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Abstract

The uplift of an infinite plate floating on a fluid of finite depth is studied with a view to inverting the forcing required
to produce prescribed dynamics. The problem is ill posed and the potential of the forcing is the solution of a Volterra

integral equation of the first kind and of convolution type. Analysis shows that the degree of ill-posedness is moderate
and reveals that the initial rate of forcing is proportional to the initial acceleration of the plate. For error-free data, this
analytical result, and a nonuniform mesh, are used to numerically compute the forcing to three decimal places.

Keywords: Volterra integral equation of the first kind; Ill-posed; Canonical problems

1. Introduction

A schematic of a floating plate is shown in Fig. 1. This

figure shows an infinite plate of thickness h, floating on a
fluid of finite depth H ‘� h, and subject to the uplift
pressure �f ghP(�)�(r)/r. Here H is the nondimensional

depth, �f is the fluid density, g is the acceleration due to
gravity, and P is the nondimensional force at non-
dimensional time � . The radial coordinate r and vertical

coordinate z are dimensionless. The characteristic length ‘
is defined in terms of the flexural rigidityD of the plate by

‘ ¼ D

�f g

� �1=4

ð1Þ

Physical time is t ¼ �
ffiffiffiffiffiffiffi
‘=g

p
. The uplift displacement at

r = 0 and at time � is hw(�). Again w is nondimensional.
The parameters of the problem are the nondimensional
depth H and the dimensionless plate-to-fluid mass ratio

	 ¼ �ph
�f ‘

ð2Þ

The plate is assumed to be thin and linearly elastic and

the fluid is assumed to be incompressible, nonviscous
and irrotational. Since large displacements are outside
the realm of these assumptions, only a finite time
interval is physically meaningful, say 0 � � � a.

At time zero, the midsurface of the plate lies in the

z = 0 plane, the plate is stationary, w(0) = 0 and
w0(0) = 0, and the forcing is zero, P(0) = 0. During

uplift, the force potential �(�) = P0(�) is the solution of
the Volterra integral equation

Z �

0

kð� � uÞ�ðuÞ du ¼ wð�Þ, 0 � � � a ð3Þ

where

kð�Þ ¼ 

4
�
Z 1
0

x

1þ x4
cos½�ðxÞ� � dx

Fig. 1. Floating plate schematic.
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�ðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ x4

	þ 1
x tanhðHxÞ

s
ð4Þ

In Dempsey et al. [1], the time interval [0, a] (for a = 10)

is discretized into n equal intervals (for successively
higher values of n) and trapezoidal integration is used to
approximate Eq. (3) by a succession of linear systems

A� ¼ w ð5Þ

It is determined that growth of the 2-norm condition
number of A is O(n1.87) which is concomitant with a
moderate degree of ill-posedness.

It is also shown in Dempsey et al. [1] that, for a pre-
scribed uplift displacement function w(�), the initial rate
of forcing is related to the initial acceleration of the plate

by

P0ð0Þ ¼
4
ffiffiffi
	
p



w00ð0Þ ð6Þ

In Vasileva and Dempsey [2], this exact result for �(0) is
incorporated into a numerical scheme whereby a non-
uniform mesh and trapezoidal integration is used to

demonstrate convergence to three decimal places of
accuracy for the uplift forcing P(�), which is computed
from the potential �(�) by integration. The numerical
results in [2] are computed for two canonical problems.

Also, in [1,2], a model problem is used extensively as an
analytical and computational benchmark. Descriptions
of the canonical problems and the model problem

follow.

2. Canonical problems

Most of the practical uplift scenarios are covered by

studying two canonical problems that were outlined for
the first time in Dempsey and Vasileva [3]. In one, the
upward velocity is virtually constant, while, in the other,

the upward acceleration is constant.

2.1. Constant velocity (CV)

In the first canonical problem, the center of the plate
is forced upwards at a ‘constant’ velocity so that

wð�Þ ¼ V � � 1� e���

�

� �
, w0ð�Þ ¼ Vð1� e��� Þ,

w00ð�Þ ¼ �Ve��� ð7Þ

The exponential term is required in order to ensure that
w0(0) = 0, otherwise w0(�) 	 V. In this paper, � = 50, a
value based on experimental data.

2.2. Constant acceleration (CA)

In the second canonical problem, the center of the
plate is forced upwards at a constant acceleration so that

wð�Þ ¼ 1

2
A�2, w0ð�Þ ¼ A� , w00ð�Þ ¼ A ð8Þ

3. Model problem

The model problem was introduced in [3], for 	 = 1.

The logic behind it is that �ðxÞ 
 x2=
ffiffiffi
	
p

as x! þ1. If
this asymptotic result is substituted for � in Eq. (4), the
model problem

Z 1
0

�ð� � uÞ�ðuÞ du ¼ wð�Þ, 0 � � � a ð9Þ

with

�ð�Þ ¼ 

4
�
Z 1
0

x

1þ x4
cos

x2�ffiffiffi
	
p
� �

dx ¼ 

4

1� e� �j j=
ffiffi
	
p� �

ð10Þ

is obtained. The latter has the advantage of being ana-
lytically tractable and captures much of the physics of
the parent plate problem. The solution of the model
problem comprised by Eqs. (9) and (10) is given by

�ð�Þ ¼ 4



w0 þ ffiffiffi

	
p

w00
� �

, Pð�Þ ¼ 4



wþ ffiffiffi

	
p

w0
� �

ð11Þ

Applying Eq. (11) to the constant velocity canonical

problem in Section 2 gives the model problem solutions
for � and P as

�CVð�Þ ¼ V
4



1þ �

ffiffiffi
	
p � 1

� �
e���

� 	
ð12Þ

PCVð�Þ ¼ V
4



� þ ffiffiffi

	
p � 1

�

� �
1� e���ð Þ


 �
ð13Þ

while for the constant acceleration canonical problem,

the solutions are

�CAð�Þ ¼ A
4




ffiffiffi
	
p þ �
� �

, PCAð�Þ ¼ A
4




�2

2
þ ffiffiffi

	
p

�

� �

ð14Þ

These results, for the model problem, predict the shape
of the curves for � and P for the actual plate problem.

4. Numerical details

In [2], it was found that numerical computations for

both canonical problems benefit from a nonuniform
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mesh that has nodes clustered near the origin. Equation

(13) for the model problem was used in [2] to generate
this mesh for use with the plate problem. Curves for the
plate problem for the constant velocity and constant
acceleration canonical problems are shown in Fig. 2 and

3, respectively. The numerical details are discussed at
length in [2].
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Fig. 3. Curves of �/A and P/A for the constant acceleration

plate problem (for 	 = 0.15 and H = 1).

Fig. 2. Curves of �/V and P/V for the constant velocity plate

problem (for 	 = 0.15 and H = 1).
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