Low-order discretization of differential operators
described in Eqs (7) and (8):

LðxÞ � d2

dx2
, wII

i � LðLÞwi ¼
wi�1 � 2wi þ wiþ1

h2
,

i ¼ 1, ::: ,N, h ¼ const

GðxÞ � f1 , d

dx
g, wi � wi, wI

i � GðLÞwi ¼
wiþ1 � wi�1

2h
, xi 2 B ð9Þ

. Low-order FD solution u(L):

Lui ¼ wi�1 � 2wi þ wiþ1
h2

¼ fi, i ¼ 1,:::,N

Gui ¼ wiþ1 � wi�1
2h ¼ gi, xi 2 B

8><
>: ! uðLÞ

ð10Þ
. Correction terms:

�(L) corresponding to the FD operator L
�(G) corresponding to the FD boundary operator G:

�
ðLÞ
i ¼ �ðh,wIV

i ,J
ð0Þ
i ,J

ð1Þ
i ,J

ð2Þ
i ,J

ð3Þ
i ,J

ð4Þ
i Þ, i ¼ 1, ::: ,N

�
ðGÞ
i ¼ �ðh,wI

i ,w
II
i ,w

III
i ,wIV

i Þ, xi 2 B

where :

Jð0Þ ¼ �w (jump in the beam deflection)

Jð1Þ ¼ �’ (jump in the deflection angle ’ðxÞÞ

Jð2Þ ¼ M

EJ
(jump in the bending moment MðxÞÞ

Jð3Þ ¼ Q

EJ
(jump in the shear force QðxÞÞ

Jð4Þ ¼ q

EJ
(jump in the unform loading qðxÞÞ

ð11Þ
. Evaluation of the higher-order terms may be done in

several ways:
. formula composition: higher-order FD operators

are determined using composition of lower-order

J. Orkisz, S. Milewski / Third MIT Conference on Computational Fluid and Solid Mechanics420



ones, which are already known from the lower
order FD solution;

. multi-point approach: using a multi-point approach

[5], in order to evaluate correction terms �i, seems
to be a very promising technique, especially for
linear differential operators. Here a combination

of the equation’s right-hand side values replaces a
combination of the lower-order FD formulas in
additional nodes. The approach holds in the 2D

domain as well, and could be very helpful in the
difference analysis of the boundary value problem;

. other techniques (subsequent differentiation of the
considered n-th order equation).

. Higher-order FD solution u(H) obtained from:

Lui ¼ wi�1 � 2wi þ wiþ1
h2

¼ fi þ�
ðLÞ
i , i ¼ 1,:::,N

Gui ¼ wiþ1 � wi�1
2h ¼ gi þ�

ðGÞ
i , xi 2 B

8><
>: ! uðHÞ

ð12Þ

6. Simple numerical examples

A simply supported beam subjected to three kinds of
loads (uniformly distributed and concentrated) as well
as the cantilevered beam under concentrated bending

moment shown in Fig. 1 have been analysed. The
structure was discretized using only three regularly
spaced nodes. The low and higher order solutions have

been obtained. The correction term �i has been moved

Fig. 1. (a)–(c) Simply supported beam under three types of loading; (d) cantilevered beam.

Table 1

Values of the FD operators evaluated at the central node of the beam and relevant correction terms, together with the final FD solution

and the exact analytical one

LO FD solution

w
ðLÞ
1

ðwII
1 Þ
ðLÞ Composite formula

wIV
1

Jump

J
ðkÞ
1

Correction term

�1 ¼
1

12
l2wIV

1 þ
X4
k¼1

J
ðkÞ
1 lk�2

k!

HO FDM

w
ðHÞ
1

(a)
1

4

ql4

EJ
� 1

2

ql 2

EJ

q

EJ
0

1

12

ql2

EJ

5

24

ql4

EJ

(b)
1

4

Pl3

EJ
� 1

2

Pl

EJ
0 J

ð3Þ
1 ¼

P

EJ

1

6

Pl

EJ

1

6

Pl3

EJ

(c)
1

8

ql4

EJ
� 1

4

ql2

EJ
0 J

ð4Þ
1 ¼

q

EJ

1

24

ql2

EJ

5

48

ql4

EJ
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to the right-hand side of the FD equations. All relevant
quantities are shown in Table 1 (simply supported beam)
and in Table 2 (cantilevered beam).

Due to the simplicity of the problem, the exact ana-
lytical solution has been obtained for each case, solved
using the HO FDM.

7. Final remarks

A higher-order approximation approach to FD (or
MFD) analysis of boundary value problems involving
jumps of the searched function and its derivatives has

been discussed. Though the approach is general, only a
few linear 1D simple benchmark boundary value pro-
blems have been presented here. Application of this

approach to 2D and 3D problems will be considered
next, especially using the meshless FDM version.
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Table 2

Values of the FD operators evaluated at two nodes (0), (1) of the cantilever beam and relevant correction terms, together with the final

FD solution (which is also the exact analytical one)

Node (i) FD operator LO MFD

w
ðLÞ
iþ1

wII
i wIII

i wIV
i J

ðkÞ
i Correction term

�i

HO MFD

w
ðHÞ
iþ1

i = 0 Gw0 ¼
w1 � w0

l
0

M

EJ
0 0 0 �

ðGÞ
0 ¼ 1

2
lwII

0 þ
1

6
l 2wIII

0

þ 1

24
l3wIV

0 ¼
1

2

Ml

EJ

1

2

Ml 2

EJ

i = 1 Lw1 ¼
w0 � 2w1 þ w2

l2
Ml2

EJ

M

EJ
0 0 0 �

ðLÞ
1 ¼

1

12
l 2wIV

1 ¼ 0 2
Ml 2

EJ
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