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Abstract

The time finite element method is used in this paper for the stability and bifurcation analysis of a two-degree-of-

freedom system with clearances under periodic excitations. The analysis is based on the utilization of the Poincare map
in which the stability of a periodic solution is transformed to that of a fixed point.
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1. Introduction

Clearances exist in many mechanical systems either by

design or due to the manufacturing tolerances and wear.
Vibrations of such systems can result in relative motion
across the clearance space and impacting between the

components.
The governing equations of motion include abrupt

variation of stiffness which can be assumed as piecewise
linear. A complete characterization of the dynamic

behaviour of piecewise linear systems requires, among
other things, determination of stability of their steady
state solutions. Delineation of the stable and unstable

solutions could help in predicting their periodic, quasi-
periodic and chaotic motions and transitions to either
type of response.

In this paper, the mechanical system with clearances is
considered. The time finite element method is used to
obtain the steady state solutions while the stability and

bifurcation analysis is performed by using Poincare
map.

2. Problem formulation

The mechanical model of a three-degree-of-freedom
semi-definite system with clearances consists of three

mass elements, two linear viscous dampers, and two
clearance type nonlinearities h(q1), h(q2). With qT=[q1,

q2] being the nondimensional displacement, the equation
of motion can be expressed as:

q00 þ Zq0 þ�hðqÞ ¼ f0 þ fa cosð�	Þ ð1Þ

where:

Z ¼ 2
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� �
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hTðqÞ ¼ hðq1Þ; hðq2Þ½ � ð2Þ

Furthermore, (�)0 denotes dð�Þ
d	 , 	 is the normalized time, �

denotes the nondimensional excitation frequency while
fo and fa are the amplitude vectors of mean and alter-

nating load, respectively.
Exact solutions of piecewise linear equations of

motion are very rare and almost all of the methods for
their solving are only approximate. Commonly used

solution methods are the classical numerical time inte-
gration (Runge–Kutta, etc.), the harmonic balance
method, the incremental harmonic balance method, the

piecewise full decoupling method [1] and the time finite
element method [2].

3. The time finite element method

The time finite element method will be applied for

solving Eq. (1). Using Hamilton weak principle, the
basic equation which describes the motion of the
mechanical system with clearances between the two

known times 	1 and 	2 is:
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	1

�q0Tq0 þ �qT �Zq0 ��hðqÞ þ f0 þ fa cosð�	Þ½ �
� �

d	

¼ �qT p 	2
	1

		 ð3Þ

where p is the vector of the generalized momenta. The
basis of the finite element in time approximation is, the

division of the time interval 	2 � 	1 equals the period of
excitations, into a finite number ne of time elements.
Similar to the standard finite element technique, the

displacement qj within each time element is interpolated
among their respective nodal variables �qj by using the
standard shape functions Nj.

Inserting the finite element interpolation into Eq. (3),
the following finite element equation at the time element
level is obtained:

Aj �qj þ gjð �qjÞ þ fj ¼ pj; j ¼ 1ð1Þne ð4Þ

where:

Aj ¼
Z	jþ1

	j

½N 0Tj N 0j �NT
j ZN 0j�d	 ð5Þ

gjð �qjÞ ¼ �
Z	jþ1

	j

NT
j �hðqÞd� ð6Þ

fj ¼
Z	jþ1

	j

½NT
j f0þNT

j fa cosð�	Þ�d	 ð7Þ

The global finite element equation can be determined by
assembling the finite element equation as at the time
element level (4), as in the standard finite element

modelling scheme, yielding

A �qþ gð �qjÞ þ f ¼ 0 ð8Þ

Thus, Eq. (8) results in a set of nonlinear algebraic
equations in unknown nodal displacement �q. Using the

Newton–Raphson numerical method, the nodal dis-
placement �q may be expressed in an iteration procedure
as:

�qðnþ1Þ ¼ �qðnÞ þ � �qðnÞ ð9Þ

For a small increment ��q(n), Eq. (8), can be expanded
into the Taylor series retaining only the linear terms:

dðnÞ þ KðnÞ � �qðnÞ ¼ 0 ð10Þ

where:

dðnÞ ¼ AðnÞ �qðnÞ þ gðnÞð �qÞ þ f ð11Þ

KðnÞ ¼ AðnÞ þ @g
ðnÞð �qÞ
@ �qðnÞ

ð12Þ

The iteration procedure requires evaluation of the

components of vector d(n) and tangent matrix K(n) at
each iteration step. The components of matrix A and
vector f are constants and they need to be calculated
only once. The numerical procedure will be terminated

when the increment of nodal displacement ��q converges
towards zero.

4. Stability analysis by Poincare maps

The stability of the time finite element solutions is
investigated as the stability of the Poincare map. Before
using the Poincare map, a Poincare section has to be

constructed. Points on a Poincare section can be deter-
mined considering a standard procedure of static
condensation of time elements. It is briefly discussed as

follows. Eq. (10), at the time element level, can be par-
titioned as:

dB
dI

� �
j

þ KBB KBI

KIB KII

� �
j

� �qB
� �qI

� �
j

¼ pB
0

� �
j

; j ¼ 1ð1Þne

ð13Þ

where B and I correspond the temporal nodes at the
ends and in the interior of time element, respectively,
while pB denotes the vector of momenta at the boundary
nodes. Substituting the lower part into the upper part of

Eq. (13), we can eliminate the interior nodal displace-
ment ��qI j. Considering the assemblage procedure, ��qB j

of all time elements are further condensed by imposing

the compatibility conditions at the common node of the
two elements, yielding the elimination of the common
node. This procedure results into the global equation:
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� �
þ K11 K12

K21 K22

� �
� �q1
� �q2

� �
¼ �p1

p2

� �
ð14Þ

where 1 and 2 denote the initial and final time nodes. If

�T = [��q, p] represents a point on the Poincare section,
Eq. (14) can be modified as the relationship between two
fixed points:
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� �
ð15Þ

The Poincare map P is defined by:

Pð�Þ ¼ xð� ;�1;�2Þ ¼ � ð16Þ
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In a neighborhood of the fixed point of the map, we
have

Pð� þ vÞ ¼ Pð�Þ þ @P
@�

vþOðk v2 kÞ ð17Þ

where kvk is the norm of the deviation from the fixed
point on the Poincare section. Information on the sta-
bility of the fixed point � can be obtained by studying
the eigenvalues of the Jacobian matrix @P/@� . If the

eigenvalues are inside the unit circle the system is
asymptotically stable; if at least one of the eigenvalues is
outside the circle the system is unstable. The stability

boundary is the unit circle itself. If the eigenvalues are
real there are only two points at which they can cross the
stability boundary, � = 0,�. If the eigenvalues are

complex conjugate they can cross the unit circle at an
angle � 6¼ 0, � and this is so-called Neimark instability.

5. Results

The frequency responses of a three-degree-of-freedom
semi-definite dynamical system with two clearances are
calculated here using the time finite element method.

The system parameters 
11 = 
12 = 
21 = 
22 = 0.05,
!12 = !21 = 0.6, !22 = 1.1, f T0 = [0.5, 0.25] and f Ta =
[0.25, 0] are adopted from Padmanbhan et al. [3] where

the system with one clearance was studied by using the
harmonic balance method.

The time finite element method cannot solve problems
with ideal clearance because the zero stiffness implies the
singularity of the tangent matrix K(n). In the finite ele-

ment calculations, the clearance nonlinearity h(qi) is
approximated by the trilinear system at which the slope
of the second stage is 1% of the slope of the first and

third stage. Furthermore, the finite element calculations
were performed with ten four-node time elements and
with the iteration procedure limited on 100 iterations.
Considering the response of the linear system as the

starting vector, the frequency response, in terms of the
nondimensional excitation frequency � and the steady
state amplitude q̂1, is obtained and presented in Fig. 1.

As the result of computations, the unconverged or
unstable solutions are obtained in the interval of 0.7 <�
<0.96. Using the previous stable solution as the starting

vector, only the unstable solutions are found within
narrow bounds 0.77 <�< 0.94 (Fig. 2).
Imposing small increments in the excitation fre-

quency, the points where the eigenvalues of the Jacobian
matrix cross the unit circle can be determined. For the
excitation frequency � = 0.772, the eigenvalues are:

�1;2 ¼ �0:0527� 0:9939i; �1;2
		 j ¼ 0:9953

�3;4 ¼ 0:0266� 0:4267i; �3;4
		 j ¼ 0:4275

ð18Þ

Fig. 1. Frequency response of the three-degree-of-freedom semi-definite system with clearances: o – asymptotically stable, x – unstable

or achieved maximum of 100 iterations, + number of iterations/100, . max j�ij.
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Fig. 2. Frequency response of the three-degree-of-freedom semi-definite system with clearances: o – asymptotically stable, x – unstable,

+ number of iterations/100, . maxj�ij.

(a)

(b)

Fig. 3. Phase portraits and Poincare sections showing the Neimark bifurcation: a) � = 0.772, b) � = 0.773.
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(asymptotically stable solution), while the excitation
frequency � = 0.773 generates:

�1;2 ¼ �0:0496� 0:9996i; �1;2
		 j ¼ 1:0008

�3;4 ¼ 0:028� 0:4247i; �3;4
		 j ¼ 0:4256

ð19Þ

(unstable solution). These results indicate that a complex
conjugate pair of the eigenvalues crosses the unit circle

away from the real axis resulting in Neimark bifurca-
tion. The branch of stable periodic solution, that exists
prior to the bifurcation, continues as a branch of

unstable periodic or two period quasiperiodic solutions,
after the bifurcation. The qualitatively different phase
portraits (Fig. 3) confirm the Neimark bifurcation.

In the range of unstable solutions exist two unstable
periodic solutions (� = 0.80 and � = 0.92), see Fig. 4;
other solutions are quasiperiodic.

6. Conclusions

The time finite element method is an implicit method

that gives accurate numerical results with only few time
elements and without significant computational efforts.
The stability and bifurcation analysis can be performed

by investigating the eigenvalues of the Jacobian matrix
which is a by-product of finite element procedure.
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Fig. 4. The unstable periodic solutions q1(	) and q2(	) for � = 0.92.
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