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Abstract

This paper presents a reliable and robust low-order finite shell element without zero energy modes or locking effects
for smart structures applications, especially for layered plate and shallow shell structures with adhered piezoelectric

patches serving as actuators or sensors. Four-noded finite elements are developed on the basis of the assumed natural
strain (ANS) method taking into account piezoelectric material behavior. The ANS technique adapted from purely
mechanical finite element formulations is combined with a two-field and a three-field variational formulation of the

electromechanical problem. In contrast to the two-field variational formulation, in which displacements and electric
potentials serve as independent variables, the three-field variational formulation also takes the dielectric displacement
into consideration. Numerical examples are presented in which various finite elements are compared with each other.
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1. Introduction

In adaptive structures the implementation of piezo-

electric material is gaining in importance for actuation
as well as sensing applications. Therefore, well estab-
lished design and analysis tools such as the finite element

method have to be extended in order to enable the fur-
ther development of adaptive structures. However,
despite the increasing demand for efficient and particu-

larly reliable low-order element formulations that are
applicable for a large variety of actuation and sensing
problems, only a few plate and shell elements meet these
requirements so far. Although the techniques for lock-

ing-free and stable finite elements are well known for
purely mechanical formulations [1], this knowledge has
still to find its way into coupled electromechanical pro-

blems. In this paper the ANS method is integrated into a
four-noded shell element that allows for the analysis of
shallow shells with piezoelectric patches bonded to the

surfaces. The evolved finite element formulation, which
is based on the first-order shear deformation theory, is
locking-free and has no zero energy modes.

Another possibility to avoid locking phenomena in
purely mechanical analyses or to enable a simple
implementation of nonlinear constitutive equations is
the use of hybrid-mixed methods, which have been used

successfully in the past [2]. So additionally to the ANS
method, an analogous hybrid finite element formulation
will be presented in this paper for electromechanically

coupled problems in order to allow for the later use of
nonlinear material models. First investigations con-
cerning the material nonlinearity have been done in

Ghandi et al. [3] and Lammering et al. [4]. A variational
principle for electromechanical systems is derived aug-
menting the total potential energy in the Hu-Washizu

functional further. This is achieved by integrating the
electric field–electric potential relation into the for-
mulation via a Lagrange multiplier. Based on this
variational principle, electromechanically coupled

hybrid finite elements are obtained in which the dielec-
tric displacement serves as an additional independent
variable and can be condensed on the element level [3,5].

The performance of these different finite element
formulations is tested in numerical examples in which
the piezoelectric material works as actuator or as sensor.

It will be shown that the numerical results agree well
with experiments and with examples from the literature
for static and dynamic applications.

2. Constitutive equations

The widely used material equations are developed

with the electric enthalpy density H, where the strains
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Em and the electric field Eel are chosen as the indepen-
dent field variables. Considering H as

H ¼ 1

2
ðC : EmÞ : Em � e � Eel : Em � 1

2
" � Eel � Eel ð1Þ

the linear constitutive relations for piezoelectric materi-
als can be deduced from partial derivatives of the electric
enthalpy with respect to Em and Eel [6], yielding the
stress tensor � and the dielectric displacement D:

� ¼ @H

@Em D ¼ � @H

@Eel
ð2Þ

Therefore, one obtains

� ¼ C : Em � e � Eel ð3aÞ
D ¼ eT : Em þ " � Eel ð3bÞ

where Eqs. (3a) and (3b) describe the coupling between

the mechanical and electrical material behavior. The
fourth-order elasticity tensor C is used in the same way
as in Hooke’s law and its material constants are deter-

mined at a constant electric field E
el. The electrical

behavior is formulated through the second-order per-
mittivity, ", which is measured at constant strain Em.
The electromechanical coupling is realized through the

third-order piezoelectric modulus e. These coupled
constitutive equations have to be adapted for thin shell
structures to the plane stress state, cf. Lammering et al.

[7]. The coupling condition for the material parameters
is a necessary and sufficient condition for the enthalpy
function

@�

@Eel
¼ � @D

@Em ð4Þ

For the three-field variational formulation a different
set of independent variables is needed, see Section 4.
Therefore, a conjugate form of the constitutive relations

is derived where Em and D are chosen as the independent
quantities. The associated constitutive equations can be
deduced from the internal energy density U [8]. Through

a Legendre-transformation, the electric enthalpy density
H of Eq. (1) can be transferred to the chosen potential,
which is needed for the three-field formulation, so that
the conjugate constitutive relations read

� ¼ Cd : Em � h �D ð5aÞ
Eel ¼ �hT : Em þ � �D ð5bÞ

where Cd denotes the elasticity tensor measured at
constant dielectric displacement D, � is the impermit-

tivity tensor deduced at constant mechanical strain E
m

and h is the piezoelectric modulus. As before, a reduc-
tion to the plane stress state has to be performed for thin

shell applications.

3. Two-field weak form and elements

Starting from the well known balance of momentum
and charge conservation equations, one obtains after
multiplication with the virtual displacement �u and the

virtual electric potential ��, integration over the volume
of the body B, and some straightforward calculations,
the weak form of equilibrium of the coupled electro-

mechanical problem [5]:

�Gðu; �u; �; ��Þ ¼
Z

B

½�Em : � þ �Eel �D� dV þ

Z

B

�o
@2u

@t2
� �u dV�

Z

@B�

�u � �t dA �

Z

B

�u � �ob dV�
Z

@BD

�� �d dA ¼ 0 ð6Þ

where �t denotes the traction vector on the surface @B�, �d
is the charge density on the surface @BD, �ob is the
specific body force and �o@

2u/@t2 the specific inertia

force. Using Eqs. (3a) and (3b) one obtains

Z

B

�Em : ðC : Em � e � EelÞ dVþ
Z

B

�0
@2u

@t2
� �u dV�

Z

@B�

�u � �t dA�
Z

B

�u � �0 �b dV ¼ 0

Z

B

�Eel � ð�eT : Em � " � EelÞ dV�
Z

@BD

�� �d dA ¼ 0

(7)

Subsequently, the stress resultants are computed
through integration of the respective stresses over the
thickness ti of each layer and summation over all layers ni.
A symmetric cross section is assumed so that the

bending moments do not contribute to the normal for-
ces. To develop an isoparametric four-noded shallow
shell element, the displacements u, the rotations  and

the electric potential � are approximated by bilinear
shape functions in the inplane direction of the shell. The
developed finite elements will suffer from transversal

shear locking. This is overcome with the concept of the
assumed natural strain (ANS) method, which is a well-
known technique for pure mechanical plate and shell

elements. Although several concepts are well established
for pure mechanical analysis, these methods are rarely
used for electromechanical structures [9].
The necessary condition of the ANS method is that

the shear strains are decoupled from the remaining
strains, which is also fulfilled in the case of coupled
electro-mechanical problems. An advantage of this

technique is that only a modified matrix �BS for the shear
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terms is developed but that the structure of the system of
equations remains unchanged.

Additionally, a quadratic distribution of the electric
potential across the piezoelectric layers is taken into
consideration. This distribution preserves the charge

conservation condition in thickness direction, cf. Lam-
mering et al. [7]. As a result, additional terms appear in
the stiffness matrix that are not present in the mostly

assumed case of a linear distribution. The respective
equations are not shown here for the sake of brevity.

4. Multi-field weak forms and elements

In purely mechanical problems, multi-field weak
forms are used for the construction of elements that do

not lock and possess other performance enhancements.
A weak form for the electromechanical problem, which
results in a finite element with displacement, rotation,

electric potential, electric field and dielectric displace-
ment degrees of freedom, is obtained by the following
variational principle:

�G	ðu; �u; �; ��; Eel; �Eel; D; �DÞ ¼ �Gðu; �u; �; ��Þ

þ
Z

B

�D � ðEel þGrad �Þ dVþ
Z

B

D � ð�Eelþ

Grad ��Þ dV ¼ 0 ð8Þ

where �D denotes the virtual dielectric displacement and

�Eel the virtual electric field. This electric field–electric
potential relation has been introduced into the varia-
tional principle as a constraint by a Lagrange multiplier

that is identified as the dielectric displacement. After
some straightforward calculations, it is apparent that the
virtual electric field is dropped out of the formulation.

So the only dependent electrical quantity is now the
electric field Eel, which has to be computed from the
constitutive equation (5b) and not as in the two-field
formulation from the electric potential by gradient

analysis given by E
el = �Grad �. The variational

principle has now the following form:

Z

B

� :�EmdVþ
Z

B

�0
@2u

@t2
� �u dVþ

Z

B

�D � ðEelþ

Grad�Þ dVþD �Grad �� dV ¼
Z

@B�

�t � �u dA þ

Z

B

�0b � �u dVþ
Z

@BD

�d�� dA ð9Þ

This formulation allows for the implementation of the
constitutive equations (5a) and (5b), yielding the fol-

lowing three-field variational formulation:

Z

B

�Em : ðCd : Em � h �DÞ dVþ
Z

B

�0
@2u

@t2
� �u dV�

Z

@B�

�u � �t dA�
Z

B

�u � �0 �b dV ¼ 0

Z

B

Grad�� �D dV�
Z

@BD

�� �d dA ¼ 0 ð10Þ

Z

B

�D � ð�hT : Em þ � �DþGrad�Þ dV ¼ 0

Note that for a locking-free formulation, the shear terms
also have to be calculated with the modified operator

matrix �Bs.

5. Example

A square plate that is pin supported at its corner
nodes serves as a first numerical example. The geometric
and material properties are taken from Lammering et al.

[7]. Here the electric potential that is needed to regain
the undeformed shape of the system is investigated. The
results of the numerical calculations are depicted in Fig.
1, where the deflection in the axes of symmetry is shown.

Starting from 0V the voltage has to be increased to a
maximum voltage of 75V to averagely obtain the initial
undeformed state. Both formulations with the ANS

method agree well with each other whereas elements
with selective reduced integration would suffer from zero
energy modes. Figure 2 shows the deformed shape at the

maximum electric potential of 75V. It can be seen that
the electrical load counteracts the mechanical load
leading to a displacement field that vanishes averagely

but not exactly at each point of the plate. In order to
achieve an overall zero displacement, optimization tools
have to be used for computation of the appropriate
actuator shape. Further examples are concerned with

dynamic applications as well as with piezoelectric
material in sensor function. These examples are not
shown here for the sake of brevity.

6. Conclusion

Coupled electromechanical problems and their ana-
lysis using the finite element method were in the focus of
this paper. The well-known two-field formulation in
which the displacements and the electric potential serve

as unknowns has been enhanced with the ANS method,
so that a reliable two-field finite element formulation has
been developed. This approach has also been transferred

to a three-field formulation, which is helpful when the
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material behavior cannot be described through linear

approximations properly, e.g. for high signal ranges.
Then multi-field formulations and related elements are
an efficient alternative for these systems.
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Fig. 2. Deformed shape of the pin-supported plate at the maximum electric potential of 75 V.

Fig. 1. Deflection in the axes of symmetry of the pin-supported plate at various electric potentials for a uniformly distributed

mechanical load.
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