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Mode III analysis of an interface crack in a bimaterial wedge made
from magneto-electro-elastic media
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Abstract

The mode I1I analysis of an interface crack in a bimaterial magneto-electro-elastic wedge has been studied. The three-
phases magneto-electro-elastic field is induced by the piezoelectric/piezomagnetic BaTiO5-CoFe,O,4 composite mate-
rials. For the crack problems, the intensity factors at crack tips are derived analytically. Also, the energy density
criterion is applied to predict the fracture behavior of the interface crack.
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1. Introduction

The piezoelectric/piezomagnetic BaTiO3-CoFe,Oy4
composite material performs the magneto-electro-elastic
(MEE) properties [1,2]. In recent years, the mode III
(antiplane) fracture analyses of the MEE materials have
been studied [3,4]. The elastic analysis of a bimaterial
wedge with an interface crack has been studied [5,6].
Furthermore, Chue and Liu [7] solved the same wedge
structure made from piezoelectric materials. In this
paper, we try to solve the MEE field of a bimaterial
BaTiO;-CoFe,0,4 wedge containing an interface crack.
The intensity factors of stress, strain, electric displace-
ment, electric field, magnetic induction and magnetic
field at crack tips are derived analytically. The energy
density criterion is applied to predict the fracture
behavior of the interface crack.

2. Basic formulations

Figure 1 shows a bimaterial wedge composed of two
bonded BaTiO3-CoFe,O4 materials with same wedge
angle o. An interface crack 4B locates on the common
edge between r = a and r = b. The antiplane shearing
forces F, inplane surface charges Q and inplane magnetic
inductions B, are applied on the edges at a distance
r=h. Since the piezoelectric/piezomagnetic materials
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Fig. 1. A bimaterial MEE wedge with an interface crack.

are transversely isotropic and polarized in the z-direc-
tion, the antiplane elastic field coupled with the inplane
electric and magnetic fields is considered. The field
quantities include the shear stresses (o,., 0y.), shear
strains (7,., 7¢-), displacement (w), electric displacements
(D,, Dy), electric fields (E,, Ey), electric potential (¢),
magnetic inductions (B,, By), magnetic fields (H,, Hy)
and magnetic potential (). The constitutive equations
of the problem are as follows:
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where cq4, €11, €15, L'11, ¢15 and A; are the elastic stiffness
constant, dielectric constant, piezoelectric coefficient,
magnetic permeability, piezomagnetic coefficient and
magnetoelectric coefficient, respectively. The superscript
i denotes materials 1 and 2. For static analysis, Aj;
should be zero. The governing equations and the solu-
tions for w, ¢ and v are:

V200 1 7260 4 gl)g20 = o
eg’gvm(i) _ Eﬁ?vza&“) -0, q(lzgvzw(i) _ ngl)vzw(,) —o
(2)
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The boundary conditions on edges 6 = +a are as
follows:

oWl (r ) = Fs(r —h), o2 (r,—a) = F(r — h) (4)
DM (r,a) = Q8(r —h), DP(r,—a)=Q8(r—h)  (5)
B (r,a) = B.8(r—h), B (r,—a) = B.5(r—h) (6)

where ¢ is the Dirac-Delta function. For the generality
of mathematical derivation, the distance / satisfies a < b
< h. The continuity conditions along the interface are:

wm(r, 0) = w<2)(r, 0), ¢(1)(r, 0) = qﬁ(z)(r, 0), 1/)“)
(r,0) = ¢2(r,0), o} (,0) = o} (1,0)

BY(r,00=BY(r,0) 0<r<a b<r<oo (7)

The conditions on the crack surfaces, which are
impermeable and free of traction, can be written as:

aélz)(r, 0) = créi)(r, 0) =0, Dél)(r, 0) = Dgz)(r, 0) =0,
BY(r,0)=BY(r,0)=0 a<r<b (8)

Three functions f{(r), g(r) and /(r) are defined for the
crack surfaces [5]:
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These functions are non-zero in a < r < b. Also, the
single-valuedness conditions of the displacement, electric
potential and magnetic potential require that

b 5 ,
/ flr)dr = 0, provided that/ g(r)dr = 0,/ I(r)dr = 0
(12)

3. Solutions

Applying the Mellin transform on the first equation of
Eq. (3), gives
2w
de?

i . owtd ;
+ p*w =0, provided that [7*! ;)L’ — prPw® OOO =0

(13)

where w denotes the transformed quantity and p is a
complex. The solutions of w in Eq. (13) can be obtained.
Similarly, we can also obtain the solutions of ¢ and .
The solutions are:

W) = C(p) cos pf + C»(p) sin pé,

w2 = C7(p) cos pf + Cs(p) sin pf (14)
& = ¢y (p) cos pf + Cy4(p) sin pb,

5(2) = Cy(p) cos pf + Cyo(p) sin pd (13)
1/_}(1) = Cs(p) cos pf + Ce(p) sin pb,

P = €11 (p) cos pf + Ca(p) sin po (16)
where Cp) i =1, 2, 3, ..., 12) can be deduced from

Eqgs. (4)—(11). Applying the inverse Mellin transform on
Egs. (14)-(16) and using the residue theorem and
appropriate path of integration [6], w, ¢ and ¢ are
obtained. Only the region a < r < b in material 1 is
considered to compute the intensity factors at the crack
tips. After using Eqgs. (8)—(12) and Egs. (14)—(16) with
tedious mathematical procedures [6,7] and the singular
integral equation, f(r), g(r) and [(r) are obtained. Fur-
thermore, the stress, electric displacement and magnetic
induction are obtained as follows:

o) =" X+ X D)) =2 1w+ 3o

B (r,0) =

B,
r'[Xl—I—XzLaS}’Sb (17)
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The function f*(r) is independent of material properties.
Equations (17) indicate that the stress, electric dis-
placement and magnetic induction are uncoupled and
are independent of material properties. This conclusion
is true only if the geometry, external loadings and the
impermeable crack condition are symmetric with respect
to the interface. The same conclusion can be seen in
several previous studies [4,7,8].

Since the uncoupled phenomenon and independency
of material properties in Egs. (17), we define the stress,
electric displacement and magnetic induction intensity
factors at both crack tips (r = a and r = b) from the
concepts in [5-7]:

Kiya) = lim /27— @)Ff* (1)
K, (b) = — lim /2n(b — r)Ef*(r) (23)
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Kiy(a) = lim /27(r — ) Bof* (),

KE,(b) = — lim /27(b — r)B.f*(r) (25)

r—b—

From Eq. (1), the strain, electric field and magnetic
field intensity factors become:
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where i denotes the material i. Equations (26) show the
coupling effects and can be reduced to the piezoelectric
problem in [7] when the magnetic and piezomagnetic
effects are ignored.

The energy density theory [3] is employed for studying
the crack problem in piezoelectric or piezoelectric/pie-
zomagnetic materials. In this study, the energy density
factor is defined as:

. 1 - i E(i H(i
S0 = = [KIIIK}YI(II) + KgIKII(;) + KgIKIIy) (27)

Note that S for materials 1 or 2 are independent of 6,
(local coordinate system at the crack tip) for this specific
antiplane problem. This conclusion is similar to that of
the elastic material. The crack will propagate along the
direction of the least fracture resistance S..

4. Numerical results and discussions

The bimaterial BaTiO;-CoFe,O4 wedge with
a=0.0lm and »—a = 0.01m is considered. The mix-
ture rule [3] for the BaTiO3-CoFe,O4 composite is:

K = KVy+ g (1= Vy) (28)
where rj; is the material constant and Vis the volume
fraction of BaTiOs. The superscripts C, I and M repre-
sent the composite, inclusion and matrix, respectively. In
this case, the volume fractions of BaTiO; for materials 1
and 2 are 50% and 30%, respectively. Table 1 shows the
material constants of BaTiO; and CoFe,O4 [9].
Although it was used in many studies, we think the
negative value, I';; = —590 x 10~ %(Ns?/C?), of CoFe,04
is questionable. Pan [10] also didn’t use this value due to
the negative internal energy for the Stroh formalism.
The handbook [11] indicates that the magnetic perme-
ability of ferrimagnetic materials such as CoFe,O4
should be positive. Due to the lack of correct data in
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Table 1

Material constants of BaTiO3 and CoFe,Oy4 [9]

Material constants BaTiO3 CoFe,0y4

44 (N/m?) 43 x 10° 45.3 % 10°
ers (C/m?) 11.6 0

q15 (N/ Am) 0 550

e (C/ Vm) 11.2x107° 0.08 x107°
I (Ns?/ C?) 5%107° —590 x 107°*
*We assume I'j; = 100 x 107° st/ C? in our numerical calculation.

past references, we assign a value of I';; for CoFe,0y,,
say 100 x 107° Ns?/C2.

To investigate the effects of the wedge angle o on S,
the wedge is subjected to F =10 N/m, Q0 = 1 x 107 C/
m and B, = 1x 107> Wb/m at edges with a distance
h = 0.03m. The variations of S?(a) and S?(b) at both
crack tips with « are shown in Fig. 2. It shows
SO(@)>S5P() and SP(b) > S@B). We find that
SOa) > SYb) for o> 0.37 « and SPa) reaches its
maximum when o = 0.37 =. However, when o < 0.37 ,
SO(b) reaches its maximum and is greater than S?(a).

5. Conclusions

The intensity factors and energy density factors are
obtained to predict the fracture behavior of the interface
crack in a bimaterial MEE wedge. The energy density
factor for the antiplane problem is independent of ;.
The crack will propagate along the direction of the least
fracture resistance S.. From the numerical results, the
effects of the wedge angle have been discussed.
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