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Abstract

The explicit Newmark algorithm for vector-space dynamics is the workhorse of structural dynamics. This paper
derives the counterpart of the explicit vector-space algorithm for the rotational dynamics of rigid bodies from the

midpoint rule in the Lie incarnation. By introducing discrete, concentrated impulses we can approximate the forcing
imparted to the system over the time step, and thus we formulate two adjoint explicit first-order integrators. These may
be composed to yield a second-order integrator which inherits the symplecticity and momentum conservation of the

first-order integrators. In this manner, we get the classical Newmark algorithm for translational motion (vector space
dynamics), or the rotation-group Newmark for rigid body rotation problems.
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1. Introduction

For some time now many researchers have tried to

come up with an explicit Newmark for the 3-D rotations
of rigid bodies. The resulting algorithms were honored
with the Newmark name, but so far none could claim

the excellent variational structure of the vector-space
Newmark.

The vector-space Newmark algorithm may be written

as a composition of two first-order algorithms, the
symplectic Euler and its adjoint [1]. As we shall show,
this composition may be interpreted in terms of an
approximation of the midpoint rule: the implicit form of

the midpoint impulse may be approximately replaced by
concentrated impulses at known configurations, which
leads to explicit algorithms as approximate midpoint

rules. We point out that this mechanically inspired
derivation yields the well-known second-order explicit
Newmark algorithm in the vector space setting, but, as

we show here, when the midpoint rule is interpreted in
the Lie sense on the rotation group SO (2), also a
remarkably accurate integrator for rigid body rotations.

This rotation-group integrator is the direct counterpart
of the explicit Newmark algorithm in the vector-space
setting, and comes with corresponding properties of
symplecticity and angular momentum conservation.

2. Vector-space dynamics

The initial value problem for a mechanical system (for

instance a system of interacting particles) described by a
vector of configuration variables (displacements) u 2 R

n

may be put as

_p ¼ f, pð0Þ ¼ p0

_u ¼M�1p, uð0Þ ¼ u0 ð1Þ

where _p is the rate of linear momentum, _u is the velocity,

and f = f(u, t) is the applied force. We shall assume a
time-independent mass matrix M. The initial values are
p0, and u0.

The midpoint approximation to Eq. (1) is written as

pðtþ�tÞ � pðtÞ
�t

¼ fðuðtþ�t=2Þ; tþ�t=2Þ

uðtþ�tÞ � uðtÞ
�t

¼M�1
pðtþ�tÞ þ pðtÞ

2

� �

The first equation of Eq. (1) may be recognized as a one-
point quadrature applied to the impulse integral

pðtþ�tÞ ¼ pðtÞ þ
Ztþ�t

t

fðuð	Þ; 	Þd	
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� pðtÞ þ�tf
uðtþ�tÞ þ uðtÞ

2
,tþ�t

2

� �

ð2Þ

This result allows us to write

uðtþ�tÞ � uðtÞ
�t

¼M�1 pðtÞ þ�t

2
f

uðtþ�tÞ þ uðtÞ
2

,

��

tþ�t

2
Þ� ð3Þ

with a clear mechanical interpretation: the term in the
brackets on the right is an approximation of the mid-
point momentum,

pðtþ�t=2Þ ¼ pðtÞ þ
Ztþ�t=2

t

fðuð	Þ,	Þd	

� pðtÞ þ �t
2 f

uðtþ�tÞ þ uðtÞ
2

,tþ�t

2

� �

ð4Þ

This may be explained in mechanical terms by recourse
to the concept of discrete impulses that replace the

integral of the continuous forcing. In particular, Eqs. (2)
and (3) may be understood as exact evaluations of
the momentum with discrete impulses
�t
2 f

uðtþ�tÞþuðtÞ
2 ,tþ�t=2

� �
imparted to the system at

times (t + �t/2)� and (t + �t/2)+. (Interpret 	� and
	+ as immediately to the left of 	 or immediately to the
right of 	 .)
Clearly, the above midpoint algorithm is implicit,

since the forcing needs to be evaluated at the unknown
geodesic midpoint uðtþ�tÞþuðtÞ

2 . To unravel this implicit-

ness, we may consider a different distribution of the
discrete impulses in time. In particular, the total impulse
may be delivered at the end of the time step, that is at (t

+ �t)�, in which case

Ztþ�t=2

t

fðuð	Þ,	Þd	 � 0

On the other hand, the impulse may be imposed at the
start of the time step, that is at (t + �t)+, and

Ztþ�t=2

t

fðuð	Þ,	Þd	 � �t fðuðtÞ,tÞ

In this manner, we obtain two explicit algorithms. The

first one, ��t, may be recognized as the symplectic Euler
method, and the second, �	h, as its adjoint.

�h
pt
ut

� �
¼ ptþh

utþh

� �
¼ pt þ hft

ut þ hM�1ptþh

� �

�	h
pt
ut

� �
¼ ptþh

utþh

� �
¼ pt þ hftþh

ut þ hM�1pt

� �

where we use subscripts instead of arguments in par-
entheses. These algorithms are symplectic [1], and, in the
absence of external forcing, momentum conserving. Their

accuracy is only linear in the time step, but their com-
position preserves both symplecticity and momentum
conservation, and yields a second-order accurate algo-
rithm [1]

�� t ¼ �	�t=2 
�� t=2 ð5Þ

This algorithm may be recognized as the well-known
explicit Newmark (
 = 1/2 and � = 0).

3. Dynamics on the rotation group

The equation of motion of a rigid body rotating about
a fixed point is written in the spatial frame as _� = RT,
where � = R� is the spatial angular momentum. Inte-

grating the spatial equation of motion, and converting
back to the body frame, we may write the equation of
motion in the body frame in integral form as

�ðtÞ ¼ exp½�skew½��� �ðt0Þ þ RTðt0Þ
Z t

t0

Rð	ÞTð	Þd	

0
@

1
A

ð6Þ

where exp [�skew[�]] = RT (t)R(t0) is the incremental

rotation through vector ��. Differentiating (6), and by
comparison with the original differential equation of
motion, we obtain

_� ¼ d exp�skew½��

� ��1
I�1�

where d exp�skew [�] is the differential of the exponential
map [2]. The initial value problem may be therefore

rewritten as

_� ¼ �skew½I�1���þ T; �ð0Þ ¼ �0

_� ¼ d exp�skew½��

� ��1
I�1�; �ð0Þ ¼ 0

In analogy to Eq. (3) we may write the midpoint
approximation to the second equation of the above

initial value problem as (�t = 0)

�tþ� t

� t
¼ d exp�skew½12�tþ� t�

� ��1
I�1� tþ� t=2

which may be simplified by noting
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d exp�skew½12�tþ� t�
�tþ� t ¼ �tþ� t

to give

�tþ� t

� t
¼ I�1�tþ� t=2

This equation needs to be solved for the rotation
vector, and, along the lines of the argument that follows

Eq. (4), the midpoint approximation of the angular
impulse

�tþ� t=2 ¼ �t þ
� t

2
exp 1

2skew½�tþ� t�

 �

Ttþ� t=2

would result in an implicit algorithm (algorithm LIE-

MID[I] referred to in the Examples section). Using
discrete impulses applied at the start or at the end of the

time step, we get two explicit algorithms, depending on
the chosen approximation of the impulse. For the
impulse applied at the start of the time step we obtain
the counterpart of the symplectic Euler integrator �h

~�h
�t

Rt

� �
¼ �tþh

Rtþh

� �
¼
�

exp �skewð�tþhÞ�ð�t þ hTtÞ½
Rt exp½skewð�tþhÞ�

�

where �tþh solves

1
hI�tþh ¼ exp �skewð12�tþhÞ


 �
ð�t þ hTtÞ

On the other hand, the total torque impulse applied at

the end of the time step yields the adjoint method

~�	h
�t

Rt

� �
¼ �tþh

Rtþh

� �
¼
�

exp �skewð�tþhÞ�ð�t þ hTtþhÞ½
Rt exp½skewð�tþhÞ�

�

where �itþh solves

1
hI�tþh ¼ exp �skewð12�tþhÞ


 �
f�t

Both algorithms are first-order, symplectic, and
momentum conserving in the absence of external tor-
ques. Even though an implicit equation needs to be

solved in order to solve for the incremental rotation
vector (the implicit character is due to the configuration
variables belonging to SO(3), a manifold, not to a vector

space as for the algorithms �h and �h	 , the algorithms
are explicit in the torque evaluations, which was our
goal all along.

As before, the composition of these two algorithms in
one time step provides us with a second-order accurate
algorithm, which is an analogy of the explicit Newmark
algorithm for the vector space dynamics

~�� t ¼ ~�	� t=2 
 ~�� t=2

We shall call the above first-order algorithms the
explicit midpoint Lie variant 2 ( ~�h) and 1 ð ~�	hÞ respec-
tively. These algorithms are not simply the symplectic

Euler and its adjoint. They all reduce to the full mid-
point Lie algorithm for torque-free motion. Application

of the discrete impulses at points different from the
midpoint distinguish them from the implicit midpoint
Lie rule. Consequently, the explicit Newmark algorithm

could also be called the alternating midpoint Lie algo-
rithm (~��t).

4. Example

As an illustration, we consider the slow symmetrical

top with total mass in a uniform gravitational field. Fig.
1 illustrates the remarkable accuracy of the present
explicit midpoint Lie (explicit Newmark) algorithm,
~��t, in comparison with selected state-of-the-art high-
performance algorithms. The tip of the vector pointing
along the axis of the slow top from the attachment point
is projected onto the plane perpendicular to the direction

of gravity. The reference solution is shown in dotted
line. The numerical solutions are obtained with �t =
0.1, which corresponds to incremental rotations within

the time step of about 308. Our algorithm ~��t captures
the overall character of the trajectories extremely well,
much better in fact than the canonical implicit algo-

rithms. The other explicit algorithm used for
comparison, SW, loses stability early on (the SW algo-
rithm is neither energy nor symplectic form conserving).

5. Conclusions

We have presented an approach to the construction of
mechanical integrators for general 3-D rotations that are
explicit in the evaluation of the forcing. The starting

point is the midpoint (implicit) rule and the integral of
the forcing is approximated with concentrated impulses.
The resulting algorithms conserve momentum, are
symplectic, first-order, and they are adjoint. Conse-

quently, their composition leads to a second-order
algorithm, which may be readily interpreted as the
rotation-group explicit Newmark integrator. This is the

true heir of the vector-space Newmark, with the desired
variational structure and excellent performance.
Numerical evidence suggests that it is the best explicit

second-order integrator to date, which is in line with
what is known about the vector-space version.
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Fig. 1. Slow Lagrangian top: components of the unit vector along the axis of the top in the plane perpendicular to the direction of

gravity. (a) AKW: implicit mid-point rule of Austin et al. [3]; (b) SW: Simo and Wong [4]; (c) LIEMID [I]: implicit midpoint Lie; (d)

LIEMID [EA]: alternating explicit midpoint Lie (explicit Newmark) algorithm, ~��t.
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