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Abstract

This paper uses a non-probabilistic interval finite element method (IFEM) for the eigenvalue and frequency response

function (FRF) analysis of a structure with uncertain parameters. The comparison of the obtained results with the
results of Monte Carlo simulations proves that the IFEM gives a good approximation of the dynamic behaviour of
uncertain structures. The use of a component mode synthesis (CMS) method to divide large structures into determi-

nistic components and a non-deterministic residual structure can reduce the computation time of the IFEM without loss
of accuracy.
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1. Introduction

Nowadays, the finite element method (FEM) has
become an indispensable tool for the numerical opti-
misation and validation of structural designs. However,
it is sometimes very difficult to define a reliable finite

element (FE) model for these purposes, especially when
a number of physical properties are uncertain.
In this paper, an interval finite element method

(IFEM) is used to predict the influence of uncertain
parameters for which no statistical data are available.
An interval dynamic analysis of the Garteur benchmark

aircraft with three uncertain parameters is performed
with a hybrid implementation of the IFEM, developed
by Moens [1,2]. A component mode synthesis (CMS)

method is applied for the reduction of the numerical
model. The interval results of this reduced model are
compared with the results of the full model.

2. Methodology

2.1. The interval finite element method for frequency
response function analysis

The hybrid method for interval frequency response

function (FRF) analysis, developed by Moens, is based
on the deterministic modal superposition principle. For
undamped structures, this principle states that, con-

sidering the first nmodes modes, the frequency response
function between degrees of freedom (DOFs) j and k
equals:

FRFjk ¼
Xnmodes

i¼1

�ik�ij

f�igT½K�f�ig � !2f�igT½M�f�ig

¼
Xnmodes

i¼1

1

k̂i � !2m̂i

ð1Þ

with k̂i and m̂i the modal parameters defined as:

k̂i ¼
f�igT½K�f�ig

�ij�ik
, m̂i ¼

f�igT½M�f�ig
�ij�ik

ð2Þ

The function D(!) = (k̂i � !2m̂i) expresses the modal

response denominator as a function of frequency.
The deterministic modal superposition principle has

been translated into an IFEM for FRF analysis (Fig. 1).*Corresponding author. Tel.: +32 16 328606; Fax: +32 16
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The interval translation shows that the total envelope
FRF can be calculated in three principal steps:

1. For all nmodes taken into account, the correct ranges
of the modal parameters <k̂i> and <m̂i> are
determined using a global minimisation and max-
imisation over the vector space {x} defined by the

input interval parameters:

k̂i

D E
fxg

¼ min
fxg2fxgðk̂iðfxgÞ, max

fxg2fxgðk̂iðfxgÞ
h i

ð3Þ

m̂ih ifxg ¼ min
fxg2fxgðm̂iðfxgÞ, max

fxg2fxgðm̂iðfxgÞ
h i

ð4Þ

2. The modal envelope FRF is calculated by sub-

stituting the ranges of the modal parameters in the
denominator function D(!) and subsequently
inverting the resulting denominator function range.

3. The total interval FRF is obtained by the summation
of the contribution of each mode.

The approximation of the modal envelope FRF can

be improved substantially by taking the exact eigen-
frequency ranges <fi> into account [2]. Therefore, an
additional optimisation is performed in the first step of
the interval algorithm:

fih ifxg ¼ min
fxg2fxgðfiðfxgÞ, max

fxg2fxgðfiðfxgÞ
h i

ð5Þ

A similar interval procedure can be obtained for
structures with proportional damping [1].

The efficiency of the first step of the interval finite
element (IFE) procedure is primordial, as it requires six
global optimisation procedures for each mode (Eqs (3–
5)). For each goal function evaluation in the optimisa-

tion procedure, an FE eigenvalue analysis has to be
performed, which can be very time-consuming for large
numerical models. The use of a reduced model can

substantially decrease the model evaluation time and
hence increase the efficiency of the optimisation proce-
dure drastically.

2.2. Component mode synthesis

The aim of the well-known CMS method [3,4] is to
reduce the computational cost of large structures and to
enable a solution strategy in which individual compo-

nents can be optimised without the need of the
recalculation of the total structure. Here, the CMS
method is used to divide a structure into deterministic
components on one hand and a non-deterministic resi-

dual structure on the other hand. All components are
processed independently, resulting in a set of reduced
matrices. These are then assembled with the non-

reduced residual structure, to form the reduced stiffness

Fig. 1. Translation of the deterministic modal superposition algorithm to an equivalent IFE procedure.
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and mass matrices [K] and [M] of the reduced model.
Consequently, the uncertainties in the residual structure

affect directly these stiffness and mass matrices. Hence,
in the first step of the interval FRF algorithm, only the
residual structure needs to be recalculated during the

optimisation of the modal parameters k̂i, m̂i and fi, while
the deterministic components remain unchanged. For
large models, this can lead to a considerable reduction of

the computation time of the IFEM.

3. Case study: the Garteur benchmark problem

3.1. Problem definition

The Garteur benchmark problem [5] consists of a
small-scale, simplified aluminium aircraft model with a

length of 1.5m, a wing span of 2m and a mass of 44 kg.
The fuselage of the aircraft consists of a rectangular
plate with a thickness of 50mm. The tail with a thickness

of 10mm is connected rigidly to the fuselage. The wings
are connected to the fuselage through an intermediate
steel plate. Wingtips are connected rigidly at both ends
of the wings. Both the wings and the wingtips are rec-

tangular plates with a thickness of 10mm. The FE
model, as illustrated in Fig. 2, contains almost 20 000
degrees of freedom.

The Garteur aircraft model contains some inherent
uncertainties, due to a lack of knowledge on the physical
model as well as uncertainty on the modelling level.

Three uncertainties are considered during the dynamic
analysis of the structure:
1. A first source of uncertainty is the thickness of the

visco-elastic layer, glued on to a part of the wings.

The uncertainty on this thickness ranges between 0.1
and 1.6mm, with a nominal value of 1.1mm.

2. A second source of uncertainty is the stiffness of a
part of the connection between wings and fuselage –
an inherent modelling uncertainty. In the assembled

model, this connection is modelled with an inter-
connecting plate parallel to the wings. The fuselage is
connected rigidly to this plate. The DOFs of the

interconnecting plate are connected rigidly to the
wings, except for the DOFs on the edge of the plate.
These DOFs are connected to the corresponding
DOFs on the wings using linear springs. The

dimension and the stiffness of the connection
between the wings and the fuselage can then be
varied in a continuous way by changing the stiffness

of these springs. In the performed analyses, this
stiffness ranges between 10 and 1015 N/m, with a
nominal value of 108N/m.

3. A third uncertainty is introduced on the Young’s
modulus of the wing material, with a range between
67.5 and 68.5GPa, with a nominal value of

68.0GPa.

3.2 Proportionally damped interval frequency response
function analysis

The influence of the three uncertain parameters on the
proportionally damped interval FRF between the
wingtips of the aircraft model is investigated. The input

and output DOFs are indicated in Fig. 2. For the cal-
culation of the interval FRF, 14 modes are taken into
account, covering a frequency range up to 160Hz. The

damping ratios of all considered modes have values
between 1.0 and 2.8%. A full model as well as a model

Fig. 2. Finite element model of the Garteur aircraft.
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reduced with the CMS method are investigated. In the
substructured model, the tail, fuselage and both wingtips

are modelled as deterministic components. The residual
structure consists of the wings and the connection
between wings and fuselage. Hence, all uncertain para-

meters affect only this residual structure. Fig. 3 gives a
graphical overview of the substructuring of the model
and indicates the number of DOFs of all substructures
and the assembled reduced model. For the reduced

model, a reduction of computation time of 20% is
achieved. This reduction affects every goal function
evaluation in the optimisation step; therefore, the same

proportional time gain is achieved for the total IFEM
procedure.

Fig. 4 presents the results of the interval FRF analysis
compared with the results of a Monte Carlo Simulation

with 100 samples. The upper and lower FRF bound
calculated with the IFEM gives a narrow circumscrip-
tion of the Monte Carlo results for the entire frequency

domain. The use of the CMS method gives no loss of
accuracy as the interval FRF results of the full and the
reduced model coincide. Table 1 lists the eigenfrequency

ranges for both models. Both the eigenfrequencies of the
nominal case as the eigenfrequency intervals are pre-
dicted accurately with the reduced model.

4. Conclusions

This paper uses the IFEM for the dynamic analysis of
structures with uncertain parameters. Eigenfrequency

intervals and envelope FRFs are calculated for the
Garteur benchmark aircraft, on one hand with a full
model and on the other hand with a model reduced by

the CMS method. The IFEM proves to be powerful and
reliable: a conservative approximation of the upper and
lower bound of an FRF is calculated in a single run. The
use of a substructuring method enhances the efficiency

of the IFEM, without compromising the accuracy of the
interval results.
In the presented case study, uncertainties are located

only in the model of the non-reduced residual structure.
Further model reduction and hence reduction on the

Fig. 4. Amplitude of the damped interval FRF of the Garteur aircraft model, compared with 100 Monte Carlo samples.

Fig. 3. Overview of the substructured Garteur aircraft.
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calculation time can be obtained by permitting uncer-
tainties in the component models. This implies the need
for a concept for the description of uncertainty in the

reduced matrices that represent a component that is
subjected to uncertain parameters. In the future, larger
structures also will be investigated.
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Table 1

Nominal eigenfrequency values (Hz), eigenfrequency intervals (Hz) and procentual width of the intervals (%) of the first 14 modes of

the Garteur aircraft model, for the full model and the reduced model

Full model Reduced model

Mode no. Nominal value Frequency interval Interval width (%) Nominal value Frequency interval Interval width (%)

1 5.8095 5.4886–5.9137 7.75 5.8095 5.4885–5.9137 7.75

2 15.203 14.727–15.365 4.33 15.203 14.727–15.365 4.33

3 33.077 32.417–33.379 2.97 33.102 32.442–33.404 2.97

4 33.204 32.485–33.532 3.22 33.232 32.512–33.560 3.22

5 35.609 35.263–35.766 1.43 35.614 35.267–35.772 1.43

6 46.640 43.926–47.804 8.83 46.654 43.937–47.818 8.83

7 49.821 49.269–50.007 1.50 49.820 49.269–50.008 1.50

8 54.029 53.482–54.347 1.62 54.025 53.476–54.345 1.63

9 62.358 59.361–63.617 7.17 62.387 59.382–63.647 7.18

10 67.595 67.583–67.603 0.03 67.595 67.583–67.603 0.03

11 100.24 100.10–100.33 0.23 100.24 100.10–100.33 0.23

12 128.81 126.26–129.58 2.63 128.89 126.37–129.64 2.59

13 137.44 129.50–141.12 8.97 137.77 129.77–141.47 9.02

14 150.85 143.89–153.91 6.97 151.04 143.99–154.14 7.05
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