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Abstract

This paper presents general antiplane electro-mechanical field solutions for a piezoelectric finite wedge subjected to a

pair of concentrated forces and free charges. The boundary conditions on the circular segment are considered as
traction free and insulated. Using the finite Mellin transforms method, the stress and electrical displacement at all fields
of piezoelectric finite wedge are derived analytically; besides that, the singularity orders and intensity factors of stress

and electrical displacement can be obtained too. After being reduced to the problem of an antiplane edge crack or an
infinite wedge in a piezoelectric medium, the results compare well with those of previous studies.
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1. Introduction

In the past, many researchers have used Mellin

transforms to solve the elastic problem of a wedge
shape. The wedge problems involving piezoelectric
materials are rarely reported in literature. Xu and
Rajapakse [1] discussed the inplane stress singularities of

piezoelectric wedges. Chue and Chen [2] generalized Xu
and Rajapakse’s formulation to study the singularity
orders of the piezoelectric wedges under generalized

plane deformation. Chue et al. [3] carried out the sin-
gularity orders and generalized stress, strain, electrical
field and electrical displacement intensity factors in a

piezoelectric wedge under antiplane deformation by
using Mellin transform.

Kargarnovin et al. [4] used finite Mellin transforms to

obtain the displacement and stress components in an
isotropic wedge with finite radius under antiplane
deformation. They made a conclusion that the stress � rz
and displacement w are divergent at the points of

application of tractions. Furthermore, � rz is dis-
continuous on the arcs r = h1 and r = h2. These
conclusions are incorrect. Obviously, the stress has to be

continuous inside the wedge. Chue and Liu [5] have
made a comment on it.

2. Basic formulations and problem solutions

If the piezoelectric material is polarized along the z-

axis, then the wedge problem will be decoupled to
inplane and antiplane problems. The antiplane field
couples the antiplane elastic deformation (�xz, �yz, w)
and the inplane elastic parameters (Dx, Dy, Ex, Ey). In

cylindrical coordinate system (r, �), the constitutive
equation of a piezoelectric medium polarized along the
z-axis is given as:
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where � ij are the shear stress, �ij are the shear strain, Di

are the electric displacements and Ei are the electric field

vectors. The material properties C44, e15 and "11 are the
elastic stiffness constant, the piezoelectric constant and
the dielectric constant, respectively. The shear strain-
displacement and electric field–electric potential rela-

tions are:
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where w and � are displacement and electric potential,

respectively. Substituting Eqs. (1) and (2) into static
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equilibrium equations and Maxwell’s equation, the
governing equations and solutions for w and � are:

C44r2wþ e15r2� ¼ 0; e15r2w� "11r2� ¼ 0 ð3Þ
r2w ¼ 0; r2� ¼ 0 ð4Þ

Figure 1 shows a piezoelectric finite wedge with a wedge
angle 2� and a finite radius a.

The radial edges (� = � �) are subjected to a pair of
concentrated forces F and free charges Q:

��z r; �ð Þ ¼ F� r� h1ð Þ
��z r;��ð Þ ¼ F� r� h2ð Þ
D� r; �ð Þ ¼ Q� r� h1ð Þ
D� r;��ð Þ ¼ Q� r� h2ð Þ

ð5Þ

where h1 � h2. The boundary conditions of the circular
segment of the wedge (r= a) are assumed to be traction-

free and electrically open. Applying the finite Mellin
transform of the second kind to (4) gives:
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The solutions of (6) are:

w� ¼ AðSÞ cosS�þ BðSÞ sinS�;

�� ¼ CðSÞ cosS�þDðSÞ sinS� ð8Þ
where A, B, C and D are unknown functions of S and
can be determined from Eqs. (5) and (8). By applying the

inverse Mellin transform [4] on Eq. (8) and using the
residue theorem and appropriate path of integration [4],
w and � can be obtained in three regions (r � h1, h1 � r

� h2, and a � r � h2). After using Eqs. (1) and (2) the
stress and electric displacement are obtained except on
the circular arcs r = h1 and r = h2. For example, the

stress and electric displacement in r < h1 are as follows:
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Fig. 1. A piezoelectric wedge with a wedge angle 2� and a finite

radius a subjected to a pair of concentrated forces F and free

charges Q.
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The singularity order for stresses and electrical dis-

placements is (�/2�)�1 when �1 < (�/2�)�1 < 0. The
singularity order is independent of the wedge radius a
and coincides with the result of Chue et al. [3] for infinite

wedge problem. No singularities are observed for � � �/
2. In addition, the order becomes conventional square
root when the wedge structure becomes a crack in a
piezoelectric medium, i.e. � = �.

Substituting r = h1 in Eqs. (9)–(12), the stress and
electrical displacement at r = h1 become:
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Similarly, the stress and electrical displacement at r= h2
can be obtained too. The distributions of stress and

electrical displacement near the singular point of the
wedge can be written as;
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where Re[��1] is the singularity order, K�
III the gen-

eralized stress intensity factor, KD
III the generalized

electrical displacement intensity factor, and fij(�) and

gi(�) are the angular functions. Comparing Eqs. (18) and
(19) with Eqs. (9)–(12), we obtain the intensity factors:
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3. Results and discussions

We define R(r, �) = � rz(a/F) = Dr(a/Q) and �(r, �) =
��z(a/F) = D�(a/Q) as the normalized stresses and
electrical displacements, respectively. When a = 0.2m,

h1 = 0.08m, h2 = 0.14m, and 2�= 1508, Figs. 2(a) and
2(b) plot the distributions of R and � along � = �308,
respectively. Since the singularities disappear for 2� �
1808, the stresses and electrical displacements remain in
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finite values. It can be also seen that R and � are con-
tinuous across the circular arcs r = h1 and r = h2. In
addition, R (i.e. � rz and Dr) vanishes along circular edge

r = a according to boundary conditions.
The results of R and � for case 2�= 2708 are plotted

in Fig. 3. It appears that the stresses and displacements

approach infinity as r ! 0.
The normalized intensity factor K* is defined as

follows:
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Figure 4 plots the variations of normalized intensity

factor K* with half wedge angle at different finite radius
a when h1 = 0.08m, h2 = 0.14m. It shows that a finite
wedge with smaller wedge angle 2� and smaller radius a

results in larger generalized intensity factor. For an
infinite piezoelectric wedge (i.e. a ! 1) with h = h1 =
h2 the generalized intensity factors for stress and elec-
trical displacement become:
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Fig. 2. Normalized stress and electrical displacement distributions when a = 0.2m, h1 = 0.08m, h2 = 0.14m, and 2�= 1508 (a) R =

� rz(a/F) = Dr(a/Q), (b) � = ��z(a/F) = D�(a/Q).

Fig. 3. Normalized stress and electrical displacement distributions when a = 0.2m, h1 = 0.08m, h2 = 0.14m, and 2�= 2708 (a) R =

� rz(a/F) = Dr(a/Q), (b) � = ��z(a/F) = D�(a/Q).
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which compare well with those of Chue et al. [3]

4. Conclusions

The antiplane electro-mechanical fields of a piezo-
electric finite wedge under a pair of concentrated forces
and free charges have been obtained analytically. The

results show that the stresses and electrical displace-
ments with or without singularities are continuous. In
addition, the generalized stress and electrical displace-

ment intensity factors for finite a or a ! 1 have been
derived. The results of the case when a ! 1 are com-
pared well with those of previous studies.
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